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Abstract. This paper discusses the decidability of determinacy and subsumption
for tree transducers. For two tree transducersT1 andT2, T1 determinesT2 if the
output ofT2 is identified by the output ofT1, that is, there is a partial functionf
such that[[T2]] = f ◦ [[T1]] where[[T1]] and[[T2]] are tree transformation relations
induced byT1 andT2, respectively. Also,T1 subsumesT2 if T1 determinesT2

and the partial functionf such that[[T2]] = f◦[[T1]] can be defined by a transducer
in a designated class thatT2 belongs to. In this paper, we show that determinacy
is decidable for single-valued linear extended bottom-up tree transducers as the
determiner class and single-valued bottom-up tree transducers as the determinee
class. We also show that subsumption is decidable for these classes.

1 Introduction

In data transformation, it is desirable that certain information in source data be pre-
served through transformation. As a formalization for information preservation in data
transformation, the notions ofdeteminacyand subsumption(or query rewriting) are
known [1–3]. LetQ be a query to a database andV be a data transformation (or a view
definition) of the database. Determinacy ofQ by V means that the answer toQ is iden-
tified by the answer toV . When information to be preserved is specified by a queryQ,
determinacy guarantees that for any database instanceD, V (D) gives enough informa-
tion to uniquely determine the specified informationQ(D) for D. Subsumption means
that the answer toQ can always be computed from the answer toV by some query in
a designated class thatQ belongs to. Compared with determinacy, subsumption guar-
antees that the necessary informationQ(D) can be extracted from the transformed data
V (D) by the same query language expressingQ.

We study the decidability of determinacy and subsumption when both a query and
a data transformation are given by tree transducers. Tree transducers are machines that
model relations between labeled ordered trees. A tree transducer is said to besingle-
valuedif the tree transformation induced by the transducer is a partial function. Since
an XML document has a tree structure, tree transducers are often used as a model of
XML document transformations. Formally, for two single-valued tree transducersT1

andT2 in classesΠ1 andΠ2 of transducers, respectively, we sayT1 determinesT2 if
there is a partial functionf such that[[T2]] = f ◦ [[T1]] (see Fig. 1(a)), where[[T1]] and



: a partial function
(possibly incomputable)

(a) determines (b) subsumes w.r.t. 

Fig. 1.Determinacy and subsumption

[[T2]] are the tree transformation relations induced byT1 andT2, respectively.Π1 and
Π2 are called the determiner class and the determinee class, respectively. We also sayT1

subsumesT2 with respect toΠ2, if T1 determinesT2 and the partial functionf such that
[[T2]] = f◦[[T1]] can be defined by a transducer in the classΠ2 (see Fig. 1(b)). Our goal is
to find practical subclasses of tree transducers for which determinacy and subsumption
are decidable, and to consider the problem of constructing a tree transducerT3 in the
determinee class such that[[T2]] = [[T3]] ◦ [[T1]] if T1 subsumesT2.

In this paper, we first show that determinacy is decidable for single-valued linear ex-
tended bottom-up tree transducers (sl-xbots) as the determiner class and single-valued
bottom-up tree transducers (s-bots) as the determinee class running over a ranked-tree
encoding of the given XML document. Transformations induced by transducers in the
classes include simple filterings, relabelings, insertions, and deletions of elements. Es-
pecially, sl-xbots do not allow duplications of elements. Given ansl-xbot T1 and an
s-botT2, the decision procedure works as follows: (1) construct a transducerT inv

1 that
induces the inverse ofT1, (2) construct a transducerT3 that induces the composition
of T inv

1 followed byT2, then (3) decide whetherT3 is single-valued. We introduce a
class of transducers withgrafting, which allows to insert any tree in a specified tree lan-
guage, in order to capture inverses of transformations induced bysl-xbots and the com-
position of the inverses ands-bots. Next, we prove that single-valuedness for the class
is decidable. For some other classes, we show that determinacy is undecidable even
for homomorphism tree transducers as the determiner class, which is a proper subclass
of s-bots and single-valued top-down tree transducers (s-tops). Moreover, determinacy
is undecidable for deterministic monadic second-order logic defined tree transducers
(dmsott) [4, 5] as the determiner class, which form a class incompatible withs-bots
ands-tops but is a proper superclass ofsl-xbots. Lastly, we show that subsumption is
decidable forsl-xbots as the determiner class ands-bots as the determinee class. The
proof gives a construction method of ans-bot T3 satisfying[[T2]] = [[T3]] ◦ [[T1]] if T1

subsumesT2.

Related Work.Determinacy and subsumption (or query rewriting) have been well stud-
ied mainly for relational queries such as first order logic and conjunctive queries [1–
3]. In XML context, query preservation [6] has been studied as a notion of informa-
tion preservation of XML mappings. LetL be an XML query language. For queries
Q,Q′ ∈ L and a viewV , V preservesQ with Q′ if Q = Q′ ◦ V . This definition is es-
sentially the same as the definition of subsumption. A viewV is query preservingwith



respect toL if there exists a computable functionRw such that for any queryQ ∈ L,
V preservesQ with Rw(Q). Unfortunately, it is known to be undecidable to decide
whetherV is query preserving with respect to projection queries, given a viewV in any
query classLf which can simulate first order logic queries, such as XQuery and XSLT.
It is also undecidable whetherV preservesQ with some projection query, givenV in
the classLf and a projection queryQ. As far as we know, the decidability of query
preservation for other subclasses of XQuery and XSLT has been little investigated.

2 Preliminaries

2.1 Trees and Tree Automata

We treat only ranked labeled ordered trees and tree transducers which work on such
trees. Though an XML document is often modeled by an unranked labeled ordered
tree, we assume that an unranked tree is encoded to a ranked tree by some encoding
such as First-Child-Next-Sibling encoding [7] and DTD-based encoding [8].

We denote the set of nonnegative integers byN. Let [i, j] = {d ∈ N | i ≤ d ≤ j}.
In particular, we denote[1, k] by [k]. A (ranked) alphabet is a finite setΣ of symbols
with a mappingrk from Σ to N. We denote the set ofk-ary symbols ofΣ by Σ(k) =
{σ ∈ Σ | rk(σ) = k}. The setTΣ of ranked treesover an alphabetΣ is the smallest
setT such thatσ(t1, . . . , tk) ∈ T for everyk ∈ N, σ ∈ Σ(k), andt1, . . . , tk ∈ T . If
σ ∈ Σ(0), we writeσ instead ofσ(). The set ofpositionsof t = σ(t1, . . . , tk) ∈ TΣ ,
denoted bypos(t), is defined bypos(t) = {ϵ} ∪ {ip | i ∈ [k], p ∈ pos(ti)} where
σ ∈ Σ(k) andt1, . . . , tk ∈ TΣ . The empty stringϵ is the position of the root oft, and
the ith child’s position ofp ∈ pos(t) is pi. We writep ⪯ p′ whenp is a prefix ofp′,
that is,p is an ancestor position ofp′, andp ≺ p′ whenp is a proper prefix ofp′. For
p, p′ ∈ pos(t), let nca(p, p′) be the nearest common ancestor position ofp andp′, that
is, the longest common prefix ofp andp′. Forp ∈ pos(t), t|p denotes the subtree oft
atp, andt[t′]p denotes the tree obtained fromt by replacing the subtree atp with t′. Let
λt(p) be the symbol of treet atp.

Let X = {x∗} ∪ {xi | i ≥ 1} be a set of variables of rank 0, and for everyk ≥ 1,
Xk = {xi | i ∈ [k]}. ForV ⊆ X, we often writeTΣ(V ) to meanTΣ∪V . A treet ∈
TΣ(V ) is linear if each variable inV occurs at most once int. LetCΣ(V ) denote the set
of linear trees inTΣ(V ). Let T̄Σ(V ) (resp.C̄Σ(V )) be the set of trees inTΣ(V ) (resp.
CΣ(V )) such that each variable inV occurs at least once. Note thatT̄Σ∪V (V

′) denotes
the set of trees inTΣ(V ∪ V ′) such that every variable inV ′ must occur at least once.
For t ∈ TΣ(X) andσ ∈ Σ ∪X, let posσ(t) be the set of the positions oft at whichσ
occurs, andposY (t) =

∪
σ∈Y posσ(t) for Y ⊆ Σ∪X. Letvar(t) be the set of variables

of t, andyieldX : TΣ(X) → X∗ be the function such thatyieldX(x) = x for every
x ∈ X andyieldX(σ(t1, . . . , tk)) = yieldX(t1) · · · yieldX(tk) for everyσ ∈ Σ(k)

andt1, . . . , tk ∈ TΣ(X). A treet ∈ TΣ(X) is normalizedif yieldX(t) = x1 · · ·xk for
somek ∈ N. Every mappingθ : V → TΣ(X) with V ⊆ X is called a substitution.
It can be extended toθ : TΣ(V ) → TΣ(X) defined inductively as follows:xθ = θ(x)
for everyx ∈ V andtθ = σ(t1θ, . . . , tkθ) for everyt = σ(t1, . . . , tk) ∈ TΣ(V ) where
σ ∈ Σ(k). If V = Xk andxiθ = ti for eachi ∈ [k], we also denotetθ by t[t1, . . . , tk],



and ifV = {x} andθ(x) = t′, we denotetθ by t[x ← t′]. In particular, ifV = {x∗}
andθ(x∗) = t′, we denotetθ by t[t′] or oftentt′ without brackets.

