
�����������

�	�
�	

�
	���	��

�
���

〒 ��������

奈良県生駒市高山町 ������

奈良先端科学技術大学院大学

情報科学研究科

��������������	��

���� ������
�

�Æ����� ��� ������	�
���
����� ��������� ��

������������� �����
��� ��
��������� ��������

������� ����	
 ����� �������
 ������

��������
 ������ ����	
 ���	� ��������

������ ����

�������� ������ �� ����������� �������

���� ��������� �� ������� ��� ����������

 ��	�
 ��!�����" �!���" ���� 	#������" $�%��

Efficient and Effective Test Program Generation for Software-Based Self-Test of
Pipelined Processors�

Michiko Inoue Masato Nakazato Shinya Yokoyama Kazuko Kambe
Hideo Fujiwara

Graduate School of Information Science
Nara Institute of Science and Technology

Abstract

This paper presents a method of test program generation
for software-based self-test of pipelined processors. We pro-
pose a model of pipelined processors and testability mea-
sures for registers. We generate a test program efficiently
by means of specific behaviors of pipelined processors and
combinational ATPG. Experimental results show that the
proposed method obtains high fault efficiency.
keywords: software-based self test, pipeline processor, test
program, test program template

1 Introduction

Today’s processors with high performance and rich func-
tionality absolutely require accurate and at-speed testing.
Software-based self test (SBST) of processors attracts at-
tention as a testing strategy achieving at-speed testing. In
this strategy, a processor enables self-test by running a se-
quence of instructions called a test program. It does not in-
duce any performance penalty, area overhead or excessive
power. A number of approaches [1]-[14] are proposed for
software-based self testing.

Pipelining is a key technology to enhance performance
of processors, and it is essential for high performance pro-
cessors. Though several SBST approaches have been pro-
posed and some works [3, 10] use pipelined processors for
their evaluation, all previous studies except [5] and [12]
do not consider specific behavior to pipelined processors.
Singh et. al[11] consider a delay fault testing where they
mainly focus on how to activate path delay faults in an
SBST approach, and extend it to handle pipelined proces-
sors. However, there are no discussion how to generate an

�This work is supported in part by Semiconductor Technology Aca-
demic Research Center (STARC) and Japan Society for the Promo-
tion of Science (JSPS) under the Grant-in-Aid for Science Research
No.15300018.

entire test program for pipelined processors. A case study
of SBST approach for some specific pipelined prooceessor
is reported in [5]. The test program are developed through
carefull consideration for the target processor, and obtain
fault cooverage of more than 95% for stuck-at faults.

This paper proposes an SBST approach for pipelined
processors. Our goal is to provide a method of automatic
generation of test programs that obtain high fault efficiency
for structure faults, such as stuck-at faults. The considera-
tion for structure faults realizes an accurate testing, and the
test program realizes at-speed testing. To generate test pro-
gram for pipelined processors efficiently and effectively, we
utilize specific behaviors of pipelined processors. Though
architecture of pipelined processor is complicated to han-
dle pipeline hazards, the data and control flows are simple
if no hazards are encountered. We extract such flows as
hazard-free circuits and use them to generate test program.
We also facilitate test program generation by distinguish-
ing pipeline registers and non-pipeline registers. The pro-
posed method efficiently generates test programs with high
fault efficiency by using combinational automatic test pat-
tern generation (ATPG).

The rest of the paper is organized as follows. We first
propose a model of pipelined processors in Section 2. Sec-
tion 3 presents a method of test program generation for
pipelined processors. The experimental results are shown
in Section 4, and Section 5 concludes the paper.

2 Model of pipelined processor

Pipelined processors have complicated architecture to
handle concurrent execution of multiple instructions in a
pipeline fashion. The execution of one instruction is divided
into stages, and different stages run for different instructions
concurrently. Pipeline hazards complicate the architecture
further since processors detect and resolve several hazards.

