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Abstract
Test access mechanism and test scheduling are integral

parts of SoC test. This paper presents an area overhead and
test time co-optimization method for SoCs based on con-
secutive testability. The proposed method creates TAM and
a test schedule by using integer linear programming, and
augments a given SoC into consecutively testable one where
area overhead and test time are co-optimized. Consecutive
testability of SoCs guarantees that arbitrary test/response
sequences including timing information can be propagated
to/from all embedded cores and all interconnects without
information loss. Therefore, the method can handle any test
sequence that requires consecutive application of test pat-
terns at speed of system clock such as a test sequence for
timing faults. Moreover, the proposed method achieves low
area overhead because existing interconnects are used as a
part of TAM. Experimental results show advantages of the
proposed method compared to test bus architecture which is
a well known TAM architecture.
keywords: system-on-a-chip, design for testability, test ac-
cess mechanism, test scheduling, consecutive testability, co-
optimization

1 Introduction

A fundamental change has taken place in the way digital
systems are designed by making it possible to design an
entire system, containing hundred millions of transistors, on
a single chip. In order to cope with the growing complexity
of such systems, designers often use pre-designed, reusable
megacells known as cores. Core-based systems-on-a-chip
(SoC) design strategies help companies significantly reduce
the time-to-market and design cost for their new products.

Testing of SoCs introduces several new challenges com-
pared to testing of conventional IC designs [1]. A major
problem to make an SoC testable concerns accessibility of
embedded cores. Since embedded cores are not directly ac-
cessible via chip inputs and outputs, special access mech-
anisms are required to test them after system integration.
The development of efficient test access mechanism (TAM)
is an integral part of SoC test. Several TAM architectures
have been proposed. There are three main approaches to
achieve accessibility of embedded cores. The first approach

is based on test bus architectures by which the cores are
isolated from each other in test mode using a dedicated
bus [4, 5, 6] or flexible TESTRAIL [9] around the cores to
propagate test data. The second approach uses boundary
scan architectures [2, 3] to isolate the core during test. The
third approach uses transparency [10, 11, 12] for embedded
cores to reduce the problem to one of finding paths from
chip inputs to core inputs and from core outputs to chip out-
puts. In order to reduce the time-to-market and test cost, test
scheduling that minimizes the test time for SoCs is also an
integral part of SoC test. Several test scheduling techniques
have been proposed to minimize the test time by adopting
an appropriate TAM architecture [7, 8, 16].

Under the design environment for SoCs, pre-computed
test sets are provided for each core. These test sets may
contain functional vectors, scan vectors or ordered test se-
quences for non-scan designed sequential circuits. They
may be for logic faults such as stuck-at faults or timing
faults such as delay faults. Moreover, some cores may be
able to be at-speed testable in order to increase the coverage
of non-modeled and performance-related defects. For that
reason, it is necessary to apply an arbitrary test sequence to
each core and observe its response sequence from the core
consecutively at the speed of the system clock. We call such
test access consecutive test access. Similarly, consecutive
test access mechanisms are required to test interconnects
between cores.

There are two approaches [13, 15] realizing the con-
secutive test access for both cores and interconnects. In
[13], we proposed consecutive testability of SoCs and con-
secutive transparency of cores. Consecutive transparency
of a core guarantees that arbitrary test/response sequences
can be propagated from the core inputs to the core out-
puts without information loss. Consecutive testability of
SoCs guarantees that it is possible to apply/observe arbi-
trary test/response sequences to/from all embedded cores
and all interconnects by using interconnects and consecu-
tively transparent cores. Therefore, the method can handle
any test sequence that requires consecutive application of
test patterns at speed of system clock such as a sequence for
timing faults. However, in these two approaches [13, 15],
only the technique to minimize area overhead were pro-
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posed and test time reduction was not addressed. Moreover,
there is no discussion about core model, and the treatment
of scan chains in scan-designed cores is not considered ex-
plicitly.

