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Abstract
This paper presents a reconfigurable union wrapper that

can wrap multiple cores into a single wrapper design.
Moreover, we present a test scheduling algorithm to min-
imize a test application time using the proposed reconfig-
urable union wrapper. The proposed heuristic algorithm
can achieve short test application time with low computa-
tional cost compared to the conventional approaches where
every core has its own wrapper. Experimental results for
the ITC’02 SOC Benchmarks show the effectiveness of our
approach.
keywords: system-on-a-chip, test scheduling, reconfig-
urable union wrapper, test access mechanism

1 Introduction

In the SoC test environment, each embedded core is iso-
lated from other logics during test of the core. Therefore,
the following three components are necessary for SoC test-
ing: 1) test pattern source and test response sink, 2) test
access mechanism (TAM), and 3) wrapper [1]. The TAM
propagates test patterns for a core from test pattern source
to the core, and furthermore propagates the responses from
the core to test pattern sink. The wrapper provides func-
tions for cores to switch the mode of the cores: 1) nor-
mal, 2) INTEST, 3) EXTEST, and 4) BYPASS defined in
IEEE 1500 standard [2]. The goal for SoC test engineers
is to develop techniques for wrapper design, TAM design
and test schedule that minimizes test application time under
given constraints. A number of approaches have addressed
wrapper design [3, 4, 5]. Several TAM architectures have
been proposed such as TestBus [6, 7], TESTRAIL [8], trans-
parency based TAMs [9, 10, 11]. However, wrapper and
TAM co-optimization problem was shown to be NP-hard in
[3]. Therefore, many heuristic approaches for this problem
have been proposed [4, 5, 12, 13, 14, 15, 16, 17].

Recently, the reconfigurable wrapper was proposed by
Koranne [18] that allows a core to have several wrapper con-
figurations in contrast to the previous approaches. The ad-
vantage is the increased flexibility for the test scheduling.
Erik et al. proposed the reconfigurable power-conscious
core test wrapper to increase the flexibility for power-
constrained test scheduling [19].

One crucial aspect of these approaches including recon-

figurable and non-reconfigurable wrapper designs is that
each core has an own wrapper and a core is tested inde-
pendently of other cores. Quasem et al. showed that further
reductions in test application time can be achieved if mul-
tiple cores are wrapped into single wrapper design and the
overlapped test application scheme is used [20]. They also
proposed the reconfigurable wrapper design that includes
all embedded cores in a single wrapper. In the proposed
reconfigurable wrapper design, the length of each wrapper
scan chain can be reconfigured (reduced) during test by by-
passing scan chains which are not necessary for further test
application.

However, wrapping all the cores into a single wrapper
design can not alway achieve the minimum test application
time due to the lack of flexibility for test scheduling. More-
over, the proposed reconfigurable wrapper can only bypass
scan chains in each wrapper scan chain, and can not re-
assign scan chains to different wrapper scan chains.

This paper presents a reconfigurable union wrapper that
can wrap multiple cores into a single wrapper design. More-
over, we present a test scheduling algorithm to minimize
a test application time using the proposed reconfigurable
union wrapper. The proposed algorithm finds the optimal
core groups for designing reconfigurable union wrappers,
and it can achieve short test application time with low com-
putational cost. Experimental results for the ITC’02 SOC
Benchmarks show the effectiveness of our approach.

The rest of this paper is organized as follows. We dis-
cuss our motivation in Section 2. Section 3 shows a recon-
figurable union wrapper design. After formulating a test
scheduling problem using reconfigurable union wrappers in
Section 4, we present a test scheduling algorithm in Section
5. Experimental results are discussed in Section 6. Finally,
Section 7 concludes this paper.

2 Motivation

In this section, we examine the effectiveness of the re-
configurable union wrapper for minimizing test application
time by using example cores shown in Fig.1. A significant
amount of research has been devoted to reducing test ap-
plication time. Consequently, several test scheduling algo-
rithms have been proposed. In these approaches, every core
has its own wrapper and cores are tested independently of



10

10

(a) wrapper design for core 1 (b) wrapper design for core 2

core 1 core 2

I I O

5

O

I

# pattern p = 50 # pattern p = 100

s
i
= 10 , s

o
= 10 , p = 50 s

i
= 5 , s

o
= 5 , p = 100

TAM 1

TAM 2

TAM 3

TAM 1

TAM 2

TAM 3

l
1,1 

=  10

l
1,2 

= 10

l2,1 = 5

test time = 560 test time = 605 

Figure 1. Wrapper designs using three wrapper
scan chains by [3].

others by using the wrappers. Wrapper designs for core 1
and 2 using tree wrapper scan chains are shown in Fig.1(a)
and Fig.1(b), respectively. The time required to apply the
entire test set to a core is given as follows.