In this paper, we propose a simple but general model of
pipelined processor (Fig.1). A pipelined processor is com-

register
file

memory

memory

stage 1

stage 2

stage 3

stage 4

stage 5

non-pipeline
register

pipeline register

program
counter

module

Figure 1. Model of pipelined processor.

posed of registers and combinational modules. Registers are
classified into non-pipeline registers and pipeline registers.
Non-pipeline registers appear in an instruction set architec-
ture (ISA) and hold the values unless we explicitly update
the values by instructions. A pipelined processor has a se-
ries of stages �� �� � � � � and each stage is composed of one or
more combinational modules. Pipeline registers are placed
between stages, and their values are updated at every clock.
We consider that pipeline registers between stages � and ���
belong to stage �.

An instruction is executed as follows. If the instruction
does not encounter any pipeline hazard, data and control
of the instruction go through stages �� �� � � � in this order.
We call such a flow a hazard-free flow. However, once
some hazard is detected, data or control of one instruction
might go to stage of another instruction to resolve the haz-
ard. Moreover, some modules have inputs from different
stages to detect hazards. In this model we do not explicitly
distinguish control and data flows, which enables to handle
all the module uniformly.

3 Test Program Generation

��� �����

Our test program generation method has two distinctive
ideas: (1) use of hazard-free circuits, and (2) differentiation
of pipeline and non-pipeline registers.

Architecture of pipelined processors is complicated by
mechanism for detection and resolution of hazards. For
this purpose, there are many connections between different
pipeline stages, and they make test generation difficult. To

generate a test program for a fault in some stage, we should
activate the fault in the stage, justify adequate patterns of
inputs of the stage, and propagate an error of the faults from
outputs of the stage to primary outputs. Our test program
generation method uses a hazard-free circuit to facilitate the
above justification and propagation. The hazard-free circuit
is a combinational circuit which represents a behavior of an
instruction when no hazards are encountered.

In a processor, some modules may accept data or con-
trol flow from other stages. Such flows are used to resolve
hazards, and they bring the same values when there are no
hazards. For example, consider the following two instruc-
tions.

ADD �� �� ��
ADD �� �� ��

If two instructions are executed consecutively, the re-
sult of the first ADD is forwarded to the second ADD not
through the final destination ��. However, if there are
enough gaps between them, such a hazard does not oc-
cur, and the second ADD uses the value of ��. However,
from the view of controllability, these two cases have the
same controllability for pipeline or non-pipeline registers
relevant to the second ADD. In justification or propagation
processes, the controllability or observability of registers or
signals should be cared. However, we do not need to care
the exact paths to realize such a testability. From this obser-
vation, we consider only hazard-free data and control flows
for the justification or propagation.

The second idea is to differentiate pipeline and non-
pipeline registers. A pipelined processor has two types of
registers. The pipeline registers are updated at every clock,
while the non-pipeline registers hold the values unless they
are explicitly updated by some instructions. The property
of the pipeline registers is very suitable to consider time ex-
pansion model to generate test program, and enables us to
use combinational ATPG. The property of the non-pipeline
registers enable us to consider non-pipeline registers sepa-
rately. Our strategy first select a few instructions to acti-
vate a fault using values of primary inputs and non-pipeline
registers, and propagate an error to primary outputs or non-
pipeline registers. We call such instructions test instruc-
tions. We generate a whole test program by concatenat-
ing the test instructions and the instructions to handle non-
pipeline registers used in the test instructions.

��� 	
��
��

Figure 2 shows an overview of the proposed method.
We extract a hazard-free circuit for each instruction. We
then generate a set of test instruction sequences for each
combinational module. The test instruction sequence for a
module delivers the test patterns to the module to activate

2

testability
analysis

&
interface
sequence

generation

test generation model generation

logic
synthesis

module test generation
combinational ATPG

test program synthesis

hazard-free
circuit

generation

RTL description

test
instruction
sequence
generation

gate-level
description

ISA

Figure 2. Proposed test program generation
method.

faults in the module. To obtain the values of operands of
the test instructions and the values of non-pipeline registers
used in the test instructions, we generate a test generation
model for each test instruction sequence, and apply com-
binational ATPG to it. The test generation model is com-
posed of the stage including the module under test and its
surrounding circuit which transfer the values of operands
and non-pipeline registers used in the test instructions into
test patterns to the module, and propagates the test response
of the module to primary outputs or non-pipeline registers.
We generate such a surrounding circuit using hazard-free
circuits for the test instructions.

