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Abstract This paper introduces 7%-notation to be used to analyze the test generation complexity
of a class of circuits with a type of faults. In this paper, we discuss classes of sequential circuits and
combinational circuits with stuck-at and path delay faults, which are representative faults in logical
and timing faults respectively. Using 7%-notation, we reconsider the test generation complexity for
acyclic sequential circuits with stuck-at faults. We also analyze the test generation complexity for
combinational circuits and acyclic sequential circuits with robust and non-robust path delay faults.
On the other hand, we define easily testable classes of cyclic sequential circuits in the aspects of
the number of time frames and running time taken by the state justification and differentiation,
and also the state validity for both cases of stuck-at faults and path delay faults. We also introduce
two classes of cyclic sequential circuits, namely two-column state-shiftable finite state machine real-
izations with observable shifting logic (2COS-SSFSM) and two-column distributive state-shiftable
finite state machine realizations (2CD-SSFSM). Then, we discuss the test generation complexity for
these two classes with stuck-at and path delay faults. The application based on the classification of
sequential circuits is two-fold. Firstly, we can apply the test generation method for combinational
circuits with stuck-at faults, which is more efficient, in order to solve the test generation for each
class with a type of faults. Secondly, a design for testability (DFT) or a synthesis for testabil-
ity (SFT) method can be introduced based on the properties defined for each class of sequential
circuits. Besides clarifying the test generation complexity, we also compare the test generation
complexity for different classes of circuits with different type of faults.

keywords: 7F-notation, easily testable, stuck-at faults, path delay faults, test generation complex-

ity.

1 Introduction

It has been known for about three decades that the test generation problem, even for combinational
circuits with stuck-at faults, is NP-complete. There does not exist an algorithm that solves an arbi-
trary instance of the problem in polynomial time, unless P = N P is proved. However, the empirical
observation showed that the test generation complexity for practically encountered combinational
circuits with single stuck-at faults seems to be polynomial. Based on this observation, the works
related to the classification of sequential circuits started.

Several classes of acyclic sequential circuits have been introduced in the previous works. These
include balanced sequential circuits, internally balanced sequential circuits and so on. The test
generation for internally balanced sequential circuits and balanced sequential circuits with stuck-at



faults has been shown to be reducible into that for combinational circuits with stuck-at faults[1,2].
The test generation complexity for acyclic sequential circuits has not yet been clarified. Neither
has been that for cyclic sequential circuits. Apart from stuck-at fault, which is the representative
fault of static faults, path delay fault model, which is the most powerful timing fault model, is
important to ensure the temporal correctness of a circuit. Therefore, we include path delay faults
in our discussion. As the first step of the work, we consider only robust and non-robust faults
in this paper. The relationships between the test generation for combinational circuits with path
delay faults and that with stuck-at faults have been discussed in [3,4,5,6]. They showed that the
ATPG for stuck-at faults plus some polynomial circuit transformations can be used as an ATPG
for robust and non-robust path delay faults. The test generation was not discussed explicitly in the
aspect of time complexity. Neither was the test generation complexity for sequential circuits with
path delay faults.

When more and more classes of circuits are introduced and the discussion of the test generation
complexity for each class with different type of faults becomes important, it would be helpful
if there is a general notation to be used in the discussion. Therefore, we introduce 7¥-notation
prior to the discussion of the test generation complexity. By using 7%-notation, we reconsider the
test generation complexity for balanced sequential circuits[2] and internally balanced sequential
circuits[1] with stuck-at faults, which is reducible to the test generation for combinational circuits
with stuck-at faults. We also review the test generation complexity for combinational circuits
with robust and non-robust path delay faults, which is also equivalent to the test generation for
combinational circuit with stuck-at faults. Besides, we analyze the test generation complexity for
sequential circuits including cyclic sequential circuits with stuck-at and path delay faults. Clarifying
the test generation complexity for several classes of sequential circuits with faults leads to two
applications. First, based on the properties of a known class, a special ATPG is designed to
run the test generation on the circuit, which is generally more efficient than does the general
sequential ATPG. For instance, the test generation technique involving separating of separable
inputs, wire replacing and combinational test generation and sequence transformation, is used to
obtain a test in an internally balanced sequential circuits, the test generation time of which has been
proved reduced[1]. Another application is design for testability (DFT) and synthesis for testability
(SFT). For example, based on the feature of balanced structure, the DFT called BALLAST was
introduced[2]. For a given arbitrary sequential circuit (resp. arbitrary design), a DFT method
(resp. SFT method) is designed and applied to augment the circuit into one of the easily testable
classes of sequential circuits.

After clarifying the test generation complexity for each class of circuits with stuck-at and path
delay faults, our concern is to compare the test generation complexity for stuck-at faults and that
for path delay faults. We have obtained they are equivalent for combinational circuits, balanced
sequential circuits, and internally balanced sequential circuits. For acyclic sequential circuits, they
are equivalent under time expansion model (TEM)[7] at slow-fast-slow clock but still it is unknown
at rated clock. For cyclic sequential circuits, they are equivalent for [-length-bounded testable
circuits, I-length-bounded validity-identifiable circuits, ¢-time-bounded testable circuits and ¢-time-
bounded validity-identifiable circuits, and two-column SSFSM realization with observable shifting
logic. Then our interest is whether there exists any class of circuits, the test generation complexities
for which with stuck-at faults and path delay faults are not equivalent. If there exists such class
of circuits, the following question arises. “Which complexity is higher, the one for stuck-at faults
or path delay faults?” We have shown there is a class of sequential circuits named two-column
distributive SSFSM realizations, the test generation for stuck-at faults and that for path delay
faults of which might not be equivalent; by showing in a conjecture that its test generation for path
delay faults might have less complexity than its test generation for stuck-at faults.



The organization of the rest of the paper is as follows. In Section 2, we briefly review the
definitions of fault models and define 7*-notation. In Section 3, we reconsider the test generation
complexity for combinational circuits with robust and non-robust path delay faults. We also con-
sider the test generation complexity for combinational circuits with robust and non-robust segment
delay faults in Section 4 as the result is useful in analyzing the test generation complexity for se-
quential circuits with path-delay faults. In Section 5, we discuss the test generation complexity for
acyclic sequential circuits with stuck-at and path delay faults. This is followed by the discussion
of the test generation complexity for several classes of cyclic sequential circuits with stuck-at and
path delay faults in Section 6. Conclusion is presented in the final section.

2 Preliminaries

Before discussing the test generation complexity for several classes of circuits with stuck-at faults
and path delay faults, the definitions related to the fault models and 7%-notation are briefly reviewed
in this section.

2.1 Fault Models

Testing of logical faults is necessary to make sure that the interconnections in a given circuit are
fault-free and are able to carry both logic 0 and 1 signal. The logical fault model detects defects
which occur independent of the speed. Therefore, the testing of logical faults is also called static
testing. The most popular fault model for digital circuits is stuck-at fault model. The single
stuck-at fault models several possible physical faults; moreover, the stuck-at fault model is easily
manageable by algorithms.

A fault may also affect the circuit’s temporal behavior; such faults are called timing faults or
dynamic faults. Timing faults are modeled as an increase in the propagation time of a gate. As
the increasing emphasis on designing the circuits for very high performance taking place, timing
test becomes more and more important to ensure the temporal correctness of a circuit. The most
realistic model for timing faults is path delay fault model.

In a sequential circuit, a path is defined as an ordered set of gates {g1,92,...,gm}, where gy is
a primary input or a flip-flop and g, is a primary output or a flip-flop. Also, gate g; is an input
to gate giy1 (1 < i < m —1). A path has a delay fault if for any input sequence that generates
a rising or falling transition through the path, the propagation time of such transition exceeds a
specified clock period. Such a delay fault on a path is said to be a path delay fault (PDF). Let S
denote a sequential circuit and P denote a path in S. Let f be a rising (resp. falling) PDF on P
and let Sy be the faulty circuit of S in the presence of f. The fault is also denoted by P 1 (resp.
P |). The fault f is testable if there exists an input sequence t for S and Sy such that the following
conditions hold.

C1. A rising (resp. falling) signal transition is launched at the starting point (a flip-flop or a
primary input) of P in S by t.

C2. The transition launched at the starting point of P is propagated to the ending point (a flip-flop
or a primary input) of P along P in S by t.

C3. The captured or observed value induced by the transition at the ending point of P in Sy is
different from that of S.

C4. The output sequence of S and that of S are different.



Such an input sequence t is regarded as a PDF test sequence. As the first step of our work, we
consider only robust and non-robust path delay faults besides stuck-at faults.

2.2 Test Generation Complexity for Combinational Circuits with Single Stuck-
At Faults

It has been known theoretically for about three decades that the test generation complexity is
NP-complete, even for combinational circuits with single stuck-at faults. However, practically it
seems to be polynomial. Thanks to this empirical observation, we can discuss the test generation
complexity for several classes of circuits with a type of faults. Therefore, we have the following
assumption for our discussion.

Assumption: The test generation complexity for combinational circuits with stuck-at faults is
O(n") for some r larger than 2, where n is the size of a combinational circuit.

2.3 7F-Notation

To clarify the test generation complexity for several classes of circuits with stuck-at and path delay
faults and to compare the relationships between the test generation problems, we introduce 7%-
notation.

Pg: Test Generation Problem for Combinational Circuits C' with Faults of Type F

Instance: A combinational circuit ¢ € C' and a fault f € F.
Question: Is there a test pattern to detect f in ¢?

Pg: Test Generation Problem for Sequential Circuits S with Faults of Type F

Instance: A sequential circuit s € § and a fault f € F.
Question: Is there a test sequence to detect f in s?

Pf: Test Generation Problem for Class a with Faults of Type F

Instance: A sequential circuit s € o and a fault f € F.
Question: Is there a test sequence to detect f in s?

Definition 2.1. The time complexity of a problem P is the time complexity of the fastest algorithm
for the problem P. Let Pg,Pév and PI" be the test generation problem for class C, class S and
class v, respectively with faults of type F. Let TE(n), TL (n) and TY (n) be the time complexity of
PE, P and P, respectively where n is the size of the problem instance. TL (n), TE (n) and TL (n)
18 also called test generation complexity for class C, class S and class a, respectively with faults of
type F'.

Let TéSA (n) denote the test generation complexity for combinational circuits with single stuck-at
faults. We consider TéSA(n) as a basic unit of the time complexity of the test generation problem.
And, 7(n) is used to denote TE74(n) in the following text, where 7(n) = T&4(n) = ©(n") for some
constant 7 > 2, where n is the size of the problem instance.

Definition 2.2. T(n) is 7%-equivalent if and only if T(n) = O(7¥(n)) and 7%-bounded if and only
if T(n) = O(1*(n)), where k > 0.

Definition 2.3. Class a with faults of type F is T%-equivalent if and only if TE (n) = O(7%(n))
and T*-bounded if and only if TF (n) = O(7%(n)), where k > 0.



3 Test Generation Complexity for Combinational Circuits with
Path Delay Faults

As mentioned in the previous section, we assume that the test generation complexity for combina-
tional circuits with stuck-at faults is ©(n") for some constant r larger than 2 and it is denoted by
7(n). In this section, we consider the test generation complexity for combinational circuits with
robust and non-robust path delay faults based on 7*-notation.

A full leaf-dag is a combinational circuit such that a fanout and an inverter are only permitted
at the primary inputs and the output of an inverter is not allowed to have a fanout [3]. We define
a single-path leaf-dag CﬁD for path P and a path rising-smooth circuit Cﬁs based on [3] in order

to facilitate the following discussion.

Definition 3.1. A single-path leaf-dag Cf,D for path P 1s a combinational circuit such that a fanout
and an wmverter along P are only permitted at the starting point of P and the output of the inverter,
if one exists along P, 1s not allowed to have fanouts.

Definition 3.2. Let P denote a path in a given combinational circuit C. C can be transformed
mnto a single-path leaf-dag Cf,D for path P, by the single-path-leaf-transformation:

S1. P consists of an ordered set of gates {g1,92,...,gm}, where g1 is a primary input and g, is a
primary output. Also, gate g; ts an input to gate gj11 (1 < j < m—1). Let Pre(g;) denote a
set of predecessor gates {g1,92,...,gj—1} on P. Traversing from gm, if a gate g; has a fanout
of two or more, each gate in Pre(g;) with the connections to its immediate predecessor gates
are duplicated once. Let g) denote the duplicate of gy, where g, € Pre(g;). For each gy in
Pre(g;) and for each immediate successor gate hyiy of gi which is not on P, the connection
of gi to hpy1 is changed to the connection of g) to hyy1. The resulting path P is free of
fanout.

S2. Starting from g, along P, all the NAND (resp. NOR) gates on P are changed to the OR
(resp. AND) gates using De Morgan’s Law.

