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Abstract. This paper discusses the decidability of determinacy and subsumption
for tree transducers. For two tree transdu@rsindTs, 71 determined if the

output of 75 is identified by the output df?, that is, there is a partial functiof

such tha{7>] = f o [71] where[71] and[1:] are tree transformation relations
induced byT; andTx, respectively. Also7} subsumed if T; determinesl,

and the partial functiorf such thaf{7:] = fo[71] can be defined by a transducer

in a designated class that belongs to. In this paper, we show that determinacy

is decidable for single-valued linear extended bottom-up tree transducers as the
determiner class and single-valued bottom-up tree transducers as the determinee
class. We also show that subsumption is decidable for these classes.

1 Introduction

In data transformation, it is desirable that certain information in source data be pre-
served through transformation. As a formalization for information preservation in data
transformation, the notions afeteminacyand subsumption(or query rewriting) are
known [1-3]. Let@ be a query to a database aride a data transformation (or a view
definition) of the database. Determinacy@by V' means that the answer €pis iden-
tified by the answer t&. When information to be preserved is specified by a qadgry
determinacy guarantees that for any database instant& D) gives enough informa-
tion to uniquely determine the specified informati@qD) for D. Subsumption means
that the answer t@) can always be computed from the answeltby some query in
a designated class th@ belongs to. Compared with determinacy, subsumption guar-
antees that the necessary informatipfD) can be extracted from the transformed data
V(D) by the same query language expressing

We study the decidability of determinacy and subsumption when both a query and
a data transformation are given by tree transducers. Tree transducers are machines that
model relations between labeled ordered trees. A tree transducer is saiditglee
valuedif the tree transformation induced by the transducer is a partial function. Since
an XML document has a tree structure, tree transducers are often used as a model of
XML document transformations. Formally, for two single-valued tree transduGers
andTs in classedI; andIl; of transducers, respectively, we sBydeterminesly if
there is a partial functiorf such thaf7z] = f o [T1] (see Fig. 1(a)), wherfl;] and



Tz //" . i TZ € HZ
" 3f a partial function aT; €11,
(possibly incomputable)
(a) T, determines T, (b) T, subsumes T, w.r.t. II,

Fig. 1. Determinacy and subsumption

[T3] are the tree transformation relations inducedlbyand 75, respectively./7; and

11, are called the determiner class and the determinee class, respectively. We dlso say
subsumeg;, with respect td1s, if T} determined; and the partial functiorf such that

[T2] = fo[T1] can be defined by a transducer in the clEsgsee Fig. 1(b)). Our goal is

to find practical subclasses of tree transducers for which determinacy and subsumption
are decidable, and to consider the problem of constructing a tree trangduicethe
determinee class such tHak] = [T3] o [71] if T1 subsume§s.

In this paper, we first show that determinacy is decidable for single-valued linear ex-
tended bottom-up tree transducessxXbots) as the determiner class and single-valued
bottom-up tree transducers-fots) as the determinee class running over a ranked-tree
encoding of the given XML document. Transformations induced by transducers in the
classes include simple filterings, relabelings, insertions, and deletions of elements. Es-
pecially, sl-xbots do not allow duplications of elements. Givensaxbot 77 and an
s-bot Ty, the decision procedure works as follows: (1) construct a transdyéérthat
induces the inverse dfy, (2) construct a transducég that induces the composition
of Tj™ followed by T, then (3) decide whethéf; is single-valued. We introduce a
class of transducers witirafting, which allows to insert any tree in a specified tree lan-
guage, in order to capture inverses of transformations inducatiXyots and the com-
position of the inverses andbots. Next, we prove that single-valuedness for the class
is decidable. For some other classes, we show that determinacy is undecidable even
for homomorphism tree transducers as the determiner class, which is a proper subclass
of s-bots and single-valued top-down tree transducetsys). Moreover, determinacy
is undecidable for deterministic monadic second-order logic defined tree transducers
(dmsott) [4, 5] as the determiner class, which form a class incompatible switts
and s-tops but is a proper superclasssdfxbots. Lastly, we show that subsumption is
decidable forsi-xbots as the determiner class afdots as the determinee class. The
proof gives a construction method of afbot 75 satisfying[7>] = [13] o [T1] if Th
subsumeqs.

Related Work Determinacy and subsumption (or query rewriting) have been well stud-
ied mainly for relational queries such as first order logic and conjunctive queries [1—
3]. In XML context, query preservation [6] has been studied as a notion of informa-
tion preservation of XML mappings. Lef be an XML query language. For queries
Q,Q’' € £ and a viewV, V preserves) with Q' if Q = Q' o V. This definition is es-
sentially the same as the definition of subsumption. A Viéwg query preservingvith



respect tal if there exists a computable functid®,, such that for any querg) € L,

V preserves) with R, (Q). Unfortunately, it is known to be undecidable to decide
whetherl” is query preserving with respect to projection queries, given a Viewany
query classC¢ which can simulate first order logic queries, such as XQuery and XSLT.
It is also undecidable whethé&f preserves) with some projection query, giveW in

the classC; and a projection querg). As far as we know, the decidability of query
preservation for other subclasses of XQuery and XSLT has been little investigated.

2 Preliminaries

2.1 Trees and Tree Automata

We treat only ranked labeled ordered trees and tree transducers which work on such
trees. Though an XML document is often modeled by an unranked labeled ordered
tree, we assume that an unranked tree is encoded to a ranked tree by some encoding
such as First-Child-Next-Sibling encoding [7] and DTD-based encoding [8].

We denote the set of nonnegative integerd\byet[i,j] = {d e N | i < d < j}.
In particular, we denotél, k] by [£]. A (ranked) alphabet is a finite s&t of symbols
with a mappingk from X to N. We denote the set df-ary symbols of2 by ¥(¥) =
{0 € X | rk(¢) = k}. The setTx of ranked treever an alphabel is the smallest
setT such thair(ty,...,t;) € T foreveryk € N, o € X®), andt,... t, € T. If
o € X, we writeo instead ofs(). The set ofpositionsof t = o (ty,...,t) € Tx,
denoted bypos(t), is defined bypos(t) = {e} U {ip | i € [k],p € pos(t;)} where
o € X andty,...,t, € Ts. The empty string is the position of the root of, and
theith child’s position ofp € pos(t) is pi. We writep < p’ whenp is a prefix ofp’,
that is,p is an ancestor position @f, andp < p’ whenp is a proper prefix op’. For
p,p € pos(t), letnca(p,p’) be the nearest common ancestor positiop ahdp’, that
is, the longest common prefix pfandp’. Forp € pos(t), t|, denotes the subtree of
atp, andt[t'],, denotes the tree obtained frarby replacing the subtree atwith ¢'. Let
At(p) be the symbol of treeatp.

