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Theory of Nonlinear Meissner Effect in High-Tc Superconductors
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We investigate the nonlinear Meissner effect microscopically. Previous studies did not

consider a certain type of interaction effect on the nonlinear phenomena. The scattering

amplitude barely appears without being renormalized into the Fermi-liquid parameter. With

this effect we can solve the outstanding issues (the quantitative problem, the temperature and

angle dependences). The quantitative calculation is performed with use of the fluctuation-

exchange approximation on the Hubbard model. It is also shown that the perturbation

expansion on the supercurrent by the vector potential converges owing to the nonlocal effect.
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Many unconventional superconductors have recently been discovered. The evidence that

these superconductors are non-s-wave is obtained by thermodynamic measurements in most

cases. These types of measurement provide only information averaged over the Fermi surface

and then other measurements are needed to determine the position of nodes. Detailed infor-

mation about the node is useful for judging the accuracy of various theories. One of these, the

nonlinear Meissner effect (NLME), which provides a measurement of the magnetic field (H)

dependence of the magnetic field penetration depth (λ + δλ(H)), was proposed by Yip and

coworkers (YS).1,2) Their proposal is based on the Doppler-shifted energy spectrum and its

predictions are summarized as follows. (i) The supercurrent has a nonanalytical form (written

as A|A|, A is the vector potential) and δλ(H) is proportional to the magnetic field |H| as a

result. (ii) δλ(H) varies with the direction of the applied magnetic field and therefore δλ(H)

provides information on the position of nodes.

To date, the experiments have not provided decisive results because the effect is small

and tends to be masked by many extrinsic effects. The first investigation of NLME was

carried out by Maeda et al.,3) however this experiment was performed with the magnetic field

perpendicular to the CuO plane. The precision was also poor (order of 10Å) and, at present,

the observed quantity is considered to reflect extrinsic effects. Experiments with high precision

(order of 0.1Å) were carried out by Bidinosti et al.
4) and Carrington et al.

5) The most reliable

results in ref.4 are summarized as δλ(H) ∝ H2, the temperature dependence is weak and the
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angle dependence is not observed. These contradict YS’s theory. YS also predict that δλ(H) ∝
H2 below the crossover field, however, the temperature dependence is strong. Two groups

have attempted to detect the transverse magnetization, which is the other prediction made

by YS.6,7) The recent experiment with higher precision (two orders of magnitude)6) showed

that the amplitude of this quantity is at most one third of the predicted one and it is almost

at the measurable limit. Extensions of YS’s theory were made by several researchers.8–11)

The common results obtained by them are that the theoretical predictions are inconsistent

with the experimental results. Therefore, some papers suggest that the experiments observed

extrinsic effects. (In ref.5 the possible extrinsic effects are listed (the vortex contribution, the

weak links, the interlayer contribution).) The important point is that the values predicted

by YS and other researchers are at least of the same order of magnitude, compared with the

values obtained in the experiments. Therefore, it is not possible that the intrinsic theoretical

value is masked by the extrinsic effects which are suppressed up to 0.2Å.

Then, the question arises as to whether the existing theories are correct for judging ex-

perimental results. Here, we discuss the NLME effect on the basis of the perturbation theory

and show that the previous theories have some defects. The perturbation expansion by the

vector potential on the supercurrent and the magnetic field penetration depth converges ow-

ing to the nonlocal effect. The intermediate-states interaction12) (electron-electron) which is

not included in the conventional quasiclassical approximation13) exists and makes a dominant

contribution. This effect solves the inconsistency between the theory and the experiments

on the value of δλ and its angle and temperature dependences. We adopt the fluctuation-

exchange (FLEX) approximation for the quantitative calculation. The many-body effect on

the response function is included on the basis of the conserving approximation.

Our theory is based on the evaluation of the response function in the supercurrent which

is exactly expanded by A up to the third order. The expression for the supercurrent is written

as

Jµ(q) = −K(1)
µν (q)Aν(q) −

∫

q′
K(2)

µνα(q, q′)Aα(q′)Aν(q − q′)

−
∫

q′,q′′
K

(3)
µναβ(q, q′, q′′)Aβ(q′′)Aα(q′ − q′′)Aν(q − q′), (1)

where K(1,2,3) are the response functions in the perturbation expansion, µ, ν, ... are the spatial

dimensions and the summation of the repeated indices is taken. K(1) appears in the usual

linear response theory. The K(3) term is dominant in the magnetic field dependence of λ

because K(2) vanishes.