A finite tree automaton(TA for short) is a 4-tupleA = (Q,Σ,Qa, γ), whereQ
is a finite set of states,Σ is an alphabet,Qa ⊆ Q is a set of accepting states, andγ
is a finite set of transition rules, each of which is of the form(q, C[q1, . . . , qk]) where
q, q1, . . . , qk ∈ Q andC ∈ C̄Σ(Xk). The move relation⇒A of a TAA = (Q,Σ,Qa, γ)
is defined as follows: if(q, C[q1, . . . , qk]) ∈ γ and t|p = C[q1, . . . , qk] wherep ∈
pos(t), then t ⇒A t[q]p. The tree languagerecognizedby A, denoted asL(A), is
{t | t⇒∗

A qa, qa ∈ Qa} where⇒∗
A is the reflexive transitive closure of⇒A. For a state

q of A, let A(q) be a TA obtained fromA by replacing the setQa of accepting states
with the singleton{q}. A setL of trees recognized by some TA is called a regular tree
language, or we sayL is regular.

2.2 Tree Transducers

An extended bottom-up tree transducer(xbot) [9] is a 5-tuple(Q,Σ,∆,Qf , δ), where
Q is a finite set of states,Σ is an input alphabet,∆ is an output alphabet,Qf ⊆ Q is a set
of final states, andδ is a set of transduction rules of the formCl[q1(x1), . . . , qk(xk)]→
q(tr) wherek ∈ N, Cl ∈ C̄Σ(Xk), tr ∈ T∆(Xk), q, q1, . . . , qk ∈ Q. A rule is nor-
malized if its left-hand side is normalized. Without loss of generality, we can assume
that every rule is normalized. A ruleρ ∈ δ is an ϵ-rule if the left-hand side ofρ is
the form q(x) whereq ∈ Q andx ∈ X, and it is input-consumingotherwise. Let
T = (Q,Σ,∆,Qf , δ) be an xbot.T is a bottom-up tree transducer(bot) if the left-
hand side of every rule inδ contains exactly one symbol inΣ. Also, we denote by
an xbot−e an xbot withoutϵ-rules.T is a linear extended bottom-up tree transducer
(l-xbot) if the treetr in the right-hand side of each rule inδ is linear.

The move relation⇒T of an xbotT = (Q,Σ,∆,Qf , δ) is defined as follows:
t ⇒ρ

T t′ for a ruleρ = (Cl[q1(x1), . . . , qk(xk)] → q(tr)) ∈ δ if there exists a position
p ∈ pos(t) such thatt|p = Cl[q1(t1), . . . , qk(tk)] wheret1, . . . , tk ∈ T∆(X) and
t′ = t[q(tr[t1, . . . , tk])]p, andt ⇒T t′ if there existsρ ∈ δ such thatt ⇒ρ

T t′. The
transformationinducedby T , denoted as[[T ]], is the relation defined as{(t, t′) | t ⇒∗

T

qf (t
′), t ∈ TΣ , t′ ∈ T∆, qf ∈ Qf} where⇒∗

T is the reflexive transitive closure of
⇒T . The domain ofT , denoted bydom(T ), is {t | (t, t′) ∈ [[T ]]}, and the range ofT ,
denoted byrng(T ), is {t′ | (t, t′) ∈ [[T ]]}. For a treet, [[T ]](t) = {t′ | (t, t′) ∈ [[T ]]}.
For a TAA, the imageT (A) of L(A) by T is {t′ | (t, t′) ∈ [[T ]], t ∈ L(A)}. For a state
q of T , letT (q) be an xbot obtained fromT by replacing the setQf of final states with
the singleton{q}.

The tree transducersT andT ′ areequivalentif [[T ]] = [[T ′]]. For tree transducersT1

andT2, [[T2]] ◦ [[T1]] = {(t, t′) | (t, t′′) ∈ [[T1]], (t
′′, t′) ∈ [[T2]]}. A transducerT is said

to besingle-valued(or functional) if any two pairs of(t, t′) and(t, t′′) in [[T ]] satisfy
t′ = t′′. We denote the unique output tree ofT on a treet by T (t). It is known that the
single-valuedness of bots is decidable in polynomial time [10]. We use the prefix ‘s’ to
represent that a transducer is single-valued, e.g., we write for short ans-xbot to denote
a single-valued xbot.

Without loss of generality, we assume that any alphabet contains a special symbol
⊥, which means “no output” and does not occur in any final output tree. We recall the



notion of reducedness [10], which is defined for bots but can be naturally applied to
xbots. An xbotT = (Q,Σ,∆,Qf , δ) is calledreducedif and only if the following two
conditions hold:

1. T has no useless states, that is, for every stateq ∈ Q, there exists a treet = Cts ∈
dom(T ) whereC ∈ C̄Σ({x∗}) such thatt ⇒∗

T C[q(t′s)] ⇒∗
T qf (t

′) for some
qf ∈ Qf andt′s, t

′ ∈ T∆.
2. There exists a subsetU(T ) of Q such that for every ruleCl[q1(x1), . . . ,

qk(xk)]→ q(tr) ∈ δ,
– if q ∈ U(T ) thentr = ⊥ andqi ∈ U(T ) for eachi ∈ [k], and
– if q /∈ U(T ) then (1)tr ̸= ⊥ and (2) for eachi ∈ [k], qi ∈ U(T ) if and only if

xi /∈ var(tr).
3. If q ∈ Qf thenq does not occur in the left-hand side of any rule inδ.

Note that for anyq ∈ U(T ) and t = Cts ∈ dom(T ) whereC ∈ C̄Σ({x∗}), if
t ⇒∗

T C[q(t′2)] then t′2 = ⊥ and the final output fort does not contain⊥. That is,
the intermediate output atq is always⊥ and it is eventually abandoned. Conversely, for
q ∈ Q−U(T ), the intermediate output atq is in T∆−{⊥} and it is contained in the final
output. For every xbotT , a reduced xbot equivalent withT can be constructed in linear
time in the same way as the construction for bots [10] (see also Appendix A).

2.3 Determinacy and Subsumption of Tree Transducers

LetΠ1 andΠ2 be arbitrary classes of tree transducers.

Definition 1 (Determinacy). Let T1 and T2 be tree transducers inΠ1 and Π2, re-
spectively, such thatdom(T2) ⊆ dom(T1). T1 determinesT2 iff there exists a partial
functionf such that[[T2]] = f ◦ [[T1]]. Π1 is called thedeterminer classandΠ2 is called
thedeterminee class.

Definition 2 (Subsumption).LetT1 andT2 be tree transducers inΠ1 andΠ2, respec-
tively, such thatdom(T2) ⊆ dom(T1). T1 subsumesT2 with respect toΠ2 iff there
exists a single-valued transducerT3 ∈ Π2 such that[[T2]] = [[T3]] ◦ [[T1]].

From the definition, ifT1 subsumesT2 thenT1 determinesT2. Conversely, even if there
exists some functionf such that[[T2]] = f ◦ [[T1]], f cannot always be induced by some
transducer inΠ2 in general.

If determinacy is decidable for a determiner classΠ1 and a determinee classΠ2,
we simply say determinacy is decidable for(Π1,Π2). We will use a similar notation
for subsumption.

3 Determinacy

3.1 Decidability for (sl-xbots,s-bots)

We consider the problem of deciding whether, given single-valued linear xbot (sl-xbot)
T1 and single-valued bot (s-bot)T2 such thatdom(T2) ⊆ dom(T1), T1 determinesT2

or not. Our approach is based on the following proposition.
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Fig. 2.A transducerT3.1

Proposition 1. For any single-valued transducersT1 and T2 such thatdom(T2) ⊆
dom(T1), T1 determinesT2 if and only if [[T2]] ◦ [[T1]]

−1 is a partial function, where
[[T1]]

−1 = {(t′, t) | (t, t′) ∈ [[T1]]}.

According to Proposition 1, givensl-xbot T1 and s-bot T2, our decision algorithm
works as follows:

Step 1: Construct a transducerT inv
1 such that[[T inv

1 ]] = [[T1]]
−1;

Step 2: Construct a transducerT3 such that[[T3]] = [[T2]] ◦ [[T inv
1 ]];

Step 3: Decide whetherT3 is single-valued.

