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Abstract

LDPC codes is a class of linear codes introduced by Gallager in early 60’s.
Array LDPC (ALDPC) codes is a class of LDPC codes which are algebraically
constructed from a family of array codes. This paper proposes a procedure to
check if there is a codeword with specified weight in a certain ALDPC code. The
minimum weight of a linear code has strong relationship to the performance of the
code, but unfortunately it is difficult to compute the exact minimum weight of
long and randomly constructed LDPC codes. We restrict ourselves to a class of
complete array LDPC codes (C-ALDPC codes) which is a subclass of array LDPC
codes, and investigate positions of nonzero components in a codeword. The code
in the considered subclass is invariant under a doubly transitive group of affine
permutations. This property gives significant constraint on the positions of nonzero
components in a codeword, which means that the positions of nonzero components
in a codeword can be classified into rather small number of patterns. Using these
conditions, the proposed procedure checks if there exists a codeword with specified
weight.

1 Introduction

This paper discusses a method for computing the minimum weight of a certain subclass

of low-density parity check codes (LDPC codes). The minimum weight of a linear code
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has strong relationship to the performance of the code, and much efforts have been de-
voted for constructing a linear code with large minimum weight. It is sometimes said
that the minimum weight is not the most important parameter for designing good LDPC
codes, because other parameters such as the girth of the code affect the error correcting
performance of iterative decoding algorithms. However, it is widely considered that the
minimum weight is still one of the most significant parameters which affect the perfor-
mance of LDPC codes.

Unfortunately, it is difficult to compute the exact minimum weight of long and ran-
domly constructed LDPC codes. Tanner discussed in [12] a certain bound on the mini-
mum distance of LDPC codes by utilizing the Tanner Graph. Hu and Fossorier proposed
a probabilistic procedure to compute the minimum weight of LDPC codes by using a
decoding algorithm for LDPC codes[7]. Hirotomo et al. proposed another probabilistic
procedure[6] which utilizes the Stern’s algorithm. To the authors’ knowledge, though,
there is no efficient algorithm which can compute the exact minimum weight of arbitrary
LDPC codes. For a class of LDPC codes with certain structures, we may make use of
the structure to compute the minimum weight. MacKay showed that the minimum dis-
tance of regular-Quasi-Cyclic LDPC codes with column weight j is less than or equal to
(7 — D)![8]. Mittelholzer derived an upper-bound limit of the minimum weight of array
LDPC codes[9], and Yang et al. has computed exact minimum weights of array LDPC
codes with small parameters[13] by making use of algebraic properties of array LDPC
codes. The problem of Yang’s approach is that the theoretical analysis becomes too com-
plicated if the code parameter is not small. To get around this problem, one of the authors
has proposed a semi-automatic procedure to compute the exact minimum weight of array
LDPC codes. The procedure replaces certain operations in Yang’s approach by computer
search[11], and successfully revealed the minimum weight of the C4(7,5) array code (see
the following sections for the parameters of array LDPC codes). However, we still have
difficulty to use the procedure to compute the minimum weight of array codes with bigger
parameters.

The procedure investigated in [11] determines, for a given integer w, if there is a

codeword with weight w or not. If the code length is N, then there are yC', possible



patterns for positions of nonzero components in a vector of weight w. This number is
quite large if N is large, though, we can eliminate certain patterns of nonzero positions
due to the mathematical structure of array LDPC codes. This classifies the patterns of
nonzero positions into some classes. For each class of patterns, we use computer search to
test if there is a codeword which fulfills the symbol pattern. The number of patterns can
be small for small parameters, but the number of patterns increases as the code parameter
increases, and the problem is that we did not have a systematic way to enumerate possible
patterns of nonzero symbols.

This paper proposes a procedure to enumerate possible patterns of positions which
can accommodate given number w of nonzero symbols in a codeword. If no pattern is
enumerated by the algorithm, then there is no chance that the code has a codeword with
weight w. If there are possible patterns of positions, then, for each possible pattern,
we examine if there really exist codewords which fit in the symbol pattern. This will
contribute to reveal exact minimum weights of array LDPC codes with relatively large

parameters.