Let X = {z.} U{x; | i > 1} be a set of variables of rank 0, and for evéry 1,
Xy = {z; | i € [k]}. ForV C X, we often writeTx (V) to meanTzyuy. A treet €
Ts(V)islinear if each variable ifl” occurs at most once inLet C's; (V') denote the set
of linear trees ifl's; (V). Let T (V) (resp.Cx (V) be the set of trees ifi; (V) (resp.
Cx(V)) such that each variable iri occurs at least once. Note that 1 (V') denotes
the set of trees iffx (V' U V') such that every variable i’ must occur at least once.
Fort € Te(X) ando € X' U X, letpos,(t) be the set of the positions 6ft whicho
occurs, anghosy (t) = (J,y poss(t) forY € YUX. Letvar(t) be the set of variables
of t, andyieldy : Ts(X) — X* be the function such thatield y (z) = z for every
z € X andyieldy (o (ty,...,tx)) = yieldy(t1)---yieldy (t;) for everyo € X(*)
andty, ..., t; € Tx(X). Atreet € Tx(X) is normalizedf yieldy () = x; - - - xy, for
somek € N. Every mapping : V — Tx(X) with V' C X is called a substitution.
It can be extended 6 : 7x (V) — 7Tx(X) defined inductively as followst = 6(x)
for everyz € V andtd = o(t16, . .. ,t,0) for everyt = o(ty,...,tx) € T=(V) where
oe X® IfV =X, andx;0 = t; for eachi € [k], we also denotéd by t[ty, .. ., tk],



and if V = {z} andd(x) = t/, we denote# by t[x < t]. In particular, ifV = {z.}
andd(z,) = t/, we denoted by t[t'] or oftent¢t’ without brackets.

A finite tree automatoifTA for short) is a 4-tupled = (@, X, Q., ), where@
is a finite set of states), is an alphabet)), C Q is a set of accepting states, and
is a finite set of transition rules, each of which is of the fdwnClqs, . . ., gx]) where
4, q1,-..,qx € QandC € Cx(Xy). The move relatiors 4 ofa TAA = (Q, X, Qq,7)
is defined as follows: ifg,Clq1,...,qx]) € v andt|, = Clgi,...,q] Wherep €
pos(t), thent =4 t[q],. The tree languageecognizedby A, denoted ad.(A), is
{t |t =% qa,qa € Qo } Where=" is the reflexive transitive closure ef 4. For a state
q of A, let A(q) be a TA obtained fronH by replacing the sef), of accepting states
with the singleton{q}. A setL of trees recognized by some TA is called a regular tree
language, or we sa¥ is regular.

2.2 Tree Transducers

An extended bottom-up tree transduggbot) [9] is a 5-tuple(@Q, X, A, Qy, ), where
Q is afinite set of stateg, is an input alphabet) is an output alphabef) ; C @ is a set
of final states, and is a set of transduction rules of the fo®[q; (1), . . ., ¢k (zx)] —
q(t;) wherek € N, C; € Cx(Xy), tr € Ta(Xi), ¢,q1,-- ., qx € Q. Arule is nor-
malized if its left-hand side is normalized. Without loss of generality, we can assume
that every rule is normalized. A rule € ¢ is ane-rule if the left-hand side op is
the formg(x) whereq € @Q andz € X, and it isinput-consumingtherwise. Let
T = (Q,%,A,Qy,06) be an xbot.T is abottom-up tree transducegbot) if the left-
hand side of every rule i contains exactly one symbol i&y. Also, we denote by
an xbot ¢ an xbot withoute-rules.T" is alinear extended bottom-up tree transducer
(I-xbot) if the treet,. in the right-hand side of each ruledris linear.

The move relation= of an xbotT = (Q, X, A, Qy, ) is defined as follows:
t =4 t' forarulep = (Cilq1(z1), ..., qx(zk)] — ¢(t,)) € § if there exists a position
p € pos(t) such thatt|, = Cilq1(t1),-..,qx(tr)] Wherety, ... .t € Ta(X) and
t" = tlq(t,[t1,...,tx])]p, andt = t’ if there existsp € d such that =4 t'. The
transformatiorinducedby 7', denoted a§77], is the relation defined afg¢,¢') | t =%
qr(t'),t € Ts,t' € Ta,qr € Qs} where=- is the reflexive transitive closure of
=. The domain off’", denoted bylom(7"), is {t | (¢,t') € [T]}, and the range df,
denoted byng(T), is {t' | (t,t') € [T]}. For atree, [T](t) = {t' | (t.t') € [T]}.
ForaTAA, theimagel'(A) of L(A) by Tis {t' | (¢t,t') € [T],t € L(A)}. For a state
g of T', letT(¢) be an xbot obtained frori by replacing the sep ; of final states with
the singleton{q}.

The tree transducef® and7” areequivalentf [77] = [T"]. For tree transduceff
andTy, [T»] o [T1] = {(¢, ') | (¢, ") € [T1], (t",t') € [T»]}. A transducefl is said
to besingle-valuedor functiona) if any two pairs of(¢,¢") and (¢, ") in [T satisfy
t' = t". We denote the unique output treebn a treet by T'(¢). It is known that the
single-valuedness of bots is decidable in polynomial time [10]. We use the psitiix *
represent that a transducer is single-valued, e.g., we write for shexlaot to denote
a single-valued xbot.

Without loss of generality, we assume that any alphabet contains a special symbol
L, which means “no output” and does not occur in any final output tree. We recall the



notion of reducedness [10], which is defined for bots but can be naturally applied to
xbots. An xbotl" = (Q, X', A, Qy, 6) is calledreducedif and only if the following two
conditions hold:

1. T has no useless states, that is, for every state?), there exists a tree= Ct, €
dom(T") whereC' € Cx({z.}) such thatt =% Clq(t.)] =% q;(t') for some
qr € Qf andt,,t’ € Ta.

2. There exists a subsdl(7) of @ such that for every ruleCi[g:(z1),...,
qr ()] — q(tr) €9,

— if ¢ € U(T) thent, = L andq; € U(T) for eachi € [k], and
— if ¢ ¢ U(T) then (1)t, # L and (2) for each € [k|, ¢; € U(T) if and only if
x; ¢ var(t,).
3. If ¢ € @ theng does not occur in the left-hand side of any ruléin

Note that for anyg € U(T) andt = Ct, € dom(T) whereC € Cx({z.}), if

t =% Clq(ty)] thent, = L and the final output fot does not contain.. That is,
the intermediate output atis always.L and it is eventually abandoned. Conversely, for
q € Q= U(T), the intermediate output atis in 7,y and it is contained in the final
output. For every xbdr’, a reduced xbot equivalent wiffi can be constructed in linear
time in the same way as the construction for bots [10] (see also Appendix A).

2.3 Determinacy and Subsumption of Tree Transducers
Let IT, andIl, be arbitrary classes of tree transducers.

Definition 1 (Determinacy). Let 77 and 7> be tree transducers itl; and I15, re-

spectively, such thatom(7:) C dom(7Ty). T7 determineds, iff there exists a partial
function f such thaf|T»] = f o [T4]. I is called thedeterminer clasand 1, is called

thedeterminee class

Definition 2 (Subsumption).LetT; andT; be tree transducers iff; and Il5, respec-
tively, such thatdom(7%) C dom(7}). 77 subsumed; with respect toll iff there
exists a single-valued transducgs € IT, such thaf[T5] = [T3] o [T1].

From the definition, ifl; subsumed’, thenT’ determined’. Conversely, even if there
exists some functiorf such tha{7,] = f o [T1], f cannot always be induced by some
transducer in1s in general.

If determinacy is decidable for a determiner cldésand a determinee clags,,
we simply say determinacy is decidable fdr,, II5). We will use a similar notation
for subsumption.