In Step 1, the inverse transducerT inv
1 of T1 is computed.T inv

1 is not necessarily an
l-xbot. Due to this, we introduce a slightly larger class, linear extended bottom-up tree
transducers withgrafting (l-xbot+g for short), that can represent not only inverses of
l-xbots but also the composition of the inverses withs-bots. In Step 2, an xbot+g T3

which represents the composition ofT inv
1 followed byT2 is constructed. Lastly, it is

determined whether the composition transducerT3 is single-valued.
Before we explain the detail of each step, we give an example, which shows that

even the inverse of ansl-bot cannot always be expressed by anyl-xbot.

Example 1.Let Σ = {r, a,#} and ∆ = {a,#}. Consider ansl-bot T3.1 =
({qr, q}, Σ,∆, {qr}, δ) where

δ = { #→ q(#), a(q(x1), q(x2))→ q(a(x1, x2)),

r(q(x1), q(x2))→ qr(x1), r(qr(x1), q(x2))→ qr(x1)}.

In Fig. 2,t is transformed byT3.1, which leaves only the subtree at the left child of the
bottom-mostr-node. There is an infinite number of treest′ such thatT3.1(t

′) = T3.1(t)
because the inverse ofT3.1 allows to insert any number ofr-labeled ancestor nodes
having arbitrary trees inTΣ−{r} as their right subtrees. For anyl-xbot T without ϵ-
rules, the image of a treet by T is finite. Even ifϵ-rules are allowed, nol-xbot allows
to insert a node having an arbitrary tree inTΣ−{r} as its right subtree. Therefore, there
is nol-xbotT such that[[T ]] = [[T3.1]]

−1.

To express the inverse ofT3.1 in Example 1, a transducer has to, for an input tree,
insert any number of internal nodes and subtrees non-deterministically. To capture the
inverse ofsl-xbots, we extend xbots bygrafting. We denote a tree transducer in the class



by an xbot+g for short. A grafting is represented by a special variable⟨L⟩, called a g-
variable, whereL ⊆ T∆. WhenL = L(A) whereA is a TA over∆, we often write⟨A⟩
instead of⟨L(A)⟩. A g-variable can occur as a symbol of rank 0 in the right-hand side
of a rule. LetG(∆) be the set of all the g-variables⟨L⟩ whereL ⊆ T∆. Let T̃∆(Xi)
denote the set of trees over∆ with Xi andG(∆). Note that fort̃ ∈ T̃∆(Xi), var(t̃)
does not contain any g-variable. Fort̃ ∈ T̃∆(Xi), letS(t̃) be the set of trees inT∆(Xi)
obtained from̃t by replacing each g-variable⟨L⟩ with a tree inL.

Formally, a transduction rule of an xbot+g is the formCl[q1(x1), . . . , qk(xk)] →
q(t̃r) where k ∈ N, Cl ∈ C̄Σ(Xk), t̃r ∈ T̃∆(Xk), and q, q1, . . . , qk are states.
The move relation by a ruleCl[q1(x1), . . . , qk(xk)] → q(t̃r) is as follows: if t|p =
Cl[q1(t1), . . . , qk(tk)] wheret1, . . . , tk ∈ T∆, then t ⇒ t[q(tr[t1, . . . , tk])]p where
tr ∈ S(t̃r).

For an xbot+g, we write an xbot+g(R) whenL is regular for each g-variable⟨L⟩.
Also, we write an xbot+g(B(R)) when each g-variable is in the form of⟨T (A)⟩ for some
botT and TAA.

Example 2.Consider anl-xbot+g(R) T3.2 = ({q, qr},∆,Σ, {qr}, δ′) where

δ′ = { #→ q(#), a(q(x1), q(x2))→ q(a(x1, x2)),

q(x1)→ qr(r(x1, ⟨A⟩)), qr(x1)→ qr(r(x1, ⟨A⟩))}

andA is a TA such thatL(A) = TΣ−{r}. Then,T3.2 induces the inverse ofT3.1.

Steps 1 to 3 of the decision algorithm can be refined as follows.

Step 1: Inversion ofsl-xbots. We provide a way to construct anl-xbot+g representing
the inverse of ansl-xbot. Intuitively, we just swap the input and output of each rules.
However, we must take care of variables occurring only in the left-hand side, which
mean deletions of subtrees. In swapping, g-variables are added instead of the variables.

Let T = (Q,Σ,∆,Qf , δ) be anl-xbot. The swapping procedure is as follows.

1. Construct a TAAT = (Q,Σ,Qf , γ) where γ = {(q, Cl[q1, . . . , qk]) |
Cl[q1(x1), . . . , qk(xk)]→ q(Cr) ∈ δ}. Note thatAT recognizesdom(T ).

2. Construct anl-xbot+g(R) T ′ = (Q,∆,Σ,Qf , δ
′) such thatδ′ is the smallest set

satisfying the following condition: LetCl[q1(x1), . . . , qk(xk)] → q(Cr) be an ar-
bitrary rule inδ. Letθl be the substitution such thatθl(xi) = qi(xi) for eachi ∈ [k],
θr be the substitution such thatθr(xi) = xi if xi ∈ var(Cr) andθr(xi) = ⟨AT (qi)⟩
otherwise. Moreover, letθn be the substitution for normalization, which is the bijec-
tive function fromvar(Cr) to Xk′ (k′ = |var(Cr)|) making(Crθl)θn normalized.
Then,(Crθl)θn → (Clθr)θn ∈ δ′.

Lemma 1. For any l-xbotT , an l-xbot+g(R) T inv such that[[T inv]] = [[T ]]−1 can be
constructed.

Proof. It can be shown by induction on move relations of the transducers that the in-
verse transducerT inv of T is correctly constructed by the swapping. □



Step 2: Composition ofl-xbot+g(R) ands-bot. This step constructs an xbot+g equiv-
alent with the composition of thel-xbot+g(R) T inv

1 followed by ans-botT2.

Lemma 2. For any l-xbot+g(R) T and botT ′, an xbot+g(B(R)) T ′′ such that[[T ′′]] =
[[T ′]] ◦ [[T ]] can be constructed.

Proof. The lemma can be shown in a similar way to the proof of the closure property
of l-bots under the composition [7, 11]. The difference is the existence of g-variables.
Recall that a treet in L(A) is inserted at g-variable⟨A⟩. On the composition transducer,
we just insert the image oft by T ′(q) whereq is the state at whichT ′ processest in the
tree output byT . That is, we replace⟨A⟩ with ⟨T ′(q)(A)⟩. □

Step 3: Deciding single-valuedness of xbot+g(B(R)). This step decides whether the
xbot+g(B(R)) obtained in Step 2 is single-valued. It is known that single-valuedness
of bots is decidable in polynomial time [10]. However, the class of transformations
induced by xbot+gs is a proper superclass of the class induced by bots.

LetT3 be the xbot+g(B(R)) obtained in Step 2. The overview of Step 3 is as follows:

Step 3-1 Construct a reduced xbotT3.1 equivalent withT3 by eliminating g-variables.
If there is no xbot equivalent withT3, answer thatT3 is not single-valued and halt.
Otherwise, go to 3-2.

Step 3-2 Construct a reduced xbot−e T3.2 equivalent withT3.1. If there is no xbot−e

equivalent withT3.1, answer thatT3 is not single-valued and halt. Otherwise, go to
3-3.

Step 3-3 Decide whetherT3.2 is single-valued or not.

We further refine the above sub-steps as follows.

Step 3-1: Eliminating g-variables.We show the following lemma for Step 3-1.

Lemma 3. LetT = (Q,Σ,∆,Qf , δ) be a reduced xbot+g. If T has a rule whose right-
hand side has a stateq ∈ Q− U(T ) and a g-variable⟨L⟩ such that|L| ≥ 2, thenT is
not single-valued.

Proof. Assume thatT has a ruleCl[q1(x1), . . . , qk(xk)]→ q(t̃r) whereq ∈ Q−U(T )
and t̃r has a g-variable⟨L⟩ such that|L| ≥ 2. SinceT is reduced, there existt =
CCl[t1, . . . , tk] ∈ dom(T ) whereC ∈ C̄Σ({x∗}), t′ ∈ T̄∆({x∗}), t′1, . . . , t′k ∈ T∆,
andqf ∈ Qf such thatt ⇒∗

T CCl[q1(t
′
1), . . . , qk(t

′
k)] ⇒T C[q(tr[t

′
1, . . . , t

′
k])] ⇒∗

T

qf (t
′tr[t

′
1, . . . , t

′
k]) for any tr ∈ S(t̃r). Since|L| ≥ 2, S(t̃r) has at least two dis-

tinct treest1r and t2r. Also, the positions of each variable oft1r and t2r are identical.
Hence,t1r[t

′
1, . . . , t

′
k] ̸= t2r[t

′
1, . . . , t

′
k] and thus the final outputst′t1r[t

′
1, . . . , t

′
k] and

t′t2r[t
′
1, . . . , t

′
k] are different. Therefore,|[[T ]](t)| ≥ 2. □

For a botT , a TAA and anyk ∈ N, it can be checked whether|T (A)| ≥ k. From the
above lemma, Step 3-1 can be done as follows:

(i) For each rule with grafting⟨T (A)⟩ of T3,
– if T (A) = ∅ then delete the rule, and



– if T (A) = {t} for some treet then replace⟨T (A)⟩ with t.
(ii) Construct an equivalent reduced xbot+g(B(R)) T3.1.