T = 1 +max(si, so) · p +min(si, so) (1)

Here, p is the number of test patterns, and si(so) is the
length of the longest wrapper scan-in(scan-out) chain for
the core. In this example, test time for core 1 and core 2 are
550 and 605, respectively. The total test time for these two
cores is 1165 if core 1 and core 2 are tested serially by using
a shared TAM with three bits.

Fig.2 shows the proposed reconfigurable union wrap-
per design for core 1 and core 2. The wrapper design has
two test configurations. The first configuration shown in
Fig.2(b) includes all scan chains, and core 1 and core 2 are
tested at the same time for first 50 patterns. After applying
the first 50 patterns, the wrapper is reconfigured to config-
uration 2 shown in Fig.2(c) where only scan chains in core
2 are connected to the wrapper scan chains. Then, core 2 is
tested using configuration 2 for the remaining 50 patterns.
Test time for configuration 1 and 2 are 560 and 305, re-
spectively. The total test time for these two cores is 860
since the first scan-in in configuration 2 can be overlapped
with the last scan-out in configuration 1. Consequently, we
can achieve 26% test time reduction by using the proposed
reconfigurable union wrapper. Therefore, we can reduce
the total SoC test time if we can find the optimal groups
for the proposed reconfigurable union wrappers during test
scheduling.

3 Reconfigurable Union Wrapper Design

In this section, we present a method to design the recon-
figurable union wrapper. Let S be the set of cores and w be
the number of wrapper scan chains. The proposed proce-
dure is shown in Fig.3. First, configuration ID i is set to 1
(line 1). Then, configuration i is designed by WrapperDe-
sign procedures proposed in [3] by regarding cores in S as
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Figure 2. A reconfigurable union wrapper and its
configurations.

a single core (line 3). After that, the cores with the small-
est number of test patterns are removed from S (line 4), and
configuration ID i is increased by 1 (line 5). The above pro-
cess is repeated until S becomes empty. An example of the
reconfigurable union wrapper for core 1 and core 2 shown
in Fig.1 and its configurations are shown in Fig.2.

procedure RUW(S,w)
1 i := 1;
2 while(S� φ){
3 design configuration i by WrapperDesign in [3] for S;
4 S := S - {c} s.t.

c has the smallest number of test patterns in S;
5 i := i + 1;
6 }

Figure 3. Reconfigurable union wrapper design
procedure.

4 Problem Formulation

We formulate the test scheduling problem using recon-
figurable union wrappers as follows.

Definition 1 Pruw: Given the maximum TAM width Wmax,
a set of cores M and for each core m ∈ M the test set pa-
rameters including the number of test patterns pm, the num-
ber of input terminals im, the number of output terminals
om, the number of bidirectional terminals bm, the number
of scan chains sm and for each scan chain k the length of
it lm,k, determine the test groups, the TAM width and the
reconfigurable union wrapper design for each group, and a
test schedule such that: (1) the total number of TAM wires
utilized at any moment does not exceed Wmax and (2) the
overall test time is minimized.

5 Scheduling Algorithm using Reconfig-
urable Union Wrapper

In this section, we present an algorithm for determining a
solution to the test scheduling problem using reconfigurable
union wrappers. In our algorithm, a TAM b is represented



as a set of cores which are connected to b. Our algorithm
determines a solution which consists of
• the set of TAMs B such that every core is assigned to

exactly one TAM,
• the width w(b) of every TAM b ∈ B such that the

summed widths of the TAMs does not exceed Wmax,
• the reconfigurable union wrapper design for each TAM

b ∈ B
such that total test time T is minimized. To determine the
test time t(b,w) for a TAM b with width w, we assume the
existence of a procedure TestTime(b,w) which use a proce-
dure RUW(b,w) for designing a reconfigurable union wrap-
per for cores in b presented in Section 3.

An outline of this algorithm is presented in Fig.4. The
algorithm has three main steps which are ASSIGN, TRANS-
FER and MERGE.

procedure TestSchedule
1 sort M in the descending order based on the amount of test data;
2 for all m ∈ M in the decided order at line1{
3 ASSIGN(m);
4 TRANSFER();
5 }
6 repeat until no more improvement on T is possible{
7 MERGE();
8 TRANSFER();
9 }

Figure 4. Scheduling algorithm

First, it sorts cores in the descending order based on the
amount of test data (line 1). The amount of test data of a
core is equivalent to the test time provided by the wrapper
design using one wrapper scan chain. Then, a core is as-
signed to a TAM such that current total test time T is min-
imized by ASSIGN procedure (line 3). Whenever a core is
assigned, TRANSFER procedure is executed (line 4). The
TRANSFER procedure tries to minimize T by finding a bot-
tleneck TAM bmax which is a TAM with the longest test time
and re-assigning a core in bmax to other TAM. TRANSFER
repeats the above process until no more improvement on T
is possible. After assigning all cores to TAMs, the algorithm
performs the MERGE procedure (line 7). The MERGE pro-
cedure tries to minimize T by finding a bottleneck TAM
bmax and merging bmax with other TAM. MERGE repeats
the above process until no more improvement on T is possi-
ble. Then, the TRANSFER procedure is executed again (line
8). These MERGE and TRANSFER procedures are repeated
until no more improvement on T is possible. Each of these
steps is explained in more detail in the sequel of this section.