3 Determinacy

3.1 Decidability for (sl-xbots, s-bots)

We consider the problem of deciding whether, given single-valued linear xbrbot)
T, and single-valued bot{bot) 7> such thatdom(Tz) C dom(7y), Ti determines’
or not. Our approach is based on the following proposition.
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Fig. 2. A transducefl’ ;

Proposition 1. For any single-valued transducef§ and 75 such thatdom(7:) C
dom(Ty), Ty determinesls if and only if [73] o [71] ! is a partial function, where

[~ =A{E. 1) | () € [T1]}-

According to Proposition 1, giverl-xbot 77 and s-bot 75, our decision algorithm
works as follows:

Step 1: Construct a transduc&®™* such tha7i""] = [T1]~1;
Step 2: Construct a transducék such thaf[ 73] = [T»] o [T™];
Step 3: Decide whethef} is single-valued.

In Step 1, the inverse transducgf™” of T; is computedT}"" is not necessarily an
[-xbot. Due to this, we introduce a slightly larger class, linear extended bottom-up tree
transducers witlgrafting (I-xbot™¢ for short), that can represent not only inverses of
I-xbots but also the composition of the inverses wthots. In Step 2, an xbo# T3
which represents the composition Bf* followed by 75 is constructed. Lastly, it is
determined whether the composition transdugeis single-valued.

Before we explain the detail of each step, we give an example, which shows that
even the inverse of asi-bot cannot always be expressed by &xjpot.

Example 1.Let & = {r,a,#} and A = {a,#}. Consider ansi-bot T3, =
({q7’7 q}7 27 Aa {q'r‘}7 6) Whel’e

d={#—a#), alq(x1),q(z2)) — qla(z1,z2)),
r(q(z1),q(z2)) = gr(z1), 7(gr(21),q(22)) = gr(z1)}

In Fig. 2,t is transformed by 5 1, which leaves only the subtree at the left child of the
bottom-most--node. There is an infinite number of treésuch thafl; ; (t') = T5.1(¢)
because the inverse @% ; allows to insert any number of-labeled ancestor nodes
having arbitrary trees ix_y,, as their right subtrees. For amkbot 7" without e-
rules, the image of a treeby 7' is finite. Even ife-rules are allowed, néxbot allows

to insert a node having an arbitrary tre€7ig_,, as its right subtree. Therefore, there
is nol-xbot T such thafT] = [T5.1] .

To express the inverse @§.; in Example 1, a transducer has to, for an input tree,
insert any number of internal nodes and subtrees non-deterministically. To capture the
inverse ofs/-xbots, we extend xbots lgrafting. We denote a tree transducer in the class



by an xbot® for short. A grafting is represented by a special varigtilg called a g-
variable, wherd, C Ta. WhenL = L(A) whereA is a TA overA, we often write( A)
instead of(L(A)). A g-variable can occur as a symbol of rank 0 in the right-hand side
of a rule. LetG(A) be the set of all the g-variablé€) where L C 7. Let Ta(X;)
denote the set of trees over with X; andG(A). Note that fort € T (X;), var(f)
does not contain any g-variable. Hoe TA(X;), let S(f) be the set of trees ifix (X;)
obtained fron by replacing each g-variabld.) with a tree inL.

Formally, a transduction rule of an xbiétis the formCj[q:(z1), . .., qr(wx)] —
q(t;) wherek € N, C; € Cs(Xy), t, € Ta(Xy), andq,q1,...,q, are states.
The move relation by a rul€;[q;(z1), ..., qr(zx)] — q(t.) is as follows: ift|, =

Cilgi(t1),- .., qe(tx)] Wherety,... tp € Ta, thent = t[q(t.[t1,...,tx])], Where
tr € S(t,).

For an xbot®, we write an xbot&(®) when L is regular for each g-variablgl.).
Also, we write an xbot&(B() when each g-variable is in the form §f (A)) for some
botT and TA A.

Example 2.Consider ar-xbot™s® T3, = ({¢,¢,}, 4, ¥, {q,}, ") where

O ={#—=q#), alqg(z1),q(x2)) = qla(z1,x2)),
q(z1) = ¢ (r(z1,(4))), @ (x1) = g (r(21,(A)))}

andAis a TA such that.(A) = Tx_(,}. Then, T3 5 induces the inverse s ;.

Steps 1 to 3 of the decision algorithm can be refined as follows.

Step 1: Inversion of sl-xbots. We provide a way to construct @&xbot"® representing

the inverse of ai-xbot. Intuitively, we just swap the input and output of each rules.

However, we must take care of variables occurring only in the left-hand side, which

mean deletions of subtrees. In swapping, g-variables are added instead of the variables.
LetT = (Q, X, A,Qy,0) be anl-xbot. The swapping procedure is as follows.

1. Construct a TAAr = (Q,X,Qs,v) wherey = {(¢.Cilg1,---,qx]) |
Cilqa(z1), .- - aqr(xk)] — q(C,) € 6}. Note thatAr recognizeslom(T).

2. Construct an-xbot™8®) 7" = (Q, A, £, Qy,¢’) such thaty’ is the smallest set
satisfying the following condition: Le€[¢1 (21), - . ., ¢k (zx)] — ¢(C.) be an ar-
bitrary rule ind. Let#; be the substitution such th&{z;) = ¢;(z;) for eachi € [k],

0, be the substitution such tht(x;) = x; if «; € var(C,.) andd,.(z;) = (Ar(q:))
otherwise. Moreover, lét, be the substitution for normalization, which is the bijec-
tive function fromvar(C,) to X (k' = |var(C,)|) making(C,-6;)6,, normalized.
Then,(C..6,)6,, — (C6,)0,, € &'

Lemma 1. For anyl-xbot T, an [-xbot"&(®) 7" sych that]T"**] = [T]~' can be
constructed.

Proof. It can be shown by induction on move relations of the transducers that the in-
verse transducér’™” of T is correctly constructed by the swapping. d



Step 2: Composition ofl-xbot+&(R) and s-bot. This step constructs an xbdtequiv-
alent with the composition of thexbott&®) T followed by ans-bot 7.

Lemma 2. For anyl-xbot#®) T and bot7”, an xbot#B®) 77 such that[T"] =
[T'] o [T7] can be constructed.

Proof. The lemma can be shown in a similar way to the proof of the closure property
of [-bots under the composition [7, 11]. The difference is the existence of g-variables.

Recall that atreein L(A) is inserted at g-variablgd). On the composition transducer,
we just insert the image ofby 7" (¢) whereq is the state at whicli” processesin the
tree output byl". That is, we replaceA) with (T"(q)(A)). O

Step 3: Deciding single-valuedness of xbt&(B®)  This step decides whether the

xbott&(B(R) optained in Step 2 is single-valued. It is known that single-valuedness
of bots is decidable in polynomial time [10]. However, the class of transformations

induced by xbotés is a proper superclass of the class induced by bots.
Let T3 be the xbot&(B(R) optained in Step 2. The overview of Step 3 is as follows:

Step 3-1 Construct a reduced xb@t ; equivalent withTs by eliminating g-variables.

If there is no xbot equivalent witll;, answer thaf’; is not single-valued and halt.
Otherwise, go to 3-2.

Step 3-2 Construct a reduced xbot T3 5 equivalent withTs ;. If there is no xbot®
equivalent withTs 1, answer thaf; is not single-valued and halt. Otherwise, go to
3-3.