(iii) If T3.1 has a rule containing⟨T (A)⟩ with |T (A)| ≥ 2, answer thatT3 is not single-
valued and halt.

If the condition at (iii) does not hold,T3.1 has no g-variable. Thus,T3.1 is an xbot.

Step 3-2: Eliminating ϵ-rules. We show two lemmas before giving the procedure of
Step 3-2. We will use an idea similar to the proof of Proposition 10 of [9].

We say that a nonempty subsetδe of ϵ-rules isrepeatedly-producing at stateq if
q(x∗)⇒∗

δe
q(t) for some treet ∈ T̄∆({x∗})− {x∗}, where⇒∗

δe
means zero ore more

applications of rules inδe.

Lemma 4. Let T = (Q,Σ,∆,Qf , δ) be a reduced xbot. If there is a subsetδe of ϵ-
rules inδ repeatedly-producing at someq ∈ Q− U(T ), thenT is not single-valued.

Proof. Assume that there is a subsetδe of ϵ-rules inδ repeatedly-producing at someq ∈
Q− U(T ). Then, there are treest ∈ TΣ , t′ ∈ T∆, D ∈ C̄Σ({x∗}), tc, tD ∈ T̄∆({x∗}),
andqf ∈ Qf such thattc has at least one symbol in∆ andD[t] ⇒∗

T D[q(t′)] ⇒∗
T

D[q(tct
′)]⇒∗

T D[q(tnc t
′)]⇒∗

T qf (tDtnc t
′) for any positive integern. □

After the fashion of the reference [9], we call a stateq ∈ Q an end stateif there
exists an input-consuming rule whose left-hand side hasq. The set of all end states of
Q is denoted byE(T ). For each input-consuming ruleρ = (Cl[q1(x1), . . . , qk(xk)]→
q(tr)) ∈ δ, let rhs(ρ) = {q′(t) | q(tr) ⇒∗

T q′(t), q′ ∈ E(T ) ∪ Qf}. Note that only
ϵ-rules can be used in the derivationq(tr)⇒∗

T q′(t).

Lemma 5. Let T = (Q,Σ,∆,Qf , δ) be a reduced xbot. If there is no subsetδe of
ϵ-rules inδ repeatedly-producing at anyq ∈ Q − U(T ), thenrhs(ρ) is finite for every
rule ρ of T and an xbot−e equivalent withT can be constructed.

Proof. Assume that there is no subsetδe of ϵ-rules inδ repeatedly-producing at any
q ∈ Q − U(T ). By the assumption, for any treet, q(t) ⇒+

T q(t′) andt ̸= t′ imply
that t′ does not contain any variable. That is,q(t) ⇒+

T q(t′) ⇒∗
T q(t′′) and t ̸= t′

imply t′ = t′′. Thus, suppose thatnr is the number of rules ofT , and then for each rule
ρ = (Cl[q1(x1), . . . , qk(xk)] → q(tr)) ∈ δ, rhs(ρ) = {q′(t) | q(tr) ⇒i

T q′(t), q′ ∈
E(T ) ∪ Qf , i ∈ [nr]} where⇒i

T means the move relation byi times applications of
rules. Therefore,rhs(ρ) is finite. Then, we can construct an equivalent xbot−e Te =
(Q,Σ,∆,Qf , δ

′) whereδ′ =
∪

l→r∈δΣ{l → r′ | r′ ∈ rhs(l → r)} andδΣ is the
subset of input-consuming rules ofδ. □

According to Lemmas 4 and 5, Step 3-2 consists of the following two substeps:

(i) Construct the weighted graphGrp = (Q − U(T3.1), Ee) from T3.1 =
(Q,Σ,∆,Qf , δ) whereEe = {(q, q′) | q(x1) → q′(t) ∈ δ, t ∈ T̄∆({x1})},
and the weight of each(q, q′) is 1 if there is a ruleq(x1) → q′(t) such thatt in-
cludes at least one output symbol, and otherwise0. Find a cycle whose weight is at
least one. If such a cycle exists, answer thatT3 is not single-valued and halt.

(ii) Construct an equivalent reduced xbot−e T3.2.



Step 3-3: Deciding single-valuedness of xbot−e. In this substep, it is decided whether
T3.2 is single-valued or not. The idea of the proof is the same as that of the proof of the
decidability ofk-valuedness of bottom-up tree transducers [12]. While the proof in [12]
uses the Engelfriet’s property, we use a variant of the property (Lemma 6) to prove the
decidability of single-valuedness of xbot−es.

We give some notations for the property. LetTΣ [Xn] = T̄Σ(Xn) ∪ TΣ , that is,
everyt ∈ TΣ [Xn] has all the variables inXn or has no variable. Fort, s ∈ TΣ [Xn], ts
is the tree obtained fromt by replacing each variable withs. Note thatts = t if t has no
variable. Form ∈ [n], letT n,m

Σ [Xn] = T m−1
Σ ×TΣ [Xn]×T n−m

Σ . Fort ∈ T n,m
Σ [Xn],

we denote byt(i) the ith element oft, i.e., t = (t(1), . . . , t(n)). For s ∈ TΣ [Xn] and
t ∈ T n,m

Σ [Xn], st is the tree obtained froms by replacingxi with t(i) for all i ∈ [n]. Let
tu = (t(1)u, . . . , t(n)u) for u ∈ T n,m

Σ [Xn]. Notice that sincet ∈ T n,m
Σ [Xn], so istu.

For t1, t2, t3, t4, t5 ∈ T n,m
Σ [Xn] andS = {i1, . . . , i|S|} ⊆ [1, 5], let tS = ti1 · · · ti|S|

whereij < ij+1 for j ∈ [|S| − 1].
Now, we give a variant of Engelfriet’s Property (see Appendix B.1).

Lemma 6. Let n, n′ be arbitrary positive integers, andm ∈ [n],m′ ∈ [n′]. Suppose
that t0 ∈ TΣ [Xn], t1, t2, t3, t4, t5 ∈ T n,m

Σ [Xn], t′0 ∈ TΣ [Xn′ ], t′1, t
′
2, t

′
3, t

′
4, t

′
5 ∈

T n′,m′

Σ [Xn′ ]. If t0tS = t′0t
′
S for everyS such that{5} ⊆ S ⊂ [1, 5], thent0t[1,5] =

t′0t
′
[1,5].

Next, in order to argue in a similar way to the proof of Theorem 2.2(i) in the ref-
erence [12], we decompose the left-hand side of each rule into several rules each of
which has only one input symbol. Actually, we construct amulti bottom-up tree trans-
ducer(mbot) [9] equivalent with a given xbot−e. An mbot is a bot whose states might
have ranks different from one. Intuitively, we decompose each ruleρ of the xbot−e by
adding a state for each intermediate position of the left-hand side treel of ρ. The added
states might have rank different from one to maintain two or more intermediate out-
put trees until the obtained mbot reaches the state corresponding to the root ofl (see
Appendix B.2).

Example 3.Assume that an xbot−e T has the transduction ruleρ =
a(b(q1(x1), q2(x2), q3(x3)), q4(x4)) → q(c(x1, x2, x4)). Then, the mbotTa ob-
tained by decomposingT contains the rulesb(q1(x1), q2(x2), q3(x3)) → qρ1(x1, x2)
anda(qρ1(x1, x2), q4(x4)) → q(c(x1, x2, x4)) (See Fig. 3). Note thatqρ1 maintainsx1

andx2 but notx3 becausex3 does not occur in the right-hand side ofρ.

Lemma 7. Let Ta = (Qa, Σ,∆,Qf , δa) be the mbot obtained from an xbot−e

T = (Q,Σ,∆,Qf , δ) by the above decomposition. Then, for everyq ∈ Qa and
C ∈ C̄Σ({x∗}), if C[q(x1, . . . , xk)] ⇒+

Ta
q(t1, . . . , tk), then(t1, . . . , tk) ∈ T k,m

∆ [Xk]
for somem ∈ [k].

Henceforth, we denoteq(t1, . . . , tk) by q(t) wheret = (t1, . . . , tk).

Lemma 8. LetTa = (Qa, Σ,∆,Qf , δa) be the mbot obtained from an xbot−e T by the
above decomposition. Assume thatTa hasn states and the maximum arity of states is
km. Ta is not single-valued if and only if there is a treet of depth less than5 · (n · km)2

such that|[[Ta]](t)| > 1.