5.1 Assignment

The procedure ASSIGN as outlined in Fig.5 determines
a TAM to which the current targeted core m is assigned. It
consists of three main steps.

In Step 1 (line 1-2), for each TAM b ∈ B which already
exists in the current test schedule, it computes the test time

procedure ASSIGN(m)
/*Step1: Compute Tex when m is assigned to the existing TAM */
1 find bex ∈ B s.t. t(bex ∪ {m},w(bex)) is minimized;
2 Tex := t(bex ∪ {m},w(bex));
/*Step2: Compute Tnew when m is assigned to new TAM */
3 Generate new TAM bnew := {m};
4 Bnew := B ∪ {bnew};
5 Compute Ttar by [14];
6 for all b ∈ Bnew{
7 Compute w(b) s.t. t(b,w(b)) is closest to Ttar;
8 }
9 find a bottleneck TAM bmax;
10 Tnew := t(bmax ,w(bmax));
11 W :=

∑
b∈Bnew

w(b);
12 while(W > Wmax){
13 find bmin ∈ Bnew s.t. t(bmin ,w(bmin) − 1) is minimized;
14 w(bmin) := w(bmin) − 1;
15 W := W − 1;
16 if(Tnew < t(bmin ,w(bmin) − 1))
17 Tnew := t(bmin ,w(bmin) − 1));
18 }
/*Step3: Update TAMs */
19 if(Tex < Tnew)
20 T := Tex; bex := bex∪ {m}for bex ∈ B;
21 else
22 T := Tnew; B := Bnew;

Figure 5. ASSIGN procedure
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Figure 6. An example of ASSIGN procedure.

when the core m is assigned to b and a reconfigurable union
wrapper for b is designed. Then, it finds bex which is a TAM
with the shortest test time Tex after assigning m. In Step 2
(line 3-18), it computes the test time Tnew when a new TAM
bnew is created and the core m is assigned to bnew. When
bnew is created, for each TAM b ∈ B ∪ bnew, the width of
b is updated such that test time of b is the closest to the
lower bound Ttar on test time proposed in [14] for the cores
currently scheduled (line 6-8). Consequently, if the total
TAM width W exceeds Wmax, the algorithm finds a TAM
bmin such that t(bmin,w(bmin)−1) is minimized and the TAM
width w(bmin) is updated. This process is repeated until W
does not exceed Wmax (line 12-18). In Step 3 (line 19-22),



two solutions created in Step 1 and 2 are compared and the
solution with smaller test time is selected.

Fig.6 shows an example of the ASSIGN procedure. In
this example, it tries to assign core 4 for the current test
schedule shown in Fig.6(a). Fig.6(b) and (c) show the re-
sults of Step 1 and 2, respectively. Consequently, core 4 is
assigned to TAM 2 since the solution shown in Fig.6(b) has
smaller test time.

5.2 Transfer

The procedure TRANSFER as outlined in Fig.7 tries to
minimize the total test time T by finding a bottleneck TAM
bmax and re-assigning a core in bmax to other TAM.

procedure TRANSFER()
1 repeat until no more improvement on T is possible{
2 Find a bottleneck TAM bmax;
3 Tmax := t(bmax ,w(bmax));
4 for all core s ∈ bmax{
5 for all TAM b ∈ B − {bmax} {
6 Ttemp :=∞;
7 b1 := b ∪ {s}; b2 := bmax − {s};
8 wb1 := w(b1); wb2 := w(b2);
9 repeat until no more improvement on Ttemp is possible{
10 if(Ttemp > max(t(b1 ,wb1 + 1), t(b2 ,wb2 − 1))){
11 Ttemp := max(t(b1 ,wb1 + 1), t(b2 ,wb1 − 1));
12 wb1 := wb1 + 1; wb2 := wb2 − 1;
13 }
14 }
15 if(Ttemp < Tmax){
16 Tmax := Ttemp; bmin := b; smin := s;
17 wb1,new := wb1; wb2,new := wb2;
18 }
19 }
20 }
21 if(Tmax < T ){
22 bmin := bmin ∪ {smin}; bmax := bmax − {smin};
23 w(bmin) := wb1,new; w(bmax) := wb2,new;
24 T := Tmax;
25 }
26 }

