
Studies on Pyrene and Perylene Derivatives upon Oxidation and
Application to a Higher Analogue

Akinobu Matsumoto, Mitsuharu Suzuki, Hironobu Hayashi, Daiki Kuzuhara,³

Junpei Yuasa,³³ Tsuyoshi Kawai, Naoki Aratani,* and Hiroko Yamada*

Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST),
8916-5 Takayama-cho, Ikoma, Nara 630-0192

E-mail: aratani@ms.naist.jp, hyamada@ms.naist.jp

Received: October 1, 2016; Accepted: March 2, 2017; Web Released: March 9, 2017

Naoki Aratani
Naoki Aratani was born in 1975 in Nagoya, Japan. He received his Ph.D. degree in 2005 from Kyoto
University, under the guidance of Prof. Atsuhiro Osuka. In 2003, he started an academic career as an
Assistant Professor in the Graduate School of Science, Kyoto University. In 2006–2007, he joined Prof.
Omar M. Yaghi’s group as a visiting scientist at the UCLA, studying porous crystalline materials. In 2009–
2013, he was a researcher of PRESTO, JST. In 2012, he moved to Nara Institute of Science and Technology
as an Associate Professor. His research interests focus on the creation of novel π-functional molecules.

Hiroko Yamada
Hiroko Yamada received her Ph.D. degree (Science) in 1992 from Kyoto University. Since 2008, she is an
associate professor at Ehime University, then moved to NAIST in 2011. She was promoted to a full professor
at NAIST in 2012. From 2007 to 2010, she was a researcher of PRESTO, JST, and then a group leader of
CREST project (2010–2016), JST, on “Construction of organic thin-film solar cells with innovative solution-
processible organic materials”. Her current research focuses on the development of functional organic
materials including solution-processable molecular materials for organic electronics applications, large
acenes and bottom-up synthesis of graphene nanoribbons.

Abstract
The structure and electronic features of neutral and positively

charged pyrene and perylene derivatives were explored. The
radical cation of 1,3,6,8-tetraarylpyrene 1 was examined by
ESR, UVvisNIR spectroscopy and theoretical calculations.
The addition of 2 equiv of oxidant to 1 resulted in the formation
of dication 12+. The single-crystal X-ray structure of 12+ proved
that the aromatic part relocates from biphenyl unit to naphthyl
unit upon 2e¹ oxidation of 1. We have also investigated the
oxidation processes of 3,9-diarylperylene 2 and 3,10-diaryl-
perylene 3. The radical cations of 2•+ and 3•+ showed ESR
signals and the spin densities were proven to delocalize at
3,4,9,10-positions. In the case of doubly charged 3,9-diaryl-
perylene, we could find the anthracene structure in the core,
while the phenanthrene skeleton appeared in two-electron oxi-

dized 3,10-diarylperylene. Finally we validated this phenome-
non to apply for the higher analogue terrylene, discovering its
large aromaticity relocation upon the 2e¹ oxidation.

1. Introduction

While polycyclic aromatic hydrocarbons (PAHs) and their
various derivatives are very common in chemistry, their cati-
onic and dicationic species are not properly investigated under
normal experimental conditions due to their remarkable reac-
tivity, so it is rather difficult to obtain the structural information
especially in their solid state. Under special conditions, Olah
has achieved the generation and characterization of a series of
charged PAHs in super acid.1 In general, however, the oxida-
tion of the unsubstituted PAHs having appropriate oxidation
potential typically results in the formation of directly linked
PAH oligomers.29 In case of pyrene, the oxidation gives a 1,1¤-
linked pyrene dimer (Scheme 1).10,11 In order to investigate
their isolated cationic species, it is necessary to “cap” some
of the most reactive positions by the substituents to prevent
(random) oligomerization.12
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In these decades, considerable efforts have been made for
the characterization of radical cations and dications with long
lifetimes and some of them have been isolable.1325 There have
been deep discussions on the stability of dicationic species of
PAHs.26 As an interesting example, Bettinger et al. have
discovered the fact that dications of higher linear acenes are
formed more easily with growing size in sulfuric acid.27 A
computational analysis of anthracene concluded that the doubly
charged system could be drawn with two Clar sextets.2832

In our previous communications, we reported that the steri-
cally hindered pyrenes and perylenes could be oxidized with
SbCl5 to give persistent cations and dications (Scheme 2).33

The aromatic site of the dications relocates from the biphenyl
to the naphthalene for pyrene, and from the naphthalene to the
anthracene or phenanthrene for perylene, respectively, judging
from the structures determined by the single-crystal X-ray
analysis for the first time.