Fig. 3.An example of decomposing an xbot−e to an mbot

Proof. The if part is trivial and so we prove the only if part. Assume thatt ∈ TΣ is
a tree of minimal size such that there are two distinct derivationst ⇒∗

Ta
qf1(to1) and

t ⇒∗
Ta

qf2(to2) whereqf1, qf2 ∈ Qf , andto1 ̸= to2. For a contradiction, assume that
the depth oft is greater than or equal to5 · (n · km)2. Then, by Lemma 7, there are two
statesq1, q2 ∈ Qa with ranksn1 andn2 respectively,Cj ∈ C̄Σ({x∗}) (0 ≤ j ≤ 4),
C5 ∈ TΣ , and fori ∈ {1, 2}, mi ∈ [ni], ti0 ∈ T∆[Xni ], andtij ∈ T

ni,mi

∆ [Xni ] (j ∈ [5])
such that

t = C0C1C2C3C4C5 ⇒∗
Ta

C0C[1,4][qi(t
i
5)]⇒∗

Ta
C0C[1,3][qi(t

i
[4,5])]

⇒∗
Ta
· · ·

⇒∗
Ta

C0[qi(t
i
[1,5])]

⇒∗
Ta

qfi(t
i
0t

i
[1,5]).

By the minimality of t, we havet10t
1
S = t20t

2
S ∈ [[Ta]](C0CS) for everyS such that

{5} ⊆ S ⊂ [1, 5]. From Lemma 6,to1 = t10t
1
[1,5] = t20t

2
[1,5] = to2. This is a contradic-

tion. □

From Lemma 8, single-valuedness of xbot−es is decidable.

Theorem 1. It is decidable whether a given xbot−e is single-valued. It is also decidable
whether a given xbot+g(B(R)) is single-valued.

Theorem 2. Determinacy is decidable for (sl-xbots,s-bots).

3.2 Undecidability for Other Classes

We show that determinacy is undecidable for (non-linear)s-bots as the determiner
class. We prove the undecidability of determinacy for homomorphism tree transduc-
ers (homs) [11], which is a proper subclass of not onlys-bots but also single-valued
top-down tree transducers (s-top). Let id be the class of the identity transductions on
TΣ for any alphabetΣ.

Theorem 3. Determinacy is undecidable for (homs, id).



Proof. It can be shown by reduction from injectivity of homs, which is known to be
undecidable [13]. Consider an arbitrary homT . Then, it holds that[[T ]] is injective if
and only ifT determines the identity transducerTid. □
Corollary 1. Determinacy is undecidable for (s-bots, id) and (s-tops, id).

Moreover, we have the undecidability result for deterministic monadic second-order
logic defined tee transducers (dmsotts) [4, 5], which is a proper superclass ofsl-xbots.

Theorem 4. Determinacy is undecidable for (dmsotts,idR) whereidR is the class of
the identities whose domains are regular tree languages.

Proof. It can be shown by reduction from ambiguity of context-free grammars. Con-
sider an arbitrary context-free grammarG. Then, there is a dmsottTG which transforms
any derivation tree of each strings ∈ L(G) to s. Thus,G is ambiguous if and only if
TG determines the identity transducerTid such thatdom(Tid) = dom(TG). □

4 Subsumption

We show that subsumption is decidable for (sl-xbots,s-bots). As shown in Section 3,
given ansl-xbot T1 and ans-bot T2, if T1 determinesT2, we can construct a reduced
s-xbot−e T3 such that[[T3]] = [[T2]] ◦ [[T1]]

−1. So, in order to decide subsumption,
we should decide whether there is a bot equivalent withT3. The next lemma provides
a necessary and sufficient condition for ans-xbot−e to have an equivalent bot (see
Appendix C).

Lemma 9. LetT = (Q,Σ,∆,Qf , δ) be a reduceds-xbot−e. Ans-bot equivalent with
T can be constructed if and only if(X) for every ruleCl[q1(x1), . . . , qk(xk)]→ q(tr) ∈
δ and any three variablesxi1 , xi2 , xi3 ∈ var(tr), if

(X1) rng(T (qij )) is infinite for all j ∈ [3], and
(X2) nca(p1, p2) ≻ nca(p1, p3) where{pj} = posxij

(Cl) for j ∈ [3], then
(X3) the minimal suffixts ∈ TΣ(Xk) such that tr = tpts for some tp ∈
T̄Σ∪Xk−{xi1 ,xi2}({x∗}) does not containxi3 .

Proof Sketch.Assume (X) does not hold and we can construct ans-bot T ′

equivalent with a givens-xbot−e T . Since (X) does not hold, there is a rule
Cl[q1(x1), . . . , qk(xk)] → q(tr) ∈ δ andxi1 , xi2 , xi3 ∈ var(tr) such that (X1) and
(X2) hold but (X3) does not. Letp12 = nca(p1, p2) in (X2), andts be the minimal
suffix of tr in (X3). SinceT ′ is ans-bot equivalent withT , T ′ must have rules of which
left-hand sides ‘cover’ the subtreeCl|p12 , which containsxi1 andxi2 and does not con-
tainxi3 . Also, sinceCl[x∗]p12 does not containxi1 andxi2 , some suffixt′s of tr in the
right-hand side such thattr = t′pt

′
s for somet′p ∈ T̄Σ∪Xk−{xi1 ,xi2}({x∗}) should be

generated byT ′ corresponding toCl|p12 . However, the minimal suffixts containsxi3 ,
and thus so doest′s. That is,t′s includingxi3 should be generated fromCl|p12 without
xi3 , which leads a contradiction. Conversely, if (X) holds, we can divide each rule ofT
into non-extended rules, each of which has exactly one symbol in the left-hand side.□

For any xbotT , it can be decided whetherrng(T ) is infinite. Thus, it is decidable
whether there is ans-bot equivalent with a givens-xbot−e.

Theorem 5. Subsumption is decidable for (sl-xbots,s-bots).



5 Conclusion

We have shown that determinacy and subsumption are decidable for single-valued
linear extended bottom-up tree transducers as the determiner class and single-valued
bottom-up tree transducers as the determinee class. As for more powerful classes, we
have shown that determinacy is undecidable for single-valued top-down/bottom-up tree
transducers (s-tops/bots) and deterministic MSO tree transducers (dmsotts) as the de-
terminer class.

As future work, we will investigate whether subsumption for more powerful classes,
such ass-tops/bots and dmsotts, is decidable or not. Though determinacy is undecidable
for tops and dmsotts, decidability of subsumption for the classes is still open. We also
consider whether, given two transducersT1 andT2 in the classes such thatT1 subsumes
T2, a transducerT3 such that[[T2]] = [[T3]] ◦ [[T1]] can be effectively constructed or not.
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S., Tommasi, M.: Tree automata techniques and applications. http://www.grappa.univ-
lille3.fr/tata (2007)

8. Lemay, A., Maneth, S., Niehren, J.: A learning algorithm for top-down XML transforma-
tions. In: Proceedings of the 29th ACM SIGMOD-SIGACT-SIGART symposium on Princi-
ples of database systems. (2010) 285–296

9. Engelfriet, J., Lilin, E., Maletti, A.: Extended multi bottom-up tree transducers. Acta Infor-
matica46 (2009) 561–590

10. Seidl, H.: Single-valuedness of tree transducers is decidable in polynomial time. Theoretical
Computer Science106(1) (1992) 135–181

11. Engelfriet, J.: Bottom-up and top-down tree transformations - a comparison. Mathematical
Systems Theory9(3) (1975) 198–231

12. Seidl, H.: Equivalence of finite-valued tree transducers is decidable. Theory of Computing
Systems27 (1994) 285–346

13. Fulop, Z., Gyenizse, P.: On injectivity of deterministic top-down tree transducers. Informa-
tion Processing Letters48(4) (1993) 183–188



A Construction of a Reduced xbot

It is known that for every botT an equivalent reduced bot can be constructed from
T in linear time [10]. For xbots and xbot+gs defined in Section 3, equivalent re-
duced ones can also be constructed in the same way. Here, we recall the construction:
Given xbot+g T = (Q,Σ,∆,Qf , δ), to satisfy condition 2 for the reducedness in Sec-
tion 2.2, first constructT ′ = (Q × {0, 1}, Σ,∆,Qf × {1}, δ′) such that for each rule
Cl[q1(x1), . . . , qk(xk)]→ q(t̃r) ∈ δ,

– Cl[q̂1(x1), . . . , q̂k(xk)] → (q, 1)(t̃r) ∈ δ′ whereq̂i = (qi, 1) if xi appears iñtr,
andq̂i = (qi, 0) otherwise; and

– Cl[(q1, 0)(x1), . . . , (qk, 0)(xk)]→ (q, 0)(⊥) ∈ δ′.

Next, for condition 3 for the reducedness, add a new stateqf and replace the set of
final states with the singleton{qf}. Then for any ruleρ ∈ δ′ whose right-hand side
has a statêq ∈ Qf × {1}, add the new rule obtained fromρ by replacingq̂ with qf

in the right-hand side. Now, the reduced xbot+g T ′′ equivalent withT is obtained by
removing useless states for condition 1 of the reducedness. Removing useless states can
be done in the same way as for tree automata [7]. Notice thatU(T ′′) = Q′′∩ (Q×{0})
whereQ′′ is the set of states ofT ′′.

