
Processing XML Queries on Structure and Keyword

in SKEYRUS

Dao Dinh Kha †, Masatoshi Yoshikawa †‡, and Shunsuke Uemura †

† Graduate School of Information Science
Nara Institute of Science and Technology

8916-5 Takayama, Ikoma, Nara 630-0101, Japan

‡ Information Technology Center, Nagoya University
Furo-cho,Chikusa-ku, Nagoya 464-8601, Japan

Abstract

Applying numbering schemes to simulate the structure of XML data is a promising technique
for XML query processing. In this paper, we describe SKEYRUS, a system, which enables the
integrated structure-keyword searches on XML data using the rUID numbering scheme. rUID has
been designed to be robust in structural update and applicable to arbitrarily large XML documents.
SKEYRUS accepts XPath expressions containing word-containment predicates as the input, there-
fore the query expressiveness is significantly extended. The structural feature and the ability to
generate XPath axes of rUID are exploited in query processing. Preliminary performance results of
SKEYRUS were also reported.

1 Introduction

Presently, Extensive Markup Language (XML) [12] has become a framework for structural infor-
mation exchange over the Internet. Processing XML data requires new techniques different from the
techniques applied in relational databases, the structure of which is fixed by pre-defined schemes.
XML elements must be assigned unique identifiers in order to be distinguished from each other.
In addition, the structure of XML documents may change when elements are inserted or removed.
Therefore, an effective mechanism, which can not only generate robust element identifiers but also
maintain the information about the structure of XML documents, is essential for processing XML
queries. Using a numbering scheme, which generates the identifiers of XML elements in such man-
ner that the hierarchical order within XML documents can be re-established based on the element
identifiers, can meet the requirement.

Several numbering schemes for XML data have been proposed in [2, 5, 11, 10]. Among these

1

schemes, the Unique Identifier (UID) technique that uses a k-ary tree to enumerate nodes in an
XML tree has an interesting property whereby the identifier of a parent node can be determined
based on the identifiers of its child nodes. Given a node having the identifier i, the identifier of
its parent node can be computed using the formula �(i− 2)/k + 1�. This property is promising in
evaluating the structural part of XML queries because it enables an effective re-establishment of
hierarchical order within a tree.

However, the UID technique is not robust in structural update. When a node is inserted, the
identifiers of the sibling nodes to the right of the inserted node and their descendant nodes will
be also changed. If a node insertion causes the fan-out of a node be larger than the pre-defined
value k, the entire identifier system has to be recomputed. Furthermore, the value of UID easily
exceeds the maximal manageable integer value. Therefore, an additional library as well as an extra
integration cost is required.

In [3], the recursive UID numbering scheme has been proposed so as to remove the above-
mentioned drawbacks. Besides the property that the identifier of a parent node can be determined
based on the identifiers of its child nodes, rUID is robust for structural update and applicable to
arbitrarily large XML documents. In addition, the structural feature of rUID is effective for XPath
axes processing.

In this study, we describe SKEYRUS (Structure and KEY word search based on Recursive U id
System), that integrates structure and keyword searches on XML data using rUID. SKEYRUS is
comprised of the modules for raw data processing and managing, query plan generation, content
query processing, and integration. The input of SKEYRUS is a simplified XPath expression with
word-containment predicates. Taking into account the feature of query processing using numbering
schemes such that a query plan normally contains many joins and a number of joins may be repeated
in various queries, we have discussed the following issues:

• A join mechanism. How to exploit rUID to perform joins effectively?

• Query plan selection. Which is the appropriate plan to execute a query?

• Physical data organization. How to partition the data into files appropriate to the query
processing using rUID?

• Dealing with the common subqueries. How to keep the result of the frequent subqueries to
save the repeatedly processing cost?

The rest of paper is organized as follows. Section 2 briefly reviews related works. Section 3
presents an overview of the 2-level recursive UID that is the core data structure in SKEYRUS. Sec-
tion 4 describes the design of SKEYRUS. Section 5 discusses a number of preliminary performance
results of SKEYRUS. Section 6 concludes this paper with future work suggestion.

2 Related works

Numbering scheme proposals. A method to determine the ancestor and descendant relation-
ship using preorder and postorder traversals has been introduced in [2]. Extensions of the method

2

using the preorder and range have been presented in [11, 1]. Another approach uses the position
and depth of a tree node to process containment queries [16]. The application of XID-map in change
management of versions of XML documents have been discussed in [5].