In this article, we have analyzed these oxidation processes of
the pyrene and perylene derivatives in detail via the corre-
sponding radical cations both experimentally and theoretically
(Scheme 2). Especially, the formation of discrete radical cati-
onic state of those compounds was confirmed by means of an
ESR technique and analyzed by theoretical calculations. In
addition, we validated the aromaticity relocation phenomena of
the higher analogue terrylene upon the 2e¹ oxidation.

2. Experimental

Synthetic procedures for 1, 2, and 3 were reported in previ-

ous communications.33 1HNMR (400MHz) and 13CNMR (100
MHz and 150MHz) spectra were recorded with JEOL JNM-
ECX 400 and JEOL JNM-ECP 400 and JEOL JNM-ECA 600
spectrometers at ambient temperature by using tetramethyl-
silane as an internal standard. X-ray crystallographic data were
recorded at 90K on a Bruker APEX II X-ray diffractometer
equipped with a large area CCD detector by using graphite
monochromated Mo-K¡ radiation ( = 0.71073¡). UV/Vis
absorption spectra were measured with a JASCO UV/Vis/NIR
spectrophotometer V-670. Fluorescence spectra were measured
with a JASCO FP-6600 spectrophotometer. Fluorescence quan-
tum yields were measured on a Hamamatsu Absolute PL Quan-
tum Yield Measurement System C9920-02. CV measurements
were conducted in a solution of 0.1M TBAPF6 in dry dichloro-
methane with a scan rate of 100mV/s at room temperature in
an argon-filled cell. A glassy carbon electrode and a Pt wire
were used as a working and a counter electrode, respectively.
An Ag/Ag+ electrode was used as reference electrodes, which
were normalized with the half-wave potential of ferrocene/
ferrocenium+ (Fc/Fc+) redox couple. ESR spectra were mea-
sured with JEOL JES-FA100N. For spectral measurements,
spectral-grade toluene was purchased from Nacalai Tesque.

Density functional theory (DFT) calculations were employed
with the Gaussian 09 package.34 Ground states of neutral state
were calculated at the B3LYP level of theory with basis set 6-
31G(d), and radical cation and dication states were calculated
by the combination of global hybrid functionals with exact-
exchange admixtures of 35% (BLYP35) with basis set SVP
with CPCM solvent model implementations in MeCN (see
discussion).35 The calculated absorptions were computed at
the time-dependent (TD)-DFT level with the same functional
and solvent. NICS(0) values were calculated at the B3LYP/
6-311++G(2d,p) level using the optimized structure and the
standard GIAO procedure.

3. Results and Discussion

Pyrene Case. Pyrene derivatives are in general highly
emissive and many applications are found in optical sensors,
non-linear optics, and light emitting diodes.36 Electrophilic
substitution of pyrene at the 1-, 3-, 6-, and 8-positions and sub-
sequent transformation has led to enormous organic molecules
that have been used in electronic and optoelectronic devices.37

The pyrene radical cation is normally highly reactive and its
characterization is difficult. The oxidation of pyrene is usually
irreversible at room temperature in conventional solvent.

The oxidation of the unsubstituted pyrene results in the
formation of 1,1¤-linked oligopyrenes as mentioned above.2,11

Rathore et al. successfully isolated the radical cation of 1,3,6,8-
tetraisopropylpyrene.38 This compound showed a reversible
oxidation wave at +0.98V (versus SCE) and an intense absorp-
tion band of the pyrene radical cation at 494 nm. Alkylpyrene
dications by two-electron oxidation with SbF5/SO2ClF were
observed in low-temperature 13CNMR.39 Introduction of di-
phenylamino groups at 2- and 7-positions enable the generation
of stable dicationic species but the positive charges are outside
of the pyrene core.40 Its anion version was achieved by the
diborylpyrene.41