B Proofs of Lemmas for Theorem 1

B.1 Proof of Lemma 6

We first recall the notations. LetTΣ [Xn] = T̄Σ(Xn)∪TΣ , that is, everyt ∈ TΣ [Xn] has
all the variables inXn or has no variable. Fort, s ∈ TΣ [Xn], ts is the tree obtained from
t by replacing each variable withs. Note thatts = t if t has no variable. Form ∈ [n], let
T n,m
Σ [Xn] = T m−1

Σ × TΣ [Xn]× T n−m
Σ . Fort ∈ T n,m

Σ [Xn], we denote byt(i) theith
element oft, i.e.,t = (t(1), . . . , t(n)). Fors ∈ TΣ [Xn] andt ∈ T n,m

Σ [Xn], st is the tree
obtained froms by replacingxi with t(i) for all i ∈ [n]. Letts = (t(1)s, . . . , t(n)s), and
tu = (t(1)u, . . . , t(n)u) for u ∈ T n,m

Σ [Xn]. Notice that sincet ∈ T n,m
Σ [Xn], so arets

andtu. Lastly, the above substitution operation is associative. That is, fors ∈ TΣ [Xn]
and t1, t2, t3 ∈ T n,m

Σ [Xn], (st1)t2 = s(t1t2) and (t1t2)t3 = t1(t2t3) hold. For
t1, t2, t3, t4, t5 ∈ T n,m

Σ [Xn] andS = {i1, . . . , i|S|} ⊆ [1, 5], let tS = ti1 · · · ti|S|

whereij < ij+1 for j ∈ [|S| − 1].
We use some propositions to prove Lemma 6. The following is the same as the top

cancellation in [12] except that we use tuples of trees inT n,m
Σ [Xn].

Proposition 2 (Top Cancellation).Let s ∈ TΣ [Xn] andt1, t2 ∈ T n,m
Σ [Xn]. If st1 =

st2, thens ∈ TΣ or t1 = t2.

Proof. Assume thatst1 = st2, s /∈ TΣ andt1 ̸= t2. Then,s contains all the variables
in Xn, and t(i)1 ̸= t

(i)
2 for somei ∈ [n]. Since distinct trees are substituted toxi,

st1 ̸= st2. This is a contradiction. □



The decidability of single-valuedness (or more generally,k-valuedness) of bots was
proved in [12] by using Engelfriet’s Property T1(i), which was proved by Engelfriet’s
Property T2(i).

Proposition 3 (Engelfriet’s Property T1(i) [12]). Assumeti, t′i ∈ TΣ({x∗}), i =
0, 1, 2, 3, 4. Then,

t0 · · · ti−1tj · · · t4 = t′0 · · · t′i−1t
′
j · · · t′4 for all 0 < i < j ≤ 4

impliest0t1t2t3t4 = t′0t
′
1t

′
2t

′
3t

′
4.

Proposition 4 (Engelfriet’s Property T2(i) [12]). Assume si, ui, vi, yi, zi ∈
TΣ({x∗}) (i = 1, 2), s1 or s2 containsx∗, y1 ̸= z1, andy2 ̸= z2. Then,

s1y1 = s2y2
s1z1 = s2z2
s1v1 = s2v2
u1y1 = u2y2
u1z1 = u2z2

implies u1v1 = u2v2.

Now, we prove Lemma 6, a variant of Engelfriet’s Property T1(i). Fort =
(t(1), . . . , t(n)) ∈ T n,m

Σ [Xn], tc denotes then-tuple of trees obtained fromt by re-
placing themth element withx∗, that is,tc = (t(1), . . . , t(m−1), x∗, t

(m+1), . . . , t(n)).
Hence, we havet = tct(m).

Lemma 6. Let n, n′ be arbitrary positive integers, andm ∈ [n],m′ ∈ [n′]. Suppose
that t0 ∈ TΣ [Xn], t1, t2, t3, t4, t5 ∈ T n,m

Σ [Xn], t′0 ∈ TΣ [Xn′ ], t′1, t
′
2, t

′
3, t

′
4, t

′
5 ∈

T n′,m′

Σ [Xn′ ]. Then, if t0tS = t′0t
′
S for everyS such that{5} ⊆ S ⊂ [1, 5], then

t0t[1,5] = t′0t
′
[1,5].

Proof. Assume thatt0tS = t′0t
′
S for everyS such that{5} ⊆ S ⊂ [1, 5]. Let

s1 = t0t
c
2, s2 = t′0t

′c
2 ,

u1 = t0t1t
c
2, u2 = t′0t

′
1t

′c
2 ,

y1 = t
(m)
2 t5, y2 = t

′(m′)
2 t′5,

z1 = t
(m)
2 t[4,5], z2 = t

′(m′)
2 t′[4,5],

v1 = t
(m)
2 t[3,5], v2 = t

′(m′)
2 t′[3,5].

By the assumption, we have

s1y1 = (t0t
c
2)(t

(m)
2 t5) = t0t2t5 = t′0t

′
2t

′
5 = (t′0t

′c
2 )(t

′(m′)
2 t′5) = s2y2,

s1z1 = (t0t
c
2)(t

(m)
2 t[4,5]) = t0t2t[4,5] = t′0t

′
2t

′
[4,5] = (t′0t

′c
2 )(t

′(m′)
2 t′[4,5]) = s2z2,

s1v1 = (t0t
c
2)(t

(m)
2 t[3,5]) = t0t[2,5] = t′0t

′
[2,5] = (t′0t

′c
2 )(t

′(m′)
2 t′[3,5]) = s2v2,

u1y1 = (t0t1t
c
2)(t

(m)
2 t5) = t0t1t2t5 = t′0t

′
1t

′
2t

′
5 = (t′0t

′
1t

′c
2 )(t

′(m′)
2 t′5) = u2y2,

u1z1 = (t0t1t
c
2)(t

(m)
2 t[4,5]) = t0t[1,2]t[4,5] = t′0t

′
[1,2]t

′
[4,5] = (t′0t

′
1t

′c
2 )(t

′(m′)
2 t′[4,5])

= u2z2.

u1v1 = (t0t1t
c
2)(t

(m)
2 t[3,5]) = t0t[1,5]

u2v2 = (t′0t
′
1t

′c
2 )(t

′(m′)
2 t′[3,5]) = t′0t

′
[1,5]



There are four cases.
Case (1)Both ofs1 ands2 contain no variable.
Then,t0 and t′0 do not containxm andxm′ , respectively. Moreover, by definition of
TΣ [X], t0 andt′0 do not contain any variable. Thus,t0t[1,5] = t0 = t0t5 andt′0t

′
[1,5] =

t′0 = t′0t
′
5. Sincet0t5 = t′0t

′
5, we havet0t[1,5] = t′0t[1,5].

Case (2)s1 or s2 contains variablex∗, y1 ̸= z1 andy2 ̸= z2.
Proposition 4 impliest0t[1,5] = u1v1 = u2v2 = t′0t[1,5].
Case (3)s1 or s2 contains variablex∗ andy1 = z1.
Becausey1 = z1, by top cancellation (Proposition 2),t5 = t[4,5] or t(m)

2 has no

variable. If t5 = t[4,5] then t0t[1,3]t5 = t0t[1,5]. If t
(m)
2 has no variable then we

also havet0t[1,3]t5 = t0t[1,2] = t0t[1,5]. Moreover, we haves1y1 = s1z1 and thus
s2y2 = s2z2. By top cancellation,y2 = z2 or s2 has no variable. Assume that
y2 = z2. By the same argument as the above, we havet′0t

′
[1,3]t

′
5 = t′0t

′
[1,5]. On the other

hand, assume thats2 has no variables. Then,t′0 has no variable and thus we also have
t′0t

′
[1,3]t

′
5 = t′0 = t′0t

′
[1,5]. Therefore,t0t[1,5] = t′0t

′
[1,5] becauset0t[1,3]t5 = t′0t

′
[1,3]t

′
5.

Case (4)s1 or s2 contains variablex∗ andy2 = z2.
This is analogous to Case (3). □

B.2 Proof of Lemma 7

To decompose the left-hand side of each rule of a given xbot−e into several rules each
of which has only one input symbol, we construct amulti bottom-up tree transducer
equivalent with the xbot−e. A multi bottom-up tree transducer [9] is a bottom-up tree
transducer whose states might have ranks different from one. A multi bottom-up tree
transducer (mbot) is a 5-tuple(Q,Σ,∆,Qf , δ) whereQf ⊆ Q(1) and δ is a set of
rules of the forml → r wherel ∈ Σ(Q(X)) is linear inX andr ∈ Q(T∆(var(l))).
For q ∈ Q(k) and a finite subsetXq = {xi1 , . . . , xik} of X − {x∗}, let q(Xq) denote
q(xi1 , . . . , xik) whereij < ij+1 for everyj ∈ [k − 1]. The move relation⇒T of a
mbotT = (Q,Σ,∆,Qf , δ) is defined as follows:t⇒T t′ if there is a rulel → r ∈ δ,
p ∈ pos(t), and a substitutionθ : X → TΣ∪∆ such thatt|p = lθ andt′ = t[rθ]p.