Step 3-3 Decide whethefs ; is single-valued or not.

We further refine the above sub-steps as follows.

Step 3-1 Eliminating g-variables.We show the following lemma for Step 3-1.

Lemma 3. LetT = (Q, X, A, Qy, §) be areduced xbd®. If T has a rule whose right-
hand side has a statec @ — U(T') and a g-variable(L) such thaiL| > 2, thenT is
not single-valued.

Proof. Assume thaf” has a ruleC;[q; (x1), . . ., g (71)] — q(t,) whereq € Q —U(T)
andt, has a g-variabléL) such that|L| > 2. SinceT is reduced, there exigt =
CCilt1,...,tx] € dom(T) whereC € Cx({z.}), t' € Ta{x:}), th,...,t, € Ta,
andgy € Qy such that =5 CCilqi(t)), ..., qx(ty)] =7 Clat:[th,. ...t ])] =%
qr(t'te[t), ... t,]) for anyt, € S(t.). Since|L| > 2, S(t,) has at least two dis-
tinct treest! and¢2. Also, the positions of each variable tf and¢? are identical.
Hence,tl[th,... t,] # t2[t},...,t,] and thus the final outputstl[t},...,t,] and
t'e2[th, ..., t,] are different. Thereforé[T](¢)| > 2. O

For a botT’, a TA A and anyk € N, it can be checked whethgF(A)| > k. From the
above lemma, Step 3-1 can be done as follows:

(i) Foreach rule with grafting’(A)) of T3,
— if T(A) = 0 then delete the rule, and



— if T(A) = {t} for some tree then replaceT’(A)) with t.
(i) Construct an equivalent reduced xb&t &) Ty | .
(iii) If T3 1 has arule containingl’(A)) with |T'(A)| > 2, answer thaf; is not single-
valued and halt.

If the condition at (iii) does not hold; ; has no g-variable. Thugj; ; is an xbot.

Step 3-2 Eliminating e-rules. We show two lemmas before giving the procedure of
Step 3-2. We will use an idea similar to the proof of Proposition 10 of [9].

We say that a nonempty subsetof e-rules isrepeatedly-producing at statg if
q(x.) =, q(t) for some tree € Ta({z.}) — {x.}, where=} means zero ore more
applications of rules id.. ‘

Lemmad4. LetT = (Q, X, A, Qy, ) be a reduced xbot. If there is a subsetof e-
rules ino repeatedly-producing at somec @@ — U(T'), thenT is not single-valued.

Proof. Assume that there is a subgebf e-rules ind repeatedly-producing at somec
Q — U(T). Then, there are tregss Ty, t' € Ta, D € Cx({x.}), te,tp € Ta({z.}),
andgy € Q; such thatt, has at least one symbol id and D[t] =% Dl[q(t')] =%
Diq(t.t")] =% Dlq(t2t")] =% q;(tptlt") for any positive integen. O

After the fashion of the reference [9], we call a state @ anend statdf there
exists an input-consuming rule whose left-hand side¢hd@$e set of all end states of
Q is denoted by (T"). For each input-consuming rute= (Ci[q1(x1), - - -, qx(z)] —
q(tr)) € 6, letrhs(p) = {¢'(t) | ¢(t;) =% ¢'(t),¢ € E(T) U Qy}. Note that only
e-rules can be used in the derivatigft,) =% ¢'(t).

Lemmab. LetT = (Q, X, A,Qy,0) be a reduced xbot. If there is no subggtof
e-rules iné repeatedly-producing at any € @ — U(T)), thenrhs(p) is finite for every
rule p of T and an xbot® equivalent withI’ can be constructed.

Proof. Assume that there is no subsetof e-rules iné repeatedly-producing at any
q € Q — U(T). By the assumption, for any treéeq(t) =1 q(*') andt # t' imply
thatt' does not contain any variable. That igt) =1 q(t') =% q(t”) andt # ¢’
imply ¢’ = ¢”. Thus, suppose that. is the number of rules df, and then for each rule
p = (Cllar(1), . aulzn)] = alt) € 6, ths(p) = {d'() | q(t:) =¥ ¢'(1).q" €
E(T)JQy,i € [ny]} where=". means the move relation bytimes applications of
rules. Thereforerhs(p) is finite. Then, we can construct an equivalent xtsof, =
(Q,2,A,Q4,0') whered’ = |J,_,,c5={l = ' | 7' € rhs(l — r)} andé* is the
subset of input-consuming rules &f O

According to Lemmas 4 and 5, Step 3-2 consists of the following two substeps:

(i) Construct the weighted graply,, = (Q — U(T31),E.) from T3, =
(Q,2,A,Qy,0) whereE, = {(q,¢) | q(z1) — ¢'(t) € 6,t € Ta{z1})},
and the weight of eacly, ¢’) is 1 if there is a ruleg(z,) — ¢'(¢) such that in-
cludes at least one output symbol, and otherwideéind a cycle whose weight is at
least one. If such a cycle exists, answer thais not single-valued and halt.

(i) Construct an equivalent reduced xb®fl; 5.



Step 3-3 Deciding single-valuedness of xbét In this substep, it is decided whether
T;5.o is single-valued or not. The idea of the proof is the same as that of the proof of the
decidability ofk-valuedness of bottom-up tree transducers [12]. While the proof in [12]
uses the Engelfriet’s property, we use a variant of the property (Lemma 6) to prove the
decidability of single-valuedness of xbdt.

We give some notations for the property. LBt[X,,] = Tx(X,) U Tx, that is,
everyt € Ts[X,] has all the variables iXX,, or has no variable. Fat s € T5[X,.], ts
is the tree obtained fromby replacing each variable with Note that's = ¢ if ¢t has no
variable. Form € [n], let 7" [ X, = T4 x Te[X,] x To~ ™. Fort € T3™ [X,],
we denote by () theith element ott, i.e.,t = (t(),... (™). Fors € Tx[X,] and
t € T3 [X,)], st is the tree obtained fromby replacingr; with t(*) for all i € [n]. Let
tu = (tWu,..., tMu) foru € 737 [X,]. Notice that since € 75" [X,,], so istu.
Fortl,tg,tg,t47t5 € 7—;7m[Xn] andsS = {il, Ce 7Z\S|} - [1, 5], |etts = til -t
wherei; < i;44 for j € [|IS| —1].

Now, we give a variant of Engelfriet's Property (see Appendix B.1).
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Lemma 6. Letn,n’ be arbitrary positive integers, anch € [n],m’ € [n’]. Suppose
thatty € Tx[X,], t1,ta, t3,t4,t5 € T " [X,], t) € To[Xn], th, th, th th, th €
7}1/’”” [Xn]. If tots = tyt’s for everyS such that{5} C S C [1,5], thentoty, 5 =
t()t’[w.

Next, in order to argue in a similar way to the proof of Theorem 2.2(i) in the ref-
erence [12], we decompose the left-hand side of each rule into several rules each of
which has only one input symbol. Actually, we construchalti bottom-up tree trans-
ducer(mbot) [9] equivalent with a given xbot. An mbot is a bot whose states might
have ranks different from one. Intuitively, we decompose eachyraliethe xbot ¢ by
adding a state for each intermediate position of the left-hand sidé ¢fee The added
states might have rank different from one to maintain two or more intermediate out-
put trees until the obtained mbot reaches the state corresponding to the fqstef
Appendix B.2).