First, we show the convergence of the perturbation expansion. By analyzing various terms

it is shown that the most divergent term in the local limit is the type (a) term in Fig. 1 and
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is written as

K(3a)(q, q′, q′′)

=
T

V

∑

k,n

v4
kTr[Ĝk+q/2Ĝk+q′−q/2Ĝk+q′′−q/2Ĝk−q/2], (2)

where T , vk and Ĝk are the temperature, the velocity and Green’s function in the supercon-

ducting state, respectively, and k = (k, iεn) (εn = πT (2n + 1), n is integer) and q = (q, 0).

The uniform component is written as K(3a)(0, 0, 0) ∝ − v
∆0

1
T (∆0 is the maximum of the

superconducting gap). This is the result of YS’s theory. K(3)(q, q′, q′′) diverges for T → 0

at q = q′ = q′′ = 0, however, this term is integrated by q′ and q′′ in the expression of the

supercurrent and by q, q′ and q′′ in the case of δλ. Then, the behavior of K(3)(q, q′, q′′) in

q-space comes into question. The q-dependence of K(3a)(q, 0, 0) for small q and at T = 0 is

written as K(3a)(q, 0, 0) ∝ − v
∆0

1
v⊥|q| (v⊥ is the mean value of the the interlayer velocity with

magnetic field parallel to the ab-plane.) It is difficult to determine analytically the dependence

of K(3)(q, q′, q′′) on q, q′ and q′′, however the nonzero values of q′ and q′′ do not make this term

more divergent than 1/q and if we consider the symmetry relation, K(3)(q, q, q) = K(3)(q, 0, 0),

the form for small q, q′, q′′ is considered to be

K(3)(q, q′, q′′) ∝ 1
√

( q
2)2 + (q′ − q

2)2 + (q′′ − q
2)2 + ( q′′

2 )2
. (3)

The q−1 divergence of K(3)(q, q′, q′′) guarantees the convergence of the perturbation expansion

on the physical quantities. Therefore, the nonanalytical behavior does not appear contrary to

the prediction of YS.14)

Next, we estimate the various terms in K(3). (The diagrammatic representation of K(3)

is given in Fig. 1.) There are many cumbersome terms unlike the linear response case.15)

The approximation used is as follows. The three-point vertex correction connected with the

odd order of the external field is omitted. This is because the velocity is an odd function in

wave-number space and the integral is small. The same approximation holds in some types of

the six- and eight-point irreducible vertices. If we consider a system with a strong momentum

dependence such as the underdoped region and its doping dependence, this type of vertex is

necessary.16) We consider, however, mainly the temperature and the angle dependence, and

then the above terms have a slight influence.

The formalism for deriving δλ(H) consists of the Maxwell equation with the specular

boundary condition (here, we consider the situation where the external magnetic field is

applied parallel to the y-axis and the superconductor occupies z > 0) d2Ax(z)
dz2 = 2Hδ(z) −

4π
c Jx(z), (H is the applied external field) and the nonlinear Pippard equation (eq. (1)) From

these two equations the nonlinear equation for A is obtained and is solved by the perturbation

method (not self-consistently) because we use the perturbation method to obtain the response
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Fig. 1. Diagrammatic representation of K(3). The solid lines express the propagator of the electron

in the Nambu representation. The wavy lines express the electro magnetic fields. The vertex with

n-wavy lines denotes the n-times derivative of the dispersion of electrons and the circle at the

vertex means a diagonal matrix τ̂3 with Trτ̂3 = 0. The vertex with a shaded triangle satisfies

the integral equation with a four-point irreducible vertex I(2). The shaded rectangle denotes the

reducible four-point vertex Γ(2). I(3) and I(4) represent the irreducible six- and eight- point vertices,

respectively.

kernel K(3). Then, the nonlinear correction for λ is obtained as (the magnetic field is parallel

to the intralayer crystal axis)

δλab = −8H2 4π

c

∫

dq

2π

∫

dq′

2π

∫

dq′′

2π
K(3)

xxxx(q, q
′, q′′)

×Dxx(q
′′)Dxx(q′ − q′′)Dxx(q − q′)Dxx(q), (4)

where the definition of the magnetic field penetration depth is λ := 1
H

∫ ∞
0 Hy(z)dz =

− 1
H

∫ dq
2πAx(q), and Dxx(q) := 1/(q2 + 4π

c K
(1)
xx (q)).