2 Array LDPC Codes

An array LDPC codes[2, 3] is a class of LDPC codes which is constructed based on array
codes[1, 4]. Let p be a prime number, and k and j be integers satisfying k,j < p. The
binary array LDPC code C4(p, j, k) is a null space of the pj x pk binary matrix

. I P ... Pl
HA(paja k) = : : . :
] pi—1 ... pG-Dk-1)

where [ is the p X p identity matrix and P is a cyclic shift matrix defined by

[0 0 - 0 1]
10 00
p—101 00
10 0 10|




Now we consider a special case such that & = p, and call this special array LDPC
code a complete array LDPC code (C-ALDPC' code for short). For simplicity, C'(p, J, p)
and Ha(p, j,p) are respectively written as Cs(p,j) and H4(p,j). We denote d(p, j) the
minimum distance of Ca(p,7). The rate of Cu(p,j) is 1 — (pj — j + 1)/p*. It can be
easily shown that column vectors in Ha(p,j) are all different, and every codeword has
even weight. It is also obvious from the definition that a column vector of H4(p, j) can
be decomposed into j subsequences which have length p and weight one. That is, if we
write Ha(p,j) = [h;] (1 <i<p®and 1 <[ < pj), then the weight of

h; = (hp(,_l)“ﬂ-, hp(r—1)+2,5 - -+ hp(’"*l)*p’i)T

is exactly one for any 1 < i < p? and 1 < r < j (note: the indices starts from one).
For a vector v with weight one, let ¢(v) denote the position of the nonzero component
in v where the position of the first component of v is regarded as zero. For example,
#((0,1,0,0)T) = 1 and ¢((0,0,0,1)") = 3. The value of ¢ is not defined for a vector whose
weight is not one. Extend this notation ¢ to a column vector h; = (hy;, hoy, - .., hpj,i)T of

H4(p, j) in such a way that

d(hi) = (¢(h}), ..., (W),

and also extend ¢ to the matrix H(p, ) as

O(Ha(p,j)) = [o(h1), ..., ¢(hy2)].
For the matrix H4(3,2), we have for example

012012012
O(Ha(3,2)) = 012120201

Lemma 2.1 For a column position i with 1 < i < p?, let k and k' be integers satisfying
i =pk+k and 1 <k <p. The i-th column vector of p(Ha(p,j)) can be written as

(K =1,k —1+4+k,....)K =1+ (j —Dk)" (mod p).

Proof.  Obvious from the construction of H(p,j).



Lemma 2.2 Consider two different columns ¢(h;,) and ¢(hi,) in ¢(Ha(p, 7)) (thus iy #
iy and 1 < iy,iy < p?). If the ji-th components of ¢(hi,) and ¢(h;,) are the same, then,
for any other jo with j1 # ja and 1 < jo < j, the jao-th components of ¢p(h;,) and ¢(h;,)
cannot be the same.

Proof.  Let ki, ki, ky and ki be integers satisfying i1 = pky + ki and iy = pks + k5. If

there is an integer jo in the proposition of the lemma, then

(1 = Dk1 + Ky
(jo — Dk + K

(71 — 1)kg + K mod p,
(j2 — 1)ko + k5 mod p,

from Lemma 2.1. The equations reduce to (k1 — k2)(j1 — j2) = 0 mod p, but this cannot

happen because both of (k1 — ko) and (j1 — j2) are relatively prime to p, a contradiction.

As for the notation ¢, we have the following lemma.

Lemma 2.3 Let vq,...,v, be binary vectors with length p and weight one, and define
N, = #{vi|¢(v;) = a}. We have that v+ - - +wv, = 0 mod 2 if and only if N, is an even
number for any a with 0 < a < p—1 (we call this condition a cancel-out condition ).
Proof. Note that vy + --- + v, = (No,.. L Np_1)T. If this sum equals to zero in the
modulus of two, then N, = 0 mod 2 for all a.

Let v = (v1,...,v,2) be a binary vector of length p®>. The vector v is a codeword of
Ca(p, j) if and only if Hv" = 0 mod 2. Now define

supp(v) = {¢(hi)|1 < < p* v, =1},

and call it the support of v'. The support contains the column vectors of ¢(H4(p,j))
which correspond to nonzero components of v. Since all column vectors in H(p, j) are
different, if the weight of v is w, then supp(v) contains exactly w column vectors. Order
these w column vectors in an arbitrary way, and construct a matrix Sy = [s1,. .., Su]. We

call this matrix a support matrix of v. Note that the vector v is a codeword of C4(p, )

The word “support” is often used to denote the set of positions of nonzero components in a vector,
but we use the word in slightly different manner.



if and only if HvT = 0 mod 2. Thus, v € Cx(p, ) if and only if the sum of all column

vectors in
{hi1 <i<p* v =1}

equals to zero in the modulus of two. By applying Lemma 2.3 to each row of Sy, we have

the following corollary.