In this paper, we extend the target core model so that
we can handle IEEE P1500 wrapped cores [19] and scan-
designed cores in addition to non-scan designed cores that
we considered in [13]. In order to simplify the discus-
sion, built-in-self-testable (BIST) cores are not considered
in this paper though they can be included easily by apply-
ing the proposed approach in [13]. For SoCs that include
the above core models, we propose an area and time co-
optimization method based on consecutive testability. We
create TAM and a test schedule by using integer linear pro-
gramming (ILP), and augments a given SoC into consec-
utively testable one where area overhead and test time are
co-optimized. In the proposed method, TAM for consecu-
tive testability is designed based on utilization of existing
circuits. When we design TAM, we use interconnects and
cores’ consecutive transparency as much as possible. Only
when TAM cannot be designed by using only the above ex-
isting circuits, we add extra circuits (test buses). Therefore,
our method achieves lower area overhead compared to con-
ventional test bus architecture. In order to evaluate area im-
pact of TAM, we discuss the estimation of bus area based
on floor plan. Experimental results show advantages of the
proposed method compared to test bus architecture.

The rest of this paper is organized as follows. Section 2
gives SoC modeling and some definitions. In section 3, we
show an area and time co-optimization method that creates
TAM and a test schedule by using ILP. Experimental results
are discussed in section 4. Finally, section 5 concludes this
paper.

2 Preliminaries

2.1 SoC Modeling

An SoC consists of cores, primary inputs, primary out-
puts and interconnects (Figure 1). For the sake of unifor-
mity, user-defined logic can be considered as a core. We
introduce ports of each core as interface points in a natural
fashion: signals enter into a core through its input ports, and
exit through its output ports. An interconnect connects an
output port with an input port, a primary input with an in-
put port, or an output ports with a primary output. Though
any number of interconnects can connect to the same out-
put port (i.e., fanout is allowed), only one interconnect can
connect to the same input port. It is not necessary that inter-
connects are of the same bit width. In Figure 1, the shaded
number beside each interconnect represents the bit width of
the interconnect.

We consider three types of cores; IEEE P1500 wrapped
cores (P1500 cores), scan-designed cores (scan cores) and
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non-scan-designed cores (non-scan cores). Each individual
core can be tested by external test and a pre-computed test
sequence is available for the core which, if applied to the
core, will result in a very high fault coverage. P1500 cores
and scan cores have scan input/output ports which are used
only for testing the cores and have no connection to other
ports. P1500 cores can be tested by using only the scan
port. Therefore, we consider that a test/response sequence
is provided for each port. In Figure 1, the number beside
each port represents the length of test/response sequence for
the port.

A floor plan is provided for an SoC and each core has
placement denoted by (x, y) coordinates of its center of
gravity. In Figure 1, the numbers in parentheses represents
the (x, y) coordinates of each core. Area overhead of a wire
is estimated as the product of width and length on the floor
plan. We use Manhattan distance for calculating length of
wires used as a part of TAM. Moreover, an information
about consecutive transparency of each core (defined in the
next section) is also provided.

2.2 Consecutive Transparency of a Core

In [13], we introduced a concept called consecutive
transparency of cores defined as follows. Consecutive trans-
parency guarantees that, for each port, there exists a test
mode called a configuration which realizes consecutively
transparent paths for the port (Figure 2). Here, paths are
consecutively transparent in the sense that any test sequence
including timing information can be propagated through
them without information loss.

Definition 1 Consecutive transparency of a core
Let I(i) be the ith bit of a PI I , , O(j) be the jth bit of a
PO O and T be a PI. Suppose that there exists a configura-
tion (test mode controlled by T ) of a core that can realize a
path P between I(i) and O(j). P is called a consecutively
transparent path if any input sequence applied to I(i) can