We also analyze testability (controllability and observ-
ability) of non-pipeline registers and obtain interface in-
struction sequences which are sequences of instructions to
justify the values of non-pipeline registers from primary in-
puts (interface justification instruction sequence) or to prop-
agate the values of non-pipeline registers to primary outputs
(interface observation instruction sequence).

Finally, a test program is synthesized by concatenating
the interface justification instruction sequences for the non-
pipeline registers used in the test instruction sequence, the
test instruction sequence, and the interface observation in-
struction sequence for a non-pipeline register where the test
response is captured by the test instruction sequence.

In the proposed method, some processes can be aided by
commercial CAD tools written in shade boxes, and hence,
it facilitates automation of the whole system.

Figure 3 shows an example for test program for forward-
ing control unit (FCU) in Fig.4, where ��� ��� � � � � ��� are
immediate values. FCU is a controller to decide which data

1: LHI R1 x1
2: ADD.I R2 R1 x2
3: LHI R3 x3
4: ADD.I R4 R3 x4
5: LHI R5 x5
6: ADD.I R6 R5 x6
7: LHI R7 x7
8: ADD.I R8 R7 x8
9: LHI R9 x9
10: ADD.I R10 R9 x10
11: LHI R11 x11
12: ADD.I R12 R11 x12
13: LW R10 R2 R4
14: SUB R12 R6 R8
15: ADD R13 R10 R12
16: LHI R14 x13
17: ADD.I R15 R14 x14
18: LHI R16 x15
19: ADD.I R17 R16 x16
20: SW R15(R17) R13

interface justification
instruction sequence

test instruction
sequence

interface observation
instruction sequence

Figure 3. Test program.

is adopted among a hazard-free data flow and forwarded
data flows from different stages. FCU has inputs from sev-
eral stages to detect hazards and resolve them. Assume that
FCU is in stage � and FCU has inputs from stage �, ��� and
��� and outputs to stage ���. The instructions 13-15 com-
pose a test instruction sequence. These three instructions
generates the values of inputs of stage � from stages � � �,
� � � and �, and instruction 15 (ADD) propagates the val-
ues of outputs of stage � to non-pipeline registers. The first
12 instructions compose an interface justification instruc-
tion sequence to set the values of R2, R4, R6, R8, R10 and
R12. The last instruction SW stores the value of R13 into
the memory, where R15(R17) specifies the address where
the value of R13 are stored and they are set by instructions
16-19.

To generate test program for FCU, we generate a set of
test instruction sequences, and also generate hazard-free cir-
cuits for the instructions. Figure 5(a) shows a test instruc-
tion sequence LW, SUB, ADD, where each instruction has
three operands: addresses of one destination register and
two source registers. We generate a test generation model
from the test instruction sequence(Fig.5(b)). The test gen-
eration model is a combinational circuit which has inputs
corresponding the 9 operands and non-pipeline registers.
This test generation model is generated by combining the
stage including FCU and hazard-free circuits for instruc-
tions LW, SUB and ADD. We can obtain the values of
operands (Fig.5(c)) and the values of non-pipeline registers
used in the test instruction.

We finally concatenate the test instructions with speci-

3

FCU

register
file

memory

memory

Figure 4. Forwarding control unit (FCU).