The UID technique has been introduced in [10]. Applications of the technique have been de-
scribed in [6, 7]. In these studies, the problems of structural update and the overflow of identifier
have not been discussed.

XML data management approaches. Respecting the role of RDBMS, there are several ap-
proaches to implement a system to manage XML data, as follows:

• All-In: The system is implemented exclusively based on an RDBMS.

• All-Out: The system is implemented without using any RDBMS. Even the indexing and
storage modules are implemented originally.

• Half-In-Half-Out: An RDBMS is used to store the pre-processed data. The query processing
is performed by other modules, which are built originally, taking into account the specific
requirements and data models.

In the All-In approach, data is stored entirely in an RDBMS. The queries on XML data are
re-written in SQL statements and are performed using the built-in SQL module of the RDBMS.
There is a number of works applying the All-In approach, [4, 9, 15]. The transformation of queries
from XPath to SQL statements has been described in XRel, [15]. Integration of keyword search to
XML query processing has been discussed in [4]. The maturity of the relational database technology
and the plenty of RDBMS products are the advantage of the All-In approach. The disadvantage is
that RDBMS have been designed primarily for the relational data model, not for XML, which also
includes the structural information of data.

The All-Out approach is applied for native XML databases. The module used to store and
index data is implemented usually using B+ tree. The query processing is performed based on
the techniques specially designed for XML data, such as structure summary or numbering scheme.
The recent examples of the All-Out approach have been described in [6, 11]. The advantage of the
All-Out approach is the fast performance. On the other hand, the All-In approach usually requires
an implementation workload heavier than the first approach does.

In the implementation of SKEYRUS, we have adopted the Half-In-Half-Out approach. An
RDBMS is used to perform the task of managing the pre-processed data. Other modules in
SKEYRUS have been implemented originally. The purpose of the approach adoption is to save
the workload and concentrate to the new design. For a reliable evaluation, we have measured the
time necessary for each task, such as data loading and processing, separately. There no obstacle to
transform our system from the third approach to the first or second approaches when it is needed.

3 Overview of 2-level rUID

As mentioned above, the rUID numbering scheme is crucial for SKEYRUS. In this section, we
describe the main features of 2-level rUID, the simplest version of the multilevel recursive UID, in

3

order to make the paper self-contained. The technical details of rUID has been presented in [3].

3.1 Description

The 2-level rUID numbering scheme manages the identifiers of nodes in XML trees by the global
and local levels. The set of nodes is divided into subsets, the identifiers of which are created in
the global level whereas the nodes of each subset are managed in the local level. A number of
parameters are generated to be used in both of these levels. The additional data is small enough
to be comfortably loaded into main memory allowing fast access when navigating inside the XML
tree.

The construction of the 2-level rUID numbering scheme for an XML tree consists of the following
steps: (1) partition the XML tree into areas, each of which is an induced subtree of the XML tree;
(2) enumeration the newly created areas according to the original UID scheme in order to generate
the global indices; (3) for each area, enumeration of the nodes of that area in order to generate
the local indices; and (4) compose of the synthetic identifiers of nodes from the global and local
indices. The 2-level rUID is formalized by the following three definitions:

Definition 1 (A frame) Given an XML tree T rooted at r, a frame F is a tree: (1) rooted at r,
(2) the node set of which is a subset of the node set of T and (3) for any two nodes u and v in
the frame, an edge exists connecting the nodes if and only if one of the nodes is an ancestor of the
other in T and there is no other node x that lies between u and v in T and x belongs to the frame.

Definition 2 (UID-local area) Given an XML tree T rooted at r, a frame F of T , and a node n

of F , a UID-local area of n is an induced subtree of T rooted at n such that each of the subtree’s
node paths is terminated either by a child node of n in F or a leaf node of T , if between the leaf
node and n in T there exists no other node that belongs to F .

A frame divides an XML tree into local areas, each of these areas is rooted at a frame node.
From the definition 2, the intersection of any two areas is either empty or consists of only one node,
which is the root node of an area and also a leaf node of the other area. Hereafter, let us refer to
the full identifier of a node as its identifier and the number assigned to a node locally inside an
UID-local area as its index. Let κ denote the maximal fan-out of nodes in F . We use a κ-ary tree
to enumerate the nodes of F and let the number assigned to each node in F be the index of the
UID-local area rooted at the node. The 2-level UID numbering scheme based on F is defined as
follows:

Definition 3 (2-level rUID) The full 2-level rUID of a node n is a triple (g, l, r), where g, l, and
r are called the global index, local index, and root indicator, respectively. If n is a non-root node,
then g is the index of the UID-local area containing n, l is the index of n inside the area, and r is
false. If n is the root node of an UID-local area then g is the index of the area, l is the index of
n as a leaf node in the upper UID-local area, and r is true. The identifier of the root of the main
XML tree is (1, 1, true).