2



(a) Configuration ID 1 (b) Configuration ID 2 (c) Configuration ID 3

I
1

I
2 I

3

O
1

O
2

I
1

I
2

I
3

O
1

O
2

I
1

I
2

I
3

O
1

O
2

W(I
1
) = W(O

1
) = w1 W(I

2
) < W(O

2
), W(I

2
) = w2 W(I

3
) = W(O

2
) = w3

w1 w2 w3

W(I
i
)  : bitwidth of

an input port I
i

W(O
i
) : bitwidth of

an output port O
i

wi : bitwidth of consecutive

transparent path
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transparent core

be consecutively observed at O(j) after some latency, and
then I(i) and O(j) are said to be consecutively transparent.
A PI is called to be consecutively transparent if there exists
a configuration that can make all bits of the PI consecutively
transparent at the same time. Similarly, A PO is called to be
consecutively transparent if there exists a configuration that
can make all bits of the PO consecutively transparent at the
same time. Moreover, a core is called to be consecutively
transparent if all PIs and POs except T are consecutively
transparent.

2.3 Consecutive Testability of a System-on-a-Chip

In [13], we proposed a new test methodology based on
consecutive testability of SoCs defined as follows.

Definition 2 Consecutive testability of an SoC
An SoC is said to be consecutively testable if all cores and
all interconnects in the SoC are consecutively test accessi-
ble.

Consecutive testability of SoCs guarantees that it is pos-
sible to apply/observe arbitrary test/response sequences in-
cluding timing information to/from all embedded cores and
all interconnects without information loss by using inter-
connects and consecutively transparent cores. Figure 3 il-
lustrates a consecutively testable SoC and the consecutive
test access to/from Core 3. A control signal is provided for
each consecutively transparent core by a test controller (ei-
ther off-chip or on-chip) and determines the configuration
of the core.

3 Area and Time Co-Optimization

In this section, we present an area overhead and test
time co-optimization method based on consecutive testabil-
ity. The method creates TAM and a test schedule, and aug-
ments a given SoC into consecutively testable one by adding
extra circuits (design-for-testability (DFT) elements) where
area overhead and test time are co-optimized. When we cre-
ate consecutively test accessible TAM, we consider test bus
(Figure 4(a)), consecutive transparency (Figure 4(b)), direct
path from a PI to a core (from a core to a PO) with mul-
tiplexer (Figure 4(c)) and existing interconnect as compo-
nents of TAM. We try to utilize existing interconnects and
consecutive transparency of cores as much as possible to
minimize hardware overhead. Only when a core is not con-
secutively test accessible by using only existing intercon-
nects and consecutive transparency of cores, we add direct
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paths to the core (Figure 4(c)) or make other cores consecu-
tively transparent (Figure 4(b)) with multiplexers. For scan
ports, we add test buses since scan ports have no connec-
tion to other ports and cannot utilize existing interconnects
(Figure 4(a)) . The more direct paths and test buses we add,
the shorter test time we can achieve. There is a trade-off
between hardware overhead and test time. Then, we for-
mulate area overhead and test time co-optimization based
on consecutive testability according to user objective as the
following optimization problem.

Definition 3 Area and time co-optimization problem based
on consecutive testability
• Input : An SoC, co-optimization ratio α
• Output : A consecutively testable SoC and a test sched-

ule
• Optimization : Minimizing hardware overhead (i.e.,

MUXes and area of buses) and test time(eq.(1))
α · (areaoverhead) + (1 − α) · (testtime) (1)

0 ≤ α ≤ 1
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3.1 Area and Time Co-Optimization Algorithm

In this subsection, we describe the proposed algorithm.
The algorithm consists of the following three stages.

Stage1: TAM design for scan ports
Stage2: Design for consecutive transparency of all cores
Stage3: TAM design and test scheduling co-optimization

3.1.1 TAM Design for Scan Ports (Stage 1)

We cannot utilize existing interconnects as a part of TAM
for scan ports since scan ports have no connection to other
ports. In Stage 1, we consider the following TAM design
problem for scan ports using test buses as DFT elements.