LW dst1 src1-1 src1-2
SUB dst2 src2-1 src2-2
ADD dst3 src3-1 src3-2

 (a)

FCU

dst1
 src1-1
 src1-2

dst2
 src2-1
 src2-2

dst3
 src3-1
 src3-2

R1
R2
R3

(b)

LW 1010 0010 1011
SUB 1100 0110 1000
ADD 1101 1010 1100

 (c)

Figure 5. Module test generation: (a)
test instruction sequence, (b)test generation
model, (c)obtained operands.

fied operands and the interface justification and observation
instruction sequences which are generated by the testability
analysis of non-pipeline registers.

��� ����������� �������

One of our distinctive idea is to use a hazard-free circuit.
The hazard-free circuit for an instruction is a combinational
circuit to represent data and control flows of the instruction
when no hazard is encountered.

The hazard-free flow for an instruction is realized when
enough number of NOP instructions precede the instruc-
tions. We generate a hazard-free circuit of an instruc-
tion from the RTL description as follows. We delete non-
pipeline registers and treat their inputs and outputs as pri-

register
file

0
1
0

1
0

1
0

register
selector

register
selector

R1
R2
R3

R1
R2
R3address

decoder

WBi

MEMi

WBi+1

MEMi+1

dst src1src2

Figure 6. hazard-free circuit.

mary outputs and primary inputs. If there exist signal lines
between different stages, cut them and treat them as pri-
mary inputs and primary outputs. Replace all the pipeline
registers with signal lines. The resulting circuit is a kind
of time expansion model. We them assign the value cor-
responding to the instruction to the corresponding primary
input and the values corresponding NOP to the primary in-
put corresponding to the input from other stages, and apply
logic synthesis to the circuit. We eliminate parts of circuits
which do not connect with any primary outputs, and ob-
tain a hazard-free circuit. The obtained hazard-free circuit
is a compact combinational circuit since many signals are
reduced to constants by fixing an instruction.

Figure 6 shows an example of a hazard-free circuit for
instruction ADD, where some signals such as alu code,
WB(write-back) and MEM(memory operation) are fixed to
constants. The register file is decomposed into the address
decoder, a set of registers and the register selectors. In the
hazard-free circuit, the address decoder and the register se-
lectors appeare in different stages.

For each instruction, we also generate hazard-free cir-
cuits for consecutive stages 1 to � (� � �� �� � � ���) and �
to �� (� � �� �� � � ���) where �� is the number of stages.
We use these circuits not only to generate a test generation
model but also to analyze the testability of pipeline regis-
ters.

��� ���� ������������

We generate a set of test instruction sequences for a mod-
ule under test (MUT). We first introduce adjacent registers
for MUT. Adjacent registers of a module � are registers
that have paths to� directly or only through combinational
modules. We consider two kinds of adjacent registers: in-
put adjacent registers and output adjacent registers. Figure
7 shows an example of adjacent registers.

4

M1

input adjacent register

M2

output adjacent register

Figure 7. Adjacent registers.

We then determine the number of test instructions and
gaps between them. A gap between two instructions means
the number of instructions separating them in a test instruc-
tion sequence. For module �� in Fig.7, one instruction
can apply a test pattern from all the input adjacent registers,
and can capture the test response in some output adjacent
registers. On the other hand, for module �� in Fig.7, we
need three consecutive instructions to apply a test pattern
from the input adjacent registers placed at three different
stages. Since the third instruction also captures the test re-
sponse, we need three consecutive test instructions. If we
need some gaps in a test instruction sequence, we insert ad-
equate number of NOP instructions.

Consider that an MUT is in stage � and there are input
adjacent registers in stages �, � � � and � � �. In this case,
we need three consecutive instructions as a test instruction
sequence. To select each of the three instructions, we first
group instructions for each of stages �, �� � and �� �. We
check the signals corresponding to the input adjacent regis-
ters in the hazard-free circuits, and extract their controlla-
bility. In the hazard-free circuits, some signals are fixed
to some constants, and some signals are connected with
some primary inputs. We consider signals connected with
some primary inputs have general controllability, while sig-
nals fixed to some constants have constant controllability to
the constants. We analyze such controllability for each in-
struction. Then, if two or more instructions have the same
controllability for all the signals corresponding to the input
adjacent registers in one stage, we group those instructions
together for the stage. For example, consider the instruc-
tions which execute some arithmetic or logical operations
in an execution stage and write the results into the regis-
ter file. Such instructions behave in the same way in later
stages such as a memory stage or a write-back stage, and
they are grouped together for these stages.