4

The rUID of a node in an XML tree is determined uniquely. We construct a table K having
three columns global index, local index, and fan-out. Each row of K corresponds to an UID-local
area and contains the global index of the area, the index of the area’s root in the upper area, and
the maximal fan-out of nodes in the corresponding area, respectively. The table K is sorted by the
global index. The value κ and the table K are the global parameters, which are loaded into main
memory during travelling T .

1

2 3 4 5

7 10 11 14 15 18 196 20

26 27 42 4344 74 75

678 682

170 171

1,1

2,2 3,3 4,4 5,5

2,3 3,2 3,3 4,2 4,3 5,2 5,32,2 5,4

2,6 2,7 3,8 3,1010,9 5,8 5,9

10,4 10,6

10,2 10,3

(a) original UID (b) 2-level UID

Figure 1. An original UID and its corresponding 2-level rUID version

Example 1 Figure 1 depicts examples of the original UID and the new 2-level rUID. In the tree
shown on the left, the number inside each node is the node’s original UID. In the tree shown on the
right, integers inside each node are the global and local indices of the node’s 2-level rUID. Rather
than showing root indicators, the root nodes are encircled by bold circles and the non-root nodes are
encircled by fine-lined circles. Using the original UID, the value k is 4 and the maximal identifier
equals 682. Using the rUID, the global fan-out κ is 4 and six UID-local areas exists. The table K
of the global parameters of 2-level rUID is shown in Figure 2.

Global index Local index Local fan-out
1 1 4
2 2 2
3 3 3
4 4 2
5 5 3
10 9 2

Figure 2. Global parameter table for the 2-level rUID shown in Figure 1(b)

3.2 Properties of rUID.

The rUID preserves the ability to compute the parent-child relationship. The algorithm shown
in Figure 3 computes the rUID of a parent node. Besides that, rUID has the following properties:

5

Input: An XML tree T , its κ and K, and the 2-level rUID of a node n

Output: The 2-level rUID (g,l,r) of the parent node of n

1. Determine g as the index of the local area that n belongs to, not as the root

2. Get the fan-out of the local area in K
3. Compute the local index l

4. If l equals 1 then refer to K to get the correct l; Set r true

5. If not, set r false

e. Return (g, l, r)

Figure 3. Outline of the algorithm used to determine the parent node of a node

Scalability. rUID is applicable for arbitrarily large trees. In SKEYRUS, 2-level rUID is sufficient
for generating the element identifiers of large XML data sets.

Robustness in structural update. In the original UID, if a new node is inserted into an XML tree
when space is available then the insertion causes the identifers of the sibling nodes to the right of the
inserted node as well as those of their descendant nodes, to be modified. In the worst case, when the
insertion increases the tree’s maximal fan-out, the entire enumeration has to be performed again.
Identifiers of all of the nodes must be changed, which leads to an expensive reconstruction. Using
rUID, the scope of identifier update due to a node insertion or deletion is reduced by a magnitude
of two. For example, if a node is inserted, only the nodes in the UID-local area where the update
occurs need to be considered. If an appropriate space is available for the new node, then among
the descendants of the sibling nodes to the right of the inserted node, only those which belong to
the same UID-local area will have their identifiers modified. The nodes in the descendant areas are
not affected because the frame F is unchanged. Otherwise, if such a space does not exist for the
newly inserted node then the fan-out of the tree used in enumerating the UID-local area must be
enlarged. Rather than modifying the identifiers of every XML component, the enlargement changes
only the identifiers of the nodes in this area. In both cases, since the size of an UID-local area is
much smaller than the size of the entire data set tree, the scope of the identifier update is greatly
reduced. The rUID deals with another structural operation, for example node deletion in a similar
manner.

Hierarchical summary in the frame. The global index of rUID can be used to determine the relative
position, such as preceding or following, of two nodes in the entire data tree, if these indices are
distinguished. For example, if a node precedes (or follows, respectively) another node in the frame
of an XML tree, the former precedes (or follows, respectively) the latter in the entire tree.