Figure 7. TRANSFER procedure

First, it finds a bottleneck TAM bmax and computes its
test time Tmax (line 2-3). Then, for each core s ∈ bmax,
it computes the test time Ttemp when s is removed from
bmax and re-assigned to other TAM b ∈ B − {bmax} (line
4-20). During this step, TAM width of bmax is also reduced
from bmax and re-assigned to b until no more improvement
on Ttemp is possible (line 9-14). After that, it finds a core
smin ∈ bmax and bmin ∈ B − {bmax} such that test time Ttemp

is minimized when smin is re-assigned to bmin (line 15-20).
If the re-assignment gives smaller test time than T which
is the current total test time, then it updates the solution.
TRANSFER repeats the above reassignment until no more
improvement on T is possible.

Fig.8 shows an example of the TRANSFER procedure. In
this example, core 3 in the bottleneck TAM 1 is re-assigned
to TAM 3 and a part of width of TAM 1 is also re-assigned
to TAM 3.
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Figure 8. An example of TRANSFER procedure.

5.3 Merge

The procedure MERGE as outlined in Fig.9 tries to min-
imize the total test time T by finding the bottleneck TAM
bmax and merging bmax with other TAM.

procedure MERGE()
1 repeat until no more improvement on T is possible{
2 Find a bottleneck TAM bmax;
3 Tmax := t(bmax ,w(bmax));
4 for all b ∈ B − {bmax} {
5 btemp := b ∪ bmax;
6 wtemp := w(b) + w(bmax);
7 if(t(btemp ,wtemp) < Tmax){
8 Tmax := t(btemp ,wtemp); bmin := b;
9 }
10 }
11 if(T > Tmax){
12 w(bmin) := w(bmin) + w(bmax);
13 bmin := bmin ∪ bmax;
14 B := B − {bmax}
15 T := Tmax;
16 }
17 }

Figure 9. MERGE procedure

First, it finds a bottleneck TAM bmax and computes its
test time Tmax (line 2-3). Then, for each core b ∈ B−{bmax},
it computes the test time when bmax is merged with b (line
4-10). After that, it finds a TAM bmin ∈ B − {bmax} such
that test time Tmax is minimized when bmax is merged with
bmin (line 15-20). If the merged TAM gives smaller test
time than the current total test time T , then it updates the
solution. MERGE repeats the above process until no more
improvement on T is possible.

Fig.10 shows an example of the MERGE procedure. In
this example, the bottleneck TAM 3 is merged with TAM 1.

6 Experimental Results

Table 1 compares the test time results obtained using the
proposed method with those using the test scheduling meth-
ods proposed by Im et al. [5], Xia et al. [16] and Zou et al.
[4]. We have chosen the methods presented in [5, 16, 4]
for comparison since they have been applied to the ITC’02
benchmarks [21] and give the best results to the best of our
knowledge. In 23 out of the 28 cases (7 TAM widths for
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Figure 10. An example of MERGE procedure.

4 benchmarks) our method can find the solution with the
smallest test time.

In Table 1, we also show the lower bound on test time
proposed in [14] in order to discuss the potential advantage
of the proposed reconfigurable union wrapper. We can ob-
serve that our method finds the solution with smaller test
time than the lower bound in some cases. It should be noted
that the lower bound of the test time proposed in [14] is
computed assuming that every core has its own wrapper and
tested independently of other cores. From these results, we
can say that test time can be reduced further than the lower
bound by using the proposed reconfigurable union wrapper
where multiple cores have a single wrapper and are tested
at the same time.

In terms of area overhead, the proposed reconfigurable
union wrapper needs additional multiplexers for changing
its configurations. Table 2 shows the area overhead com-
puted by the following equation.

overhead =
∑gates of additional multiplexers
∑gates of 1500 wrapper cells × 100 (2)

Please note that the area overhead is only to the logic intro-
duced by IEEE 1500 wrapper cells, not to the overall SoC.
In other words, the area overhead shows the increase ratio
for each wrapper cell. The number of wrapper cells depend
only on the number of I/O cells of the cores and do not de-
pend on the number of gates of the cores. Therefore, for
complex cores with hundreds of thousands of gates, we be-
lieve that this overhead becomes insignificant.

7 Conclusion

In this paper we have proposed a reconfigurable union
wrapper and a test scheduling algorithm using it. We have
shown that by allowing multiple cores to have a single wrap-
per, test time can be reduced compared to the approaches
where every core has its own wrapper. Moreover, our
method finds the solution with smaller test time than lower
bound proposed in [14] in some cases. This indicates the
potential advantage of the proposed reconfigurable union
wrapper for test time minimization.
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