Let n denote the number of gates of a given combinational circuit. Let n, and n;) denote the
number of gates along P and the number of gates along P that are duplicated. Note that the size
of the resulting circuit after this transformations is n’ = n + n;,. Since n;, < np < n, the size of the
transformed circuit is at most 2n.

Definition 3.3. The I-edge of path P with input i in a single-path leaf-dag C%D refers to the first
connection of P after the inverter, if it exists. The I-edge 1s said to be associated with input 1.

Definition 3.4. A single-path leaf-dag CILDD for path P can be transformed into a path rising-
smooth circuit Cgs (resp. path falling-smooth circuit Cgs) for path P by the path rising-smooth
(resp. path falling-smooth) transformation:

S1. Let Qor (resp. Qanp) denote the OR gates (resp. AND gates) along P that have a Tising
(resp. falling) transition along. A gate may have no parity, 0, 1 or both parities. A gate
fed to the side-input of an OR gate (resp. AND gate) in Qogr (resp. Qanp) has parity 1
(resp. 0). Perform a reverse topological traversal of the gates Q) in the transitive fanout of 1,
to determane the parity of all gates along the side-paths to P where 1 is the primary input on
P. The parity s complemented across a NOT gate. If some fanouts of a gate have parity 1
and others have parity 0, the gate is assigned both parities.



S2 Duplicate the gates so that each resulting gate is either nothing, 0, or 1, but not both, depending
on its successor gates.

52.1 Traversing from the primary output g, on P, for each gate h; with a parity (parities)
and with a successor gate that is off path and without parity, h; and the connections to
its immediate predecessor gates are duplicated once and its duplicate h; has no parity.
For each immediate successor gate hjyi of h; that is off path and has no parity, the
connection from hj to hji1 is replaced by the connection from h; to hjy.

52.2 Traversing from the primary output gm, on P, each gate hj with both parities and the
connections to its immediate predecessor gates are duplicated once and assigned parity
1. Its duplicate h;- is assigned parity 0. For each immediate successor gate hjii of h;
that has parity 0 (1 if there is an inversion between h; and hjyy), the connection from
hj to hjy1 is replaced by the connection from h; to hjy1.

S3. Let input i denote the primary input on P. Assign 0 to any fanout branch of input i (or the
first connection after the inverter, if it exists on the fanout branch) that is connected to a gate
with parity 0 and 1 to any fanout branch of input i (or the first connection after the inverter,
if it exists on the fanout branch) that is connected to a gate with parity 1.

Let n denote the number of gates of a given combinational circuit. Note that the size of the resulting
circuit after the single-path-leaf transformation is n' = n + n;, where n;, < nyp <n. During the path
rising-smooth transformation on this circuit with size n’, the gates that are potential to be duplicated
are gates other than those on P and thewr duplicates, the number of which is n’—np—n;). Therefore,
the size of the resulting circuit is n" = 2n' —n, —nj, = 2n +ny, —ny for n' =n+n,. The size of
the resulting circuit is at most 2n because the mazimum value of n;, —ny 15 0 where n;, < np.

Example Figure 1 shows a combinational circuit(a), its full leaf-dag and rising smooth circuit, and
its single-path leaf-dag and path rising-smooth circuit for ¢2367x. Gate 1 is duplicated once while
gate 2 is duplicated twice in the transformation to a rising-smooth circuit (Figure 1(b)). Whereas,
only gate 2 is duplicated twice in transforming the circuit into a path rising-smooth circuit shown
in Figure 1(c).

Definition 3.5. [5] A vector pair < ¥,v > is a single-input-change (SIC) two-pattern test if there
exists a coordinate i such that v; = v; for the coordinate i of v and v; = v; for each coordinate j
other than 1.

Lemma 3.1. Let C denote a given combinational circuit with size n and P 1 (resp. P |) de-
note a rising (resp. falling) path delay fault(PDF). The time complezity of the single-path-leaf
transformation on C with P 1 (resp. P ) is O(n?).

Proof. Let the SuccessorGate of G denote an immediate successor gate of G. Let the PredecessorGates
denote all immediate predecessor gates of G. Let PI and PO denote primary input and primary
output respectively. The following shows the pseudocode for the single-path-leaf transformation.

Single-path-leaf transformation (C, P)
FOR each G on P from the PO //n+1 times
IF G has a fanout of more than one
SET FirstFanout as G

BREAK LOOP FOR



Figure 1: (a) A PDF ¢2367z 1. (b) A full leaf-dag (left) and a rising-smooth circuit (right) (¢) A
single-path leaf-dag (left) and a path rising-smooth circuit (right).



END IF
END FOR

FOR each G on P from FirstFanout to the PI //n+1 times
duplicate G as G’
connect G’ to PredecessorGates
FOR each SuccessorGate of G //n*n times
IF SuccessorGate is not on P THEN
Replace connection G to SuccessorGate by connection G’ to SuccessorGate
END IF
END FOR
END FOR

FOR each G on P from the PO to the PI //n+1 times
Change NAND gates and NOR gates to AND gates and OR gates, respectively
END FOR

The pseudocode proves the lemma. The proof for P | can be derived similarly.

O

Lemma 3.2. Let C denote a single-path leaf-dag with size n and P 1 (resp. P ) denote a rising
(resp. falling) PDF. The time complexity of the path rising-smooth (resp. path falling-smooth)

transformation on C with P 1 (resp. P |) is O(n?).

Proof. The proof is only for P 1. The similar proof can be derived for P | by considering AND
gates instead of OR gates and all the parity in the pseudocode below is complemented. Let g
denote the number of the OR gates on P while i denote the total number of gates on P and their
duplicates where g, h < n. Let SuccessorGate of G and PredecessorGates denote an immediate
successor gate and all immediate predecessor gates, respectively of G and ¢ denote the primary
input on P. Let PI and PO denote primary input and primary output respectively. The following

pseudocode proves the lemma.

Path rising-smooth transformation (C, P)
FOR the G at the side-input of each ORGate on P from PO to PI //g+1 times
IF there’s an inversion between G and ORGate THEN
Assign to G a parity O
ELSE
Assign to G a parity 1
END IF
END FOR

FOR each G from PO on P in the transitive fanout of PI i on P //n+1 times
FOR each SuccessorGate of G //n*n times
IF there is an inversion between G and SuccessorGate THEN
Assign to G a parity complemented to the SuccessorGate’s
ELSE
Assign to G a parity same as SuccessorGate’s
END IF
END FOR



END FOR

FOR each G with a parity //n-h+1 times
IF there’s an offpath SuccessorGate without parity THEN
Duplicate G as G’
Connect G’ to PredecessorGates
FOR each offpath SuccessorGate of G //(n-h)*(n-h) times
IF SuccessorGate has no parity
Replace connection from G to SuccessorGate
by connection from G’ to SuccessorGate
END IF
END FOR
END IF
END FOR
FOR each G with both parities //n-h+1 times
Duplicate G as G’
Connect G’ to PredecessorGates
Assign to G a parity 1
Assign to G’ a parity O
FOR each SuccessorGate //(n-h)*(n-h) times
IF the parity is O
(1 if there is an inversion between G and SuccessorGate) THEN
Replace the connection from G to SuccessorGate
by a connection from G’ to SuccessorGate
END IF
END FOR
END FOR

FOR each G connected to i //2n times
Assign to G 1 if the parity is 1
Assign to G O if the parity is O

END FOR

Lemma 3.3. The time complexity of SIC two-pattern n-bit test transformation is O(n).

Proof. Let v denote a test obtained from a test generation. The first pattern © can be derived by
complementing the value v; for 9; and duplicate other v; for ¥;, where 7 # j based on the definition
of SIC, which can be done in linear time. O

Definition 3.6. A fanout-inverter-free single-path leaf-dag Cfv’g for path P 1s a single-output single-
path leaf-dag CILDD for path P that satisfies the following conditions:

C1. P consists of an AND gate and does not have fanout and inverter.
C2. There exists a transitive fanin cone of ¢ that is the side-input of AND gate along P.

Figure 2 shows the fanout-inverter-free single-path leaf-dag. Let C’II;D, CII,{S and Cﬁg denote
the classes of single-path leaf-dags, path rising-smooth circuits and fanout-inverter-free single-path



Figure 2: A fanout-inverter-free single-path leaf-dag.

leaf-dags for path P, respectively. Based on Definitions 3.2 and 3.4, C{ag C C’f‘,D and Cﬁg C CII}S.
Note that the transitive fanin of ¢ can be any combinational logic. It is well-known that the com-
binational test generation problem for combinational circuit C with stuck-at faults is polynomially
transformable into CIRCUIT-SAT(C”) problem where C’ is an XOR function of circuit C' and its
faulty circuit Cy. It is obvious that CIRCUIT-SAT(C”) problem can be transformed polynomially
into the test generation for fanout-inverter-free single-path leaf-dags C{ag for path P with robust
PDFs at path P where ¢ = C’.

Lemma 3.4. v is a test for a SAF f in C if and only if <v+0,v+1> (resp. <v+1,v+0>) s
a robust test for the P 1 (resp. P ) in the corresponding fanout-inverter-free single-path leaf-dag
CED for P with c = C & Cy where v + b means the concatenation of vector v and bit b that is a
value at the primary input of P.

Proof. If part: < v+ 0,v 41 > is a robust test for the P 1 in a fanout-inverter-free single-path
leaf-dag Cﬁg with ¢ = C'@® Cy. The partial two-pattern vector < 0,1 > launches the P 1 while the
partial two-pattern vector < v,v > generates the stable non-controlling values at the side-input of
AND gate on P. This means ¢ = C' @ Cf has a stable value 1 under < v +0,v + 1 >. Therefore, v
is a test for SAF f in C.

Only if part: v is a test for SAF f in C. v generates 1 at ¢ as ¢ is a boolean circuit casting the
CIRCUIT-SAT problem that is equivalent to the test generation problem of SAF f. By applying
< v,v > to the partial circuit ¢, stable non-controlling values are generated at the side-input of
AND gate on P. Therefore, < v+ 0,v 4+ 1 > is also a robust test for the P 1. O

Lemma 3.5. The test generation complexity for fanout-inverter-free single-path leaf-dags for path
P with robust PDFs at path P is equivalent to the test generation for combinational circuits with
SAFs, which 1s T-equivalent.

Proof. Lemma 3.4 proved the equivalence of test generation problems for fanout-inverter-free single-
path leaf-dags with PDF's and combinational circuits with SAFs, where combinational circuits with
SAFs is assumed 7-equivalent. Il

Lemma 3.4 and 3.5 will be used as part of the proofs of the test generation complexity for PDF's
and SDFs in this section and the following section.

Lemma 3.6. The test generation complexity for combinational circuits with SAFs at primary
mputs 1s T-equivalent.
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Proof. In the beginning of the paper, combinational circuits with SAFs is assumed T-equivalent.
According to the definition of I-edge, a primary input is a special case of I-edge. And, Lemma 3.5
shows that the test generation complexity for a subclass of combinational circuits with SAFs at
I-edges is 7-equivalent. Lemma 3.6 is proved. ]

3.1 Test Generation Complexity for Robust Path Delay Faults

This section discusses the test generation complexity for combinational circuits with robust path
delay faults.

Lemma 3.7. [3] < v1,vy > is a robust test for the P 1 (resp. P |) in the path rising-smooth-circuit
C}ISS for P, if and only if < vi,v9 > is a robust test for the P 1 (resp. P |) in the single-path
leaf-dag CIED for P.

Proof. The following is the proof for the case of P 1. The proof for the case of P | can be done
analogously by considering AND gates instead of OR gates. Let ¢ be the input of P. Let Py denote
the side-paths to OR gates along P in CﬁD, such that the I-edge of each @) € Py is associated with
input .

If part: < vy,v9 > is a robust test for the P 1 in Cf,D. By the definition of robust test, each
side-input along path @) € P; to an OR gate along P in C’IED is at a steady non-controlling value
(0) value with no transitions although there is a transition at the I-edge of each ) € P; associated
with 4 on the application of vy after v1. This implies that asserting any constant value at the I-edge
of each Q € Pr in Cgs leaves the value on these side-inputs unchanged under < vy,vs >. Hence
< w1,v9 > remains a test for P in Cﬁs.

Only if part: Only the I-edges of paths in P; are set to 1 or 0 according to their parities in
obtaining Cﬁs from CﬁD. By the definition of robust test, each side-input to OR gates along P
in C}ISS is at a steady non-controlling(0) value. This implies that the constants 1 or 0 asserted
at the I-edge of each path in P; according to their parities does not propagate to the side-inputs
of these OR gates. Otherwise, the side-inputs to the OR gates are not guaranteed to be at non-
controlling value under vy. In other words, none of the transitions at the corresponding I-edges
in CﬁD propagate to the side-inputs of OR gates along P. Since the side-inputs of all other gates
along P are same in Cf,D and C{;S, < v1,V9 > is a robust test for P in Cf,D. O

Lemma 3.8. [3] v is a test for the SAO(resp. SA1) fault at the I-edge of P in the CES for path P
if and only if the SIC vector < ©,v > is a robust test for the P 1(P |) in CEP.