Corollary 2.4 The vector v is a codeword of Ca(p,7) if and only if the cancel-out con-
dition holds for any row of Sy.

For example, v; = 100101001 is a correct codeword but v; = 100101000 is not because

00 2 2 0 0 2
S”l_[o 10 1]’ S“Q_lo 1 o]'

In Sy,, 2 occurs only once in the first row, and the cancel-out condition does not hold.

3 Support Matrices

3.1 Constraints on Positions of Zeros

If v is a codeword of C4(p,j) with weight w, then, without loss of generality, we can

assume that the support matrix Sy = [s, ;] of v satisfies the following conditions[13]:
® S§11=521="""=S51= O7 and
® 51 = S1+1 for any odd £ with 1 <k < w.

By using the second property above and Lemma 2.1, we also have s,.5 = (r — 1)s99

for 2 < r < j. Therefore Sy can be written as;

0 0 €1 €1 || eyl ey

0 52,2 523 824 || S2w-1 52w

0 2899 S33 S34 | | S3w-1  S3w |, (1)
L0 (G—D)s22|sj3 Sja| | Sjw-1  Sjw |




where e; with 1 <7 < w/2 — 1 satisfies 0 < e; < p — 1. Furthermore, a column vector of
Sy (excluding the the first column) cannot have two or more zeros because of Lemma 2.2
and the fact that the first column of Sy consists of zeros only. That is, a column vector
of Sy can include at most one zero (except the first column). We refer this property P1.
On the other hand, if v is a codeword, then Corollary 2.4 assures that Sy must satisfy the
cancel-out condition and therefore each row must contain even number of zeros. Because
the first column of Sy consists of zeros, this means that each row must contain at least one
zero between the second to the w-th position (we refer this property P2). The properties
P1 and P2 can be regarded as a necessary condition for v to be a correct codeword. In
the following, we consider classes of support matrices which satisfy the properties P1 and
P2, and verify if there is a support matrix which fulfills the cancel-out condition in the

considered class of matrices.

3.2 Zero Locaters

To deal with classes of matrices, we introduce the notion of a zero locater. A zero locater

for a weight w vector is a w-tuple z = (z1, ..., 2,,) satisfying the following conditions.
o z;e{l,....5}U{A, L} for 1 <i < w where A and L are special symbols, and
e 10 integer appears more than once in z.

Intuitively, z; with 1 <14 < w denotes the row position of zero in the i-th column vector
of a support matrix. If there is no zero in the i-th column, then z; = L, and if the i-th
column is zero-vector, then z; = A. For zero locaters which correspond to matrices of the
form (1), the first two components are always z; = A, 25 = 1.

We say that a support matrix Sy = [s,;] of a vector v (with weight w) fulfills the zero
locater z if Sy is of the form (1) and the (z;,4) component of Sy is zero for all z; with
z; # 1. We also say that a vector v fulfills the zero locater z if at least one of the support
matrices of v fulfills z (remind that the order of column vectors in a support matrix can
be changed). Let denote V(z) the set of vectors (of weight w) which fulfill the zero locater

z. We shall give an example of these in section 4.



The following lemmas can be shown easily because we can change the order of column

vectors in a support matrix.

Lemma 3.1 If

z = ( <y R2k415 R2k+2 - - .),

VAR (...722k+2’22k+17...)7

(the 2k +1-th component and the 2k +2-th component are exchanged), then V(z) = V (2).

Lemma 3.2 If
Z = ( sy R2kA15 R2kA42s + - vy R2KI41y R2k/ 425 - - ')7
< = ( sy 2Ky B2k 425 - v vy R2k415 R2k42y - - ')7

(two couples of column vectors are exchanged), then V(z) =V (2').

The following lemma associate zero locaters and the properties P1 and P2.

Lemma 3.3 If a support matriz of a vector v satisfies the properties P1 and P2, then
there is a zero locater which v fulfills. That is, for a certain zero locater z = (z1, ..., zy),
v € V(z). Furthermore, z3 = 2 without loss of generality.

Proof.  The former part of the lemma is a obvious consequence from the property P1I.

The latter part is from the property P2 together with Lemmas 3.1 and 3.2.

Remind that to satisfy the properties P1 and P2 is a necessary condition for a vector to

be a codeword. Thus we have the following corollary.

Corollary 3.4 For a codeword v, there is a zero locater z = (A, 1,2, 2y, . .., z) satisfying
veV(z).