XPath axes expressiveness. XPath [13] is a language for addressing parts of XML documents. An
important type of XPath expression is the location path that is a sequence of location steps. A
location step has three parts: 1) an axis, 2) a node test, and 3) zero or more predicates. An initial
node-set is generated from the axis and node test, and then filtered by each of the predicates in
turn. A predicate filters a node-set with respect to an axis to produce a new node-set. Generating

6

the XPath axes is essential in evaluation of location steps in XPath expressions. XPath axes can be
constructed using rUID, in a manner similar to the algorithm in Figure 3 (see [3] for details). This
property is used in the join mechanism of SKEYRUS. In some cases, the set of nodes generated is
a superset of the considered axis but the extra does affect much on the speed of query processing
in main memory.

3.3 Shortcut for Common Subqueries (SCSQ)

This technique aims for saving the processing cost of the common parts of queries. The issue is
typical of the implementation of not only rUID but also other numbering schemes. In any query
processing using numbering schemes, a number of joins may be frequently repeated in various
queries. Let us consider an illustration example. Suppose that we have to process two queries
“//a/c/d/e/f[predicate-1]” and “//b/c/d/e/g/h[predicate-2]”. A naive solution is to pro-
cess each of queries separately. However, these queries have a common subquery “c/d/e/”, which
indicates that the elements c and e participate in a relationship: “There exists an element d such
that c is the parent of d, and d is the parent of e”. If all pairs (c, e), c and e of which observer
the relationship, are pre-recorded in the processing of the first query then the common subquery
“c/d/e/” has not be performed again in the the processing of the second query. Hence, we store the
result data of frequent common subqueries for late uses in order to avoid performing the repeated
tasks in query processing. The data structure for the SCSQ is described in Section 4.2.

4 SKEYRUS - an application of the 2-level rUID

In this section, we describe an implementation of rUID in a prototype system named SKEYRUS.
The system integrates two functions together: querying on structure of XML documents and search-
ing by keywords. The input of SKEYRUS is expressed as a simplified XPath expression, predicates
of which are word-containments. The output is the portion of XML documents that correspond to
the query.

4.1 Approach

In SKEYRUS, we valuate XML queries by selecting the tested nodes that satisfy conditions
on content, and then joining these qualified nodes by axes. The input queries are expressed by
XPath expressions having word-containment predicates. The XPath axis construction ability of
rUID is useful in processing the structural part of the queries. For the content part, we focus on
keyword search, which is a popular request to the Web applications. For example, most of user’s
searches in the Internet aim at retrieving from a large data collection the data items containing
given keywords. The keyword search is embedded in the predicates of XPath expressions by the
function contains().

7

4.2 System design

SKEYRUS has the following components: a module to process raw XML data, a module to
store and index the processed data, and a query processing engine. The engine consists of a query
plan generator, a content processing module, an optimizer, and an integrator. The user interface
of SKEYRUS is omitted here. The system design of SKEYRUS and the components are depicted
in Figure 4.

multilevel UID
+ invert file
generator

Integration

Content query

Sets of identifiersSets of identifiersSets of identifiers

Query structure

XML
documents

Plan generation

Final result

queries Extended
Inverted files

Numbered
Attributes index

Numbered
Element index

RDBMS

Optimizer

Figure 4. System design of SKEYRUS

Pre-processing, storing, and indexing. The input XML documents are parsed by the pre-
processing module, and then the resulted XML tree’s nodes are numbered using rUID. The global
parameters κ and K are generated and stored in the table globalParameters.

In order to generate the structural information, for each XML element and attribute, a tuple
<rUID, EleAttrName, descr> is generated. The rUID is the identifier of the element or attribute
EleAttrName, and descr contains the type of EleAttrName and its position, which is the address
where data resides, in XML documents. Two indices are created on rUID and EleAttrName. The
structural information is saved to the table codeName.

For each leaf node, an inverted structure of the node content is created. The classic structure for
full-text indexing is an inverted file that records the occurrence of words in documents by the pairs
<word, document>. In [4], an extended structure has been proposed to record the occurrence of a
word at a depth in a location of an element or attribute in XML documents. In SKEYRUS, since
the hierarchical level can be computed using rUID, we can discard the depth parameter. Therefore,
the structure of the rUID-keyword inverted file is <rUID, word, descr>. The ability of rUID
to efficiently determine the ancestor-descendant relationship allows the BUS approach, [6], to be
applied, by recording the word occurrences at only leaf nodes. The approach reduces the number
of records needed to store the word occurrences. The content information is saved to the table
codeWord.

