| mplementation of Natural L anguage Specifications of

Communication Protocols by Executable Specifications

Yasunori ISHIHARA, Hiroyuki SEKI, and Tadao KASAMI

Graduate School of Information Science
Nara Institute of Science and Technology
8916-5, Takayama, Ikoma, Nara 630-01 JAPAN

E-mail: ishihara@is.aist-nara.ac.jp

ABSTRACT

First, this paper defines a subclass of algebraic specifications. Each specification of the subclass
consists of two sub-specifications: a BE program and a BE interpreter specification. The syntax of
BE programs resembles the syntax of LOTOS, and the semantics of BE programs is defined as a
behavior of an interpreter, called a BE interpreter, which has a finite number of registers and un-
bounded I/0 buffers. Since BE interpreter specifications are based on a state transition model, each
specification of the subclass can be easily compiled into an executable program. Next, the paper
proposes amethod of implementing logical formulag, which are derived from natural language spec-
ifications of communication protocols, by BE programs. Such anatural language specification often
specifies valid sequences of actions to be performed by a protocol machine. In thisimplementation
method, the meaning of each predicate that corresponds to a word denoting actions is defined as a
BE program and stored as a“lexical item” of the predicate. Then, a BE program for logical formu-
lae is constructed in a bottom-up manner. Thus, a natural language specification of communication

protocols can be trandlated into an executable program in the framework of algebraic specifications.

1. Introduction

In a software devel opment process, informal requirements and/or specifications are of -
ten written in a natural language since they are readable and the intuitive meanings are
understandable. However, it is desirable that such an informal specification is trand ated
into aformal specification so that one can analyze theinformal specification, reduce its am-

biguity, and derive an efficient program which satisfies the specification. Among various

formal specification methodswhich have been proposed and studied, algebraic specification

methods [2] are useful and powerful because of the following reasons:
1. Abstract datatypes can be defined simply in algebraic specifications;
2. Formal semantics of a specification is simply provided by axioms (equations); and

3. One can write a specification which has arbitrary structure and arbitrary degree of ab-

straction.

In Refs. [3] and [9], we proposed atransation method from natural language specifications
of communication protocolsinto algebraic specifications. A specification such as a protocol
specification defines valid sequences of actions performed by a protocol machine. In the
method, the valid sequences of actions are represented by an axiom in the form of alogical
formula. However, such an axiom istoo abstract to be compiled into an executable program
directly.

Firgt, this paper defines a class of interpreters (machines), called BE interpreters, as
a model of protocol machines. A BE interpreter has a finite number of registers and un-
bounded 1/0 buffers, and performs three kinds of atomic actions: input from a buffer, out-
put to a buffer, and calculation using its registers. An input program for a BE interpreter,
called a BE program, specifies the order of actions by means of such operators as action-
prefix, choice, conditional, and so on. The syntax of BE programsis also defined within the
framework of algebraic specifications. The semantics of BE programs, i.e., the behavior of
BE interpreters, is defined by axioms based on a state transition model. Therefore, a BE
interpreter specification with agiven BE program can be easily compiled into an executable
program.

As stated above, we have aready proposed a translation method from natural language
specifications of communication protocols into logical formulae. In this paper, we also
propose a method of implementing such logical formulae by BE programs. Each word
which denotes actions in a natural language specification is translated into a predicate, and
the meaning of such a predicate is given as a BE program by a human implementor. Based
on such BE programs, a BE program for logical formulae is constructed in a bottom-up

manner.

The syntax of BE programs is modeled on the syntax of LOTOS[6]. There are several
reasonswhy we do not implement thelogical formulaeby LOTOS. First of all, itisdesirable
that the whole translation from natural language specifications into executable programsis
handled in the same framework. By defining BE programs in the framework of algebraic
specification methods, the whole trandation becomes simple and concise. Secondly, the
model of processes (machines) in LOTOS is too primitive for our purpose. For example,
natural language specifications of communication protocols (e.g., Ref. [5]) often presuppose
that protocol machines have registers. However, in LOTOS, the model of processes itself
does not have the concept of registers. Therefore, we design BE interpreters so that they
have registers. There is another reason that we introduce registers into BE interpreters.
It is probable that registers (or substitutes for them) are needed to implement rendezvous
(synchronous communication) of LOTOS. For example, to execute aLL OTOS specification,
Ref. [1] implements rendezvous by using a shared memory, and Ref. [7] does by assignment

of valuesto registers.