Let ��, ���� and ���� be the numbers of groups of in-
structions for stages �, � � � and � � �, respectively. We
select one instruction from each group for each stage, and
generate possible combinations of the selected instructions
as test instruction sequences. In this case, we generate

MUT
stage j

stages
1 to j+1

stages
1 to j+2

hazard-free
circuit

stages 1 to j-1

stages j+1 to NS

Figure 8. Test generation model.

�� ����� ����� test instruction sequences.

��� ���� ���������� ����� ��� ������
���� ����������

We generate a test generation model for each test instruc-
tion sequence, and apply combinational ATPG. The test
generation model is composed of a stage including MUT
and a surrounding circuit to deliver test pattern to the stage
from primary inputs or non-pipeline registers and propagate
errors from the stage to primary outputs or non-pipeline reg-
isters. For such surrounding circuit, we use hazard-free cir-
cuits for the test instruction.

Consider a test instruction sequence ����, ����, �� where
MUT is supposed to be activated in stage � of instruction � �,
and there are input adjacent registers in stages ���, ���, �
of ����, ����, ��, respectively, and there are output adjacent
registers in stage � � � of ��. The test generation model is
composed of stage � and hazard-free circuits for stages 1 to
� � � of ����, stages 1 to � � � of ����, stages 1 to � � �
and stages � �� to �� for �� (Fig.8). The stage � has inputs
from stage � � �, � � �, and they are fed from stage � � �,
� � � of hazard-free circuits for ����, ����, respectively.
The primary inputs corresponding to the same non-pipeline
registers are shared among the hazard-free circuits for � ���,
����, and ��.

We apply combinational ATPG to the test generation
model, and obtain the values of operands and the values of
non-pipeline registers used in the test instructions. We call
this process module test generation.

��� ����������� ��������

We analyze testability (controllability and observabil-
ity) of non-pipeline registers and generate interface instruc-

5

tion sequences. The interface instruction sequence propa-
gates values from primary inputs to non-pipeline registers
(interface justification instruction sequence) and from non-
pipeline registers to primary outputs (interface observation
instruction sequence).

The testability is analyzed using only ISA, since it spec-
ifies how to update the values of non-pipeline registers. We
consider two kinds of testability: local and global. The local
testability considers only one instruction, while the global
testability considers a sequence of instructions.

We also introduce equivalent registers to efficiently an-
alyze testability. A set of registers are equivalent if they
behave in the same way for all instructions. We consider
that registers in a register file are equivalent, and they are
treated as a representative �� , or ���, ���, etc. if we
want to distinguish them. These notations are mapped to
actual registers when we generate a test program.

3.6.1 Controllability

The local controllability of a register for an instruction
is represented by the general controllability 	� (arbitrary
value can be justified), the constant controllability	� (some
constant value can be justified), the dependent controllabil-
ity 	� (justifiable values are depended on non-pipeline reg-
isters), and the no-controllability �	. We extract the local
controllability from ISA.

For example, a register RF in a register file has the fol-
lowing local controllability for instructions ADD.I and LHI.
Let �� be the bit width of data.

ADD.I
�� �� 	 �� � �
: 	���� �� 	 �� � �
�
�� � 	 � � �
: 	�

LHI
�� �� 	 �� � �
: 	�

�� � 	 � � �
: 	�� � � � �

Local controllability is expressed by the controllability
of non-pipeline registers as well as the general or constant
controllability. We then extend the local controllability of a
register to the global controllability that represents how the
register is controllable from the outside of a processor. In
other words, if a register has general global controllability,
there exists an instruction sequence that can justify arbitrary
value to the register. We analyze the global controllability
while constructing such a sequence.