The schemes of codeName and codeWord and several tuples are shown in Tables 1 and 2 (the
attribute descr is omitted). The keys of these tables are (gUID, lUID, rIndicator) and (gUID,
lUID, rIndicator, word), respectively. We use an RDBMS to store and index these tables.
Plan generation in SKEYRUS. An input query is expressed by an XPath location path. A

8

gUID lUID rIndicator Name

int int char char(30)

1 1 1 ‘personnel’
1 2 0 ‘person’
...

Table 1. Tables codeName: Element and attribute serialization

gUID lUID rIndicator word

int int char char(30)

1 20 0 ‘employee’
1 342 0 ‘nara.ac.jp’
1 343 0 ‘biology’
...

Table 2. A table codeWord: Words serialization

location path has the form: ∂ Step1 τ1 Step2 τ2 · · ·Stepl where l ≥ 0, ∂ is either an empty symbol
or ’/’, τi (i = 1..l−1) is ‘/’, and Stepi (i = 1..l) is a location step. An initial query plan is generated
by parsing the input location path into location steps. The location step are classified into two
types:

1. the location steps, the predicates of which are either empty, for example “child::doc”, or
can be evaluated based only on the tested nodes in the location steps, for example “descen-
dant::figure[contain(child::title,‘genetic’)]”

2. the location steps, the predicates of which are related with not only tested nodes but also the
position of the tested nodes in the axis, for example “child::chapter[position()=5]”

A query plan is stored in a table having the attributes stepID, nodeType1, axisType, nodeType2,
Operation, OpType, and Output. Each row of the table is a plan step. The stepID indicates the
order to perform plan steps. The nodeType1 and nodeType2 show candidate node sets joined by
the axis axisType. The Operation is the function executed on the candidate node sets to get
the qualified nodes. The OpType is the type of location step. The Output indicates whether the
location step produces the output.

Example 2 A query plan of the XPath expression “/child::doc/child::chapter
[position()=5]/descendant::figure[contain(child::title,‘genetic’)]”,
which selects the figure, the title of which contains the keyword ‘genetic’, of the fifth chapter of a
document, is shown in Table 3.

9

stepID nodeType1 axisType nodeType2 Operation OpType Output

1 root child doc
2 doc child chapter position()= 5 2
3 chapter descendant figure yes
4 figure child title contains ‘genetic’ 1

Table 3. A query plan for Example 2

Shortcut for common subqueries. Common subqueries are extracted from the input. The
intermediate result of common subqueries is stored in a table named scomsubqTab having three at-
tributes comquery, startnode, and endnode, where comquery stores the expression of the subquery,
startnode and endnode are the nodes, the relationship of which corresponds to the subquery. Each
common subquery corresponds to a number of tuples.

If the number of occurrences of a subquery in the input expressions exceeds a threshold then the
tuples corresponding to the subquery are generated. This generation is a query execution itself,
the result of which is stored in scomsubqTab for reference. If a new query contains a subquery that
has been already recorded then rather than performing the subquery again, the startnode and
endnode corresponding to the subquery are used.

Content processing. We evaluate a location step by choosing the candidates, and then projecting
these candidates into an appropriate axis. The candidates are generated by the content processing
module that uses the inverted files created by the pre-processing module. The content processing
module performs two tasks: Loading the list of elements or attributes having a given name, and
filtering a list of elements or attributes by given keywords.

For example, the predicate (contains: ‘database’) is evaluated by checking the tables codeWord

and selecting the tuples, the attribute word of which is ‘database’. In the current version of
SKEYRUS, the content processing is performed using SQL built in RDBMS. The SQL statement
for the predicate is:

SELECT * FROM codeWord

WHERE word = ’database’

ORDER BY gUID ASC, lUID ASC, rIndicator ASC

The output of the content processing module is stored in buffer tables in main memory. SKEYRUS
manages the buffers using flags and frees a buffer after the buffer become not necessary. For ex-
ample, to process the query plan in the example 2, the first buffer stores the doc elements. The
second buffer stores the qualified doc elements that are children of the root. The first buffer now is
freed and will be used to store the chapter elements. The result of the join of the first and second
buffers on the paren-child axis is stored in the third buffer. The first and second buffers become
free, and so on.