Proof. If part: Let < v,v > be a robust test for the P 1 in Cf,D. Then it is also a robust test for
the P 1 in Cﬁs according to Lemma 3.7. The output P is 1 when v is applied to the CIIES for P.
Consider what happens in the presence of the SA0 fault at the I-edge of P in C;)%S under vector v.
By the definition of robust test, each side-input to the OR gates on P is at a non-controlling value
under v. The I-edge of P is 1 (in the absence of the fault) under vector v in Cgs. Hence v is a test
for the SAQ fault at the I-edge of P in Cﬁs.

Only if part: Let v be a test vector for the SA0Q fault at the I-edge of P in the CIID%S for P. 1 is
the only input in C;)%S that changes under the vector pair < v,v >. Let Pg denote the side-paths
to P whose I-edges are not associated with 7. Each side-input to P that belongs to a side path
in Pg must be at a non-controlling value under v; this is due to the test condition for the SAF.
Among the remaining side-inputs, let I,,4 denote the side inputs that meet P at an AND gate,
and let I, denote the side-inputs that meet P at an OR gate. I, is empty by construction of
the C’ﬁs because the side-paths to OR gates on P that have i as inputs have been separated to
form new inputs during the transformation. Since a SA0 fault is being tested, each side input to
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P in I,,q is at value 1 in Cﬁs under v (in the absence of the fault). Apply the vector ¥ to the
circuit. The side-inputs to P in I,,q may be at either value 0 or 1. Then, apply the vector v. The
side-input to P in I,y may change to 1, or they may remain at 1, possibly with dynamic or static
hazards, respectively. All the other side-inputs to P remain at hazard-free non-controlling values,
since the transition on ¢ under the vector pair cannot propagate to these side-inputs in the CIIES.
The transition that propagates along P is a 0-to-1 transition, which propagates a delay fault at
each AND gate along P irrespective of the presence of hazards on the side-inputs, provided the
side-inputs have a final value of 1. Since this condition holds, < ¥,v > is a robust test for the rising
transition along P in CIIES, and hence in CﬁD. O

Lemma 3.9. The test generation for combinational circuits with robust PDFs and the test gener-
ation for path rising-smooth circuits with SAFs at I-edges are equivalent, which are T-bounded.

Proof. Lemma 3.7 and 3.8 have proved the equivalence between the test generation for combina-
tional circuits with robust PDF's and the test generation for path rising-smooth circuits with SAF's
at I-edges. Therefore, a two-pattern robust test on a combinational circuit C for P 1 (resp. P |)
can be performed using combinational test generation for SAFs by the following procedure.

S1. Perform the single-path-leaf transformation for P on C' and the resulting circuit is Cf,D.

S2. Perform the path rising-smooth transformation (resp. path falling-smooth transformation)
on CﬁD for P and the resulting circuit is Cﬁs for path P.

S3. Perform the combinational test generation for SAO (resp. SA1) at the I-edge associated with
1 in C;,%S. Let v denote the test.

S4. Transform v into the SIC two-pattern test < v,v >.

Let n be the size of a given combinational circuit C. Let Tspr, TpPRrs, TESA and Tp denote the
time complexity of the single-path-leaf transformation, the time complexity of the path rising-
smooth transformation, the combinational test generation for combinational circuits with single
SAFs and the two-pattern transformation. Let Ngpr, Nprs, NéSA and Np denote the problem sizes
of the single-path-leaf transformation, the path-rising-smooth transformation, the combinational
test generation for combinational circuits with single SAFs and the two-pattern transformation,
respectively. According to Lemma 3.1-3.3 and for Ngp;, = n, n < Nprg < 2n, n < NéSA < 2n
and Np < n. Therefore, the test generation complexity is

TP (n) = Tspr(Nspr) + Trrs(Nprs) + O(TEA(NE!)) + Tp(Np)
= O(Npy) +O(Npgs) + O(T(NE*Y)) + O(Np)
= 0(n?) +0(n* + O0(r(2n)) + O(n)
= O(7(n)).

O

Theorem 3.1. The test generation complexity for combinational circuits with robust PDF's is equiv-
alent to the test generation complexity for combinational circuits with SAF's, which is T-equivalent.

Proof. To prove that the test generation for combinational circuits with robust PDFs and the test
generation for combinational circuits with SAFs are equivalent, we need to show that the test
generation for combinational circuits with SAFs is equivalent to that for a subclass of path rising-
smooth circuits with robust PDF's in addition to Lemma 3.9. Since fanout-inverter-free single-path
leaf-dags is a subclass of single-path leaf-dags, Lemma 3.5 and Lemma 3.9 prove the theorem. [J
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3.2 Test Generation Complexity for Non-Robust Path Delay Faults

This section elaborates the test generation complexity for combinational circuits with non-robust
path delay faults.

Lemma 3.10. v is a test for the SAO(resp. SA1) fault at the I-edge of P in the CEP for path P
if and only if < ©,v > is a non-robust test for the P +(P |) in C5P.

Proof. If part: Let < ¥,v > be a non-robust test for P 1 in CIQD. The output of P is 1 when v is
applied to CIQD. Consider the case of the presence of SAQ at the I-edge of P in CILDD under vector
v. From the definition of non-robust test, each side-input to P is at a non-controlling value under
v. The I-edge of P is 1 under v in the absence of the fault P 1. According to test condition, the
SAQ is excited and its fault effect propagates to the output in Cf,D. Hence v is a test for the SAQ
fault at the I-edge of P in CﬁD.

Only if part: Let v be a test vector for the SA0 at the I-edge of P in CﬁD. 1 is the input that
changes under the vector pair < 9,v >. Under the test condition, the side inputs along P are at
non-controlling value under v. When vector v is applied, the side-inputs to P may be at either
value 0 or 1. The side-inputs to P may change to non-controlling value or remain at non-controlling
value. According to the definition of non robust test, only the second vector of side-inputs must be
non-controlling value. Thus, < ©,v > is a non-robust test for P 1 in CﬁD. O

Lemma 3.11. The test generation for combinational circuits with non-robust PDFs 1s equivalent
to the test generation for single-path leaf dags with SAFs at I-edges, which s T-bounded.

Proof. Based on Lemma 3.10, the following procedure generates a two-pattern non-robust test on
a combinational circuit for SAFs test generation method.

S1. Perform the single-path-leaf transformation on C' with path P. The resulting circuit is called
single path-leaf-dag CﬁD for P.

S2. Perform the combinational test generation for SAQ (resp. SA1) at I-edge of P associated with
1 in CILDD. Let v denote the test.

S3. Transform v into the SIC two-pattern test < v,v >.

Let n be the size of a given combinational circuit C. Let Tspy, TéSA and Tp denote the time
complexity of the single-path-leaf transformation, the combinational test generation for single SAF's
and the two-pattern transformation. Let Ngpr, NgSA and Np denote the problem sizes of the
single-path-leaf transformation, the combinational test generation for single SAFs and the two-
pattern transformation, respectively. According to Lemma 3.1 and 3.3 and also for Ngpr, = n,
n < Né,SA < 2n and Np < n. Therefore, the test generation complexity is

TEPP(n) = Tspr(Nspr) + O(TEHNE?)) + Tp(Np)
= O(Nipp)+ O(r(NF™) + O(Np)
= 0(n®)+0((2n)) + O(n)
= O(7(n)).
J

Theorem 3.2. The test generation complexity for combinational circuits with non-robust PDFs
18 equivalent to the test gemeration complexity for combinational circuits with SAFs, which is T-
equivalent.
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Proof. To show that the test generation for combinational circuits with PDFs and the test genera-
tion for combinational circuits with SAFs are equivalent, we need to prove that the test generation
for combinational circuits with stuck-at faults is equivalent to the test generation for a subclass of
single-path leaf-dags with faults of a subclass of PDF. Since fanout-inverter-free single-path leaf-
dags is a subclass of single-path leaf-dags and robust PDF is a subset of non-robust PDF, Lemma
3.5 in addition to Lemma 3.11 proves the theorem. ]

From Theorems 3.1 and 3.2, we can see that the combinational test generation complexity for
robust and non-robust PDF's is 7-equivalent.

4 Test Generation Complexity for Combinational Circuits with
Segment Delay Faults

In Section 3, we showed that the combinational test generation complexity for robust and non-
robust PDF's is T-equivalent. In this section, we consider segment delay faults (SDFs) and evaluate
the test generation complexity for combinational circuits with those faults. The result will be used
in Sections 5 and 6 to study the test generation complexity for acyclic sequential circuits with

PDFs.

Definition 4.1. An n-bit vector v; consists of (v, v}, ...,’Ué', o ob).

Definition 4.2. A segment-leaf-dag CLP for segment S (S = {g1,92,...,gm}) is a combinational
circust such that a fanout and an inverter are only permitted at g1 of the segment S and the output
of an inverter along S is not allowed to have a fanout.

Definition 4.3. Let S denote a segment in a given combinational circuit C. C can be transformed
mto CSLVD, by the segment-leaf transformation:

S1. S consists of an ordered set of gates {g1,92,...,9m}, where the output of g1 is the starting
point of S and the output of gn is the ending point of S, respectively. Also, gate g; is an
input to gate gi11 (1 <i <m —1). Let Pre(g;) denote a set of gates {g2,93,...,gi—1} on S.
Traversing from g, if a gate g; has a fanout of two or more, each gate in Pre(g;) with the
connections to its immediate predecessor gates are duplicated once. Let g} denote the duplicate
of g;, where g; € Pre(g;). For each g; in Pre(g;) and for each immediate successor gate hjqq
of gj, the connection from g; to hji1 is changed to the connection from g;. to hjy1 of hjyq s
not on S. The resulting segment S s free of fanout.

S2. Starting from gm along S, all the NAND (resp. NOR) gates on S are changed to the OR
(resp. AND) gates using De Morgan’s Law.

Note that the segment-leaf-transformation is defined analogously to the single-path-leaf trans-
formation by considering segment S instead of path P.

Definition 4.4. The S-edge of segment S with starting point s in a segment-leaf-dag CéD refers
to the first connection of S after the inverter, if it exists. The S-edge 1s said to be associated with
s.

Example Figure 3 shows a combinational circuit (a) and its segment leaf-dag for segment s45e
(b). Gate 4 is duplicated so that S is free of fanout while Gate 5 and Gate 41 are changed to OR
gate and AND gate respectively using De Morgan’s law so that the inverters exist only at s along

S.
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Figure 4: Segment transition-smoother

Definition 4.6. A segment-leaf-dag CgD for segment S can be transformed into a segment-rising-
smooth circuit Cgs (resp. segment-falling-smooth circuit Cgs) for segment S by the segment-
rising-smooth (resp. segment falling-smooth) transformation:

S1. Analogous to S1 in Definition 3.4 by considering segment S instead of path P and the reverse
topological traversal 1s performed as follows:
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Perform a reverse topological traversal of the transitive fanout of the transitive fanout of the
primary inputs that are in the transitive fanin of g1 on S(= {g1,92,---s gm})-

S2. Analogous to S2 in Definition 3.4 by considering segment S(= {g1, g2, ..., gm}) instead of path
P(: {gl,gz, ,Qm})

S8. Let Cop denote the transformed circuit after the above two steps. Cop s called the second
pattern partial circuit. Duplicate the transitive fanin of S-edge of Cop as Cip, which s called
the first pattern partial circuit. Each primary input i1p in Cip has a corresponding primary
wmput i9p tn Cop. Fach gate g1p in Cip has a corresponding gop in Cyp. Let sop denote
the starting point of Sop. Insert a segment transition-smoother STS to a primary input iop
if iop has an tmmediate gate with parity 0 or 1 by connecting the inputs i1p of C1p and igp
of Cyp to the inputs Vo and Vi of STS, respectively and connecting Dy and Dy of STS to the
immediate gates with parity 0 and 1, respectively. Note that when the segment S s also a
path P, no first partial circuit Cip s generated and this step is same as S3 in Definition 3.4.

Let n denote the number of gates of a given combinational circuit and n,; denote the number
of gates along S. Let n/, denote the number of gates along S that are duplicated where n!, < n.
Note that the size of the resulting circuit after the segment-leaf transformation is n"”’ = n + n/,
where n), < ng < n. Let ngs denote the number gates resulted from the insertion of STS. During
the segment-rising-smooth transformation on the segment leaf-dag with size n/’, the gates that
are potential to be duplicated in step 2 are gates other than those on S and their duplicates, the
number of which is at most n”' —ngs — n. Therefore, the size of the resulting circuit after step 2
" —ng —nj or 2n + nj — ng for n' = n + n). The number of gates duplicated in
step 3 is the number of gates composing the transitive fanin of the starting point of S, which is
ne < 2n — 2ng. The number of gates ng is at most 2n — 2n, as each STS is composed by 2 gates.
Therefore, the size of the resulting circuit is n'" < 2n + nl, — ng + ne + ngs = 6n + nl, — 5ns. The
size of the resulting circuit is at most 6n — 5.