Definition 4 TAM design problem for scan ports
(Pscan)
• Input :

– Cores with scan ports
(bit width of each port, length of test sequence
and coordinates)

– Co-optimization ratio α
– maximum bit width of I/O pins Wsoc,in, Wsoc,out

• Output : TAM
– the number of test buses
– width of each test bus
– an assignment of cores to the test buses

• Optimization : Minimizing hardware overhead (i.e.,
MUXes and area of test bus) and test time for scan
ports (eq.(1))

The algorithm of this stage consists of the following two
steps.

Step 1: Estimate TAM area and test time
Let Cs be the set of P1500 cores and scan cores, let

P(Cs) be the power set of Cs. For each set of cores
Cp ∈ P(Cs), we estimate TAM area (Cost(Cp)) and test
time (T ime(Cp)) in the case of connecting the cores by one
test bus as follows.
Cost(Cp) = bus length(Cp) × max

c∈Cp

(port width(c)) (2)

Here, bus length(Cp) denotes the Manhattan distance in
the case of connecting all cores in Cp by one test bus, and
port width(c) denotes the bit width of scan port of c

T ime(Cp) =
∑
c∈Cp

sequence(c) (3)

Here, sequence(c) denotes the length of test sequence for
c.

Figure 5 shows two examples of routing. One is a routing
that connects all cores in C13 = {c1, c2, c4} by a test bus.
The other is a routing that connects only c3 by a test bus.

Step 2: Determine the number of test buses and assignment
of cores to the test buses

In this step, we design TAM where area and test time
are co-optimized according to user defined ratio α. In order
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to design consecutively test accessible TAM with test buses
for all cores in Cs, we should find a subset M of P(Cs)
such that M satisfies the following equation.⋃

Cp∈M

Cp = Cs (4)

Here, |M | denotes the number of test buses, and Cp ∈ M
denotes the set of cores assigned to a test bus. Once the
number of test buses and assignment of cores to the test
buses are determined, area overhead and test time is also
determined by the estimation in Step 1. We formulate the
above subset selection as the following ILP problem.
0-1 variables
(1 if each condition is satisfied, otherwise 0)
xi,Cp : core i is assigned to a test bus with cores in Cp ∈

P(Cs)
yCp : Cp is a element of M

Minimize

α ·
⎛
⎝ ∑

Cp∈P(Cs)

Cost(Cp) · yCp

⎞
⎠+ (1 − α) ·

(
max

Cp∈P(Cs)

(
T ime(Cp) · yCp

)) (5)

Subject to:
1. core assignment to test bus

• for each i ∈ Cs and Cp ∈ P(Cs),∑
Cp∈P(Cs)

xi,Cp = 1 (6)

∑
i∈Cp

xi,Cp = |Cp| · yCp (7)

2. I/O bit width limitation,
Wsoc,in ≥

∑
Cp∈P(Cs)

Win(Cp) · yCp (8)

Wsoc,out ≥
∑

Cp∈P(Cs)

Wout(Cp) · yCp (9)

Here, Win(Cp) and Wout(Cp) are constant values
which denote the summation of bit width of cores’ in-
put ports and output ports in Cp, respectively.

We can determine the number of test buses and assignment
of cores to the test buses by solving above ILP problem,
and design TAM for scan ports where area and test time are
co-optimized according to user defined ratio α.
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3.1.2 Design for Consecutive Transparency of All
Cores (Stage 2)

In order to satisfy consecutive test accessibility of in-
terconnects, all input/output ports of all embedded cores
should be consecutively observable/controllable. There-
fore, all cores should be consecutively transparent. In this
stage, we consider the following design for consecutive
transparency problem (defined in [14]) for all cores.

Definition 5 Design for consecutive transparency problem
(Pbypass).
• Input : A core

– bit width of each port
– consecutively transparent paths if they have

• Output : A consecutively transparent core
• Optimization : Minimizing hardware overhead (i.e.,

hardware of added MUXes)
The algorithm for this stage have been proposed in our

previous work [14] and we have used it in this paper.