3.3 Procedure for the Weight Test

Summarizing the above discussion, we can consider the following procedure to determine

if there is a codeword of weight w.



1. Enumerate all zero locaters of the form z = (A, 1,2, 24, ..., 2y)-

2. Find support matrices (choices of column vectors of ¢(Ha(p,j))) which fulfill the

zero locater.

3. Verify if the support matrix satisfies the cancel-out condition.

If we can find a support matrix which satisfies the cancel-out condition by the above
procedure, then there exists a codeword of weight w. If we cannot find such a matrix by
the above procedure, then the code does not contain codewords of weight w.

To realize this procedure, we first need to enumerate all of zero locaters. This can be
possible by the following recursive procedure.

Procedure zero-loc(z, R, i): zis a zero locater, R C {1,...,j} is a set of row positions

which are not used in z and 7 is a column position.

1. Let r be the smallest integer in R, and let R «— R\ {r}.

2. Let 2’ be the zero locater which is obtained from z by replacing the i-th component

in z with r.
3. If R =0, then output 2z’. Otherwise, perform the following operations.
4. Execute zero-loc(z’, R, i+ 2),if i+ 2 < w.

5. For each r’ € R, define 2/, as the zero locater which is obtained from 2’ by replacing
the ¢ + 1-th component in 2z’ with /. If R\ {r'} = 0, then output z/,. If R\ {r'} =0
and i + 2 < w, then execute zero-loc(z.,, R\ {r'}, i + 2).

Let z; = (A,1,1,...,1). By executing zero-loc(z, {2,...,5}, 3), all zero locaters of
the form z = (A, 1,2, zy, ..., 2,) is output.

Given a zero locater z = (A1, z3,...,2,), support matrices which fulfill z can be
computed by the following procedure. Let S be the support matrix which we will going

to construct.

1. Compute all assignments for e¢; with 1 < ¢ < w/2 — 1 in (1) exhaustively, and

perform the following operations for each assignment.



01 234012340123401234¢0°1 2
G(HA(5.3)=[012341234023401340124°¢0°1
01 23423401401231234034°0

_— N W

Figure 1: parity check matrix H4(5,3)

2. For each i with 3 < ¢ < w and z; € {2,...,7}, find the column vector, say s;, in
#(Ha(p,j)) such that the first component of s; is e|;/2) and the z-th component
of s; is 0. By the construction of array LDPC codes, such a column vector exists

uniquely. The vector s; is used as the i-th column vector of S.

3. For the rest of column positions, perform an exhaustive search for column vectors.
During the search, we can avoid assignment of column vectors whose first component
do not coincide with the e;-value which has been determined in the first step. And
during the exhaustive search, it is possible to use some criteria to abandon hopeless
computation. For example, assume that w = 6 and the procedure has determined
four column vectors si,...,s4 of S. If, for example, so;1 = 0, 530 = 1, s93 = 2
and sy 4 = 3, then the procedure can abandon the current search trial because it
is impossible to choose two column vectors and make the first row of S satisfy
the cancel-out condition. (at least four more vectors are needed to make the first
row satisfy the cancel-out condition). By making use of this kind of criteria, we
can skip hopeless computation and make the procedure much more efficient than

straightforward search algorithms.

For each of constructed support matrix, check if the cancel-out condition holds or not. If

the condition holds, then the code C'4(p, j) contains a codeword of weight w.

4 Example

Consider Cy(5,3) code whose parity check matrix is given in Fig. 1. First consider if

C4(5,3) contains a codeword of weight four. If there exists, then the support matrix of

10
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the minimum weight codeword must be written as

0 0 €1 €1
S = 0 522 0 52,4 . (2)
0 53,2 833 0

Vectors whose support matrices are in this form belong to V(z) where z is a zero locater
defined as z = (A, 1,2,3). If e; in (2) is chosen to be 1, then the third and the fourth

columns of S are determined uniquely and S must be written as

0 0 11
S = 0 522 0 3
0 53,2 4 0

To make this matrix satisfy the cancel-out condition, the second column must be (0, 3,4)7,
but such a column is not in H4(5,3). Thus the choice of e; = 1 is faulty. We can see
easily that even if we choose e; different from 1, it is not possible to make S satisfy the
cancel-out condition. Therefore, C4(5,3) does not contain codewords of weight four.
Next consider if C4(5,3) contains a codeword of weight six. In this case, we need
to consider two zero locaters z; = (A, 1,2,3, 1, 1) and 2o = (A, 1,2, 1,3, 1) which