1s at most 2n

Lemma 4.1. Let n denote the size of a given combinational circuit C. The time complexity of the
segment-leaf transformation on C is O(n?).

Proof. Segment-leaf transformation is composed of two steps, which are duplication of each gate
along segment S at most once and moving all the inverters on S to the starting point s. The
pseudocode is similar to the pseudocode of the single-path-leaf transformation in Lemma 3.1 except
that segment .S from the starting point s to the ending point e is considered instead of path P from
the primary input to the primary output. The pseudocode proves the lemma. O

Lemma 4.2. Let C denote a segment-leaf-dag and S 1 denote a rising SDF wn C. The time
complexity of the segment rising-smooth transformation on C is O(n?).

Proof. isp means a primary input of C' while 41p means a primary input of the duplicate of C.
STS(i,7) denotes STS with inputs 4 and j. The following pseudocode proves the lemma.

Segment rising-smooth transformation (C, S)
Pseudocodes corresponding to S1 and S2 in Definition 4.6 are

analogous to those corresponding to S1 and S2 in Definition 3.4 and
thus are omitted here.
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Duplicate the circuit C //2n times
FOR each primary input i //n+l times
FOR each G connected to i //2n*n times
IF the parity of G is 1 THEN
replace the connection i to G by connection D; of STS(isp, i1p) to G
ELSE IF the parity of G is O THEN
replace the connection i to G by
connection Dy of STS(isp, t1p) to G
END IF
END FOR
END FOR

O

In the following subsection, we will show that the test generation problem for combinational cir-
cuits with SDF's is reducible to the test generation problem for its transformed circuits with double
SAFs. Therefore, we discuss the time complexity of the double SAF test generation beforehand.

Lemma 4.3. The test generation complexity for combinational circuits with double SAFs is equiv-
alent to the test generation complexity for combinational circuits with single SAFs, which s T-
equivalent.

Proof. A circuit with a multiple fault can be represented by a model containing an SAF by adding m
extra gates, where m is the multiplicity of the faults. In the case of test generation for combinational
circuits with double SAF's, extra two gates are added to the original circuit. Therefore, the test
generation for double SAFs has same complexity as that for single SAF's. O

4.1 Test Generation Complexity for Segment Delay Faults

This subsection discusses the test generation complexity for combinational circuits with segment
delay faults.

Lemma 4.4. Let u 4+ v denote the concatenation of vectors u and v, where u consists of a vector
at the second pattern primary inputs Iop and v consists of a vector at the first pattern primary
mputs I1p of Cgs. < up,uy >=< v1 + v1,v2 +v1 > is a robust test for the S T in the segment
rising-smooth circust CSES for S, if and only if < v1,vy > is a robust test for the S 1 in the segment
leaf-dag CgD for S.

Proof. If part: < vy,vs > is a robust test for the S 1 in Cg’D for S. By the definition of robust
test, the side-inputs of the OR gates along S in CgD are at a steady non-controlling (0) value with
no transitions on the application of vy after v1. Let Pg be a set consisting of all the side-paths to
OR gates along S. This means the transitions at each I-edge of ) € Ps do not propagate under
the application of < v1,v2 >. Let uj denote a vector bit of vector u, at the input z. With the
segment transition-smoother in CSRS, a constant is assigned to the fanout branch of a second pattern
primary input i9p according to the parity of the gate connected to the fanout branch if ufzp #+ uflp
under vector ug. Let I1p and I,p denote all first pattern primary inputs and all second pattern
primary inputs, respectively. Since u%lp = u}zp = v1, a constant is assigned to the fanout branch
of a primary input 42p according to the parity of the gate connected to the fanout branch in Cgs,
which has an STS, when there is a transition at 42p (u%zp # uzlzp which also means ulzzp # u%lp)
under < u1,us >. Since the second pattern partial circuit Cop of Cgs is functionally equivalent
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to Cé’D, the second pattern primary inputs Irp of C’SES that are assigned with constants under
< u1, Uz > are corresponding to the primary inputs of CgD that have transitions under < vy, v9 >.
Since all the paths from the primary inputs with constants are the paths in Pg in Cgs and the
transitions on the corresponding primary inputs in CgD do not propagate to the side-inputs of the
OR gates on S, the values of the gates in the transitive fanout of the side-inputs to the OR gates
on Syp in C’gs are same with those on S in C%S. Under u1(= v1 + v1), no constants are assigned
n Cgs since u}zp = u}lp and thus S 71 is initialized. Therefore, < ui,us >=< vy +v1,v9 +v1 > is
a robust test for the S 1 in the segment-rising-smooth circuit Cgs for S.

Only if part: Since < uq,us >=< v1+v1,v2+v1 > is a robust test for S in Cgs, each side-input to
OR gates along S is at a steady non-controlling (0) value. This implies that the constants (assigned
according to the parities) asserted on the primary inputs due to ullzp #+ u?zp do not propagate to the
side-inputs of OR gates along S. Since u}zp = v1 and u%zp = vy and the second pattern primary
inputs Iyp in C’gs that are assigned with constants are corresponding to the primary inputs in
C§D that have transitions under < vj,vs >, the transition on the primary inputs in CSLvD do not
propagate to the side-inputs of OR gates along S under < vy, vy >. Also, the values of all the gates
without parity in the transitive fanout of the side-inputs to the OR gates on Ssp in Cgs and those
on S in CéD are same. Therefore, < v1,vs > is a robust test for S in CéD. O

Lemma 4.5. us = vy + vy 18 a test for the double SAF of SAO at the S-edge of Sop and SA1 at
the S-edge of S1p in C’gs if and only if < vi,ve > 15 a robust test for S 1 in CgD.

Proof. If part: Let < vy,v9 > be a robust test for the S 1 in C%D. Then, from Lemma 4.4,
< ui,uy >=< w1 +v1,v9 + v1 > is a robust test for the S 1 in Cgs. The starting point s and the
ending point e of Syp are 1 when uz(= vy + v1) is applied to CES in a fault-free case. This means
SAQ is activated and propagated to e. Based on condition 4 of the definition of SDF, the difference
at e is propagated to a primary output under vy + vy in Cgs. Let Pg denote a set consist of all
the side-paths to OR gates along Syp. Since the transitions at the I-edges of the paths in Pg do
not propagate to the side inputs of OR gates on Ssp, the constants assigned to the corresponding
primary inputs of those I-edges do not propagate to the side-inputs of OR gates on Syp and also
other part of the circuit. So, vs + v; also propagate the fault effect of SAO at e to the primary
output. The partial vector vy of v1 + v; of < wy,us > assigns to the S-edge of Syp a value 0 in
order to initialize P 1. This implies v; of vy + v; assigns to the S-edge of Sip a value 0. This
activates and propagate the SA1 to the primary output s.y. Hence, vs + v is a test for the SAO at
the S-edge of Syp and SA1 at the S-edge of S1p in CSES.

Only if part: Let vs 4+ v1 be a test for the SAQ at the S-edge of Sop and SA1 at the S-edge of
Sip in Cgs. The partial vector v; of vg + v1 is a test for SA1, which assigns 0 to the S-edge of
Sip under the fault free case while the partial vector vy is a test for SA0O, which assigns 1 to the
S-edge of Sop This implies the partial vector v; of v; + v initializes and launches the S 1 under
< uy,ug >. According to the SAF test condition, all the side-inputs of the gates along Sop are at
the non-controlling value and the fault effect of Syp propagate to a primary output under vy + vy.
In order to propagate the fault effect of SAQ at the S-edge of Sop, the constants asserted by the
STSs to the primary inputs do not propagate to the side-inputs of the OR gates along Sop. A

2 =l , transitions at the
Jip J2pP

primary inputs launched by < wuy,us > do not propagate to the side inputs of OR gates along S.
This satisfies the definition of robustly testable SDF. Therefore, < v1 + v1,v9 + v1 > is a robust
test for S 1 in C’gs and according to Lemma 4.4, < v1,v9 > is also a robust test for S 1 in CgD

for S. O

constant is only asserted to a primary input j if u;?zp #+ u;?lp. Since u
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Figure 5: (a)A combinational circuit. (b)A segment leaf-dag. (c)A segment rising-smooth circuit.
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Lemma 4.6. The test generation for combinational circuits with robust SDF's is equivalent to the
test generation for segment-rising-smooth circuits with SAFs at S-edges, which 1s T-bounded.

Proof. Lemma 4.4 and Lemma 4.5 show the equivalence of the test generation for combinational
circuits with SDFs and its segment rising(falling)-smooth circuits with SAFs at S-edges. Therefore,
test generation for combinational circuits using test generation for combinational circuits with SAF's
can be performed by the following procedure.

S1. Perform the segment-leaf transformation for segment S on a given combinational circuit C
and the resulting circuit CgD is called segment-leaf-dag.

S2. Perform the segment-rising-smooth transformation (resp. segment falling-smooth transfor-
mation) on CgD for segment S and the resulting circuit is Cgs.

S3. Perform the combinational test generation for SAQ at the S-edge of S and SA1 at the S-edge
of S; in Cgs. Let v1 + v9 denote the test.

S4. Transform vy + v into the robust two-pattern test < vi, vy >.

Let n be the size of a given combinational circuit C. Let Tsy, Tsrs, Tg’SA and Tp denote the
time complexity of the segment-leaf transformation, segment-rising-smooth transformation, the test
generation for double SAFs and the two-pattern test transformation. Let Ngr, Nsgrs, Ng@SA and
Np denote the problem size of the segment-leaf transformation, segment-rising-smooth transforma-
tion, the combinational test generation for double SAFs and the two-pattern test transformation,
respectively. According to Lemmas 4.1-4.3 and for Ng;, = n, n < Ngrs < 2n, 2n < Ng,lSA <6n-—>5

and Np < n. Therefore, the test generation complexity is

TP (n) = Tsi(Nsi)+ Tsrs(Nsrs) + O(TESH(NESY)) + Tp(Np)
O(N3L) + O(Nigs) + O(r(NZ*4)) + O(Np)

O(n?) + 0(4n?) + O(1(6m)) + O(n)

O(7(n))

IN

O

Figure 5 shows a combinational circuit with a SDF 345 1(a), its corresponding segment-leaf-dag
for segment 345 (b) and its corresponding segment-rising-smooth circuit for 345. The two-pattern
test at the inputs ABC of the original circuit is < 111,101 >.

Theorem 4.1. The test generation complexity for combinational circuits with robust SDFs 1s equiv-
alent to the test generation complexity for combinational circuits with SAF's, which is T-equivalent.

Proof. A segment-rising-smooth circuit is also a path rising-smooth circuit when the starting point
and the ending point of a segment S are also the primary input and the primary output of the
circuit, respectively. Therefore path rising-smooth circuits is a subclass of segment-rising-smooth
circuits. To prove this theorem, it is sufficient to show that the test generation for combinational
circuits with SAFs can be reduced to the test generation for fanout-inverter-free single-path leaf-
dags with robust PDFs, which is a subclass of path rising-smooth circuits. Lemma 3.5 and Lemma
4.6 prove the theorem. O
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4.2 Test Generation Complexity for Non-Robust Segment Delay Faults

Definition 4.7. CSLvD' 18 the transitive fanin of S-edge of C’g’D, whach has only one primary output
at S-edge.

Lemma 4.7. vy s a test for the SAO fault at the S-edge of S in the Cg’D for segment S and vy is
a test for the SA1 fault on the primary output in the CgD' if and only 1f < vy,vy > is a non-robust
test for the S 1 in Cé’D.

Proof. If part: Let < vy,vs > be a non-robust test for §' 1 in CgD. Consider the presence of SAQ
at the S-edge of S in CgD under vector vy. From the definition of non-robust test and SDF, each
side-input of S is at a non-controlling value under vy and the difference at the ending point e of S
under the presence of S 1 is propagated to a primary output. Under the fault-free case, the S-edge
of §'is 1 after the application of vy. According to test condition, the SAO fault is activated and the
fault effect thus propagates to the same output as the difference at e does in the case of SDF in
C%D. Hence vy is a test for SAO fault at S-edge of S in CéD. Since v; assigns 0 to the S-edge of
C§D in order to initialize the S 1, v; activates the SA1 fault at the primary output of Cé’D’, which
is corresponding to the S-edge of S in CgD and the fault effect propagates to the primary output.
Only if part: CgD' is functionally and structurally equivalent to the transitive fanin of the S-edge
in CéD. Let vy be a test for the SAO on the S-edge of S in CgD and vy be a test vector for the
SA1l at the S-edge of S in Cé’D'. According to the test condition, 1 is assigned to the primary
output in CgD and all the side inputs of gates along S in C%D are at non-controlling value. The
fault effect also propagates to a primary output under ve. This implies that the difference of the
transition caused by S 1 taking place at the ending point e of S is observable at the primary output
after applying < vy,vs >. 0 is assigned to the primary output in Cg’D’ under v1. Thus the S 71 is
initialized. Therefore, < v1,vs > is a non-robust test for S 1 in C§’D. O

Lemma 4.8. The test generation for combinational circuits with non-robust SDFs is equivalent to
the test generation for segment leaf-dags with SAFs at S-edges, which is T-bounded.