A well-known problem of pyrene derivatives is that their
emission in the solid state is effectively quenched because
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Scheme 1. Oxidative oligomerization of an intact pyrene and
single-crystal X-ray structure of dimer.10
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of the formation of self-aggregation via π-stacking.42 Many
research groups have attempted to enhance the emission from
the pyrene core in the solid state by modifying the molecular
structures.43 Sterically congested mesityl substituents can pre-
vent undesirable face-to-face π-stacking, so that self-quenching
is impeded to permit efficient emission.44 In reverse, aggrega-
tion-induced emission (AIE) is one of the most elegant strate-
gies for making solid-state pyrenes emissive.45

We have investigated the effect of bulky substituents at the
periphery of the pyrene by 1,3,6,8-tetrakis(naphthalen-1-yl)-
pyrene.33a In addition to the facile synthetic accessibility by
SuzukiMiyaura cross-coupling, the bulky aryl rings were
a priori anticipated to contribute to the improvement of the
redox stability of pyrene derivatives (Scheme 2). 1,3,6,8-
Tetrakis(4-mesityloxyphenyl)pyrene (1) was also synthesized
by the standard SuzukiMiyaura cross-coupling between 2-(4-
chlorophenoxy)-1,3,5-trimethylbenzene and 1,3,6,8-tetraboryl-
pyrene.33b The pyrene core unit in the solid state is perfectly
planar with the mean-plane deviation of 0.046¡ and does
not form face-to-face stacking owing to the peripheral aryl
groups.33b,46 The center-to-center distance between the pyrene
cores in the solid state is about 7.27¡, suggesting negligible
interaction between the pyrene units. The attached phenyl
units in 1 are relatively coplanar to the pyrene plane (49° and
52°).

UVvis absorption and fluorescence spectra of 1 in toluene
are shown in Figure 1. Compared to the pristine pyrene (max =
337 nm), compound 1 exhibits red-shifted and broader absorp-
tion (max = 393 nm), suggesting the electronic communication
between the pyrene and aryl units. Fluorescence quantum yield
of 1 in toluene has been also measured to be 9%. The fluo-
rescence peak wavelength is 432 nm. To further investigate the
physical properties, the fluorescence spectrum and quantum
yield of the single crystals of 1 have been measured (Figure 1).
The fluorescence peak wavelength of the crystalline state is 459
nm, which is longer than those observed in solution, indicating
packing effects of 1. The florescence quantum yield of 1 in the
solid state (22%) is higher than that in solution, thus 1 exhibits
AIE.45

Figure 2 shows the cyclic voltammetry (CV) of 1 in CH2Cl2.
Compound 1 shows reversible oxidative waves at +0.53 and
+0.86V (versus Fc/Fc+). Compared to the first oxidation

potential of the pristine pyrene, that of compound 1 shifted to
a lower potential. To understand its electronic features, MO
calculations of the model compound 1¤ (mesityl groups were
replaced by methyl groups) were performed (Figure 3). The
highest occupied molecular orbital (HOMO) of 1 is mainly
located over the π-conjugated core skeleton but delocalized
also to the aryl-substituents to some extent. The energy levels
of the HOMO and the lowest-unoccupied molecular orbital
(LUMO) of 1 were calculated to be ¹4.74 eV and ¹1.48 eV,
respectively.

The reversible oxidation found for 1 encouraged us to inves-
tigate the ability of 1 for the generation of the stable cationic
and dicationic species.47 Generation of the cationic species of
1 was carried out with NOSbF6, which is known as a powerful
one-electron oxidation agent. 1 was subjected to stepwise
oxidations with NOSbF6 (1 or 2 equiv) in CH2Cl2/CH3CN.
Although the oxidation of parent pyrene with the oxidant
immediately forms its oligomers as mentioned above (within
5min), 60% of absorption of 1•+ remains even after 24 h under
ambient conditions. The UVvisNIR absorption spectra are
shown in Figure 4. After addition of 1 eq of NOSbF6 to 1, the
intense band at 306 nm and 393 nm decreased, whereas new
bands in visible region at 626 nm and the NIR region at 926
nm arose. The absorption spectrum is practically the same as
that of the electro-chemically oxidized 1 at +0.58V (versus
Fc/Fc+).