2. Algebraic Specification Language ASL

In this paper, we adopt ASL [8] as an algebraic specification language. A specification
in ASL isapair SPEC = (G, AX) of acontext-free grammar G and aset AX of axioms.
G specifies the set of expressions and their syntax, and AX specifies their semantics. Let
G = (N,T,P) where N, T and P are sets of nonterminals, terminals and productions,
respectively. For anonterminal D € N, let L[D] denotethe set of terminal strings derived
from D inG, and let Lg = Upen La[D]. Anelement in Lg is called an expression (in
the specification SPEC). NV corresponds to the set of sorts (datatypes); A nonterminal D is
sometimes called “datatype D” and an expressionin Lg[D] may be called “an expression
of type D.”

An axiom is a pair I == r of expressions with variables. A variable of an axiom is
denoted by a symbol with the upper bar (e.g.,). With each variable z in an axiom a
nonterminal Dz is associated (declared by “z : Dz” in the specification), and an arbitrary
expression in Lg[Dz] can be substituted into z. Theleast congruence relation that satisfies
al theaxiomsin AX isdenoted by =spec. See Ref. [8] for details.

Tablel Specification of sequences.

e Production schemata:
Seq. D — A,
Seq.D — Seq.D - D,
D — head(Seq_D),
Seq.D — tail(Seq.D),
Bool — member(D, Seq_D).
e AXxioms:
Tseq: Seq.D, z,7’ : D
head(zseq -) == if £seq = A then = else head(zseq),
tail(zseq -) == if zseq = A then X else tail(zseq) - z,
member(z,\) == false,
member(z, zseq - ') == if z = 2’ then true else member(z, zseq)-

In this paper, we presuppose a fixed specification SPECy = (Gop, AXp), Go =
(No, Ty, Pp) of primitive data types (e.g., integer, Boolean, set, and so on), which defines
the datatypes of the contents of the registersand I/O buffers of a BE interpreter. We assume

that SPECy supports the following data types:
1. Boolean; Let Bool be a nonterminal which generates Boolean expressions.

2. Sequence; Let Seq._ be a constructor on data types to support sequences of a given data
type, i.e., for any datatype D, Seq_D generates sequences of expressions of type D.
Formally, SPEC, has the production schemata and axioms shown in Table 1, where
A, -,head, tail, member € Tp. Constant function A denotes the empty sequence and
function “-” denotes the concatenation operation. For a given sequence, head returns
the first element and tail returns the sequence obtained by eliminating the first element.
Predicate member istrueif and only if the first parameter is an element of the second

parameter.

3. BE Programs

Asstated in section 1, aBE interpreter hasregisters and 1/0O buffers, and performsthree

kinds of atomic actions. The syntax and semantics of a BE program are defined to meet the

following requirements:
(& Any number of registers and I/O buffers can be introduced into a BE interpreter;

(b) Datatypesof contents of the registers and /O buffers are pre-defined as primitive data
types,

(c) All the registers and 1/0 buffers of a BE interpreter can be directly accessed by per-

forming (atomic) actions; and
(d) The order of actions can be explicitly specified in a BE program.

This section restates these requirements formally, i.e., describes the conditions which a BE
program SPECprg = (Gpra, AXPrG), Grra = (IVPRG, IPrRG; Prrc) has to mest.
First, for the requirement (a), the following two datatypes, Reg and Buf, areintroduced

into Gpre:
1. Reg € Nprg generates names of registers of a BE interpreter.
2. Buf € Nprg generates names of 1/0 buffers.

Define REG and BUF as Lg..[Reg] and Lg..[Buf], respectively. To ensure that the
number of registersand buffersisfinite, we simply assumethat each el ement of REGUBUF
isatermina symbol. We also assume that REG N BUF = ().