3.1.3 TAM Design and Test Scheduling Co-
Optimization (Stage 3)

In the Stage 1, we designed TAM for scan ports using test
buses where area and test time are co-optimized according
to user defined ratio α. In the Stage 2, we made all cores
consecutively transparent for consecutive test accessibility
of all interconnect. Figure 6 shows an example SoC (corre-
sponding to the SoC shown in Figure 1) after Stage 1 and
Stage2 in the case of α = 1 where test buses are added for
scan ports and all cores are made consecutively transparent.
This figure represents only the assignment of cores and do
not shows the routing of test buses exactly. In this Stage
3, we consider the following TAM design and test schedul-
ing co-optimization problem based on consecutive testabil-
ity. We create a test schedule by determining the combina-
tions of cores tested simultaneously (in the same configura-
tion) and design TAM for consecutive test accessibility of
the cores according to user defined co-optimization ratio α.

Definition 6 TAM design and test scheduling co-
optimization problem (Pselect).
• Input : An SoC with TAM for scan ports and all con-

secutively transparent cores
• Output : A consecutively testable SoC and a test sched-

ule
• Optimization : Minimizing hardware overhead (i.e.,

MUXes and wire area) and test application time of the
SoC (Equation 1)

The algorithm of this stage consists of the following two
steps. In the Step 1, it adds direct paths realized by mul-
tiplexers from PIs to core inputs and from core outputs to
POs. Then, it determines TAM for all cores and all inter-
connects by selecting paths added in Step 1.
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c5

c1

c2
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c4

c5

c6

Conf.1 Conf.2 Conf.3
(test mode)

Configuration of each core

c6

Figure 6. An example SoC after State 2

Step 1: Add all direct paths from PIs to core inputs and
from core outputs to POs

For input/output ports which are not control-
lable/observable directly at PIs/POs of a SoC, we add
direct paths from PIs to the input ports (from the output
ports to POs) with multiplexers in order to guarantee
consecutive accessibility for all ports.

Step 2: Create TAM and a test schedule

In this step, we determine the combinations of cores
tested simultaneously and create TAM for each combina-
tion by selecting configurations of other cores and direct
paths added in Step 1 so that area overhead and test time
are co-optimized according to user defined ratio α. We for-
mulate the above decision and selection problems as an ILP
problem using the following notations.

Notations for an ILP Formulation
Sets
C: all cores
Vin,c : all input ports of core c
Vout,c : all output ports of core c
E: all wires including all interconnects, all consecutively

transparent paths, all direct paths and all test buses
Enet: all interconnects (Enet ⊂ E)
K: all configurations of a SoC (K =

∏
c∈C Tc)

here, Tc is the set of all configurations of core c
Kc: all configurations in which core c is tested (Kc ⊂ K)
Ck: all cores which are tested in configuration k ∈ K
Vk: all ports of all cores in Ck

Gk,v: all possible TAM for port v ∈ Vk

Ek,v,g : all wires in the TAM g ∈ Gv,k

Constant values
S(e): hardware cost in order to realize e ∈ E
L(v, g): maximum sequential depth of TAM g for port v
R(v): length of test sequence for v ∈ V
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0-1 variables:
(1 if each condition is satisfied, otherwise 0)
yc: core c is consecutively test accessible
yc,k: core c is consecutively test accessible in configura-

tion k
yk: configuration k is used to test the SoC
yk,v: port v is consecutively test accessible in configura-

tion k
yk,v,g: TAM g is used for port v in configuration k
xe,k,v : wire e is used for port v in configuration k
xe : wire e is used to test the SoC

Integer variables
in timek,c : test application time of core c in configura-

tion k
out timek,c : test observation time of core c in configura-

tion k
timek : total test time in configuration k

Minimize:

α ·
(∑

e∈E

S(e) · xe

)
+ (1−α) ·

(∑
k∈K

time(k) · yk

)
(10)

Subject to:
1. for each c ∈ C,

yc ≥ 1 (11)∑
k∈Kc

yc,k ≥ yc (12)

2. for each k ∈ K ,
|Ck| · yk =

∑
c∈Ck

yc,k (13)

∑
v∈Vk

yk,v ≥ |Vk| · yk (14)