We obtain global controllability of non-pipeline regis-
ters from local controllability of non-pipeline registers. A
non-pipeline register holds its value unless it is updated ex-
plicitly by some instruction. This property enables efficient
analysis for global controllability. Global controllability is
analyzed by repeating reduction of dependency. If local

global_controllability(R){
 unresolved := {R};
 instructions := null sequence;
 while unresolved is not empty {
 get ur from unresolved;
 i := an instruction
 with minimum number of Cc or NC bits
 among maximum number of Cg bits;
 R1,R2,... : =registers some bits of ur depend on;
 insert R1,R2,... to unresolved ;
 append i at the beginning of instructions;
 }
}

Figure 9. Global controllability.

controllability of some register � depends on other regis-
ters �� and �� for some instruction �, global controllabil-
ity of � can be reduced to global controllability of �� and
��. In this case, we can analyze �� and �� independently
since we can justify values of both non-pipeline registers
independently.

Figure 9 shows a procedure to analyze global controlla-
bility. In this procedure, a register can be a part of register
like ��
 	 �
. If some register has different local control-
lability for different bits, we divide the register according
to the local controllability. When global controllability of
some register� is reduced to other registers, some bits in �
may have	� or	�. We say that such bits are resolved in the
reduction. The procedure derives a sequence of instructions
that resolves all the bits, and if all the resolved bits have
general controllability, the target register has global general
controllability.

In the proposed procedure, �� is first reduced to
�� �� 	 �� � �
 by ADD.I, and then it is resolved by LHI.
In this case, we find that�� has global general controllabil-
ity and we can justify any value �� � � ������� � � ������
of ��� by the following sequence of instructions.

LHI ��� �� � � ������
ADD.I ��� ��� �� � � �����

We later use such a sequence for an interface justifica-
tion instruction sequence. Though a non-pipeline register
usually has global general controllability, it might remain
	� for some bits for the obtained sequence. In this case,
we backtrack to the last selection and generate another se-
quence by selecting the next best instruction. If the obtained
sequence has different patterns for bits with 	� compared
to the sequences already obtained, we also record it as an
interface justification instruction sequence of the register.
However, this strategy might continue to select instructions

6

infinitely. To avoid this problem, if selection of an instruc-
tion induces a loop of reduction, we do not select it. For
example, we do not select an instruction that reduce con-
trollability of � to � itself since the selection induces a self
loop of reduction. We repeat this analysis until we obtain
global general controllability or all the possible selections
are tried.

3.6.2 Observability

We then extract local observability of registers for each in-
struction. The local observability is also extracted from
ISA. The Local observability is represented by ��(general
observability), ��(dependent observability), and ��(no
observability) together with a set of non-pipeline registers
called support registers. A support register is a register to
be controlled in order to observe the target register.

For example, we can obtain the following observability
from instructions SW (store word) and MFC0 (move the
value of�	 to ���). To observe the value of �� by SW,
we need to control two registers in a register file to specify
the address where the value is stored. The support registers
are represented as �����.

SW
�� : �� � ����� ����
���: �� � ����� ����

MFC0
�	: �������

We then extend the local observability of non-pipeline
registers to the global observability. In the case of observ-
ability, we do not need to find an instruction sequence to
observe all the bits of target registers. If some registers
have different observability for different bits, we generate
instruction sequences for each part of bits according to the
observability. Global observability are analyzed using an
observability graph. An observability graph is a directed
graph where nodes are the non-pipeline registers and a spe-
cial node PO, and an arc ���� ��� exists if �� has depen-
dent observability for ��, or �� has global observability
and �� is PO. Each arc is labeled by instructions and sup-
port registers. If a register has different local observability
for different bits, the corresponding arc is also labeled by
such information. Figure 10 is an example of observability
graph. A register �� in a register file can be observed by
an instruction �� by controlling two registers in a register
file where the two registers specify the address of the stored
word.