Secondly, for the requirement (b), SPECprg must satisfy the following condition:

3. SPECprg D SPEC, (component-wise containment).

4. For eachreg € REG, thereisaunique nonterminal symbol Dyeg € No suchthat Dyeg —
reg € Pprg. Dreg isdenoted by typefreg].

5. For each buf € BUF, there is a unique nonterminal symbol Dy € Ng such that
Seq_Dpy — buf € Pprg. Dyt isdenoted by type[buf].

Thirdly, for the requirement (c), the following data type, Action, is introduced:

6. Action € Nprg generates actions. For each buf € BUF and reg € REG, the following

productions arein Pprg:
Action — in(buf,reg),

5

Action — out(buf, reg),

Action — set(reg < Drq),

wherein, out, set, < € Tprg, type[buf] = type[reg], and Dyeg = type[reg]. in(buf, reg)

denotes that a BE interpreter receives a data from buffer buf and the data is stored

in register reg. out(buf, reg) denotes that a BE interpreter transmits a data stored in

register reg to buffer buf. set(reg — t) denotes an assignment of the value of an

expression ¢ to register reg (the value of an expressionisformally defined in section 4).

Lastly, for the requirement (d), we introduce behavior expressions, which specify the

order of actions. Some behavior expressions are associated with behavior identifiers so that

abehavior expression can refer (call) another behavior expression, i.e., abehavior identifier

correspondsto aprocedure name. The syntax of behavior expressionsis defined asfollows:

7. B_id € Nprg generates behavior identifiers. There are productions of the following

form:

B.id — ,

where m € Tprg isabehavior identifier.

8. B.exp € Nprg generates behavior expressions. The following productions are in

PPRG:

B_exp
B_exp
B_exp
B_exp
B_exp
B_exp
B_exp

B_exp

stop,

B.id,

Action; B_exp,

(B_exp © B_exp),
(B_exp|Seq_Action|B_exp),
[Bool] = B_exp,

(B_exp>> Seq_Action > B_exp),

(B_exp [> Seq_Action [> B_exp),

WhereStOpa s <>7 |7 [a]?) (7)) >, [> € TPRG-

Table2 Meanings of operators.
stop means that no actions are performed, i.e., a BE interpreter which executes it goes
into a dead state.

Execution of abehavior identifier = is equivalent to execution of the behavior expression
which is associated with 7.

Action-prefix: a; B specifies that a BE interpreter performs action a, then executes be-
havior expression B.

Choice: (B1 < By) specifiesthat a BE interpreter executes either B1 or B, nondetermin-
istically. If a BE interpreter performs an action performable in common with B; and
B, it isconsidered that the interpreter is executing “both” of B1 and B> (see the end of
section 4 for detail).

Parallel composition: (B1|A-a1 - - - a, | B2) specifiesthat aBE interpreter executes behav-
ior expressions B and By in a“time sharing” manner. Here, each action a; (1 <7 < n)
must be simultaneously performed in the executions of B; and Ba.

Conditional: [p] — B specifies that a BE interpreter executes behavior expression B if
predicate p holds, and goes into a dead state otherwise.

Enabling: (B1>> A - a1---ay, > B)) specifies that a BE interpreter executes behavior
expression By first. When some action a; (1 < 7 < n) isperformed during the execution
of By, theinterpreter begins to execute behavior expression Bs.

Disabling: (B1[> A - a1---a, [> B2) specifies that a BE interpreter executes behavior
expression Bj, and the interpreter can nondeterministically begin to execute behavior
expression By until some action a; (1 < ¢ < n) is performed during the execution of Bj.

Table 2 shows the intuitive meanings of the operators used in behavior expressions. The
formal semanticsis defined in section 4 as the behavior of a BE interpreter.

Now weintroduce a predicate := which associates a behavior expression with abehavior
identifier.

9. Thereisaproduction

Bool — B.id := B_exp

in Perg, and for each 7 € L¢,.;[B-id], there are one or more axioms
7 .= B ==true

in AXprg, Where := € Tprg and B € Lgpyo[B-€Xp]. 7 := B =gpecye true means
that 7 is defined as B in SPECprg. An expression in the form of = ;= B iscdled a
behavior definition (of).