Structure processing. This module joins, using rUID as the key, the tables in main memory
according to given axes. The output is the pairs of items from these tables. A pair is qualified if

10

Figure 5. Join process in SKEYRUS

This join mechanism can be applied for different axis types. For sorting, the hierarchical order
is used to decide whether two nodes are swapped. For example, the following proposition can be
used in the preceding and following axes joins.

Proposition 1 Given three nodes p, n1, and n2, if p is a preceding node of n1 and n1 is an
ancestor or preceding node of n2 then p also is a preceding node of n2. Similarly, if p is a
following node of n1 and n1 is a descendant or following node of n2 then either n2 is the root
node or p is a following node of n2.

Rules for query plan selection in SKEYRUS. The general query optimization for XML data
has been discussed in [8]. In this part, we discuss several improvement measures specific to query
processing on numbering schemes.

Given a query plan, the query steps can be performed in different orders. For example, for the
query plan in Table 3, the steps can be performed in the order 1, 2, 4, and then 3. Another order
is 1, 2, 3, and then 4. The different process orders require the different query processing time and
main memory for buffering. The aim of our optimization is to choose the process order appropriate
to our criterion. Regarding the input/output and processing time consumption, we consider the
following illustration example.

Example 3 Consider a simple query “a/X::b[satisfies C]” where X is an axis, C is a condi-
tion on b. The process order is either generating the set of nodes b satisfying C and checking which

11

nodes belong to the axis X of a, or joining a and b by the axis X first, and then checking which
nodes satisfy C. Let P1 and P2 denote these plans, which are shown in Table 4.

stepID Plan P1 Plan P2

1 find C(B) find A
2 find A find B
3 find X (A, C(B)) find C = X (A, B)
4 find C(C)

Table 4. Two query plans for Example 3

The cost difference between P1 and P2 is d = cost(P1) - cost(P2), or cost(C(B)) - cost(B)
- cost(C(C)) + cost(X (A, C(B))) - cost(X (A, B)). From the cost of the join mechanism, d is
found equal to cost(C(B)) - cost(B) - cost(C(C)) + |C(B)| - |B|. The value depends on the cost of
evaluating C and the size of C.

We adopted the following approximate measures to select the query plans:

• Number of connections between processing modules in main memory and RDBMS: The smaller
the number of connections between these modules, the better a plan is. We must cluster the
query steps performed by RDBMS in batches. The numbers of the connections in P1 and P2

are two and three, respectively. In term of this measure, P1 is better than P2.

• Cost of the evaluation of C: If the cost is cheap then P1 is better than P2. If the cost to
verify C is expensive then P2 is better than P1. For simplicity, we consider the number of
input keywords in C the cost of C.

Regarding memory consumption, we choose the number of buffers used to store the intermediated
data as a measure. Intuitively, a buffer can be clear only if it is not referred by latter joins.
Therefore, keeping the number of buffers, which are recursively referred, to the smallest value is
desired. In order to keeps the number of main memory buffers small, the order to process the query
steps is from top and bottom steps toward the step that produces the output.

Database table tuning. The number of tuples used to store the information structure is equal to
the number of elements and attributes. However, the number of tuples recording the occurrences
of words in the content of elements and attributes is larger. For example, the 3172 Kb data set II

described in Section 5 needs 151172 tuples to record the occurrences of words. When the number
of tuples is too large, distributing the tuples into smaller tables is necessary to speed up the query
processing. However, the distribution raises the question of how to choose the correct tables to
make the I/O operations.

Creating the name of tables from the two parts is our solution to the problem. For the tables
of codeName type, the first part of the name of a table is a common prefix of element names
stored in the table. For the tables of codeWord type, the first part of the name of a table is the

12

common prefix of words stored in the table. The second part, in both of these cases, is the common
global index of rUID. For example, the table named “table.go.162” stores the items starting by
the characters ‘GO’, ‘Go’, ‘gO’, or ‘go’, the global index of which equals 162. The XPath axis
expressiveness of rUID can be used in order to choose the most appropriate tables to apply SQL
statements. For example, the processing of the query “a/axis-X::b” can be: load A, compute
X (A) as C, using C to select the tables to load B.

5 Experiment

In this section, we describe several experiments on SKEYRUS. The test results demonstrates the
scalability and the effectiveness of rUID in querying XML data.