We analyze global observability of registers by find-
ing paths to PO. We can observe the target registers with
instructions along with the path and justification instruc-
tion sequences for support registers. We call such a se-

MFC0

SW + {RF1 , RF2 }

SW + {RF1, RF2}
PORF

R31 EPC

Figure 10. Observability graph.

quence interface observation instruction sequence. For ex-
ample, �� has the following observation instruction se-
quence that stores the value of �� at the memory address
�� � � ������ � �� � � � �����

LHI ��� �� � � �����
ADD.I ��� ��� �� � � ������
LHI ��� �� � � � ����
ADD.I ��� ��� �� � � � �����
SW �������� ��

�� ���� !������ ����"����

Finally, a test program is synthesized from the test in-
struction sequence and necessary interface instruction se-
quences. In module test generation, we obtain the values
of non-pipeline registers used in the test instructions. We
generate the interface justification instruction sequences for
such registers. We also generate the interface observation
instruction sequences for non-pipeline registers that capture
the test response. Consider the test instruction sequence in
Fig5(c). We generate the interface justification interface se-
quences for 6 non-pipeline registers used as the source reg-
isters in three test instructions, and the interface observation
instruction sequence for R13 where the test response is cap-
tured. We can generate a test program in Fig.3 by concate-
nating the interface justification instruction sequences, the
test instruction sequence, the interface observation instruc-
tion sequence.

4 Experiments

We evaluated the proposed method using a pipelined pro-
cessor DLX N that is based on DLX processor[15]. The
processor has standard 20 instructions excluding unsigned
operations. We applied the proposed method to two typical
modules ALU and FCU, where ALU is connected with one
stage and need one test instruction while FCU is connected

7

Table 1. Results on ALU and FCU of DLX N.
test # test test # detected # detected # identified fault fault

module # faults instruction patterns program faults faults redundant coverage efficiency
sequences length (MTG) (TP) faults (%) (%)

ALU 7026 20 160 1152 6994 6708 32 95.47 95.92
FCU 754 160 84 1263 648 648 81 85.94 96.68

with four stages and needs four test instructions. The exper-
iments used a logic synthesis tool Design Compiler (Synop-
sys) and test generation tool TestGen (Synopsys).

Table1 shows the results for ALU and FCU. The target
faults are stuck-at faults. In the table, “# detected faults
(MTG)” and “# detected faults (TP)” represent the numbers
of detected faults by the module test generation and by the
synthesized test program, respectively.

For ALU, there are some faults detected in module test
generation but not detected by the test program. That might
be because we do not consider the effect of faults in jus-
tification or observation phases. On the other hand, the
faults detected in the module test generation for FCU are
also detected by the test program. However, there are some
faults not detected in both. That is because FCU uses
10 bits to identify the current instruction though there are
only 20 instructions. To identify faults that are not de-
tected by any test program, we applied ATPG for the stage
including MUT under constraint on some control signals.
The values of control signals such as OP CODE (operation
code), FUNC CODE(function code) are fixed by instruc-
tions. Therefore, the values that can be justified by instruc-
tions are restricted for the signals. We can treat such restric-
tion as constraint for ATPG. As a result, we identified some
faults not to be detected by any test program, and report
the numbers at the column “# identified redundant faults”.
Fault coverage and fault efficiency are calculated from “#
detected faults (TP)” and “# identified redundant faults”.
We obtain high fault coverage for ALU and high fault effi-
ciency for both ALU and FCU. That is, we can detect most
testable faults by test program.

5 Conclusion

We presented a method for test program generation
for software-based self-test targeting structure faults for
pipelined processors. The method efficiently utilizes spe-
cific behaviors of pipelined processors, and achieves high
fault efficiency. Test program can be applied in the nor-
mal function mode of processors, and therefore, it realizes
at-speed testing. Moreover, the proposed method does not
modify processors, and hence it does not induce any perfor-
mance penalty, area overhead or excessive power.