First, we consider the terms without the intermediate-states interaction. We classify these

terms into two groups. One group consists of divergent terms without nonlocality and the

other of terms similar to K(1) (the nonlocality is negligible). K(3a) and K(3b,c,d,e) are catego-

rized into the former and the latter groups, respectively. We estimate these terms only with

the experimentally observed values. (On the other hand, a specific microscopic model and

approximation are needed in the case of the intermediate-states interaction.) It is difficult to

analytically calculate the paramagnetic term K(3a) at a finite temperature, however, by noting

that Ek+q −Ek ' v⊥q near nodes and the characteristic value of q is λ−1 it can be shown that

there is a crossover temperature T0 ' ~v⊥
λ ' ξc

λ ∆0 (ξc is the interlayer coherence length). By

substituting K(3a)(q, q′, q′′) into eq. (4), δλ(3a) =
(

H
Hc

)2
λκ(3a)( T0

∆0
). Here, κ(3a)( T0

∆0
) is a di-

mensionless quantity and its integration is calculated numerically. (Hc := φ0/2
√

2πξabλ is the
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thermodynamic critical field, φ0 = 2π~c/2e, ξab is the in-plane coherence length). κ(3a)( T0
∆0

)

is strongly dependent on temperature and shows a maximum around T ' T0. If we put

λ = 1600Å, T0/∆0 = 0.01 and Hc = 8000G, δλ(a) . 0.2Å for H = 200G; this is small com-

pared with the experimental result δλ|exp. ' 5Å. δλ(b,c,d,e) is smaller than one tenth of δλ due

to the intermediate-states interaction discussed below and is negligible.

Next, we consider the intermediate-states interaction. (The local approximation holds as

in the case of (b,c,d,e) and K(1).) The terms are calculated after they are transformed into

equations which explicitly equal 0 when ∆ = 0. The term with Γ(2) ((g)-type) is evaluated as

follows. The reducible four-point vertex satisfies

Γ̆(2)(k, k′) = Ĭ(2)(k, k′) +
T

V

∑

k′′

Ĭ(2)(k, k′′)ğ(k′′)Γ̆(2)(k′′, k′) (5)

with the irreducible four-point vertex Ĭ(2)(k, k′). (̆ denotes the 4×4 matrix in the particle-hole

space.) We use eq. (24) in ref.17 as ğ(k). There are various terms in Ĭ(2)(k, k′), the particle-

hole vertex, the particle-particle vertex, the number-nonconserving vertices. These are the

functional derivatives of the self-energy by Green’s function (the conserving approximation18)).

One of these vertices (the number-conserving particle-hole vertex) is written as follows with the

FLEX approximation (the FLEX approximation in the superconducting state, for example,

see refs.19 and 20)

Ic(k, k′) = V n
k−k′ − T

V

∑

q

Gk−qWq(Gk′−q + Gk′+q). (6)

Here,

V n
q = U

[

Uχs
q +

3

2

(Uχs
q)

2

1 − Uχs
q

− 1

2

(Uχc
q)

2

1 + Uχc
q

]

, (7)

with χs,c
q = − T

V

∑

k(Gk+qGk ± Fk+qFk), ((s, c) correspond to (+,−), and

Wq = U2

[

3

2

1

(1 − Uχs
q)

2
+

1

2

1

(1 + Uχc
q)

2
− 1

]

. (8)

The other vertices are derived in the same way. We adopt the Hubbard model with the on-site

Coulomb interaction U and take the same dispersion of electrons as in ref.16. The terms with

I(3) and I(4) are calculated in the same way (e.g., I(3)(k1, k2, k3) = δ2Σ̂k1/δĜk3δĜk2). We

calculate K(3) without integrating out the incoherent part to derive a low-energy expression

(e.g., ref.16.) Therefore, the effect of the renormalization factor is implicitly included.