3. for each v ∈ Vk,∑
g∈Gk,v

yk,v,g ≥ yk,v (15)

∑
e∈Ek,v,g

xe,k,v ≥ |Ek,v,g| · yk,v,g (16)

4. for each e ∈ E,∑
v∈Vk

xe,k,v ≤ 1 for k ∈ K (17)

xe ≥ xe,k,v (18)
5. constraints for test time, for each k ∈ K ,

in timek,c = max
v∈Vin,c

⎛
⎝ ∑

g∈Gk,v

L(v, g) · yk,v,g

⎞
⎠ (19)

out timek,c = max
v∈Vout,c

⎛
⎝ ∑

g∈Gk,v

(L(v, g) + R(v)) · yk,v,g

⎞
⎠ (20)

timek = max
c∈Ck

((in timek,c + out timek,c) · yk)(21)

Equations (11) and (11) guarantee the consecutive test
accessibility of all cores. Eqs. (13) and (14) are constraints
for configuration k. These two Eqs. guarantee the accessi-
bility of all ports of all cores tested in configuration k. Eqs.
(15) and (16) guarantee the existence of TAM for all ports

v in Vk. Eqs. (17) and (18) guarantee the disjointedness of
TAM for all ports v in Vk. Eqs. (19), (20) and (21) calculate
the test time in configuration k.

We can determine combinations of cores tested simul-
taneously and direct paths used as a part of TAM for each
combination by solving above ILP problem. Figure 7 shows
an example schedule and selected direct paths as a part of
TAM in an SoC corresponding to Figure 1. Similarly test-
ing of interconnects in addition to cores can be considered
simultaneously by replacing the set C with C ∪ Enet in the
notations and ILP formulation.

Through these three stages, we can augments a given
SoC into consecutively testable one where area overhead
and test application time are co-optimized according to user
defined ratio α.

4 Experimental Results

In this section, we present experimental results obtained
by the proposed method and make a comparison between
the proposed method and test bus architecture. We used
the System S1 (shown in Figure 1) which have three scan
cores, two non-scan cores and one P1500 core. In this ex-
periments, we considered testing of cores only since it is
difficult to perform consecutive test access for interconnects
by test bus architecture. We used the lp solve package from
Eindhoven University of Technology [18] on a SunBlade
1000, 900 MHz with 1GB RAM for the experiments.

Table 1 shows experimental results of the proposed
method in the case of α = 0 (area), α = 0.5 (co-optimize)
and α = 1 (time). Figure 7 shows the result of a test sched-
ule and direct paths added in Stage 3 in the case of α = 1.
“stage1(Pscan)”, “stage2(Pbypass)” and “stage3(Pselect)”
denote the results of Stage 1, Stage 2 and Stage 3, respec-
tively. “Time”, “Area” and “CPU” denotes the test time, the
area overhead and running time of lp solve, respectively.
“wire” and “MUX” at the column “Area” denote the wire
area estimated from a given floor plan and the bit width of
multiplexer added in each stage,respectively. “Time” at the
column “Total” denotes the total test time which is equal
to “Time” at the column “stage3”. “Area” and “CPU” at
the column “Total” denote the total area overhead and com-
putational time which is the summation of all stages. In
Stage 3, we halted lp solve after 4320 minutes (72 hours)
and “Time” and “Area” denote the intermediate solutions
after that time. In the case of α = 0.5, we obtained no so-
lution after 4320 minutes. In order to shorten the running
time of lp solve, we made experiments with reduced config-
uration set K ′ which is the subset of K (the set of all con-
figurations of SoC). After Stage 1, for cores with scan ports,
we can obtain the number of test buses and assignment of
the cores to the test buses. Within the limits of the assign-
ment, we construct K ′ by selecting configurations from K
such that test time of the cores with scan ports is minimized.
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Figure 7. Result: added direct paths and a test
schedule (α = 1)

We choose cores which have longest test sequence in each
test bus, and select a configuration such that the cores are
tested simultaneously. Similarly, we choose cores in the
turn that the length of test sequence is long, and we select
a configuration. The results are shown as the numbers in
parentheses. From the results, we observe that the reduc-
tion of the configuration set K improves not only running
time but also test application time and area overhead in all
cases. From Table 1, we observe that the proposed method
can achieve the augmentation of an given SoC into consec-
utively testable one where area overhead and test time is
co-optimized according to user defined ration α.