One advantage of the proposed method is that it can gen-

erate a test program without detailed information for mod-
ules. We only require a module to be a combinational circuit
placed in one pipeline stage. We need information on con-
nections between modules, but does not need the function
or structure of the module. Moreover, we can treat one stage
as one module. This property is desirable when there is no
structured information on the inside of a stage in an RTL
description.

However, there remain some faults that are not detected
or identified to be redundant. Our future works include
two approaches: to identify more redundant faults and to
detect more faults. Since a processor is a sequential cir-
cuit, it seems very difficult to obtain complete fault effi-
ciency without any design-for-testability. Therefore, one of
our approach is to detect more faults in aid of design-for-
testability.

References

[1] K. Batcher and C. Papachristou, “Instruction randomization self test
for processor cores,” in Proc. 17th VLSI Test Symposium, pp. 34–40,
1999.

[2] D. Brahme and J. A. Abraham, “Functional testing of microproces-
sors,” IEEE Trans. on Computers, vol. 33, pp. 475–485, June 1984.

[3] L. Chen, S. Ravi, A. Raghunath, and S. Dey, “A scalable software-
based self-test methodology for programmable processors,” in Proc.
40th Design Automation Conference, pp. 548–553, 2003.

[4] F. Corno, C. Cumani, M. S. Reorda, and G. Squillero, “Fully au-
tomatic test program generation for microprocessor cores,” in Proc.
Design, Automation & Test in Europe, 2003, pp. 1006–1011, 2003.

[5] M. Hatzimihail, G. Xenoulis, A. Paschalis, M. Psarakis, and D. Gi-
zopoulos, “Software-based self-test for pipelined processors: A case
study,” in Proc. 20th International Symposium on Defect and Fault
Torelance in VLSI Systems, pp. 535–543, 2005.

[6] W.-C. Lai, A. Krstic, and K.-T. Cheng, “Test program synthesis for
path delay faults in microprocessor cores,” in Proc. International Test
Conference 2000, pp. 1080–1089, 2000.

[7] K. Kambe, M. Inoue, and H. Fujiwara, “Efficient template generation
for instruction-based selt-test of processor cores,” in Proc. 13th Asian
Test Symposium, pp. 152–157, 2004.

[8] K. Kambe, T. Iwagaki, M. Inoue, and H. Fujiwara, “Efficient con-
straint extraction for template-based processor self-test generation,”
in Proc. 14th Asian Test Symposium, pp. 444–447, 2005.

[9] N. Krantis, A. Paschalis, D. Gizopoulos, and Y. Zorian, “Instruction-
based self-testing of processor cores,” Journal of Electronic Testing:
Theory and Application, vol. 19, pp. 103–112, 2003.

8

[10] N. Krantis, G. Xenoulis, A. Paschalis, D. Gizopoulos, and Y. Zorian,
“Application and analysis of rt-level software-based self-testing for
embedded processor cores,” in Proc. International Test Conference
2003s, pp. 431–440, 2003.

[11] V. Singh, M. Inoue, K. Saluja, and H. Fujiwara, “Instruction-based
delay fault testing of processor cores,” in Proc. International Confer-
ence on VLSI Design 2004, pp. 933–938, 2004.

[12] V. Singh, M. Inoue, K. Saluja, and H. Fujiwara, “Instruction-based
delay fault self-testing of pipelined processor cores,” in Proc. Inter-
national Symposium on Circuits and Systems, pp. 5686–5689, 2005.

[13] J. Shen and J. Abraham, “Native mode functional test generation for
processors with applications to self-test and design validation,” in
Proc. International Test Conference 1998, pp. 990–999, 1998.

[14] C. H.-P. Wen, L.-C. Wang, K.-T. Cheng, K. Yang, W.-T. Liu, and J.-J.
Chen, “On a software-based self-test methhodology and its applica-
tion,” in Proc. 23rd VLSI Test Symposium, pp. 107–103, 2005.

[15] J. H. Hennesy and D. A. Patterson, Computer Architecture: A Quan-
tative Approach. Morgan Kaufmann Publishers, 1996.

9