The formation of the radical cation was also confirmed by
ESR spectroscopy (Figure 5). The radical cation of 1•+ exhib-
ited a single-line ESR signal at g = 2.0024, which corresponds
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Figure 1. UVvis absorption (black) and fluorescence spec-
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to a general organic free radical compound. Since the hyperfine
coupling constants (hfccs) were not clearly observed, it is con-
sidered that the electronic correlation of radical cations is very
fast. The signal of 1•+ in ESR spectrum is attributed to four
hydrogen positions (Figure 5b).

Computed spin densities showed that the unpaired electrons
were delocalized over the aromatic skeleton. According to the
spin density calculations, 1•+ has the highest spin densities
of 0.21 on C1, C3, C6, and C8 substituted with aryl groups
(Figure 5c). Thus the aryl groups are indeed contributing as
steric protection to the radical.

Upon further addition of NOSbF6 (totally 2 equiv), 1•+ was
oxidized to the dicationic species 12+, resulting in the appear-
ance of visible band at 621 nm, and the disappearance of the
ESR signals. Interestingly, the lifetime of dicationic species
is even longer than that of cationic one, checked by UVvis
absorption spectral change (only 26% degradation) after 24 h
under ambient conditions. The ground state of dicationic
species was predicted to be singlet rather than triplet by DFT
calculations with energy difference of 15.6 kcal/mol.

We have measured 13CNMR spectrum of 12+ at ¹40 °C in
CD3CN as shown in Figure 6 along with the spectrum for the
neutral 1. All 13 non-equivalent aromatic carbons were ob-
served at ¤ = 212.94, 185.71, 185.49, 180.09, 163.37, 138.80,
137.24, 133.57, 131.34, 130.17, 93.68, 88.30, and 85.58 ppm.

Conventionally, DFT calculations at the (U)B3LYP/
6-31G(d) level were conducted to simulate UVvis absorption
spectra of charged species or to provide a singly occupied
molecular orbital. However, it has been demonstrated by
multiple research groups that (U)B3LYP over-delocalizes the
charge in π-conjugated systems.35 Therefore, the calculation for
1•+ was performed by time-dependent density functional theory
(TD-DFT) at the (U)BLYP35/SVP (with CPCM solvent model
implementations in MeCN)35 using the Gaussian 09 package.

The calculation accuracy was confirmed by comparison
between the absorptions calculated with (U)B3LYP/6-31G(d)
and (U)BLYP35/SVP (with CPCM solvent model implemen-
tations in MeCN) (Figure 7). The fact that the B3LYP (blue
bars) overestimates the charge delocalization was indicated by
the calculated absorptions for both 1•+ and 12+. Eventually, the
absorption with (U)BLYP35/SVP (red bars) better agrees with
the experimental data than that with (U)B3LYP/6-31G(d).

We have succeeded to make single crystals of 12+.33b,48 After
considerable attempts, we found the crystallization conditions:
to a solution of 1 in anhydrous dichloromethane and hexane
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was added SbCl5 (excess) under an argon atmosphere at 5 °C.
The crystal structure of 12+¢2(SbCl6)¹ revealed that the coun-
ter anions are positioned above and below the pyrene plane.
The dihedral angles of phenyl units in 12+ are 41° and 42°.
Compared to the neutral state, the phenyl groups tilted about
9°. Interestingly, the plane constructed from C1, C2, and C3 in
12+ was twisted toward the planar central naphthalene core by
9°. The quinoidal contributions of mesityloxyphenyl groups are
likely not negligible to stabilize dicationic state (Scheme 3).

The bond length alternations from 1 to 12+ and the twist
of the lateral 3C units should indicate the large change of its
electronic system. To check their aromaticity of the neutral and
charged species, we performed harmonic oscillator model of
aromaticity (HOMA)49 value estimation for 1 and 12+ on the
basis of crystal structures.33b By the electronic system rearrange-
ment upon the two-electron oxidation, the bond lengths become
rather close to naphthalene.50 Thus the aromaticity of the pyrene

(rings having larger HOMAvalues) relocates from the biphenyl
part into the naphthalene unit upon the two-electron oxidation
(Scheme 3). These experimental results show a correlation with
theoretical calculations.33a The nucleus independent chemical
shift (NICS)51 is another aromaticity index. Although the NICS
values for charged systems tend to be high due to the electron
deficient situation,52 the switch of the magnetic properties is
observed from neutral 1 to dication 12+.