Proof. Different from test generation for robust SDFs, segment-rising(falling)-smooth transforma-
tion is not needed for the test generation for non-robust SDFs. The following procedure explains
the test generation for combinational circuits with non-robust SDFs by using the combinational
test generation method for SAFs verified by Lemma 4.7 that shows the equivalence of the test
generation for combinational circuit with SDFs and that for segment leaf-dag with SAF's:

S1. Perform the segment-leaf transformation for SDF's.
S2. Generate CEP’ from CLP.

S3. Generate the second test vector vy by the combinational test generation for SA0 (SA1) at the
S-edge of S in C’é’D.

S4. Generate the first test vector v; by the SAF test generation of SA1 (SA0) at the S-edge of S
in CLP'.

S5. Transform vy and vy into the non-robust two-pattern test < vy, vy >.

Let n be the size of a given combinational circuit C. Let Tsr,, Tg’SA and Tp denote the time com-

plexity of the segment-leaf transformation, test generation for double SAFs and the two-pattern
test transformation. Let Ngy, Ng@SA and Np denote the problem size of the segment-leaf trans-
formation, the double SAF combinational test generation and the two-pattern test transformation,

21



respectively. According to Lemma 4.1 and Lemma 4.3, and also for Ng;, =n, n < N(G"SA < 4n and
Np < n. Therefore, the test generation complexity is
TEP(n) = Tsp(Nsp) + O(TESH(NESY)) + Tp(Np)
= O(N3p)+ O(r(N&S%)) + O(Np)
O(n?) + O(7(4n)) + O(n)
O(7(n))

IN

O

Theorem 4.2. The test generation complexity for combinational circuits with non-robust SDFs
18 equivalent to the test gemeration complexity for combinational circuits with SAFs, which is T-
equivalent.

Proof. In order to show that the test generation for combinational circuits with non-robust SDF's
and the test generation for combinational circuits with SAF's are equivalent, we need to prove that
the test generation for combinational circuits with SAFs is equivalent to the test generation for a
subclass of segment leaf-dags with non-robust SDFs besides proving Lemma 4.8. Since segment
leaf-dag is a path leaf-dag when the starting point and the ending point of S are also the primary
input and the primary output of the circuit, respectively, segment leaf-dags is a superclass of path
leaf-dags. Moreover, a robust testable segment delay fault is also a non-robust testable segment
delay fault but the converse is not true. Therefore, Lemma 3.5 and Lemma 4.8 are sufficient to
prove the theorem. ]

5 Test Generation Complexity for Acyclic Sequential Circuits with
Stuck-At and Path Delay Faults

Based on the theoretical results in the previous section, we address the reducibility of the test
generation for acyclic sequential circuits with PDF's to that for combinational circuits with SAFs.
Two clocking schemes are considered here, namely slow-fast-slow clock and rated clock. Slow-fast-
slow clocking scheme applies slow clock during justification and propagation while rated clocking
scheme requires system clock during all the phases of the test generation. Different from test
generation for PDFs, we consider only rated clocking scheme in test generation for SAFs. In the
case of the acyclic sequential circuits, which are not internally balanced, slow-fast-slow clock is
assumed so that each PDF P in S4 corresponds to only one SDF S in its time expansion model
(TEM) Cg(S4). In the test generation for PDFs, we discuss the processes of transforming an acyclic
sequential circuit to its combinational equivalent. From that point, we show the relationships of
the test generation for acyclic sequential circuits and that for combinational circuits. Since we have
proved that the test generation complexity for combinational circuits with robust and non-robust
path delay faults are equivalent, for simplicity we denote the robust and non-robust path delay
faults as path delay faults.

5.1 Balanced Sequential Circuits

[2]Let a directed graph G = (V, A, H) represents a sequential circuit. V represents a set of clouds
where each cloud is a maximal region of connected combinational logic such that its inputs are
either primary inputs or outputs of registers and its outputs are either primary outputs of inputs
to registers. A represents a set of connections between two clouds through a register. Arcs in
H C A represent HOLD registers. A sequential circuit is said to be a balanced sequential circuit if
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Cl. G is acyclic;
C2. Vu;,v; € V, all directed paths (if any) from v; to v; are of equal length;

C3. Vh € H, if h is removed from G, the resulting graph is disconnected.

5.1.1 Test Generation Complexity for Stuck-At Faults

Previous work[2] showed that a balanced sequential circuit can be transformed polynomially into
its combinational equivalent by replacing all flip-flops by wires, proving the equivalence of the test
generation for balanced sequential circuits with stuck-at faults and its combinational equivalents
with stuck-at faults.

Theorem 5.1. The test generation complexity for balanced sequential circuits with SAFs is equiv-
alent to the test generation complexity for combinational circuits with SAF's, which is T-equivalent.

5.1.2 Test Generation Complexity for Path Delay Faults

Definition 5.1. [8] Let G be a circuit graph of a balanced sequential circuit SB. The following
discussion considers only one output cone circuit Sg" of 8B, which is a strongly balanced structure.
Let t(q;) be an integer value which can be assigned to a vertex q; such that it satisfies the condition
of the strongly balanced structure.

t(v;) = t(v;) + w(a) Ya(vs, vj). (1)

Let tipar and tyin be the maximum value and the minimum value among the integer values assigned
to the vertices of G, respectively. Let Ij (j = 1,2,...,p) be a vertex, which corresponds to an input
of the output cone circuit S5. A vector Ty = (a1, q, ..., ) such that o = timaz — t(I;) + 1 is said
to be an input timing vector of the output cone circuit Sg. Let L be tyar — tmin + 2. Let < vy,v9 >

be a p-bit vector pair where a vector vy is (vh, vl ...,Ué, ...,vzll). A wvector sequence [x;;] of length L
such that ) o
v; z.fz = qj
Tij = ?)]2- Zf’i = Qj +1 (2)

don’t care otherwise

15 said to be an extended vector sequence of < vy1,ve > with respect to Tr. A transformation M
which transforms from < vy,vy > into the extended vector sequence with respect to Ty 1s referred to
as sequence transformation with respect to Ty.

Lemma 5.1. Let < v1,v9 > denote a two-pattern test of a given balanced sequential circuit with
size n. The time complexity of the sequence transformation on < v1,ve > is O(n).

Proof. Let GG be a circuit graph of a balanced sequential circuit with sequential depth L —2 and let
< w1, > be a pair of input vectors of p bits, where L < n and p < n. Let Ny denote the number
of vertices in the circuit graph where Ny < n.
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Sequence transformation (G, vy, v2) times

(at most)
FOR each vertex u Ny+1
Assign to u an integer t so that equation 1 is satisfied
END FOR
Compute input timing vector 77} P
FOR j from 1 to p n
Compute «;
Compute i
Compute x;;
END FOR
The pseudocode proves the lemma. ]

Theorem 5.2. [8] The test generation problem for PDF list F® of a balanced sequential circuit
SB can be reduced to the test generation problem for SDF list F¢B of its combinational equivalent
C(SP).

According to Theorem 5.2, the test generation for balanced sequential circuits with PDFs is
equivalent to the test generation for its combinational equivalents with SDFs. In the previous
section, we showed that the test generation for combinational circuits with SDFs can be reduced to
the test generation for its segment-leaf-dags with non-robust PDFs or its segment-rising(falling)-
smooth circuits with robust PDFs. The following procedure generates a PDF test for a balanced
sequential circuit using combinational test generation for SAFs.

S1. Transform the given circuit into its combinational equivalent C(S?).

S2. Follow the procedures of test generation for combinational circuits with robust and non-robust
SDFs. Let < v1,v2 > denote the resulting two-pattern test.

S3. Transform < wy,ve > into the two-pattern test sequence using the sequence transformation
[8]-
Based on Theorem 5.2, the theorems and lemmas of the test generation for combinational
circuits with SDFs, we conclude the following theorem.

Theorem 5.3. The test generation complexity for balanced sequential circuits with PDFs under
rated clock and slow-fast-slow clock is equivalent to the test generation complexity for combinational
circusts with SAFs, which 1s T-equivalent.

5.2 Internally Balanced Sequential Circuits

According to [1], a circuit resulting from operation 1 of the extended combinational transformation
(C*-transformation) on an acyclic sequential circuit is a balanced sequential circuit, then the circuit
is regarded as an internally balanced sequential circuit. C*-transformation consists of the following
two operations.

S1. For a primary input with fanout branches, the set of fanout branches of that primary input
is denoted by X. Let us obtain the smallest partition of X which satisfies the following
statement: If branches z; and z; belong to different blocks X (z), X(j) of partition [[(z; C
X(i),z; C X(j),X(i) # X(j)), then z; and z; are separable. Each partitioned block is

provided with a new primary input separated from the original primary input;

S2. All flip-flops are replaced by wires.
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5.2.1 Test Generation Complexity for Stuck-At Faults

[1] has proved that if a fault f in an internally balanced sequential circuit, can be tested then
the corresponding fault fo in C*(S) can be tested. And, there is no logic duplication in C*-
transformation. C*(9) can be done in time O(n?).

Theorem 5.4. The test generation complexity for internally balanced sequential circuits with SAFs
18 equivalent to the test gemeration complexity for combinational circuits with SAFs, which is T-
equivalent.

5.2.2 Test Generation Complexity for Path Delay Faults

In this section, we discuss the test generation complexity for internally balanced sequential circuits.
We discuss the sequence transformation [9] in Definition 5.2, the lemma and definitions on pattern
dependency in Lemma 5.2-5.4, and Definitions 5.3-5.5, respectively. These lemmas and definitions
also apply in the discussion in Section 5.3.2.

Definition 5.2. [9] Let SA be an acyclic sequential circuit, and let G = (V, A, w) be the topology
graph of SA. Let E = (Viy, Ap,t,1) be a TEG of G, and let C(S*) be the TEM of S based on E.
Let tin be the minimum value of labels assigned to vertices in E, and let d be the sequential depth
of SA. Let < v, v2 > be a two-pattern vector at a primary input u € Vi in Cr(S4). A procedure
transforming < vl,v2 > into the input pattern to the primary input l(u) € V of SA at time k (=0,
1, ..., d+1) denoted as Ijy)(k) is said to be the sequence transformation y. That is, for each u,

vl if k= t(u) — tmin
Il(u)(k) = ’Ui if k= t(u) — tmin + 1 (3)

don’t care otherwise

Such an input sequence with the length d + 2 is regarded as a two-pattern input sequence.

Lemma 5.2. Let x and y denote two different primary inputs of Cr((S)?). To avoid conflicts

during sequence transformation vy, v2 = ’U?} if l(z) =1(y) = 2z and t(y) — t(x) = 1.
Proof.
vk if k =1t(z) — tmin
Il(l‘)(k) = U:%‘ if k= t(l‘) — tmin + 1 (4)
don’t care otherwise
v if k =1t(y) — tmin
[l(y)(k) = v if k=1t(y) — tmin + 1 (5)
don’t care otherwise

Let I(z) = l(y) = z and t(y) — t(z) = 1. Then,

@ o =

Il(y)(k) = Iz(k) = 'U; if k= t(y) — tmin = t(-'E) — tmin +1 (6)
Since Uy (k) = 1 (k) = v} if k = t(2) = tyin + 1, v} = vy, O

Definition 5.3. Let z and y denote two different primary inputs of Cg((S)A). = and y are called
pattern-dependency input pair (z,y) if l(x) =1l(y) = z and t(y) — t(z) = 1.

Definition 5.4. Given a segment leaf dag CEP((S)*) of a TEM Cp(S*) of SA, the circuit can be
transformed into a pattern-dependency circuit Cg)D(SA) by the pattern-dependency transformation.
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S1. In the case of non-robust test generation, duplicate the transitive fanin of S-edge of CgD where
the segment leaf dag C%D becomes the second pattern partial circuit Coyp while the duplicate
becomes the first pattern partial circuit Cip. In the case of robust test generation, perform
the segment-rising-smooth (resp. segment-falling-smooth) transformation.

S2. For each pattern-dependency input pair (z,7y) of Cp(S?), connect the corresponding xop and
y1p to form a new primary input called unified input w. The resulting circuit is called pattern-
dependency circuit CEP(S4).

The idea of pattern-dependency was introduced in [10].