intuitively correspond to

0 0 €1 €1 €9 €2

S = 0 S22 0 $24 S25 S26 ) (3)
0 532 833 0 535 536
and
0 0 €1 €1 €9 €2
Sy = 0 529 0 S24 S25 526 ) (4)
0 s32 s33 s34 0 836

respectively. Choosing e; = 1 in S results in

0 0 11 €9 €9
Sy = 0 S22 0 3 $2.5 526 )
0 53,2 4 0 535 536

We have four choices for the second column vector because H,(5,3) have four unused

column vectors whose first component is zero. If we choose e; = 0 or e = 1, then four

11



out of six components in the second row of S; must have different values, and S; cannot
satisfy the cancel-out condition. Thus e; must be either of 2 or 3 or 4. For each choice
of e;, we have 5C5 choices for the third and the fourth columns in S;. Thus, there are
4 x 3 x5C5 = 120 patterns for the choice of column vectors for S; above. Computer search
showed that none of the 120 patterns satisfy the cancel-out condition, and therefore the
choice of e; = 1 is faulty. In a similar way, we can verify that there is no support matrix
which is in the pattern of (3) and satisfy the cancel-out condition.

For support matrices in the pattern of (4), choose e; = 1 and e; = 3 for example. This
uniquely determines the third and the fifth columns of S, and allows 4 choices each for

the fourth and the sixth columns. Now consider to choose the two columns so that

0O 0 11 3 3
SQ = 0 522 0 4 4 1
0 532 4 2 0 4

If we can choose so that sy = 1 and s39 = 2, then S, satisfies the cancel-out condition.
Indeed, the sixth column in ¢(H4(5,3)) is exactly (0,1,2)7. Thus we found a support
matrix which satisfies the cancel-out condition. The codeword which corresponds to the

support matrix

52:

o O O
N = O

11
0 4
4 2

O = W

3
1
4
is 10000 10010 00000 01010 01000.

5 Minimum Weights Found by the Procedure

In the table 1, values marked with * indicate newly revealed minimum distance which
are computed by the proposed procedure. The procedure also reconfirmed known results
which are associated with bibliography numbers in the table. Yang showed that the lower
bound of d(p,4) is 10 for any prime number p > 7. Our procedure confirmed that d(p,4)
is exactly 10 for p = 11,13,17,19, 23,29, 31, 37,41, 43 and 47, though results above p = 23

is not shown in the table 1.
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6 Concluding Remarks

We proposed a procedure to test if a complete array LDPC code contains codewords of
specified weight. The problem might be solvable by a naive procedure which tests all the
combinations of column vectors in a check matrix, but such an approach will suffer for
huge computational complexity caused by the number of combinations of column vectors.
On the other hand, it is also possible to take a purely algebraic approach as in [13]. The
problem of this approach is that the theoretical analysis becomes too complicated if the
code parameter is not small. The procedure considered in this paper can be regarded as a
hybrid approach of the algebraic and the computer-oriented approaches. Some algebraic
analysis in [13] is replaced by a computer search in the proposed study, which allows us
to use the basic idea of [13] to codes with bigger parameters. For example, by using
the proposed technique together with the help by computer search, we found some exact
minimum weight of C4(p, 7), which were not shown in previous works.

MacKay investigates an upper bound of the minimum distance of general regular
Quasi-Cyclic LDPC codes[8], and Fossorier discusses the minimum distance of Quasi-
Cyclic LDPC codes from circulant permutation matrices[5]. Those results suggest that
if the column weight (parameter j) is fixed to a certain constant, then extending the
code length (i.e. increasing the parameter p in the C-ALDPC code) will not contribute to
increase the minimum distance. Interestingly, our results well agree with the observation.
As shown in Table 1, the minimum weight depends on the column weight j, but not on
the parameter p.

The proposed procedure still have some problems. For example, the classification of

Table 1: discovered minimum weights

p | codelength | j=4|57=5|7=6
5 25 | 8[13]

7 49 | 8[13] | 12[11] | 12[10]
11 121 | 10* 10* 14 <*
13 169 | 10* 12* 14%*
17 289 | 10* 12*

19 361 | 10* 12%

13



the zero locaters is still very rough, and we may have much overlap on the set of vectors

covered by different zero locaters. We also remark that the algorithm for the computer

search should make use of some more algebraic conditions to narrow the search space.
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