Perylene’s Case. Perylene derivatives are also very com-
mon in chemistry. While their isolated anionic and dianionic
species are practically available in experimental conditions,53

their cationic and dicationic species are unstable due to their
high reactivity.54 The oxidation of the perylene derivative hav-
ing an imino bridge at a bay area results in the formation of
directly linked dimers.6 Therefore, in order to investigate the
isolated cationic species, it is necessary to cap the most reactive
positions by the substituents as well.

Electrophilic substitution of perylene at the 3-, 4-, 9-,
and 10-positions and subsequent transformation have led to
numerous compounds.55 Alkylperylene dications by two-
electron oxidation with SbF5/SO2ClF were observed in low-
temperature 13CNMR.56

Synthesis of 3,9- or 3,10-dibromoperylene was reported in
the literature.57 Nevertheless, 3,9- and 3,10-dibromoperylenes
were not able to be easily separated in our hands. Rf values on
silica gel and retention times on GPC and Buckyprep column
are all identical. Beside, the identical 1HNMR, UVvis absorp-
tion and mass spectra hamper the determination of the isomers
and their purity. Finally repetitive recrystallization from ani-
line/nitrobenzene (1/1 v/v) gave pure 3,9-dibromoperylene57

and the structure was characterized by single-crystal X-ray dif-
fraction analysis (Figure 8),58 then the filtrate was recrystallized
from aniline/toluene (5/3 v/v) to afford pure 3,10-dibromoper-
ylene. Melting points for these two compounds are different.33b

3,9-Diarylperylene 2 was synthesized by SuzukiMiyaura
cross-coupling between 4-borylanisole and 3,9-dibromo-
perylene. 2 and 3 also demonstrated identical 1HNMR spectra.
Therefore, the structures of 259 and 360 were determined by
single-crystal X-ray diffraction analysis.33b Each perylene core
unit in the solid state is perfectly planar with the mean-plane
deviation of 0.041¡ and 0.036¡, respectively and does not
form face-to-face stacking owing to the peripheral aryl groups.
The center-to-center distances between the perylene cores in the
solid state of 2 and 3 are about 5.97 and 5.84¡, respectively,
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b) 12+ (3.0 © 10¹5M¹1) formed under the oxidation with
NOSbF6 in CH2Cl2/CH3CN at room temperature along
with oscillator strengths calculated by (U)B3LYP/6-31G(d)
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suggesting certain interaction between the perylene units. The
phenyl units in 2 and 3 are relatively coplanar to the perylene
plane (around 60°).

Compared to the pristine perylene (max = 439 nm), 2 and
3 exhibit red-shifted and broader absorption (max = 461 and
462 nm, respectively), suggesting the electronic communication
between the perylene and aryl units. Fluorescence quantum
yields of 2 and 3 in toluene have been measured to be 85 and
95%, respectively. The fluorescence peak wavelengths are 485
and 487 nm. Thus, spectral characteristics of 2 and 3 in solution
are also practically identical.

To further investigate the physical properties, the fluores-
cence spectra and fluorescence quantum yields in the solid state
of 2 and 3 have been measured (Figure 9). The fluorescence
peak wavelengths in the solid state are 538 nm and 623 nm for
2, and 539 nm for 3, both of which are longer than those
observed in solution. However, the second peak (623 nm) for 2
would indicate excimer effects in the crystalline state, so that
the solid-state properties are largely different. The florescence
quantum yields of 2 and 3 in the solid state (44 and 15%) are
lower than those in solution.

CVof 2 and 3 in CH2Cl2 show reversible oxidative waves at
+0.41 and +0.79V for 2, and+0.42 and +0.78V for 3 (vs Fc/
Fc+).33b Compared to the first oxidation potential of the pristine
perylene (0.54V vs Fc/Fc+), those of compounds 2 and 3
shifted to a lower potential.