Definition 5.5. Gwen a pattern-dependency circuit CgD(SA). Let Cip and Cyp denote the
first pattern partial circuit and the second pattern partial circuit of Cg)D(SA), respectively. Let
vi, 08, ..., v of an m-bit vector vy denote a vector bit at each primary input of Cip of C’gD(SA)

= ¥m

or the stem of the primary input fanout branches fed to Cip of C’SI?D(SA) if the input s a unified

mnput, respectively where m is the number of vector bits. Let ’U%,U%,. v2 of an m-bit vector v,

ey Ul
denote a vector bit at each primary wnput of Cop of C’SI?D(SA) or the stem of the primary input
fanout branches fed to Cop of Cg)D(SA) if the input 1s a unified input, respectively where m s the

number of vector bits. d(vi,vq) denote the input vector of the pattern-dependency circuit CEP (SH).

In the following Lemma 5.3 and 5.4, only rising SDF is discussed. The lemmas and proofs for
falling SDF can be derived by considering SA1 at the S-edge of Sop and SAQ at the S-edge of Sip
in CEP(S4).

Lemma 5.3. < vy,v9 > is a robust(resp. non-robust) test for the S 1 in CéD(SA) if and only if
d(vy,v2) 1s a test for SAO at the S-edge of the corresponding segment Sop and SA1 at the S-edge
of the corresponding Sip in CEP(SA) with (resp. without) STS.

Proof. If part: Let d(vy,v3) be a test for SAO at the S-edge of Syp and SA1 at the S-edge of
Sip in Cf;D(SA). S-edge of Syp is assigned a value 1 while S-edge of S;p is assigned a value 0
under d(vy,vs). Based on the definition of the pattern dependency transformation, this implies a
rising transition is launched at the S-edge of S under < vy,v9 > in CgD. According to the test
condition, all the side inputs along Syp are at the non-controlling values under the partial vector
v9. This satisfies condition 1 of the robust test and definition of the non-robust test that the
transition launched at the S-edge of S propagates to the ending point of S under < vy, v9 >. With
segment-transition-smoothers (STSs) in the case of the robust test, the constants assigned to the
primary inputs of CSED(SA) do not propagate to the side-inputs of the OR gates along Ssp under
d(v1,v2). This means no transitions are at the side inputs of the OR gates along S in CLP(S4)
under < v1,v2 >. Condition 2 of the robust test is satisfied. The fault effect of SAO at the S-edge
of Sop is propagated to a primary output under the partial vector vy. Thus the difference caused
by S 1 at the ending point of S propagates to the primary output under < wy,v9 >. Therefore,
< wy,vy > is a robust(resp. non-robust) test for the S 1 in CLP(S4).

Only if part: Let < vy,v3 > be a robust(resp. non-robust) test for the S 1. The S-edge of S
is assigned a value 0 under vector v; and 1 under vector vy. Thus the SAO at the S-edge of Syp
and the SA1 at the S-edge of Syp in CLP(SA) are activated under the vector d(vi,v2). The fault
effect of SA1 at the S-edge of S1p propagates to the primary output s.q. The fault effect of SAO
at the S-edge of Sop propagates to a primary output since all the side-inputs along Ssp are at
the non-controlling values and the difference at the ending point of Syp propagate to the primary
output under d(v1, v2). O
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Lemma 5.4. Let P be a path in a given acyclic sequential circuit S* and let Sop and Sip be
the corresponding segments in its pattern-dependency circuit Cg)D(SA). Let (vi,v9) be a pattern-
dependency input pair. Let yp(v1,v9) denote a two-pattern sequence of length L transformed from
the two-pattern vector < vi,vs > by the sequence transformation vy. ~p(vi,v9) 15 a robust(resp.
non-robust) two-pattern sequence for the P 1 in SA with sequential depth L — 2 if and only if
d(vy,v2) is a test for SAO at the S-edge of Sop and SA1 at the S-edge of Sip in CgD(S'A) with
(resp. without) STS.

Proof. If part: Let d(vi,v2) be a test for SAO at the S-edge of Syp and SA1 at the S-edge of Syp
in CSED(SA). From Lemma 5.4, < v1,vy > is a robust(resp. non-robust) test for the corresponding
S 1 in CEP(S4) and thus in Cp(S#). Let ¢ be the combinational block in CEP(S4) that contains
S 1 is and let < v!,v? > be the two-pattern vector at the inputs I. of ¢ under < vy,ve >. S 1 is
launched and propagates to an output of ¢ under < v}, v? >. Therefore, the fault effect of S 1 is
at the ending point of S. ¢ in Cg(S#) and I(c) in S are logically same. According to Lemma 5.3,
there is no pattern conflict in transforming < vy, vy > into vy, (v1,v2) since v1 and vy are generated
from the pattern-dependency circuit. According to the sequence transformation v, [j) = v} at
time t(c) — tmin, L) = v? at time t(c) — tyin + 1. Therefore, the P 1 in S* which corresponds
to the S 1 in Cg(SA) is launched and propagates to the output of I(¢). The fault effect of S 1 at
the output of ¢ propagates to a primary output o under < wy,vs >. According to Definition 5.2,
the fault effect of the P 1 propagates to the primary output /(o) at time ¢(0) — t,in + 1 under the
two-pattern input sequence 7z, (vy, v2).

Only if part: Let . (v,v2) be the two-pattern test sequence for the P 1. According to Definition
5.2, v.(v1,v2) can be inverse transformed to a two-pattern vector < wi,ve > that activates the
corresponding S 1 in CE(SA) and propagates the fault effect to a primary output by the inverse
transformation y~!. Therefore, d(vi,v2) is a test for SAO at the S-edge of Syp and SA1 at the
S-edge of Sip in CEP(SHA). [

Theorem 5.5. The test generation complexity for internally balanced sequential circuits with PDF's
under rated clock and slow-fast-slow clock 1s equivalent to the test gemeration complexity for combi-
national circuits with SAFs, which 1s T-equivalent.

Proof. The following procedure of test generation for acyclic sequential circuits of sequential depth
d =L — 2, with PDF's can be used as shown by Lemmas 5.3 and 5.4.

S1. Generate a TEM of S*;
S2. For each P 1 (resp. P |),

S2.1. Perform the segment-leaf transformation on Cp(S*). The resulting circuit CEP(S4) is
called segment-leaf-dag.

S2.2. Perform the pattern-dependency circuit transformation. The resulting circuit CgD(SA)
is called pattern-dependency circuit.

S2.3. Perform the combinational test generation for SAO (resp. SA1) at the S-edge of Syp and
SA1 (resp. SAO) at the S-edge of S1p in the pattern-dependency circuit CgD(SA). Let
d(vy,v1) denote the test obtained respectively.

S2.4. Split d(v1,v2) into v1 and v according to the definition of d(vy,vs). Transform < vy, vy >
into the two-pattern sequence ~yz(v1,v2) based on Definition 5.2.
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Figure 6: (a)Acyclic sequential circuit S4'. (b)Its time expansion model
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Figure 7: (a) An acyclic sequential circuit. (b) Its time expansion model. (c) Its pattern-dependency
circuit.
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5.3 Acyclic Sequential Circuits

In this section, we discuss about the test generation complexity for acyclic sequential circuits with
SAFs and PDFs.

Definition 5.6. SA! is an acyclic sequential circuit that satisfies the following conditions (Figure
6(a)).

C1. It has the following topology graph G = (V, A,r).

C1.1. V = {u,v} where u € pre(v) and A = {a;|0 <i < T};
C1.2. ri(u,v) = i for 0 < i < § where ri(u,v) represents a label on arc aj and % is the
sequential depth of SA.

C2. Let ng and nq be the size of the logic block represented by vertices u and v, respectively where

— _n
ng—nl—g.

Its time expansion model is shown in Figure 6(b).

5.3.1 Test Generation Complexity for Stuck-At Faults

Theorem 5.6. The test generation complexity for acyclic sequential circuits with SAFs is T2-

bounded.

Proof. The number of time frames in which logic duplication might take place is at most d, where
d is the sequential depth. The time complexity for logic duplication is O(n(d + 1)). Thus, the test
generation complexity for acyclic sequential circuits with SAF's is

Ta(n) = O(n(d+1))+1(n(d+1))
= O(r%(n)) ford <n

O

We found out the acyclic sequential circuits S where its test generation complexity for stuck-at
faults under TEM is not 7-equivalent.

Theorem 5.7. The test generation complexity for acyclic sequential circuits with SAFs under TEM
18 not T-equivalent.

Proof. Vertex u in the topology graph of S41 is mapped to (3 +1) different vertices in TEM. Note
that no logic portion of u;’ is removed. Thus the size of the combinational equivalent of the acyclic
sequential circuit represented by the TEM is

N = 1)+

( 3
2

3 w3
4+ WIS

_l’_
2n
3

|

Therefore, the test generation complexity for S41 is

n?>  2n
TAlzT(N) = 7(34_?)

= O(r(n?)

The test generation complexity for acyclic sequential circuit S4' with SAFs under TEM is not
T-equivalent. ]
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However, there might be other test generation models for acyclic sequential circuits besides
TEM. “Is T4 T-equivalent?” remains an open problem. No one has proved the answer is “Yes”
but it seems to be “No” based on the above-mentioned theorem. Therefore, we have the following
conjecture.

Conjecture 5.1. The test generation complexity for acyclic sequential circuits with SAFs is mot
T-equivalent.

5.3.2 Test Generation Complexity for Path Delay Faults

The test generation complexity for acyclic sequential circuits with path delay faults is discussed
under slow-fast-slow clock. The case of rated clock is important in at-speed testing. Thus, we
identify and state the open problems related to the case of rated clock.

Theorem 5.8. The test generation complexity for acyclic sequential circuits with PDFs under
slow-fast-slow clock is T?-bounded.

Proof. Let Tsy,, Tpp, TngA and T'p denote the time complexity of the segment-leaf transformation,
the pattern-dependency circuit transformation, the test generation for double SAFs and the two-
pattern sequence transformation, respectively. Let Ng;,, Npp, N(G"SA and Np denote the problem
size of the segment-leaf transformation, the pattern-dependency circuit transformation, the test
generation for double SAFs and the two-pattern sequence transformation, respectively. Let S#
denote a given acyclic sequential circuit. The size of its TEM Cg(S4) is (d 4 1)n where d is the
sequential depth. For n < Ngr, < (d+1)n,n < Npp < 2((d+1)n), 2n < NZ54 < 6((d+1)n) — 5,
Np < n. Therefore, the test generation complexity is

TyP(n) = Tsr(Nsp)+Tpp(Npp) + TESH(NESY) + Tp(Np)
= O(N§p)+O(Npp) + O(T(NG**)) + O(Np
= O(d*n?) + O(4d*n?) + O(7(6dn)) + O(n?)
= O(r%(n)) for d = O(n)

O

Besides the test generation for PDFs under slow-fast-slow clock, there are analogous issue for
the case under rated clock testing.

Open Problem 5.1. Is the test generation complexity for acyclic sequential circuits with PDFs
under rated clock T*-bounded?

Theorem 5.9. The test generation complexity for acyclic sequential circuits with PDFs under
TEM at slow-fast-slow clock is not T-equivalent.

Proof. By using the example of S4', we show that the test generation complexity for acyclic
sequential circuits with path delay faults under TEM at slow-fast-slow clock is not 7-equivalent.
Vertex v in the topology graph for S4! is mapped to (3 + 1) different vertices in TEM. Note that
no logic portion of u;" is removed. From its TEM, the corresponding pattern-dependency circuit
is obtained. The size of the pattern-dependency circuit is at most the total of the size of the first
pattern partial circuit and the size of the second pattern partial circuit.



The test generation for S41 with path delay faults under TEM at slow-fast-slow clock is equivalent
to the test generation for its equivalent pattern-dependency circuits with stuck-at faults at S-edges.
Therefore, the test generation complexity for S41 is

2

O(r(%+mn))

= O(r(n?)

Ta1 = O(7(N))

The test generation problem for a subclass of combinational circuits with SAFs at primary input
is a subproblem of the test generation problem for a subclass of combinational circuits with SAF's
at S-edges since an S-edge becomes I-edge when the segment is also a path and I-edge can be a
primary input. Therefore, from Lemma 3.6,

Tar =0O(7(N)) = O(7(

O

There might be also other test generation models for acyclic sequential circuits with PDFs
besides TEM. Consequently, we have the following conjecture.

Conjecture 5.2. The test generation complexity for acyclic sequential circuits with PDFs under
slow-fast-slow clock is not T-equivalent.

We also have not yet considered the case under rated clock. Open Problem 5.2 corresponds to
Theorem 5.9 while Open Problem 5.3 corresponds to Conjecture 5.2.

Open Problem 5.2. Is the test generation complexity for acyclic sequential circuits with PDFs
under TEM with rated clock T-equivalent?