The decomposition is as follows: Given an xbot−e T = (Q,Σ,∆,Qf , δ), construct
an mbotTm = (Q ∪Qm, Σ,∆,Qf , δm) where

– Qm = {qρp | ρ = (Cl[q1(x1), . . . , qk(xk)]→ q(tr)) ∈ δ, p ∈ posΣ(Cl)− {ϵ}},
– δm is the smallest set such that for eachρ = (Cl[q1(x1), . . . , qk(xk)]→ q(tr)) ∈ δ,
• σϵ(q

ρ
1(V1), . . . , q

ρ
kϵ
(Vkϵ))→ q(tr) ∈ δm whereσϵ = λCl

(ϵ), kϵ = rk(σϵ), and
Vi = var(Cl|i) ∩ var(tr) for eachi ∈ [kϵ],
• for each positionp ∈ posΣ(Cl)−{ϵ}, letVp = var(Cl|p) andθn : Vp → X|Vp|

such thatCl|pθn is normalized, then the rule obtained by normalizing the both
sides ofσp(q

ρ
p1(Vp1), . . . , q

ρ
pkp

(Vpkp)) → qρp(Vp) by θn belongs toδm, where
σp = λCl

(p), kp = rk(σp), andVpi = var(Cl|pi) ∩ var(tr) for eachi ∈ [kp],
whereqρp = qi if p ∈ posxi(Cl) for somexi ∈ Xk.

Lemma 7. Let Tm = (Q ∪ Qm, Σ,∆,Qf , δm) be the mbot obtained from an xbot−e

T = (Q,Σ,∆,Qf , δ) by the above decomposition. Then, for everyq ∈ Q ∪ Qm and
C ∈ C̄Σ({x∗}), if C[q(x1, . . . , xk)]⇒+

Tm
q(t1, . . . , tk), then(t1, . . . , tk) ∈ T k,m

∆ [Xk]
for somem ∈ [k].



Proof. Assume thatq ∈ Q. Since every state inQ has rank one, for anyC ∈ C̄Σ({x∗}),
if C[q(x∗)]⇒∗

Tm
q(t), thent ∈ T∆({x∗}) = T 1,1

∆ .
Assume thatq ∈ Qm and C is an arbitrary tree inC̄Σ({x∗}) such that

C[q(x1, . . . , xk)] ⇒+
Tm

q(t1, . . . , tk). From the decomposition procedure, there exists
a ruleρ = (Cl[q1(x1), . . . , qk(xk)]→ qρ(tr)) ∈ δ of T such thatq = qρp for some po-
sitionp in posΣ(Cl)− {ϵ}. Thus,C[q(x1, . . . , xk)]⇒∗

ρ C ′[qρ(t
′′)]⇒∗

Tm
q(t1, . . . , tk)

for someC ′ ∈ C̄Σ({x∗}) andt′′ ∈ T̄∆(Xk), where⇒∗
ρ means zero or more applica-

tions of only the rules obtained by decomposingρ. Note thatt′′ must contain all the
variablesx1, . . . , xk. In the above derivationC ′[qρ(t

′′)]⇒∗
Tm

q(t1, . . . , tk), t′′ is either

abandoned or contained as a subtree intm for somem ∈ [k]. Thus,(t1, . . . , tk) ∈ T k,m
∆

for somem ∈ [k]. □

C Proof of Lemma 9

To prove Lemma 9, we use the following property, which is a slight extension of Propo-
sition 1.5 in [10].

Proposition 5. Assumet ∈ TΣ(Xk) contains at least one occurrence of each variable
in V ⊆ Xk where |V | ≥ 2. Then,t = tpts for sometp ∈ T̄Σ∪Xk−V ({x∗}) and
ts ∈ TΣ(Xk) satisfying the following conditions:

1. If t = upus for someup ∈ T̄Σ∪Xk−V ({x∗}) andus ∈ TΣ(Xk) thentp = upr and
us = rts for somer ∈ T̄Σ∪Xk−V ({x∗}). That is,tp andts are the unique maximal
prefix and minimal suffix oft, respectively.

2. Assumeti ∈ T̄Σ({xi}) for eachxi ∈ Xk. Then,tp[t1, . . . , tk] ∈ T̄Σ∪Xk−V ({x∗})
and ts[t1, . . . , tk] ∈ TΣ(Xk) are the maximal prefix and the minimal suffix of
t[t1, . . . , tk], respectively.

Lemma 9. LetT = (Q,Σ,∆,Qf , δ) be a reduceds-xbot−e. Ans-bot equivalent with
T can be constructed if and only if(X) for every ruleCl[q1(x1), . . . , qk(xk)]→ q(tr) ∈
δ and any three variablesxi1 , xi2 , xi3 ∈ var(tr) if

(X1) rng(T (qij )) is infinite for all j ∈ [3], and
(X2) nca(p1, p2) ≻ nca(p1, p3) where{pj} = posxij

(Cl) for j ∈ [3], then

(X3) the minimal suffixts ∈ TΣ(Xk) such that tr = tpts for some tp ∈
T̄Σ∪Xk−{xi1 ,xi2}({x∗}) does not containxi3 .

Proof. For the only if part, assume that (X) does not hold, i.e., there is a ruleρ =
(Cl[q1(x1), . . . , qk(xk)] → q(tr)) ∈ δ that satisfies (X1) and (X2) but does not satisfy
(X3). That is, the ruleρ has three variablesxi1 , xi2 , xi3 ∈ var(tr) such that

– rng(T (qij )) is infinite for all j ∈ [3],
– nca(p1, p2) ≻ nca(p1, p3) where{pj} = posxij

(Cl) for j ∈ [3], and

– the minimal suffixts12 ∈ TΣ(Xk) such thattr = tp12ts12 for sometp12 ∈
T̄Σ∪Xk−{xi1 ,xi2}({x∗}) containsxi3 .



For a contradiction, assume that there is a reduceds-bot T s = (Qs, Σ,∆,Qs
f , δ

s)
equivalent withT . SinceT is reduced and the three variablesxi1 , xi2 , xi3 belong to
var(tr) of the ruleρ, we have thatq, qi1 , qi2 , qi3 ∈ Q − U(T ). Let C ′

l = Clθ ∈
C̄Σ(X3) such thatθ(xij ) = xj for j ∈ [3] and θ(xi) is a tree indom(T (qi)) for
xi ∈ Xk − {xi1 , xi2 , xi3}. Then,

CC ′
l [qi1(x1), qi2(x2), qi3(x3)]⇒∗

T C[q(t′r)]⇒∗
T qf (t

′t′r)

for someC ∈ C̄Σ({x∗}), t′ ∈ T̄∆({x∗}), qf ∈ Qf andt′r = trθ
′ ∈ T̄∆(X3) such that

θ′(xij ) = xj for j ∈ [3] andθ′(xi) = T (qi)(θ(xi)) for xi ∈ Xk − {xi1 , xi2 , xi3}.
Since T is single-valued, for eachj ∈ [3], there is an injective mappingξj :
rng(T (qij )) → dom(T (qij )) such thatT (qij )(ξj(t

′)) = t′ for any t′ ∈ rng(T (qij )).
SinceT s is equivalent withT , for every t′1 ∈ rng(T (qi1)), t

′
2 ∈ rng(T (qi2)), and

t′3 ∈ rng(T (qi3)), we have thatCC ′
l [ξ1(t

′
1), ξ2(t

′
2), ξ3(t

′
3)] ⇒∗

T s qsf (t
′t′r[t

′
1, t

′
2, t

′
3]) for

someqsf ∈ Qs. By the fact thatrng(T (qij )) (j ∈ [3]) is infinite butQs is finite, and
nca(p1, p2) ≻ nca(p1, p3), we can say that there are infinite setsL1 ⊆ rng(T (qi1)),
L2 ⊆ rng(T (qi2)), andL3 ⊆ rng(T (qi3)), statesqs1, q

s
2, q

s
3, q

s
12, q

s, qsf ∈ Qs, and trees
us
12 ∈ T∆({x1, x2}), us

3 ∈ T∆({x∗, x3}), us
o ∈ T∆({x∗}) such that for allt′1 ∈ L1,

t′2 ∈ L2, andt′3 ∈ L3,

CC ′
l [ξ1(t

′
1), ξ2(t

′
2), ξ3(t

′
3)]

⇒∗
T s CC ′

l [q
s
1(t

s
1), q

s
2(t

s
2), q

s
3(t

s
3)]

⇒∗
T s C(C ′

l [q
s
12(u

s
12[t

s
1, t

s
2])]nca(p1,p2))[x3 ← qs3(t

s
3)]

⇒∗
T s C[qs((us

3u
s
12)[t

s
1, t

s
2, t

s
3])]

⇒∗
T s qsf (u

s
o(u

s
3u

s
12)[t

s
1, t

s
2, t

s
3])

andus
o(u

s
3u

s
12)[t

s
1, t

s
2, t

s
3] = t′t′r[t

′
1, t

′
2, t

′
3] whereξj(t′j) ⇒∗

T s qsj (t
s
j) (j ∈ [3]) (See

Fig. 4). Now, fix t′2 ∈ L2 andt′3 ∈ L3. ConsiderD1 = t′t′r[x1, t
′
2, t

′
3] ∈ T∆({x1})

and Ds
1 = us

o(u
s
3u

s
12)[x1, t

s
2, t

s
3] ∈ T∆({x1}). Then,L1 has two distinct treest′1

and t′′1 , and D1[t
′
1] ̸= D1[t

′′
1 ] becauseqi1 /∈ U(T ) and thusD1 must havex1.