Example 3.Assume that an xbot T has the transduction rulep =
a(b(q1(z1), g2(z2), q3(23)), qa(z4)) — q(c(x1,x2,24)). Then, the mbotl, ob-
tained by decomposing contains the rule(q (z1), ¢2(z2), g3(z3)) — ¢7(x1,x2)
anda(q(x1,72),qa(ws)) — qlc(x1,z2,24)) (See Fig. 3). Note thatf maintainsz;
andz- but notz; becausers does not occur in the right-hand sideof

Lemma7. Let T, = (Q., X, A,Q5,9,) be the mbot obtained from an xb6t
T = (Q,X,A,Qf,9) by the above decomposition. Then, for everye @, and
C € Cx({x.}), if Clg(xy, ..., z1)) :>JTra q(t1,...,tr), then(ty, ... tg) € ’TAk’m[Xk]
for somem € [k].

Henceforth, we denotg(t1, . .., tx) by ¢(t) wheret = (¢1,. .., tx).

Lemma 8. LetT, = (Q., X, A, Qy,d,) be the mbot obtained from an xb6tT" by the
above decomposition. Assume tligthasn states and the maximum arity of states is
k.m. T, is not single-valued if and only if there is a treef depth less thaf - (n - k,, )?
such that [T, ] (¢)| > 1.
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Fig. 3. An example of decomposing an xb6tto an mbot

Proof. The if part is trivial and so we prove the only if part. Assume that 7y is

a tree of minimal size such that there are two distinct derivattoss;, qy1(t,1) and

t =7 gr2(toz) Wheregsi, ¢ € Qy, andty # 2. FoOr a contradiction, assume that
the depth ot is greater than or equal o (n - k,,,)%. Then, by Lemma 7, there are two
statesgi, g2 € @, with ranksn; andn, respectivelyC; € Cx({z.}) (0 < j < 4),
Cs € Ts, and fori € {1,2}, m; € [n], tj € Ta[Xy,], andt} € Tx*™ [X,,,] (j € [5])
such that

t = CoC1C2C3C,Cs5 =71, CoCl g [Qz(té)] =71, CoCl 3 [Qi(tf4,5])]
:>,}:a e
=T, CO[Qi(tfl,E)])}
=T, @ittty 5)-
By the minimality oft, we havet(tl = t2t% € [T,](CoCs) for every S such that

{5} € S C [1,5]. From Lemma 6¢,; = tét[l1 5 = t%tfl 5) = to2. This is a contradic-

tion. O
From Lemma 8, single-valuedness of xb&t is decidable.

Theorem 1. Itis decidable whether a given xbotis single-valued. It is also decidable
whether a given xbog(B(R) is single-valued.

Theorem 2. Determinacy is decidable fos{-xbots,s-bots).

3.2 Undecidability for Other Classes

We show that determinacy is undecidable for (non-lineabpts as the determiner
class. We prove the undecidability of determinacy for homomorphism tree transduc-
ers (homs) [11], which is a proper subclass of not ostlyots but also single-valued
top-down tree transducers-{op). Letid be the class of the identity transductions on
Ts for any alphabef.

Theorem 3. Determinacy is undecidable for (homs, id).



Proof. It can be shown by reduction from injectivity of homs, which is known to be
undecidable [13]. Consider an arbitrary hdmThen, it holds thafT] is injective if
and only ifT" determines the identity transducgy;. O

Corollary 1. Determinacy is undecidable fog-pots, id) and §-tops, id).

Moreover, we have the undecidability result for deterministic monadic second-order
logic defined tee transducers (dmsotts) [4, 5], which is a proper superclaisshaits.

Theorem 4. Determinacy is undecidable for (dmsottdz) whereidy is the class of
the identities whose domains are regular tree languages.

Proof. It can be shown by reduction from ambiguity of context-free grammars. Con-
sider an arbitrary context-free gramn@@r Then, there is a dmsdft; which transforms

any derivation tree of each stringe L(G) to s. Thus,G is ambiguous if and only if

T determines the identity transducBy; such thatdom(T;4) = dom(7g). O

4 Subsumption

We show that subsumption is decidable fei-Xbots, s-bots). As shown in Section 3,

given ansl-xbot 77 and ans-bot 75, if T} determinesl, we can construct a reduced

s-xbot™¢ T3 such that[T3] = [T»] o [T1]~!. So, in order to decide subsumption,

we should decide whether there is a bot equivalent ®WithThe next lemma provides

a necessary and sufficient condition for ambot ¢ to have an equivalent bot (see

Appendix C).

Lemma9. LetT = (Q, X, A, Qy, d) be a reduced-xbot . An s-bot equivalent with

T can be constructed if and only(X) for every ruleCy[q1(z1), . .., qr(xk)] — q(t) €

¢ and any three variables;, , z;,, z;, € var(t,), if

(X1) mg(T'(gs,)) is infinite for all j € [3], and

(X2) nca(py,p2) = nca(p1, ps) where{p;} = pos,, (Cy) for j € [3], then

(X3) the minimal suffixt, € 7x(Xy) such thatt, = t,t, for somet, €
TUX,—{a:, 0, } ({72 }) doES DOt CONtain;, .

Proof Sketch.Assume (X) does not hold and we can construct sahot T”
equivalent with a givens-xbot ¢ T. Since (X) does not hold, there is a rule
Cila(z1), .- qk(zk)] — q(t.) € 6 andx;,, x,,, x;, € var(t,) such that (X1) and
(X2) hold but (X3) does not. Lep1> = nca(p1,p2) in (X2), andt; be the minimal
suffix of ¢,. in (X3). SinceT” is ans-bot equivalent withl", 7" must have rules of which
left-hand sides ‘cover’ the subtrég|,,,, which contains:;, andz;, and does not con-
tain z;,. Also, sinceC;[x.],,, does not contaim;, andx;,, some suffix’, of ¢, in the
right-hand side such that = ¢, for somet;, € Tguxk,{xil,xi2}({x*}) should be
generated by corresponding t@”;|,,,. However, the minimal suffix, containse;,,
and thus so doe. That is,t/ includingz;, should be generated frof|,,, without
x;,, wWhich leads a contradiction. Conversely, if (X) holds, we can divide each rdle of
into non-extended rules, each of which has exactly one symbol in the left-handSside.

For any xbotT', it can be decided whetheng(T) is infinite. Thus, it is decidable
whether there is ag-bot equivalent with a gives-xbot™©.

Theorem 5. Subsumption is decidable fasl{xbots,s-bots).



5 Conclusion

We have shown that determinacy and subsumption are decidable for single-valued
linear extended bottom-up tree transducers as the determiner class and single-valued
bottom-up tree transducers as the determinee class. As for more powerful classes, we
have shown that determinacy is undecidable for single-valued top-down/bottom-up tree
transducerssttops/bots) and deterministic MSO tree transducers (dmsotts) as the de-
terminer class.