Among the behavior identifiers defined by operator :=, exactly one behavior identifier

must be specified as the main (top level) behavior expression, i.e., the one which should be

7

executed first by a BE interpreter.

10. Thereisaproduction

Bool — main(B._id)
in Perg, and there is exactly one axiom
main(x) == true

in AXprg, Where main € Tprg and © € Ly [B-id]. main(r) =specege true means

that 7 is the main behavior expression.

To execute the main behavior expression, the initial values of the registers and I/O

buffers must be specified:

11. For eachy € REG U BUF, the following productionisin Pprg:
D, — initial(y),

where initial € Tprg, Dy = typely] if y € REG, and D, = Seq_type[y] if y € BUF.

Moreover, for each y € REG U BUF, thereis exactly one axiom
initial(y) == ¢,

in AXprg, Where ¢y € Lay[typelyl] if y € REG and ¢y € Lgp[Seq-typely]] if

y € BUF. initial(y) =specpee ¢y Meansthat theinitial value of y is cy.

4. BE Interpreter Specifications

In this section, the semantics of BE programsis defined in terms of the behavior of aBE
interpreter. Let SPECinT = (GinT, A X NT) Where Gint = (NinT, TinT, PinT) be aBE inter-
preter specification, andlet SPECprg = (Gprg, A Xprg) Where Gprg = (NprG, TPRG, PPRG)
be a BE program.

First, we assume that G\nt1 O Gprg (Component-wise containment). SPEC\t will be
defined so that SPECinyt U SPECpre (COmponent-wise union) specifies the behavior of a
BE interpreter when SPECprg is given as its input program (see Fig. 1). Define REG and
BUF as L¢p[Reg] and L, [Buf], respectively.

8

BE Program BE Interpreter Specification
SPECrs SPECinT

Ooo0oDo0ooooooooOooOd
“‘Executable’’ Specification SPEC

Fig. 1 Executable specification SPEC.

To define the semantics of the operators used in behavior expressions, a quadruple
relation EXEC is introduced. Let B,B' € Lg,,[B-exp]l, p € Lg,,[Bool], and a €
Lg,;[Action]. (B,p,a,B') € EXEC meansthat “if a BE interpreter is about to execute
behavior expression B, and the values of theregisters and 1/0 buffers of the BE interpreter
satisfy predicate p, then, the BE interpreter is allowed to perform action a, and it executes
behavior expression B’ after a.” In SPECnr, relation EXEC is represented by a predicate

exec. A production
Bool — exec(B_exp, Bool, Action, B_exp)

isincluded in PnT, and the axioms shown in Table 3isincluded in A X nT.
We introduce State € Ny, Which is a data type representing states of the BE inter-

preter. The productions whose left-hand side is State are asfollows:

State — Sjnit,

State — 46(State, Action),

where Sinit, & € TINT- Sinit denotesthe initial state of the BE interpreter, and 6(s, a) denotes
the state immediately after action a is performed at state s.
By using the notion of states of a BE interpreter, we define the semantics of each action
a asrelation between the values of the registers and 1/0 buffers before a is performed and
their values after a is performed. To expressthisrelation in SPEC)y, for each D € Ny, a
production
D — val(D, State)

isintroduced into Pyt, where val € Tint. For any expression ¢ which includes some of

9

Table3 Axiomsfor exec.

B, B, B1, B}, Ba, By : B_exp, @ : Action,
p,p,p1,p2 . Bool, = :B_id, A :Seq_Action
e Action-prefix:
exec(a; B, true, a, B) == true.
Choice:

exec(B1, p1, a, B}) D exec((B1© By), p1, a, By) == true,
exec(Ba, p2, a, By) D exec((B1 © Ba), p2, @, BY) == true.
Behavior identifier:
(7 := B) A exec(B, p, a, B')) D exec(, p, a, B') == true.
Parallel composition
(exec(Bu, p1, @. Bl) A —member(a, A)) D
exec((B1|A|Bz),p1, a,(B1|A|Bp)) == true,
(exec(Ba, p2, @. Bz) A —member(a, A) >
exec((B1|A|Bz),p2, (31|A|Bz)) = true,
(exec(Bl,pl, a Bl) A exec(Bz,pg, a Bz) A member(a A)) D
exec((B1|A|Bz), p1 A p2, @, (Bj| A|BY) == true.