Table 2 shows results of the test bus architecture. These
results are obtained by applying our proposed method in
Stage 1 assuming that all input/output ports of cores are
scan ports and only test buses are added as TAM. From Ta-
ble 1 and Table 2, we observe that the proposed method
achieves lower area overhead compared to test bus architec-
ture in all three co-optimization ratio. Especially for α = 1
(area has high priority), the proposed method achieves 50%
reduction of area overhead compared to test bus architec-
ture. This is because the proposed method utilizes existing
interconnects and consecutively transparent cores as a part
of TAM. On the other hand, the proposed method intro-
duces longer test time. The proposed method is based on
configuration-dependent scheduling which means that no
new test are allowed to start until all tests in a configura-
tion are completed. Therefore, test time depends on a core
which has longest test sequence in a configuration. We can
consider that this disadvantage will be removed by adopting
preemptive scheduling where Iyengar and Chakrabarty pro-
posed in [17] while the advantages of the proposed method
are kept. .

5 Conclusions

In this paper, we proposed an area and time co-
optimization method for SoCs based on consecutive testa-
bility. The proposed method creates TAM and a test sched-

Table 2. Results of test bus approach for S 1

Test Bus(Pscan)

α Time
Area

CPU(m)wire MUX
1 1650 2774 528 0.0

0.5 1250 2984 528 20
0 1000 3248 516 243

ule by using integer linear programming, and augments a
given SoC into consecutively testable one where area over-
head and test time are co-optimized. The proposed method
achieves lower area overhead compared to test bus archi-
tecture. Especially for the case where objective is to min-
imize area overhead, the proposed method achieves 50%
area overhead reduction compared to test bus architecture.
This is because the proposed method utilizes existing in-
terconnects and consecutively transparent cores as a part of
TAM. Consecutive testability of SoCs guarantees that arbi-
trary test/response sequences including timing information
can be propagated to/from all embedded cores and all inter-
connects without information loss. Therefore, the method
can handle any test sequence that requires consecutive ap-
plication of test patterns at speed of system clock such as
a sequence for timing faults. One of our future works is to
improve the test scheduling method in order to shorten the
test time. Another future work is to propose heuristic al-
gorithms instead of current ILP based approach in order to
shorten the computational time.
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Dr. Erik Larsson (Linöpings Universitet) , Dr. Tomoo Inoue
and Dr. Hideyuki Ichihara (Hiroshima City University) for
their valuable discussion.

References

[1] Y.Zorian, E.J.Marinissen and S.Dey, “Testing
embedded-core based system chips,” Proc. 1998 Int.
Test Conf., pp.130-143, Oct. 1998.

[2] N.A.Touba and B.Pouya, “Testing embedded cores
using partial isolation rings,” Proc. 15th VLSI Test
Symp., pp.10-16, May 1997.

[3] L.Whetsel, “An IEEE 1149.1 based test access archi-
tecture for ICs with embedded cores, ” Proc. 1997 Int.
Test Conf., pp.69-78, Nov. 1997.

7



Table 1. Results of our approach for S1

stage1(Pscan) stage2(Pbypass) stage3(Pselect) Total

α Time
Area

CPU(s)
Area

CPU(s) Time
Area

CPU(m) Time
Area

CPU(m)
wire MUX MUX wire MUX wire MUX

1 2100 216 24 0.1
2260 1536 124 4320* 2260 1752 292 4320*

(2125) (1216) (92) (40) (2125) (1432) (260) (40)

0.5 1700 224 24 0.3 144 0.0
- - - 4320* - - - 4320*

(1830) (1920) (148) (0.2) (1830) (2144) (316) (0.2)

0 1000 304 24 1.5
2100 2816 244 4320* 2100 3120 412 4320*

(1500) (2432) (228) (22) (1500) (2736) (396) (22)
*:lp solve was halted after 4320 minutes.