The generation of the cationic and dicationic species of 2 was
carried out with NOSbF6 (1 or 2 equiv) in CH2Cl2/CH3CN.
After addition of 1 equiv of NOSbF6 to 2, the intense band at
432 nm and 458 nm decreased, whereas new bands in visible
region at 743 and 595 nm and the NIR region at 1002 nm arose.
In the case of perylene, the oxidation with the same oxidant
induces its degradation within 5min, while a half of absorption
of 2•+ remains after 24 h under ambient conditions. The absorp-
tion spectrum is practically the same as that of the electro-
chemically oxidized 2 at +0.52V (vs Fc/Fc+).33b

Addition of 1 eq of NOSbF6 to 3 generated the intense band
at 434 nm and 462 nm decreased, whereas new bands in the
visible region at 714 nm and the NIR region at 969 nm arose.
Almost half of the absorption of 3•+ remains after 24 h. This

absorption spectrum is also the same as that of the electro-
chemically oxidized 3 at +0.56V (versus Fc/Fc+). The simu-
lated absorptions are accordance with the observed data.

To understand their electronic features, MO calculations of
the compounds 2 and 3 were performed by DFT at the B3LYP/
6-31G(d) level (Figure 10). The HOMOs of 2 and 3 are located
over the π-conjugated core skeleton but delocalized also to
the aryl-substituents to some extent. The energy levels of the
HOMOs and the LUMOs of neutral 2 and 3 were calculated to
be both ¹4.71 eV and ¹1.83 eV, respectively.

The formation of the radical cation was also confirmed by
ESR spectroscopy (Figure 11). The radical cation of 2•+ exhib-
ited an ESR signal at g = 2.0023, which corresponds to a
general organic free radical compound. The signal of 2•+ is
attributed to three kinds of hydrogen positions in the perylene
skeleton. The hfccs were simulated from the observed spectrum
and Gauss values calculated by DFT to be 4.10 (2H), 0.65
(4H), and 2.85 (4H) G with ΔH = 1.0G (Figures 11a and 11c).
The radical cation of 3•+ exhibited an ESR signal at g =
2.0019. The signal of 3•+ is also attributed to three kinds of
hydrogen positions in the core perylene, and the hfccs were
simulated from the observed spectrum and calculated Gauss
values to be 3.90 (2H), 0.65 (4H), and 2.85 (4H) G with ΔH =
1.1G (Figures 11b and 11e). Computed spin densities showed
that the unpaired electrons were delocalized over the whole
molecules. 2 and 3 have the highest spin densities on C3, C4,
C9, and C10 (Figures 11d and 11f ).

Upon further addition of NOSbF6 (totally 2 eq), 2•+ was
oxidized to form the dicationic species 22+, resulting in the
disappearance of the ESR signals. This indicates that the singlet
state of 22+ is more stable than its triplet state. The ground state
of dicationic species of 22+ was also predicted to be singlet by
the DFT calculations with the energy gap of 12.1 kcal/mol. The
lifetime of dicationic species is almost the same with that of the
cation, checked by UVvis absorption spectral change under
ambient conditions.

By the electronic system rearrangement upon the oxidation,
the bond lengths observed in single-crystal X-ray structure33b,61

approach those of anthracene62 (Figure 12). Here, the plane con-
structed from C1, C2, and C3 in 22+ is twisted toward the planar

Figure 9. Fluorescence spectra of 2 (black) and 3 (red) in
the solid-state. Inset: A photograph of 2 and 3 in solution
and in the solid state under irradiation with a hand-held UV
lamp (365 nm).
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central anthracene core by 10°. The aromaticity of the perylene
(larger HOMA values) relocates from the (two) naphthalene
parts into the anthracene unit upon the two-electron oxidation.

Further addition of NOSbF6 (totally 2 equiv) to 3•+ resulted
in the formation of the dicationic species 32+. The disappear-
ance of the ESR signals indicate that the singlet state of 32+ is
more stable than its triplet state as well. The energy gap calcu-
lated was 21.2 kcal/mol. The lifetime is almost the same with
that of the cation, a half of the absorption remains after 24 h.

In spite of many attempts, crystals of 32+ suitable for X-ray
measurement could not be obtained to date. Theoretical calcu-
lations for 32+ predict similar behavior to 22+; the bond lengths
approach those of phenanthrene (Figure 13).