Experimental platform. The experiments were conducted in a workstation running on Windows
XP Professional with two dual CPU 2GHz, 2Gb of RAM and a hard disk to store data.
Software utilities. The RDBMS is Oracle 9i Personal Edition. The DOM parser available from the
Xerces project (version 1.0.3) of Apache Software Foundation [14] is used to parse XML data. All
other test programs were written in Java. The connection of the test programs with the RDBMS
is performed through JDBC-ODBC.

Data sets. We used the Shakespeare’s plays formatted by XML available at http://sunsite.unc.edu/pub/sun-
info/xml/eg/shakespeare.1.10.xml.zip. In addition, we generated two synthetic data sets that sup-
posedly describe the personnel organization, denoted by personnel, of a company. The main
entity is person, which has a profile including the attributes identifier, contract status, name
(family and given), email, and technical link. Each person may manage a number of subordi-
nates and may be managed by a manager. The specification of the synthetic data sets is shown in
Table 5.

Comparison of the capacities of UID and rUID. The UID technique failed to numerate
entirely the data set I, which has an unbalanced structure and a high degree of recursion. The
UID technique can deal with Shakespeare’s plays because the documents have a relatively balanced
and low tree shape. However, when the plays are grouped in a collection, for example by adding
a DTD declaration <!ELEMENT collection (play+)>, then the UID technique was overflowed,
even when only a single play “Love’s Labor’s Los” was added. Meanwhile, the 2-level UID is
successful enumerated both of these data sets. The number of UID-local areas in the first case and
the second case is 131 and 154, respectively.

rUID and XML query processing. We compared the query processing of SKEYRUS with
Xalan [14] on the data set II, which is much larger than data set I. Xalan is a shareware for
XML data processing that supports XPath expressions, including the axes. Hence, we could test
the effectiveness of the XPath axis expressiveness of rUID in query processing. We conducted the
experiments using the query input in the following categories:

• Q1: simple XPath expressions having parent and ancestor axes, such as
“//child::person” and “//child::person/child::email”.

13

• Q2: XPath expressions having parent and ancestor axes that require the hierarchical level
information, such as
“//child::person/child::*/child::person” and
“//child::person/child::*/child::*/child::person”.

• Q3: complex XPath expressions having keyword search, such as
“/descendant::person/child::note[contains(self,’academic’)]”.

• Q4: XPath expressions having preceding axes, such as
“/descendant::person/preceding::person”.

Let xp and xq, sp and sq denote the times for data preparing and querying of Xalan and
SKEYRUS, respectively. For Xalan, xp is the time for reading the data file and parsing it. For
SKEYRUS, sp is the time for loading needed data from RDBMS. The times for processing these
queries are shown in Table 6. Each test consisted of three runs and the data of the most shock run
was discarded. The time average of the two other runs was considered as the result of the test.

Data set Size # of ele./attr. tree height description

Synthetic set I 7.6Kb 201 11 20 main entities
Love’s Labor’s Lost 210Kb 5057 7 plays grouped

in collection

Synthetic set II 3172Kb 50052 11 7104 main entities

Table 5. Speci£cation of the data sets

Categories xp xq xp+xq sp sq sp+sq

Q1.1 860 1312 2172 1344 – 1344
Q1.2 875 1562 2437 2500 865 3365
Q2.1 875 1750 2625 2453 991 3444
Q2.2 875 1875 2750 2500 1084 3584
Q3. 891 1328 2219 2844 20 3044
Q4. 875 X – 2650 2050 4700

Table 6. Times of query processing (ms)

Analysis. From the Table 6, we have made the following observations:

• Accessing RDBMS to retrieve the pre-processed data in SKEYRUS requires more time than
parsing a text file in Xalan. This can be best explained that SKEYRUS has to communicate
with the RDBMS via ODBC-JDBC.

14

• When data is loaded into main memory, SKEYRUS is better than Xalan in query processing.
In average, the processing time required by SKEYRUS is 50-60% of the time required by
Xalan.

• When processing an axis, if the names of the participated elements are known, then the scope
of matching is limited to the data of only these elements. If one of element participants in
an axis is unknown, as in Q2.1 and Q2.2, considering all of possibilities of the component is
necessary. Therefore the required time is increased. SKEYRUS deals with the cases using
the ability of rUID for hierarchical level determination, so the required time for processing
was not increased sharply.