[4] S.Bhatia, T.Gheewala and P.Varma, “A unifying
methodology for intellectual property and custom
logic testing,” Proc. 1996 Int. Test Conf., pp.639-648,
Oct. 1996.

[5] T.Ono, K.Wakui, H.Hikima, Y.Nakamura and
M.Yoshida, “Integrated and automated design-for-
testability implementation for cell-based ICs,” Proc.
6th Asian Test Symp., pp.122-125, Nov. 1997.

[6] P.Varma and S.Bhatia, “A structured test re-use
methodology for core-based system chips,” Proc. 1996
Int. Test Conf., pp.294-302, Oct. 1998.

[7] K.Chakrabarty, “Design of System-on-a-Chip Test
Access Architectures Using Integer Linear Program-
ming,” Proc. 18th VLSI Test Symp., pp.127-134, May
2000.

[8] K.Chakrabarty, “Design of System-on-a-Chip Test
Access Architectures under Place-and-Route and
Power Constraints,” Proc. 37th Design Automation
Conf., pp.432-437, June 2000.

[9] E.Marinissen, R.Arendsen, G.Bos, H.Dingemanse,
M.Lousberg and C.Wouters, “A Structured and Scal-
able Mechanism for Test Access to Embedded
Reusable Cores,” Proc. 1998 Int. Test Conf., pp.284-
293, Nov. 1998.

[10] M.Nourani and C.A.Papachristou, “Structural fault
testing of embedded cores using pipelining,” Jour-
nal of Electronic Testing:Theory and Applications 15,
pp.129-144 1999.

[11] I.Ghosh, S.Dey, and N.K.Jha, “ A fast and low cost
testing technique for core-based system-chips,” IEEE
Trans. on CAD, vol.19, no.8, pp.863-877, Aug. 2000.

[12] S.Ravi, G.Lakshminarayana, and N.K.Jha, “ Testing
of Core-Based Systems-on-a-Chip,” IEEE Trans. on
CAD, vol.20, no.3, pp.426-439, Mar. 2001.

[13] Tomokazu Yoneda and Hideo Fujiwara, ”Design for
Consecutive Testability of System-on-a-Chip with
Built-In Self Testable Cores,” Journal of Electronic
Testing: Theory and Applications (JETTA) Special Is-
sue on Plug-and-Play Test Automation for System-on-
a-Chip, Vol. 18, No. 4/5, pp.487-501, Aug./Oct. 2002.

[14] Tomokazu Yoneda and Hideo Fujiwara, ”Design for

Consecutive Transparency of Cores in System-on-a-
Chip,” proc. 21st IEEE VLSI TEST SYMPOSIUM
(VTS’03), To appear.

[15] K.Chakrabarty, R.Mukherjee and A.Exnicios, “Syn-
thesis of Transparent Circuits for Hierarchical and
System-on-a-Chip Test,” Proc. IEEE International
Conference on VLSI Design, pp.431-436, Jan. 2001.

[16] Erik Larsson, Klas Avidsson, Hideo Fujiwara and
Zebo Peng, “Integrated Test Scheduling, Test Paral-
lelization and TAM Design,” Proc. 11th Asian Test
Symp., pp.397-404, Nov. 2002.

[17] V.Iyengar and K.Chakrabarty, “Precedence-based,
preemptive, and power-constrained test schduling for
system-on-a-chip,” Proc. IEEE VLSI Test Symposium
(VTS’01), pp.42-47, April 2001.

[18] M.Berkelaar, lp solve, Eindhoven Uni-
versity of Technology, The Netherlands,
ftp://ftp.ics.ele.tue.nl/pub/lp solve.

[19] IEEE P1500 web site,
http://grouper.ieee.org/groups/1500/.

8