To compare the calculation with the experimental results quantitatively, we consider the

following quantity

1

H2

δλ(H)

λ
= − π

16

1/φ2
0

(e/~c)2K(1)t/a

a2K(3)

K(1)
. (9)

Here, a is the lattice constant. We numerically calculate K(3) and K(1) by putting t = 1 and

a = 1 and quantify the values of t and a in units of [eV] and [Å], respectively, and then

5/10



J. Phys. Soc. Jpn. Full Paper

1
H2

δλ(H)
λ = −0.13 × 10−13 × a3

t
K(3)

(K(1))2
[G−2]. If we put t = 0.25[eV] and a = 8[Å], we get

1
H2

δλ(H)
λ ' 0.35×10−7[G−2] for U = 6.0 and the hole doping δ = 0.20. (K(3) ' −12.8, K(1) '

0.1 and the dominant contribution comes from K(3g). This value of K(1) yields λ ' 2600Å. This

is roughly 1.6 times longer than the experimental value.) On the other hand, the experimental

result is 1
H2

δλ(H)
λ ' (0.7 ∼ 1.0)×10−7[G−2].4) Our calculation is quantitatively consistent with

the experimental results in order of magnitude. As for the parameter dependence, the value

of 1
H2

δλ(H)
λ is not strongly dependent on the parameters U and δ in the FLEX calculation.

For example, 1
H2

δλ(H)
λ ' 0.34 × 10−7[G−2] for U = 7.0 and δ = 0.20 and 0.33 × 10−7[G−2]

for U = 6.0 and δ = 0.15. This is because the effect of the renormalization factor on K(3)

and (K(1))2 cancels each other (as for U -dependence) and the integral-equation structure for

Γ(2) weakens the variation of the spin-fluctuation effect on I(2). If we put Wq → U2, this

corresponds to the case of the weak spin fluctuation, for example, the more overdoped region,

this results in a smaller value of 1
H2

δλ(H)
λ . Therefore, an experimental study on the doping

dependence is expected.

To investigate the angle dependence we consider the case where the applied field is

parallel to the node direction (δλ45◦(H)). In this case, K
(3)
xxxx in eq.(4) is replaced by

(K
(3)
xxxx + 3K

(3)
xxyy)/2. Then the relationship between K

(3)
µµµµ and K

(3)
µµαα with µ 6= α plays

an important role in the angle dependence. If we consider a conventional s-wave supercon-

ductor, the relation K
(3)
µµµµ = 3K

(3)
µµαα|µ6=α holds because < v4

µ >FS= 3 < v2
µv2

α >FS in the

superconductor with no nodes and vµµµ = 0 and v2
µµ = vµµvαα hold in the electron gas.

(< ... >FS denotes the average over the Fermi surface and vµµ = ∂vµ/∂kµ, etc.) Both of

these relations do not hold in the unconventional superconductor in the lattice system and

therefore the relationship between K
(3)
µµµµ and K

(3)
µµαα|µ6=α is not trivial. In fact, K

(3a)
xxxx and

K
(3a)
xxyy give the same contribution to δλ because a dominant contribution to the integral over

the Fermi surface comes from nodes (vx = vy at this point) except for T >> T0. Then,

δλ45◦(H) = 2δλab(H) in the conventional quasi-classical approximation.21) We made sure

above, however, that the intermediate-states interaction term contributes to δλ sufficiently

and can be dominant. In this case, K
(3)
xxyy = K

(3)
xxxx/3 with the approximation noted above

and then δλ45◦(H) = δλab(H). This explains the experimental results. (The reason for this is

that the correlation between different vertices is broken by the intermediate-states interaction.

For example,
∫

q[
∫

k GkvkµGkvkνGkGk−qWq

∫

k′ Gk′−qGk′vk′αGk′vk′βGk′ ] is negligible for µ 6= ν

or α 6= β. The same holds for the case of I(3) and I(4). This discussion also applies to the

temperature dependence.)

The temperature dependence of δλ is as follows. δλ ∝ 1/T for T > T0 in the conven-

tional quasi-classical approximation. On the other hand, the temperature dependence of the

intermediate-states interaction term is same as that of K(1) (T -linear) and the decreasing

rate compared with the value at T = 0 is almost same. Therefore, δλ shows a slight increase.
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(If λ increases 5Å per 1K as the experimental results indicate, the increasing rate of δλ is
3×5
λ/δλ ' 0.015 [Å/K]. This value is no larger than the experimental precision.)