As future work, we will investigate whether subsumption for more powerful classes,
such as-tops/bots and dmsotts, is decidable or not. Though determinacy is undecidable
for tops and dmsotts, decidability of subsumption for the classes is still open. We also
consider whether, given two transducgfsandTs in the classes such th&f subsumes
Ty, a transducef; such thafTz] = [T3] o [11] can be effectively constructed or not.
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A Construction of a Reduced xbot

It is known that for every bofl" an equivalent reduced bot can be constructed from

T in linear time [10]. For xbots and xbots defined in Section 3, equivalent re-
duced ones can also be constructed in the same way. Here, we recall the construction:
Given xbot ¢ T' = (Q, X, A, Qy, ), to satisfy condition 2 for the reducedness in Sec-
tion 2.2, first construct” = (Q x {0,1}, X, A, Q x {1}, ¢’) such that for each rule

Cilgi (1), -, qu(zr)] = q(t,) €6,

- Ofg1(x1), - - - Gr(zr)] — (g,1)(t.) € &' whereg; = (g;,1) if z; appears irt,,
andg; = (¢;,0) otherwise; and
= Cif(q1,0)(z1), - - (qr: 0)(zk)] — (g, 0)(L) € &".

Next, for condition 3 for the reducedness, add a new statand replace the set of

final states with the singletofy’}. Then for any rulep € 6’ whose right-hand side

has a statg € Q; x {1}, add the new rule obtained fromby replacingg with ¢/

in the right-hand side. Now, the reduced xbdtl"’ equivalent withT" is obtained by
removing useless states for condition 1 of the reducedness. Removing useless states can
be done in the same way as for tree automata [7]. Noticdi{at') = Q" N (Q x {0})
whereQ” is the set of states &f”.

B Proofs of Lemmas for Theorem 1

B.1 Proof of Lemma 6

We first recall the notations. L&%: [ X,,] = Tx(X,,)UTs, thatis, every € Tx[X,,] has
all the variables inX,, or has no variable. Far s € Tx[X,,], tsis the tree obtained from
t by replacing each variable with Note thatts = ¢ if ¢ has no variable. Fon € [n], let
To™Xy] = T x Te[Xa] x Ta~ ™. Fort € T™[X,,], we denote by(?) theith
elementot,ie..t = (¢t ... ™). Fors € Tx[X,] andt € T3 [X,,], st is the tree
obtained froms by replacingz; with t() for all i € [n]. Letts = (t(Us, ..., t("s), and
tu= (tMu,... t"Mu)foru € T4 ™[X,,]. Notice that since € 7™ [X,,], so arets
andtu. Lastly, the above substitution operation is associative. That i, 7 x| X, ]
andtl,t27t3 S 7-;’m[Xn], (8t1)t2 = S(tltg) and (tltg)t3 = tl(t2t3) hold. For
t1,ta,t3,t4,t5 € 7-;,771[)(“] andS = {il, Ce ,i‘s‘} - [175], let ts = til B
wherei; < i1 forj € [|S| —1].

We use some propositions to prove Lemma 6. The following is the same as the top
cancellation in [12] except that we use tuples of tree®in" [ X,,].

is|

Proposition 2 (Top Cancellation).Lets € Tx[X,] andty, ts € 75" [X,,]. If st; =
sto, thens € Ty or t1 = ts.

Proof. Assume thastt, = stq, s ¢ Tx andt; # to. Then,s contains all the variables

in X,,, andt!” £ ¢\ for somei € [n]. Since distinct trees are substitutedatg
sty # sto. This is a contradiction. O



The decidability of single-valuedness (or more generahlyaluedness) of bots was
proved in [12] by using Engelfriet's Property T1(i), which was proved by Engelfriet’s
Property T2(i).

Proposition 3 (Engelfriet's Property T1(i) [12]). Assumei;, i, € Tx({z.}), i =
0,1,2,3,4. Then,

to--tiaty--ta=1to---t; gt -ty forall0<i<j<4
impliest0t1t2t3t4 = tlotlltétgtil

Proposition 4 (Engelfriet's Property T2(i) [12]). Assume s;, u;, Vs, Yi, 25 €
Ts({z.}) (i = 1,2), s1 Or s5 containsz,, y1 # 21, andy, # z3. Then,

S1Y1 = S2Y2

5121 = 5222

8101 = Sgvo  implies wjv; = usvs.

U1Y1 = u2y2

U2l = U222

Now, we prove Lemma 6, a variant of Engelfriet's Property T1(i). Eor=

W, .. M) € TH™X,], t° denotes then-tuple of trees obtained fror by re-
placing themth eIement withe,,, thatis,t® = (¢, ... t(m=1 g ¢+ 4,
Hence, we have = t¢¢(™),
Lemma 6. Letn,n’ be arbitrary positive integers, angh € [n],m’ € [n’]. Suppose
that ¢y € TZ,‘[Xn], t1,to,t3,t4,t5 € 7—;"m[Xn], t/O S TE[XW/L tll,tlz,té, 21717{5 S
7}1/’”‘/ [X,/]. Then, iftots = tyts for everyS such that{5} C S C [1,5], then
tot[1,5] = t6tf175].
Proof. Assume thatotg = tt’s for everyS such thaf{5} C S C [1, 5]. Let

S1 = tot%, S9 = tét/;,

Uy = t()t tg, Ug = t/ tl t/207

n=t": = t'(m 't
CON ') g

21 = t2 [4,5] z9 =1, [4,5]

v = tém)t[&s], Vg = tl(m )tE?’ 5]

By the assumption, we have

s1y1 = (tot5) (™ ts) = totats = ththth = (EHtS)(EX™ tL) = sayn,
totc)(t(m g, 5]) = totatyy 5 = tot t[4 5 = (totéc)(t/(m )t[4 5]) = $929,

S121 = (

s1v1 = (tot$ )(tg )t[s 5]) = tot,s) = tot(r 5 = (tots )(tz(m )t[s 5) = 5202,

wiyn = (Lot tS) (1™ ts) = totytats = tht tht = (tht)61) (L™ tL) = usyo,
Uz = (tot £5)(t5™ ta.57) = totpuobpas = toti o tlas = (tot)ts f) (™ )t[4,5])
u1v] = ( 0t tc)(t(m)t[ 51) = tot[1 )

uzvy = (tot) tlc)(t/(m )t[?, 51) = tot[1 5



There are four cases.

Case (1)Both of s; ands, contain no variable.

Then, ¢, andt; do not containz,, andz,, , respectively. Moreover, by definition of
Tx[X], to andt; do not contain any variable. Thust( 5 = to = tots andtgtfl_ﬁ] =

ty = tots. Sincetots = tyty, we havetoty 5 = thtp 5.

Case (2)s; or so contains variable:,, y; # z; andys # 2.

Proposition 4 impliesot; 5 = u1v1 = ugvy = oty 5.

Case (3)sy or s contains variable:, andy; = z;.

Becausey; = zi, by top cancellation (Proposition 2); = tj, 5 or tém) has no
variable. Ift; = t, 5 thentotp aits = totp s If £5™ has no variable then we
also havetgt(; 31t5 = tot[1,2) = tot1,5. Moreover, we have;y; = s;z; and thus
Sal2 = S220. By top cancellationys = 25 or s has no variable. Assume that
y2 = z2. By the same argument as the above, we figi/e , t5 = ¢t(, 5. Onthe other
hand, assume that has no variables. Thety, has no variable and thus we also have
Loty 5ts =16 = t’othﬁ]. Thereforefot|; 5 = tot(, 5 becauseot)y 5ts = tot]; 5 t5.
Case (4)s; or s, contains variable:, andys = zs.