Open Problem 5.3. Is the test generation complexity for acyclic sequential circuits with PDFs
under rated clock T-equivalent?

Example Figure 7 shows the transformations of an acyclic sequential circuit to represent its test
generation problem for PDFs based on the test generation for SAFs. Note that only one PDF is
considered, that is in block 21, under slow-fast-slow clock.

We have shown that the test generation problems for SAFs and PDF's are equivalent for combi-
national circuits, balanced sequential circuits, and internally balanced sequential circuits. We only
showed that they are not equivalent for acyclic sequential circuits under TEM. Therefore, we still
have the following open problem.

Open Problem 5.4. Is the test generation complexity for acyclic sequential circuits with PDF's
under rated clock equivalent to the test generation complexity for acyclic sequential circuits with

SAFs?
The solutions of these open problems are useful in ATPG and DFT development.

6 Test Generation Complexity for Cyclic Sequential Circuits with
Stuck-At and Path Delay Faults

In this section, we introduce several easily testable classes of cyclic sequential circuits and discuss
their test generation complexity for SAFs and PDFs.
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6.1 Easily Testable Classes of Cyclic Sequential Circuits

We consider that a class is easily testable if its test generation complexity is 72-bounded. In other
words, 72-bounded classes and T-equivalent classes are easily testable. In the previous section, we
have shown that acyclic sequential circuits is easily testable. In this section, we introduce several
classes of easily testable cyclic sequential circuits.

Generally, the test generation for cyclic sequential circuits with stuck-at faults (resp. path delay
faults) involves the following three steps.

S1. Derivation of the stuck-at fault (resp. path delay fault) excitation state. Two time frames
are considered for the derivation of the path delay fault excitation state;

S2. State justification; and
S3. State differentiation.

Backtracks may occur between the three steps and within each step. However, there exist classes
of sequential circuits where no backtracks occur between these three steps. In such case, it is
guaranteed that any excitation state can be justified and any excited fault can be propagated to
a primary output. The time complexity for derivation of excitation state is 7-equivalent for SAF's
and PDFs. The time complexity for derivation of PDF excitation state will be discussed in details
in Section 6.3. Therefore, if the state justification and the state differentiation can be reduced to
the problems that are 72-bounded or T-equivalent, the circuits are easily testable.

We define four easily testable classes of sequential circuits based on the number of time frames
and the time complexity taken by the state justification and state differentiation, and the state
validity.

Definition 6.1. A sequential circuit S s [-length-bounded testable with respect to a fault set F if
the following conditions are satisfied.

C1. For any state s;, there exists a state justification sequence of length at most [;

C2. For any pair of states (s;,5,f), there exists a state differentiation sequence of length at most
I, where s; is a fault-free state and s;; is a faulty state corresponding to a fault f € F.

Definition 6.2. A sequential circuit S is [-length-bounded validity-identifiable with respect to a
fault set F if the following conditions are satisfied.

C1. There exists a combinational circuit of size O(n) called validity checker that can identify the
validity states, where n is the size of the sequential circuits;

C2. For any valid state s;, there exists a state justification sequence of length at most [ from initial
state so;

C3. For any pair of states (s;,5,f), there exists a state differentiation sequence of length at most
l, where s; is a fault-free valid state and s;; is a faulty state corresponding to a fault f € F.

Definition 6.3. A sequential circuit S is t-time-bounded testable with respect to a fault set F if
the following conditions are satisfied.

C1. For any state s;, there exists a state justification sequence which can be obtained in time O(t);

C2. For any pair of states (s;,s;f), there exists a state differentiation sequence which can be
obtained in time O(t), where s; 1s a fault-free state and s;; is a faulty state corresponding to
a fault f € F.
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Definition 6.4. A sequential circuit S is t-time-bounded validity-identifiable with respect to a fault
set F' af the following conditions are satisfied.

C1. There exists a combinational circuit of size O(n) called validity checker that can identify the
validity of states, where n is the size of the sequential circuits;

C2. For any valid state s;, there exists a state justification sequence from initial state sg which
can be obtained in time O(t);

C3. For any pair of states (si,siz), there exists a state differentiation sequence which can be
obtained in time O(t), where s; is a fault-free valid state and s;y is a faulty state corresponding

to a fault f € F.

It is obvious from Definition 6.1-6.4 that in both cases of SAFs and PDFs, the test genera-
tion complexity for [-length-bounded testable circuits with [ = O(n), I-length-bounded validity-
identifiable circuits with [ = O(n), t-time-bounded testable circuits with t = 72(n) and t-time-
bounded validity-identifiable circuits with ¢ = 72(n) is 72-bounded while the test generation com-
plexity for ¢-time-bounded testable circuits with ¢ = 7(n) and ¢-time-bounded validity-identifiable
circuits with ¢t = 7(n) is T-equivalent.

A state-shiftable finite state machine [11] is a machine that possesses

C1. transfer sequences of length at most [log, m| to carry the machine from state sg to state s;
for all 4, and

C2. distinguishing sequences of length [log, m], which are arbitrary input sequences consisting of
2 input symbols, where m denotes the number of states.

A sequential circuit that is realized from the SSFSM is called SSFSM realization. In this
section, we introduce two easily testable classes of state-shiftable finite-state-machine (SSFSM)
realizations, namely two-column SSFSM realizations with observable shifting logic (2COS-SSFSM)
and two-column distributive SSFSM realizations (2CD-SSFSM). We address the test generation
complexity for these classes with SAFs and PDF's, and the relationship between the test generation
problems. We assume the slow-fast-slow clock and thus the circuit under test is fault-free during
state justification and state differentiation for PDFs. By this assumption, we hypothesize that their
test generation for PDFs is easier or equivalent to the test generation for SAFs.

Definition 6.5. Two-column SSFSM realizations with observable shifting logic (2C0OS-SSFSM) is
an SSFSM realizations that satisfies the following conditions:

C1. There exists a two-column submachine of SSFSM of degree m, where m = O(n) and n is the
size of the 2COS-SSFSM. Let the the input symbols of the two-column be denoted by €y and
€1.

C2. Let Cy and Cy denote the input combinations (cubes) of €y and €1, respectively, after the input
asstgnments. The logic that is equivalent to Cy + Cy s called shifting logic and is a fanout of
each next state function D; and the output Oy of SSFSM, where 1 <1 < m —1. The shifting
logic St is made observable.

S, =Co+C
Dy =Cy OR Fy

D; = (Co+C1) AND Q; 1 OR F;
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Figure 8: General block diagram of a two-column SSFSM realization with observable shifting logic.

Definition 6.6. Distributive SSFSM s a two-column SSEFSM wnth different pairs of input symbols
for each state. Let the input symbols of two-column for state s; be denoted by vyo(sj) and vi(s;),

respectively. Let ey and €1 denote the input symbols of a two-column SSFSM, which has same degree
with the distributive SSFSM. For each j, 6(eo, s5) = 6(70(sj),5;) and (€1, s5) = d(7y1(s5), 85).

Definition 6.7. Two-column distributive SSFSM is SSFSM realizations that fulfills the following
conditions:

C1. There ezists a two-column submachine of SSFSM of degree m, where m = O(n) and n 1is the
size of the 2COS-SSFSM. Let the the input symbols of the two-column be denoted by €y and
€1.

C2. There exists a distributive submachine of SSFSM over the columns other than those of €y and
€1. The number of columns is 2N =1 + 2 where N is an integer.

C3. There exists an input symbol c of the distributed submachine of SSFSM and a state s; for
0 < j < m—1 such that s, = §(c,s;5) and s, # (€0, 55), sk, # O(e1,s5) for k # j and
0<k<m-—1.

C4. Let Cy and Cy denote the input combinations of €y and €1 respectively after the input as-
signment. Co and C) are two-bit assignments, one bit of which is different to each other.
E.g. Cy = ab and C; = ab. The similar bit of Cy and Cy is complement to other input
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Figure 9: General block diagram of a two-column distributive SSFSM realization.

generation complexity for SAFs and PDFs.

6.2 Test Generation Complexity for Stuck-At Faults

Theorem 6.1. The test generation complexity for two-column SSFSM realizations with observable
shifting logic with SAFs 1s equivalent to the test gemeration complexity for combinational circuits
with SAFs, which is T-equivalent.

Proof. In the following, several cases of faults are discussed. For each case, first the excitation state
is derived. The state justification sequence is an input sequence consisting of €y and €; with length
at most m — 1. If the fault is activated and propagates to one of the flip-flops before the circuit
reaches the excitation state, the current state is made an excitation state.

Faults that is in the fanin cone of 57,

Since shifting logic ST, is observable, all the faults propagate to St are detectable.

Faults in the fanout-free region

For each testable fault f in the fanout-free region, it is guaranteed to be detectable without fault
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masking during the shifting operation once the fault effect propagates to a flip-flop. Let the fault
effect denoted by d that propagates to Q) after the SAF is excited where 0 < h < m — 1.

Dpi1 = SiQn+ Fayr
For Sp = 1 during shifting operation,
Dpy1=d+ Frpa

Note that no other fault effects propagate to Fj,41 as f is in the fanout-free region and Fj,q has a
fault-free value 0 during the shifting operation (Sy = 1). Therefore Dy = d

The fault effect is propagated to Dy19, D3, ..., Dy—1 and then output Ogs for m is the degree of
SSFSM. For example, the output of AND gate g is in fanout-free region (Figure 9).

Faults in fanout region other than stems Qy

In generating tests for other faults which are in fanout region, we can assume the shifting operation
is always working for S7, is observable. Let’s discuss the faults in the fanout region other than those
at the stems of QQp for 0 < k < m — 1. During the phase of derivation of SAF excitation state,
any input cubes contained by Cy or (' are prioritized as the input pattern to excite the fault f. If
one of them is a test, the fault effect that propagates to a flip-flop must be d as discussed in the
following.

D; = (Co+C)) AND Q;_, OR F;

F; has fault-free value 0 during shifting operation. In addition, shifting logic Sy, and @;—; are fault
free. Therefore the fault effect propagates to F; must be d after the SAF is excited if there exists
an input cube that is contained by Cjy or C; and excites the fault f. During differentiation,

Qi
Diynv = d+Fip

SW

Since this is done by shifting operation where S = 1 and each stem of Qi for 0 < k < m —1
is fault-free, if the fault f is activated again during differentiation, it will propagate to Fjy; as
d, which has the same polarity as the fault effect of SAF in the derivation of excitation state.
Therefore, fault masking does not happen during differentiation. In the case where no input cubes
that are contained by Cp or C excite the fault, the fault is not excited during the phase of state
differentiation and thus fault masking does not occur.

Faults at the stems of @

For the faults at the stems of @}, where 0 < k < m —1, each fault change only one bit of the current
state in the flip-flops without changing the logic of the circuit, thus we still can observe the partial
state of the excitation state from the most significant bit to the faulty bit after at most m — 1 clock
cycles during state differentiation.

Let Tg, Ty and Tp denote the running time of SAF excitation, justification and differentiation
respectively.

Téggog(n) = Tg+T;+Tp
T(n)+0(m—1)4+O0(m—1)
7(n) + O(n) + O(n) for m=0(n)
— o(r(n))
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Theorem 6.2. The test generation complexity for two-column distributive SSFSM realizations with
SAF's is T2-bounded.

Proof. The proof is similar to the proof for Theorem 6.1 by considering the faults at SHIFT instead
of the faults in the fanin cone of Sy,.

Faults at SHIFT

Looking into the case where the fault is at the stem of SHIFT, the shifting operation of the circuit
fails. However, the distributive shifting operation is intact. First, the SAF is excited at running
time 7(n). To differentiate a pair of fault-free and faulty states after the SAF is excited, the fault
effect at a flip-flop is propagated to the output Oss by searching the input sequence on its iterative
logic array of size at most m — 1. Since m = O(n), the running time of the differentiation is
O(7%(n)). For s-a-1 at the stem of SHIFT, it is obviously easy to test since during differentiation
(SHIFT=1), the fault is not activated again.

Let Ty, Tj and Tp denote the running time of SAF excitation, justification and differentiation.
Therefore,

Tyép(n) = Tgp(n)+Ty+Tp
= 7(n)+0(m—1)+O0(r((m —1)n))
= 7(n) +0O(n) 4+ O(7%(n)) for m = O(n)
= O(r*(n))

O

However, we cannot conclude that the test generation complexity for two-column distributive
SSFSM realizations with SAFs is not 7-equivalent although it seems to be correct.

Conjecture 6.1. The test generation complexity for two-column distributive SSESM realizations
with SAFs is not T-equivalent.