SinceT is single-valued andT s is equivalent withT , we haveD1[t
′
1] = Ds

1[t
′s
1 ] and

D1[t
′′
1 ] = Ds

1[t
′′s
1 ] whereξ1(t′1) ⇒∗

T s qs1(t
′s
1 ) and ξ1(t

′′
1) ⇒∗

T s qs1(t
′′s
1 ). (Note that

t′s1 and t′′s1 are uniquely determined respectively. If not,T s had two output trees for
CC ′

l [ξ1(t
′
1), ξ2(t

′
2), ξ3(t

′
3)] and thus it was not single-valued. SinceT andTs are equiv-

alent, however,T s is also single-valued. ) Therefore,Ds
1 also must havex1, and there

is a treer′1 ∈ T̄∆({x1}) such thatD1[x1 ← r′1] = Ds
1 or D1 = Ds

1[x1 ← r′1]. Sim-
ilarly, for both j = 2, 3, there is a treer′j ∈ T̄∆({xj}) such thatDj [xj ← r′j ] = Ds

j

or Dj = Ds
j [xj ← r′j ]. Thus, we havet′t′r[r1, r2, r3] = us

0(u
s
3u

s
12)[r

′′
1 , r

′′
2 , r

′′
3 ]

where rj and r′′j are r′j or xj , and rj = xj if and only if r′′j = r′j . By propo-
sition 5 andt′t′r[r1, r2, r3] = t′((tp12ts12)θ

′)[r1, r2, r3], we havets12θ′[r1, r2, r3]
is the minimal suffix of t′t′r[r1, r2, r3] containing x3. Thus, for any decomposi-
tion t′t′r[r1, r2, r3] = tpts, ts must containx3. However,us

0(u
s
3u

s
12)[r

′′
1 , r

′′
2 , r

′′
3 ] =

(us
0u

s
3[x3 ← r′′3 ])u

s
12[r

′′
1 , r

′′
2 ], andus

12[r
′′
1 , r

′′
2 ] does not containx3. This is a contra-

diction.
For the if part, assume that condition (X) holds. LetQfin = {q ∈ Q |

rng(T (q)) is finite} andQnf
fin = Qfin−Qf . Note thatU(T ) is included inQfin because



Fig. 4.Transduction byT andT s

rng(T (q)) = {⊥} for q ∈ U(T ). Also, letQ̃nf
fin = {(q, t) | q ∈ Qnf

fin , t ∈ rng(T (q))}.
We first construct a reduceds-xbot−e Tf , equivalent withT , such thatrng(Tf (q)) is
infinite or the singleton{⊥} for any non-final stateq /∈ Qf of Tf . More specifically, we
constructTf = (Q̃nf

fin ∪ (Q−Qnf
fin ), Σ,∆,Qf , δ

′) such thatδ′ is the smallest set satis-
fying the following condition: LetCl[q1(x1), . . . , qk(xk)] → q(tr) ∈ δ be an arbitrary
rule.

– If q ∈ Qnf
fin , thenCl[(q1, t1)(x1), . . . , (qk, tk)(xk)] → (q, tr[t1, . . . , tk])(⊥) ∈ δ′

for all ti ∈ rng(T (qi)) (i ∈ [k]).
– If q ∈ Q − Qnf

fin , let θl andθr be arbitrary substitutions such that for eachi ∈ [k],
if rng(T (qi)) is infinite, θl(xi) = qi(xi) andθr(xi) = xi; otherwise,θl(xi) =
(qi, ti)(xi) andθr(xi) = ti for anyti ∈ rng(T (qi)). Then,Clθl → q(trθr) ∈ δ′.

Note that Tf is reduced andU(Tf ) = Q̃nf
fin . Thus, for every rule

Cl[q1(x1), . . . , qk(xk)] → q(tr) ∈ δ′, xi ∈ var(tr) if and only if rng(Tf (qi))
is infinite for i ∈ [k], that is, condition (X1) is satisfied. Namely,

For everyCl[q1(x1), . . . , qk(xk)] → q(tr) ∈ δ′ and any three variables
xi1 , xi2 , xi3 ∈ var(tr), if nca(p1, p2) ≻ nca(p1, p3)where{pj} = posxij

(Cl)

for j ∈ [3], then the minimal suffixts ∈ TΣ(Xk) such thattr = tpts for some
tp ∈ T̄Σ∪Xk−{xi1 ,xi2}({x∗}) does not containxi3 .

ForV ⊆ var(tr), let dptr (V ) = posx∗(tp) wheretp ∈ T̄Σ∪Xk−V ({x∗}) is the maxi-
mal prefix oftr with respect toV such thattr = tpts for somets ∈ TΣ(Xk).

Next, we decompose treesCl andtr in the both sides of each rule ofTf with respect
to the confluence positions of variables inCl. A positionp of Cl w.r.t tr is aconfluence
position if var(Cl|pi) ∩ var(tr) ⊊ var(Cl|p) ∩ var(tr) for all i ∈ [rk(λCl

(p))]. Let



Fig. 5.Construction oftpr

CP (Cl) be the set of all confluence positions ofCl. Forp ∈ CP (Cl), letprevCl
(p) be

the set of all the immediate previous confluence positions, that is,prevCl
(p) = {p′ |

p ≺ p′,¬∃p′′ ∈ CP (Cl) : p ≺ p′′ ≺ p′}.
By the assumption (X), for each ruleρ = (Cl[q1(x1), . . . , qk(xk)] → q(tr)) ∈ δ′,

there is a mappingmρ : CP (Cl) → 2pos(tr) such thatmρ(p) = dptr (var(Cl|p))
for eachp ∈ CP (Cl). We can construct ans-bot T ′ = (Q̃nf

fin ∪ (Q − Qnf
fin ) ∪

Qm, Σ,∆,Qf , δ
′′) from Tf where

– Qm = {qρp | ρ = (Cl[q1(x1), . . . , qk(xk)]→ q(tr)) ∈ δ′, p ∈ posΣ(Cl)− {ϵ}},
– δ′′ is the smallest set such that for each ruleρ = (Cl[q1(x1), . . . , qk(xk)] →
q(tr)) ∈ δ′,
• For eachp ∈ CP (Cl), letσp = λCl

(p) ∈ Σ(kp), then

σp(q
ρ
p1(x1), . . . , q

ρ
pkp

(xkp
))→ qρp(t

p
r) ∈ δ′′

wheretpr = t′r|p′ for any p′ ∈ mρ(p) andt′r is the tree obtained fromtr by
replacing all subtrees at positions inmρ(pi) with xj such thatpj ⪯ pi for all
pi ∈ prevCl

(p) (See Fig. 5), and
• If ϵ /∈ CP (Cl), letσϵ = λCl

(ϵ) ∈ Σ(kϵ), then

σϵ(q
ρ
1(x1), . . . , q

ρ
kϵ
(xkϵ))→ qρϵ (t

′
r) ∈ δ′′

wheret′r is the tree obtained fromtr by replacing all subtrees at positions in
dptr (var(tr)) with xj such thatvar(tr) ⊆ var(Cl|j).

• For eachp ∈ posΣ(Cl)− (CP (Cl) ∪ {ϵ}), letσp = λCl
(p) ∈ Σ(kp), then

∗ σp(q
ρ
p1(x1), . . . , q

ρ
pkp

(xkp)) → qρp(xi) ∈ δ′′ if Cl|pi has at least one vari-
able for somei ∈ [kp],
∗ σp(q

ρ
p1(x1), . . . , q

ρ
pkp

(xkp))→ qρp(⊥) ∈ δ′′ otherwise.
whereqρϵ = q, andqρp = qi for eachxi ∈ Xk andp ∈ posxi(Cl).

T ′ is equivalent withTf because the rules obtained by decomposing each ruleρ ∈ δ′

can simulateρ exactly. □

Therefore, condition (X) is a necessary and sufficient condition for ans-xbot−e to
have an equivalents-botT .