The other phenomenon related to the NLME is the transverse magnetization. The pre-

dicted behavior in refs.1 and 2 is that the supercurrent is not perpendicular to H except for

the case in which H is parallel to the nodes or the antinodes, and therefore the transverse

magnetization has a period of π/2 as the direction of H is rotated. Our perturbation theory

shows that the supercurrent is written as follows in the arbitrary direction of H.

Jµ(q) ' {K(1)
µµ (q)A(q) +

∫

q′

∫

q′′
[K(3)

µµµµ(q, q′, q′′)X2
θ

+3K(3)
xxyy(q, q

′, q′′)Y 2
θ ]A(q′′)A(q′ − q′′)A(q − q′)}Xθ. (10)

Here, (Xθ, Yθ) = (cosθ, sinθ), (sinθ, cosθ) for µ = x, y, respectively. θ is the angle between the

applied field and the intralayer crystal axis.) If the relation K
(3)
µµµµ = 3K

(3)
µµαα|µ6=α holds, the

transverse magnetization does not appear. Then, we can have the same discussion as in the

case of δλ.

Finally, we comment on previous studies. The nonlocal effect considered in ref.9 is different

from our approach in several points. The behavior δλ ∝ H2 at low H is seemingly the same as

that in the perturbation approach. They predict, however, δλ ∝ H above the crossover field

H∗ and argue that the NLME is unobservable owing to H∗ > Hc1. They consider that the

nonanalytical current exists above H∗. Although they do not consider the angle dependence

of δλ and the transverse magnetization, their theory contradicts the experimental results. The

origin of their error is that they consider K(1)(q,Aq=0). They derive H∗ by comparing the

effect of q and A, however, it does not make sense to compare the intrinsic spatial variation

with the external field. The absence (or very small value) of the transverse magnetization

below the first vortex penetration22) implies the absence of H∗.

The quasi-classical approach in ref.23 gives observable values (δλ ' 1Å for

H ' 200[G]) with the experimental parameters (H∗ ' 2[T] and λ/ξ ' 100).

Then, this also contradicts the experimental results in the angle and temperature de-

pendences qualitatively. The cause is as follows. The interaction with the external

field in the Gor’kov equation 1
2m

(

∇r + ∇R

2 − i ecA(R + r/2)
)2

G(r,R) is approximated as

1
2m

(

∇r + ∇R

2 − i ecA(R)
)2

G(r,R) in the quasi-classical approach. (The propagator is trans-

formed as G(x, x′) → G(x − x′, x+x′

2 ) = G(r,R).) This means that the external field interacts

with the center of mass of the electron propagator and therefore the nonlocal effect is under-

estimated. The comparison with our (a)-term is as follows. The Green function in the third

order of the external field is written as

G(3)(k, q) →
∑

q1,q2

Gk+q/2vAq2Gk+q/2−q2
vAq1−q2

×Gk+q/2−q1
vAq−q1Gk−q/2 (11)
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for the case of the nonlocal effect included correctly, but

G(3)(k, q) →
∑

q1,q2

Gk+q/2vAq2Gk+q/2−q2/2vAq1−q2

×Gk+q/2−q1/2vAq−q1Gk (12)

in the quasi-classical approximation. This is interpreted as meaning that the magnetic field

penetration depth effectively doubles in this approximation and then δλ roughly increases

eightfold. Therefore, the quasi-classical term ((a)-term in our paper) makes less contribution

to δλ if it is evaluated properly.

Larkin and Ovchinnikov suggest that the quasi-classical approximation does not give cor-

rect results in some cases.24) Our theory presents a definite example of this proposition.

In this paper, we present the microscopic formulation of the nonlinear Meissner effect. We

show that the previous studies on this effect are insufficient and some of them are incorrect.

The nonanalytical response is intrinsically absent. The experimental results possibly observe

the intrinsic NLME. This is not YS’s one, but originates from the intermediate-states interac-

tion. We consider that this effect is interesting because it does not appear in the zeroth order

of interactions but it reflects interactions between quasiparticles themselves. The spin fluc-

tuation is quantitatively dominant in our calculation. This is consistent with the properties

of the high-Tc cuprates. Experiments on other materials and the theoretical investigations of

various scattering mechanisms are expected in the future.

Numerical computation in this work was carried out at the Yukawa Institute Computer

Facility.
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8) B. P. Stojković and O. T. Valls: Phys. Rev. B 51 (1995) 6049.
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