6.3 Test Generation Complexity for Path Delay Faults

Definition 6.8. Let P and P' denote a path in a given cyclic sequential circuit S¢ and the cor-
responding path in its combinational part c. A duplex combinational circuit C]]_;,) (S€) for P (Figure
10) of a cyclic sequential circuit S can be obtained by the following transformation:

S1. Perform the single-path-leaf transformation for P' on c. The inputs of ¢ corresponding to the
outputs of the flip-flops in S¢ are called the pseudo inputs while the outputs of ¢ corresponding
to the inputs of the flip-flops in SC are called the pseudo outputs. The resulting single-path
leaf-dag 1s denoted by c]L,,D.

S2. Duplicate c]L,,D. The single-path leaf-dag c]LD,D and its duplicate are named as the first partial

circuit ¢1 and the second partial circuit cs.

S§8. Connect the pseudo outputs of ¢y to the corresponding pseudo inputs of co to form an iterative
logic array of single-path leaf-dag of size 2. The new connections between c1 and co are called
pseudo interconnections and a pseudo interconnection is labeled as QD; while a resulting
pseudo input and pseudo output are labeled as QQ; and D; respectively, corresponding to flip-
flop i in S¢. Note that the path P in S¢ corresponds to two segments Se1 and Sy in CIQ(SC).
A primary input and a primary output of ¢y is denoted by I; and Oy, respectively while a
primary input and a primary output of cy 1s denoted by Io; and Oyy.
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Definition 6.9. Let P 1 denote a rising PDF in a given cyclic sequential circuit S¢. A duplex com-
binational circust CIQ(SC) for P can be transformed into a path-rising-smooth duplex circuit(resp.
path-falling-smooth duplex circuit) CfRS(SC) (resp. C’SEFS(SC)) for the corresponding segment Seo
by the following procedure:

S1. Let Qor (resp. Qanp) denote the OR gates (resp. AND gates) along Sey corresponding to
P 1 (resp. Pl). A gate may have no parity, 0, 1 or both parities. A side-input to an OR gate
(resp. AND gate) in Qor (resp. Qanp) has parity 1 (resp. 0). Perform a reverse topological
traversal from the transitive fanout of all pseudo interconnections, to determine the parity of
all gates along the side-paths to Seo. The parity s complemented across a NOT gate. If some
fanouts of a gate have parity 1 and others have parity 0, the gate 1s assigned both parities.

S2. Duplicate gates so that each resulting gate has parity of either nothing, 0 or 1 but not both.

§2.1. Traversing from flip-flop or primary output g,, on P, for each gate hj with a parity (pari-
ties) and with a successor gate that is off path and without parity, hj and the connections
of its immediate predecessor gates are duplicated once and its duplicate h;- has no parity.
For each immediate successor gate hjq of h; that has no parity, the connection from h;
to hji1 1s replaced by the connection from h;- to hji1.

52.2. Traversing from flip-flop or primary output g, each gate hj with both parities and the
connections to its immediate predecessor gates are duplicated once and assigned parity 1
while its duplicate h; is assigned parity 0. For each immediate successor gate hji1 of h;
that has parity 0 (1 if there is an inversion between hj and hjy1), the connection from
hj to hjy1 is replaced by the connection from h; to hjy.

S3. Insert to the fanout branch of a second circuit primary input Io; a segment-transition-smoother
STS(Iyj, 11;) if the fanout branch has an immediate gate with parity 0 or 1. At the fanout
branch of a pseudo interconnection QD;, insert a segment transition-smoother STS(QD;, Q;)
if the QD; has an immediate gate with parity 0 or 1.

Lemma 6.1. < vi,v9 > 1s an input sequence that robustly excites a PDF P 1 (resp. P |) of a
sequential circuit SC in present state sy if and only if s; +v1 + vy is a test for SAQ at the S-edge
of Sea with an input constraint of 0 at the S-edge of S¢1 in the corresponding path-rising-smooth
duplez circuit CLR5(SC).

Proof. If part: s; + vy + vy is a test for SAO at the S-edge of S.o with an input constraint 0
at the S-edge of S¢1. In the fault free case, S-edge of S, and S-edge of Sco have different values
under s; + v1 + v9. This means < wy,vs > initializes the corresponding P 1. The value at the
ending points of Sqy and S, are 0 and 1 respectively under s; 4+ v + v9. All the side-inputs of
the gates along S¢9 are at the non-controlling values. Thus, all the side-input of gates along P are
at the non-controlling value under vs. Segment transition-smoother guarantees that the transition
at a flip-flop or a primary input does not propagate to the side-inputs of OR gates along P under
< vy, vy >. Therefore, < v1,v9 > robustly excites P 7.

Only If part: < wv1,v9 > robustly excites P 1. All side inputs of gates along P are at the
non-controlling values. The value at the S-edge of S¢9 is different from that at the S-edge of S.;.
This excites the SAO at the S-edge of Se» and put a constraint 0 to the S-edge of S.1. According
to the definition of robust PDF, the side inputs of gates along S.o are at the non-controlling value.
This satisfies the test condition. Therefore, s + vy + vo is a test for SAO at the S-edge of S with
an input constraint of 0 at the S-edge of S.;. O
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Lemma 6.2. < vy,vy > is an input sequence that non-robustly excites a PDF P 1 (resp. P ) of
a sequential circuit S€ in present state s, if and only if s; +v1 + vy is a test for SAO at the S-edge
of Seo with an input constraint of 0 at the S-edge of Sq1 in the corresponding path-rising-smooth
duplez combinational circuit CERS(SC).

Proof. If part: s; + vy 4+ vo is a test for SAO at the S-edge of Se.o with an input constraint 0 at
the S-edge of S¢1. In the fault free case, S-edge of S¢2 and S-edge of S.; have the different values
under s; + vy 4+ v9. This initializes the P 1. The value at the ending points of S.o and S.; are 0
and 1 respectively under s; +v; + v2. All the side-input of gates along P are at the non-controlling
value. Therefore, < v1,vy > non-robustly excites P 1.

Only If part: < v1,v2 > non-robustly excites P 1. All the side inputs of gates along P are at
the non-controlling values. The value at the S-edge of So is different from that at the S-edge of
Sc1, which is 1 and 0 respectively. This excites the SA0 at the S-edge of Se2 and put a constraint
0 to the S-edge of S.;. According to the definition of PDF, the side inputs of gates along S.o are
at non-controlling value. This satisfies the test condition. Therefore, s; + v1 + v2 is a test for SAO
at the S-edge of S.2 with an input constraint of 0 at the S-edge of S,;. O

Lemma 6.3. The derivation of PDF excitation state is equivalent to the test gemeration for path-
rising-smooth duplex combinational circuits with SAFs at S-edges, which is T-bounded.

Proof. We showed a pseudo-transformation that transforms the kernel of a given cyclic sequential
circuit so that the derivation of PDF excitation state can be done by combinational test generation.
To activate a PDF in a given sequential circuit S¢, for each PDF

S1. Derive the duplex combinational circuit CP(S°).
S2. Derive the path-rising-smooth duplex circuit CER9(SC) (for robust test).

S3. Perform the combinational test generation for SAO at the S-edge of Sgo with an input con-
straint 0 at the S-edge of S¢;. Let s1 + v1 + v2 denote the test obtained.

S4. Transform s; + v1 4+ v into an input sequence < v1,v9 > for the PDF activation.

Based on Lemma 6.1-6.2, the derivation of PDF excitation state can be modeled by the test gener-
ation for SAFs. Let Tp(Np), Tprs(Nprs), T2AT (NSAF) and Tp(Np) denote the time complexity
of the duplex combinational circuit derivation, the path-rising-smooth duplex circuit derivation,
the combinational test generation for SAFs and the two-pattern test transformation. Let n denote
the size of a given cyclic sequential circuit S¢. To derive a duplex combinational circuit, it takes
O(n?) according to Definition 6.8. After the derivation, the size of the resulting circuit is at most
4n. The procedures of transforming a C'” into a CgRS involve only the first partial circuit Cy of
CP. The process takes O(n?) as explained in Definition 6.9. The size of the resulting circuit is at

most 8n. Therefore, the time complexity of the PDF excitation is

Ty " Tp(Np) + Trrs(Nprs) + O(TZAF (NZAY)) + Tp(Np)
O(n?) + 0(4n?) + O(7(8n)) + O(n)

O(7(n)).
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Figure 11: A cyclic sequential circuit Sz.

Definition 6.10. A cyclic sequential circuit Sz has a fanout-inverter-free single-path leaf-dag with
an inverter at the primary input on P as its combinational kernel. The primary input on P 1is
connected to the output of flip-flop while the primary output on P s connected to the input of
flip-flop as shown in Figure 11.

Lemma 6.4. v is a test for SAF f in a combinational circuit C if and only if < v,v > excites the
PDF P 1 or P | wn the corresponding cyclic sequential circuit Sz with c = C @ Cy.

Proof. If part: Under < v,v >, the side-input of AND gate is at the stable 1. In other words,
under vector v, the side input of AND gate is 1, which implies logic ¢ is satisfied.

Only If part: Under v, the side-input of AND gate is 1. Therefore, the transition along P can be
propagated to the flip-flop and thus the PDF is excited under < v,v >. O

Theorem 6.3. The derwation of PDF excitation state is T-equivalent.

Proof. To prove that the derivation of PDF excitation state is 7-equivalent, in addition to Lemma
6.3, it is sufficient to prove that the test generation for combinational circuits with SAFs can be
transformed into the derivation of PDF excitation state of cyclic sequential circuits. Therefore,
Lemmas 6.3 and 6.4 prove it. O

Theorem 6.4. The test generation complexity for two-column SSFSM realizations with observable
shifting logic with PDF's under slow-fast-slow clock is equivalent to the test generation complexity
for combinational circuits with SAFs, which s T-equivalent.
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Proof. In deriving PDF excitation state, the input sequence < vy, v9 > is derived. Let the excitation
state be denoted by s.. According to Theorem 6.3, the running time of deriving PDF excitation
state is ©(7(n)), which is reducible to the derivation of excitation state for an SAF. Since slow-fast-
slow clock is used, there is no fault effect during justification and differentiation. Therefore, any
excitation state is justifiable by an input sequence consisting of €y and €; with length at most m —1
while a pair of faulty and fault-free next states after the derivation of PDF excitation state can be
differentiated by any input sequence consisting of €y and €; with length at most m — 1, where m is
the degree of SSFSM. Obviously the test generation for PDFs is 7-equivalent. U

However, it is still unsolved for the case under rated clock.

Open Problem 6.1. Is the test generation complexity for two-column SSFSM realizations with
observable shifting logic with PDF's under rated clock equivalent to the test generation for two-column
SSEFSM realizations with observable shifting logic with SAFs, which 1s T-equivalent?

Theorem 6.5. The test generation complexity for two-column distributive SSFSM with PDF's under
slow-fast-slow clock s equivalent to the test gemeration complexity for combinational circuits with
SAFs, which s T-equivalent.

Proof. Same as the proof of PDF test generation in Theorem 6.4. O

We also have not yet solved the PDF test generation complexity of the two-column distributive
SSEFSM realizations under rated clock.

Open Problem 6.2. s the test generation complexity for two-column distributive SSFSM realiza-
tions with PDFs under rated clock equivalent to the test generation complexity for combinational
circusts with SAFs, which is T-equivalent?

The test generation for 2COS-SSFSM with PDFs under slow-fast-slow clock is equivalent to that
with SAFs, which is 7-equivalent. The test generation for 2CD-SSFSM with PDF's under slow-fast-
slow clock is T-equivalent while that with SAFs is 72-bounded. In other words, if Conjecture 6.1 is
proved, 2CD-SSFSM is a class, the test generation complexity for PDFs under slow-fast-slow clock
is less than that for SAFs.

7 Conclusion

The time complexity and the relationships between the test generation problem for several existing
classes of circuits with stuck-at and path delay faults have been described in this paper. The test
generation for internally balanced sequential circuits with SAFs and PDFs under rated clock and
slow-fast-slow clock is equivalent to the test generation for combinational circuits with SAFs. On
the other hand, the test generation for the acyclic sequential circuits with SAFs and PDF's under
slow-fast-slow clock are 72-bounded. It is shown that under TEM at slow-fast-slow clock the test
generation for PDFs is not m-equivalent. The test generation for two-column SSFSM realizations
with observable shifting logic under slow-fast-slow clock and that for SAFs are equivalent to the
test generation for combinational circuits with SAFs while for two-column distributive SSFSM re-
alizations with PDF's under slow-fast-slow clock, its test generation complexity is 7-equivalent but
that with SAFs is 72-bounded. The test generation for two-column distributive SSFSM realizations
with SAFs seems to be not 7-equivalent so we put it as a conjecture. If it is proved, two-column
distributive SSFSM realizations will be the class of circuits that has the test generation complex-
ity for PDF's less than the test generation complexity for SAFs. The test generation for acyclic

42



sequential circuits and cyclic sequential circuits with PDFs is discussed under the assumption of
slow-fast-slow clock. The similar discussion under rated clock remain important open problems.
The solutions will contribute to the ATPG and DFT development.
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