Terrylene Case and More. Multiple experimental and
theoretical evidence proved that the physical and chemical
properties of the dicationic pyrene and perylenes were well-
explained by Clar’s aromatic π-sextet rule accompanying
aromaticity relocation. To elucidate the scope in which this
concept is applicable, we performed theoretical calculations
of several larger PAHs upon the 2e¹ oxidation. Among these,
we found a pair of interesting examples, 3,12-bis(4-methoxy-
phenyl)terrylene 4 and its dication state.63,64

Terrylene, one of the oligorylene dyes (perylene, terrylene,
quaterrylene, etc.), can be considered as a piece of armchair
graphene nanoribbons (GNRs; N = 5)65,66 (Figure 14). Well-
defined GNRs are of great interest because it is possible to
tailor the band gap to meet the needs of particular devices.
Theoretically GNRs with an armchair orientation range from a
small band gap to zero band-gap semiconductors, depending on
their width N.67

The singlet state of 42+ is calculated to be more stable than its
triplet state by 17.6 kcal/mol. As the molecular size becomes
larger from perylene to terrylene, the degree of change of
HOMA values in naphthalene units upon the 2e¹ oxidation
becomes moderate (Figure 15). However, importantly, the ben-
zene rings fusing naphthalene units drastically increase their
aromaticity (HOMA: 0.09 ¼ 0.61, NICS(0): 7.61 ¼ ¹3.04)
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(Figures 15 and 16). Consequently the total aromatic structure
of terrylene shifts towards that of picene by 2e¹ oxidation
(Scheme 4).

Inspired by these discussions, we would like to consider
the electronic structure of neutral polyrylenes, since we have
recently observed very unusual open-shell diradical charac-
ter for long rylene molecules, which can be correlated to the
potential metallic property of the infinite polyrylene ribbon.68

Though the oligorylenes behave as connected naphthalenes
(Figure 17a), it is predicted that the longer rylenes exhibit
diradical character even in the neutral state.69 Furthermore, early
theoretical calculations have indicated the neutral polyrylene as
either parallel polyacetylene chains (Figure 17b), or a planar
poly(p-phenylene) bridged by double bonds (Figure 17c).70,71

It is proved that the end groups or doping affect the whole
electronic structure of the polyrylene.72

Besides the polyacetylene and poly(p-phenylene) resonance
forms, we suggest a polyphenacene form as a new entry of the
electronic structures for polyrylenes (Figure 17d).
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4. Conclusions

In this article, we have analyzed the stepwise oxidation
processes of the pyrene and perylene derivatives in detail via
the corresponding radical cations both experimentally and
theoretically.

Pyrene 1 showed a moderate fluorescence quantum yield in
the solid state. No pyrenepyrene interactions are evident in the
solid state as proven by the single-crystal X-ray analysis, which
may make them appealing for use in light-emitting devices.73

The radical cation 1•+ showed the ESR signal and the spin
density was delocalized at 1,3,6,8-positions. The dication 12+

was observed by 13CNMR at low temperature. From the X-ray
data of 12+, when calculating the HOMA values, it is revealed
the aromatic part relocates from biphenyl unit to naphthyl part
upon 2e¹ oxidation.

Perylenes 2 and 3 also showed moderate fluorescence quan-
tum yields in the solid state. The radical cations of diaryl-
perylenes 2•+ and 3•+ showed the ESR signals and the spin
densities were delocalized particularly at 3,4,9,10-positions. In
the case of 3,9-diarylperylene 2, we could find the anthracene
structure in the doubly positive-charged conditions, while the
phenanthrene skeleton appeared in two-electron oxidized 3,10-
diarylperylene 3.

We also investigated the aromaticity relocation in the larger
PAH terrylene. While the electronic structure of terrylene at the
neutral ground state is assumed to be the connected naphtha-
lenes, the aromaticity of benzene rings fusing naphthalenes
drastically increases upon 2e¹ oxidation. Consequently the total
aromatic structure of terrylene relocates towards that of picene.
Although the theoretical calculations indicated parallel poly-
acetylene chains or a planar poly(p-phenylene) bridged by dou-
ble bonds for polyrylenes, we illustrated a new resonance form

by polyphenacene. The way to assess the physical properties of
polyrylene would be to prepare a discrete soluble derivative.68
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