• We tested two query plans for Q3. The first plan is {(load word=‘academic’ to the buffer
1), (load name=‘note’ to the buffer 2), (join the buffers 1 and 2), (load name=‘person’ to the
buffer 3), (join the buffers 2 and 3 by the parent axis)}. The second plan is created from the
first plan by permutating the steps 2 and 4. The total times for loading in these plans are
3109ms and 2844ms, respectively. The times for querying in both plans are equal. Therefore,
the second plan is better than the first one. The result accords with our rule in Section 4.2
for query plan selection based on the number of connections between processing modules and
RDBMS.

• When the keywords are issued, the sizes of buffers decrease so the joint costs in main memory
of SKEYRUS becomes small.

• For the queries including the axes preceding or following, such as Q4, the evaluation cost
was high. The runs for the query were cancelled in Xalan.

6 Conclusion

Queries on keywords are common user requests whereas XML makes the queries on document
structure available. Therefore, it is natural to integrate these tasks to enrich the selectivity of users.
In this study, we described SKEYRUS, a system which enables the searches on both keywords
and structure of XML documents. The input of SKEYRUS is XPath expressions having word-
containment predicates, therefore the query expressiveness is significantly extended. The core
technique of SKEYRUS is the rUID numbering scheme, which has been designed to be scalable and
robust in structural update. The ability of rUID in XPath axes construction has been exploited in
query processing. The preliminary experiments have shown the efficiency of rUID and SKEYRUS.
The query processing in main memory of SKEYRUS is better than of Xalan.

Extensions of this study are underway, including the implementation of an indexing engine based
on the B+-tree structure to index the data tables in SKEYRUS in order to avoid the limitations
in using an underlying RDBMS. We also plan to conduct more performance tests in different
configurations.

15

References

[1] S.Chien, et al. Storing and Querying Multiversion XML Documents using Durable Node Num-
bers. Proc. of the Inter. Conf. on WISE, Japan, 270–279, 2001.

[2] P.F.Dietz. Maintaining order in a link list. Proceeding of the Fourteenth ACM Symposium on
Theory of Computing, California, 122–127, 1982.

[3] D.D.Kha, M.Yoshikawa, S.Uemura: A Structural Numbering Scheme for XML Data. EDBT
workshop on XML Data Management (XMLDM), Prague, March 2002.

[4] D.Florescu, I. Manolescu, D.Kossmann. Intergrating Keyword Search into XML Query Process-
ing. Proc. of the Inter. WWW Conf., Elsevier ,Amsterdam, 2000.

[5] A.Marian, S.Abiteboul, G.Cobena, L.Mignet. Change-Centric Management of Versions in an
XML Warehouse. Proc. of the Inter. Conf. on VLDB, Italy, 2001.

[6] H.Jang, Y.Kim, D.Shin. An Effective Mechanism for Index Update in Structured Documents.
Proc. of CIKM, USA, 383–390, 1999.

[7] D.Shin. XML Indexing and Retrieval with a Hybrid Storage Model. J. of Knowledge and Infor-
mation Systems, 3:252–261, 2001.

[8] J.McHugh, J.Widom. Query Optimization for XML. Proc. of the Inter. Conf. on VLDB, Edin-
burgh, Scotland, pages 315–326, 1999.

[9] J.Shanmugasundaram, et al. Relational Databases for Querying XML Documents: Limitations
and Opportunities. Proc. of the Inter Conf. on VLDB, Scotland, 1999.

[10] Y.K.Lee, S-J.Yoo, K.Yoon, P.B.Berra. Index Structures for structured documents. ACM First
Inter. Conf. on Digital Libraries, Maryland, 91–99, 1996.

[11] Q.Li, B.Moon. Indexing and Querying XML Data for Regular Path Expressions. Proc. of the
Inter. Conf. on VLDB, Italy, 2001.

[12] World Wide Web Consortium. Extensible Markup Language (XML) 1.0.
http://www.w3.org/TR/REC-xml, 2000.

[13] World Wide Web Consortium. XML Path Language (XPath) Version 1.0.
http://www.w3.org/TR/xpath, 2000.

[14] Apache Software Foundation. Apache XML Project. http://xml.apache.org/, 2001.

[15] M.Yoshikawa, T.Amagasa, T.Shimura, S.Uemura. XRel: A Path-Based Approach to Storage
and Retrieval of XML Documents Using Relational Databases. ACM Transation on Internet
Technologies, 1(1), 2001.

[16] C.Zhang, et al. On Supporting Containment Queries in Relational Database Management
Systems. Proc. of the ACM SIGMOD, USA, 2001.

16