This is analogous to Case (3). O

B.2 Proof of Lemma?7

To decompose the left-hand side of each rule of a givenxbiotto several rules each
of which has only one input symbol, we construamnalti bottom-up tree transducer
equivalent with the xbot®. A multi bottom-up tree transducer [9] is a bottom-up tree
transducer whose states might have ranks different from one. A multi bottom-up tree
transducer (mbot) is a 5-tuple, ¥, A, Qr,d) where@Q; C Q™) andé is a set of
rules of the formi — r wherel € X(Q(X)) is linear inX andr € Q(Ta(var(l))).
Forq € Q™™ and a finite subseX, = {x;,,...,z;, } of X — {z,}, letq(X,) denote
q(zi, ...,z ) Wherei; < i, for everyj € [k — 1]. The move relation= of a
mbotT = (Q, X, A, Qy,9) is defined as followst = t' if there isa ruld — r € 4,
p € pos(t), and a substitutiofi : X — Txua such that|, = 16 andt’ = t[r6],,.

The decomposition is as follows: Given an xbo" = (Q, X, A, Qy, §), construct
an mbotT}, = (QU Qum, X, A, Qy, 0m) Where

= Qm=1{a} | p=(Cilqr(z1), ..., qx(zk)] = q(tr)) €5, p € poss(Ci) — {e}},
— 0y, isthe smallest set such that for each: (Cilg1(x1), ..., qx(zr)] — q(t,)) €9,

e o (¢f(V1),-- - q,, (Vi) = q(t,) € 6m Whereo, = A¢, (€), ke = rk(oc), and
V; = var(Cy|;) N var(t,) for eachi € [k.],

o for each position € poss(C;)—{e}, letV, = var(Ci|,) andd,, : V,, — Xy,
such that”;|,,6,, is normalized, then the rule obtained by normalizing the both
sides ofoy, (qpy (Vp1), - - s dpr, (Vir, ) — a5 (Vp) by 0, belongs tosy,, where
ap = Ac,(p), kp = rk(oy), andVy,; = var(Cy|p;) N var(t,) for eachi € [k,)],

wheregh = q; if p € pos,, (C;) for somez; € Xj,.

Lemma7. LetT,, = (QU Qm, X, A,Qf,m) be the mbot obtained from an xb6t
T =(Q,X,A,Qy,9J) by the above decomposition. Then, for every Q U Q,,, and
C € Cx({z.}),if Clg(z1,....xx)] =4 qlts,....tx), then(ty, ... t) € T [X]
for somem € [k].



Proof. Assume that € Q. Since every state i) has rank one, for ang' € Cs;({x.}),
if Clg(z.)] =% q(t), thent € Ta({z.}) = Ty

Assume thatg € @, and C is an arbitrary tree inCs({z.}) such that
Clg(z1,...,zk)] :>; q(t1,...,t,). From the decomposition procedure, there exists
arulep = (Cilgi (1), - -, qr(zr)] = q,(t,)) € 6 of T such thay = ¢/ for some po-
sitionp in posx(Cy) — {e}. Thus,Clg(z1,. .., zx)] =, C'la,(t")] =7, alts, ... tk)
for someC’ € Cx({z.}) andt” € Ta(Xy), where=* means zero or more applica-
tions of only the rules obtained by decompospngNote thatt” must contain all the

variablesry, . .., zx. In the above derivatio6”[q,(t")] =7, q(t1,...,t), t" is either
abandoned or contained as a subtreg,jfor somem € [k]. Thus,(ty, ..., ) € TA™
for somem € [k]. O

C Proof of Lemma9

To prove Lemma 9, we use the following property, which is a slight extension of Propo-
sition 1.5 in [10].

Proposition 5. Assume € Tx(X},) contains at least one occurrence of each variable
in V. C Xj where|V| > 2. Then,t = t,t, for somet, € Tsux,—v({z.}) and
ts € Ts(X}) satisfying the following conditions:

1. If t = uyu, for someu, € Tsux,—v({z+}) andug € T (Xk) thent,, = u,r and
us = rt, for somer € Toux, —v({z}). That is,t, andt, are the unique maximal
prefix and minimal suffix af respectively.

2. Assume; € Tx({z;}) for eachz; € Xj. Thent,[ts, ..., t] € Tsux,—v({z})
and ts[t1,...,t] € Ts (X)) are the maximal prefix and the minimal suffix of
t[t1,. .., tx], respectively.

Lemma9. LetT = (Q, X, A, Qy, d) be a reduced-xbot °. An s-bot equivalent with
T can be constructed if and only(X) for every ruleCy[q1(z1), . . ., qr(xk)] — q(t-) €
¢ and any three variables,, , z;,, z;, € var(t,) if

(X1) rg(T'(gs,)) is infinite for all j € [3], and

(X2) nca(p1,p2) > nca(p1, p3) where{p;} = POse,, (Cy) for j € [3], then

(X3) the minimal suffixt, € 7x(X%) such thatt, = t,t, for somet, ¢
To0Xy—{a:, 2:,} ({24 }) dOES NOt cONtaim;, .

Proof. For the only if part, assume that (X) does not hold, i.e., there is aguie
(Cilaa(z1), - - qu(zk)] — q(t,)) € § that satisfies (X1) and (X2) but does not satisfy
(X3). That is, the rule has three variables;,, z;,, ©;, € var(t,) such that

— rng(7T'(gs,)) is infinite for all j € [3],

— nca(p1, p2) > nca(py, p3) where{p; } = pos,, (C}) for j € [3], and

— the minimal suffixt,;s € Tx(Xy) such thatt, = t,1ots10 for somet, ;o €
ToUX s —{as, a1y} ({24 }) CONtAiNST;, .



For a contradiction, assume that there is a reducbdt 7¢ = (QS,E,A,Q},és)
equivalent with7". SinceT" is reduced and the three variables, z;,, z,;, belong to
var(t,) of the rulep, we have thay, g;,,¢,,q:, € Q — U(T). LetC] = Ci0 €
Cx(Xs) such thatd(z;,) = x; for j € [3] andf(z;) is a tree indom(T(g;)) for
r; € X — {$i1,$i2,$i3}. Then,

CCII [qil (1‘1), Qi (1‘2)7 Qi ($3)] é;“ C[Q(t;‘)] é;“ qf (t/t/r)

for someC € Cx({x.}), ' € Ta({z.}), q5 € Qf andt,. = t,.0" € Ta(X3) such that
0’ (xs;) = x; for j € [3] and@'(z;) = T(q:)(0(x;)) for x; € Xy — {@s,, x4, 24, }
Since T is single-valued, for eachi < [3], there is an injective mapping;
rg(T(qi;)) — dom(T'(g;;)) such thatl'(q;;)(&;(t')) = t' for anyt’ € rg(T(gs;)).
SinceT” is equivalent withT", for everyt; € rmg(T(g;,)), t5 € rng(T(g;,)), and
ty € rng(7T(gis)), we have thal'Cy[&: (1)), €2(t3), §3(t5)] =7 ¢ ('t [th, 15, t5]) for
someq; € Qs. By the fact thatng(7(¢;,)) (7 € [3]) is infinite but@; is finite, and
nca(p1,p2) > nca(pi, ps), we can say that there are infinite séts C rng(7T(g;,)),
Ly Crng(T(qi,)), andLs C rng(T(q:,)), Statesy;, a5, ¢35, 434, ¢°, 47 € Qs, and trees
ufy € Ta({z1,22}),us € Tal{zs, 23}),us € Ta({z.}) such that for alk] € L,,
th € Lo, andts € Ls,

COYl&(t1), &2(th), &5 (t5)]
:>TS C(Ctl q ti)v ( )7q3(t§)}
o (u [t17 t;])]nca(m,pz))[x?) “—q3 (t;,)]

=Ts ( Z[QZ 12
:>Té Q; (U‘Z(Uguiz) [tiv t;a th

and w3 (ugui,) [, 13,13 = t'EL[t4, th, t5) where&;(t)) =5. ¢3(t]) (G € [3]) (See
Fig. 4). Now, fixty € Lo andt € Ls. ConsiderD; = t't][z1,t5,t5] € Ta({z1})
and D§ = ud(ujuiy)[z1,t5,t5] € Ta({z1}). Then, L; has two distinct trees)
and t/, and D, [t}] # Di[t{] becausey;, ¢ U(T) and thusD; must havex;.
SinceT is single-valued and™ is equivalent withT’, we haveD; [t]] = Dj[t{’] and
Dy[t] = Di[t{*] where&,(t) =%. ¢i(ty) and&i(t) =4 ¢i(t7"). (Note that
t}® and¢y/* are uniquely determined respectively. If n@t; had two output trees for
CC& (1)), &2(th), £3(t5)] and thus it was not single-valued. SifEeandT are equiv-
alent, however]™ is also single-valued. ) Therefor®; also must have,, and there
is atreer] € Ta({z1}) such thatD[z; < 7}] = D;j or Dy = Dj[z; « r}]. Sim-
ilarly, for both j = 2,3, there is a tree; € Ta({x;}) such thatD;[z; « /] = D3
or D; = Djlz; « ri]. Thus, we havet't,[ri,r2,73] = ug(ujuis)[ry,rs, 5]
wherer; andr? arer} or z;, andr; = w; if and only if 7 = r’. By propo-
sition 5 andt/t;[Tth,Tg] = tl((tplgtslg)el)[ThT2,7"3], we havet5129’[r1,r2,r3]
is the minimal suffix oft't][r1,r2, 73] containingzs. Thus, for any decomposi-
tion t't,[r1, 7o, 73] = t,ts, t, Must containzs. However,u§(ufuf,)[ry, ry,r5] =
(uguilrs < ri)ufy[ry,ry], andui,[r!, r4] does not contain:s. This is a contra-
diction.

For the if part, assume that condition (X) holds. L@k, = {¢ € Q |

rng(T(q)) is finite} andQ}! = Qsn — Q. Note thatl/ (T') is included inQs, because
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Fig. 4. Transduction byl andT"

g (T(q)) = {1} for g € U(T). Also, letQy) = {(¢,t) | ¢ € Q4. t € mg(T(q))}.
We first construct a reducedxbot ¢ T, equivalent withZ, such thatng(7;(gq)) is
infinite or the singletor{ L } for any non-final state ¢ Q) of ;. More specifically, we
constructl’y = (Qp! U (Q — QiY), ¥, A, Qy, ) such that' is the smallest set satis-
fying the following condition: LetC)[¢1 (1), - . ., gk (xk)] — q(t,) € ¢ be an arbitrary
rule.

—If ¢ € QY thenCi[(q1, t1)(21), - -, (qis t) (x1)] = (@ toltr, -, t]) (L) € &
forall ¢; € rg(T(g;)) (i € [K]).

—-Ifqge@— QQI{, let §; and#é,. be arbitrary substitutions such that for each [k],
if rng(T'(g;)) is infinite, 0;(x;) = ¢;(x;) andb,.(z;) = z;; otherwise§;(z;) =
(gi,t;)(z;) ando,.(z;) = t, for anyt; € rmg(T(¢;)). Then,Ci16; — ¢(t,.0,) € ¢'.

Note that 7; is reduced andU(T;) = Qpf. Thus, for every rule
Cilgi(z1),. .., qe(z)] — qt) € &', z; € var(t,) if and only if rng(T(g;))
is infinite fori € [k], that is, condition (X1) is satisfied. Namely,

For everyCilgi(z1),...,qu(zk)] — q(t.) € ¢’ and any three variables
Tiy, Tiy, Tiy € var(ty), if nca(pr, p2) > nca(pr, p3) where{p; } = Pose,, ()
for j € [3], then the minimal suffix, € 7x(X}) such that, = ¢,t, for some
tp € TSUX,—{x:, 2. ) ({74 }) dOES NOt CONtAIM;, .

ForV C var(t,), letdp, (V) = pos,, (t,) wheret, € Txux,—v({z.}) is the maxi-
mal prefix oft, with respect td” such that, = t,t, for somet, € Tx(Xx).

Next, we decompose tre€} andt,. in the both sides of each rule 6% with respect
to the confluence positions of variablegin A positionp of C; w.r.t¢,. is aconfluence
positionif var(Cy|,;) N var(t,) C var(Cil,) N var(t,) for all i € [rk(Ac, (p))]. Let



 p'em,(p)

p; € preve,(p)

Fig. 5. Construction of?

CP(Cy) be the set of all confluence positions@f Forp € CP(Cy), letprev, (p) be
the set of all the immediate previous confluence positions, thatdis,, (p) = {p’ |
p=<p,-3 e CP(C):p=<p’ <p}

By the assumption (X), for each rule= (Ci[q1(x1), - .., qx(zx)] = q(t.)) € &,
there is a mappingn, : CP(C;) — 2r°s(*) such thatm,(p) = dp,, (var(Ci|,))
for eachp € CP(C;). We can construct an-bot 77 = (Q1 U (Q — Q) U
Qm, X, A, Qy,0") from Ty where

- Qm=A{a 1 p=(Cilg1(z1), ..., qr(zr)] = q(t,)) € 8',p € poss(Cr) — {e}},
— ¢” is the smallest set such that for each rgle= (Ci[q1(z1),. .., qk(xr)] —
q(tr)) €8,
e Foreactp € CP((), leto, = \¢,(p) € Z*»), then

op(ap1 (1), -y, () = qp (1) € 8"

wheret? = t/ |, for anyp’ € m,(p) andt,. is the tree obtained from. by
replacing all subtrees at positionssi, (p;) with z; such thatp;j < p; for all
pi € prevg, (p) (See Fig. 5), and

o If e ¢ CP(C)), leto. = A¢,(€) € Xk, then

oc(ay(x1), .., qp (zn,) = ¢f(t;) € 0"

wheret’. is the tree obtained from). by replacing all subtrees at positions in
dp,, (var(t,)) with z; such thatar(t,) C var(Cyl;).
e Foreacty € poss(C;) — (CP(C;) U {e}), leto, = A¢, (p) € Z*»), then

* op(apy(@1), - dpy (x1,)) — ah(w) € 8 if Cil,i has at least one vari-
able for some € [k,],
* op(gp (1), qpy (2,)) — ¢f(L) € 6” otherwise.

whereg? = ¢, andg) = ¢; for eachr; € Xj andp € pos,, (C1).

T is equivalent withl'; because the rules obtained by decomposing eachprale’
can simulate exactly. d

Therefore, condition (X) is a necessary and sufficient condition for-gnot ¢ to
have an equivalentbotT'.