Conditional:

exec(B, p, a, B') D exec([p] = B,p AP, a,B') == true.

Enabling:
(exec(Ba, p1, @, 5’1) A ﬁmember(i A)) D
exec((31 >A> Bz), P1,a, (Bl >A> Bz)) = true,
(exec(Bu, p1, @. Bl) A member(a A4)) D
exec((Bl >A> Bz),pl, a Bz) = true.

Disabling:
(exec(Bl,pl, a Bl) A ﬂmember(a A)) D
exec((Bl [>A[> Bo), p1,a 1, (B1 [>A[> By)) == true,
(exec(Bl,pl, a Bl) A member(a A)) D
exec((B1 [>A[> Bz) p1,a, Bl) == true,
exec(Bz, p2, @. Bz) > exec((B1[> A[> B2), p2, @, Bz) = true.

10

Table4 Axiomsfor val.

s . State
e Calculation: For each ¢ € Ty,
val(c, 5) == ¢,
and for each f € Ty suchthat A — f(A41,...,A,) € Py,
t1: A1, ..., t Ay
val(f(ta, ..., tn), 5) == f(val(ty,s),...,val(t,, 5))-
¢ |nitial value: For eachreg € REG and buf € BUF,
val(reg, Sinit) == initial(reg),
val(buf, siit) == initial(buf).
e in(buf, reg): For eachreg, reg € REG suchthat reg # reg’, and for each buf , buf’ € BUF
such that buf # buf’,
val(reg, 6(s, in(buf, reg))) == head(val(buf, s)),
val(red, 6(s, in(buf, reg))) == val(reg/, s),
val(buf, 6(s, in(buf, reg))) == tail(val(buf, s)),
val(buf’, §(s, in(buf, reg))) == val(buf’, s).
e out(buf, reg): For each reg,reg € REG, and for each buf,, buf’ € BUF such that buf #
buf’,
val(red’, (s, out(buf, reg))) == val(reg, s),
val(buf, 5(s, out(buf, reg))) == val(buf, s) - val(reg, s),
val(buf’, §(s, out(buf, reg))) == val(buf’, s).
e set(reg < t): For eachreg,reg’ € REG such that reg # reg, and for each buf’ € BUF,
t : typefreg] B B
val(reg, 8(s, set(reg — t))) == val(t, s),
val(reg', 6(s, set(reg — 1)) == val(reg, s),
val(buf’, §(s, set(reg — t))) == val(buf’, 5).

members of REG U BUF, val(t, s) denotes the value of ¢ at state s. The semantics of the
actionsis defined by the axioms shown in Table 4.
Lastly, aproduction
Bool — bexp(B_exp, State)

isintroduced into P, where bexp € Tint, and the axioms shown in Table 5 into A X .
Let SPEC (: (G, AX)) be SPECprg U SPEC|NT. Intuitively, bexp(B, S) =gpgc true means
that the BE interpreter can execute behavior expression B at state s. By using bexp, define

the behavior of BE interpreters as follows:

Definition 1: A BE interpreter has to perform, at state s, an action ¢ such that

11

Table5 Axiomsfor bexp.

7:B.d, B,B' :B_exp, s: State, p: Bool, a: Action
main(w) D bexp(w, Sinit) == true,
(bexp(B, 5) A exec(B, p, a, B') A val(p, 5)) D bexp(B’, 8(s, a)) == true.

bexp(B, 6(s,a)) =spec true for some B € Lg[B_exp]. If such an action does not ex-

ist, the BE interpreter goes into a dead state. O

Suppose that bexp((B1 < By), s) =spec true, where s € Lg[State] and By, By €
Lg[B_exp] such that

exeC(BlupJ.)(I)Bi) =sec true,

exec(Bz,p2,a, B;) =spec true

for some p1,p2 € Lg[Bool], a € Lg[Action], and B},B, € Lg[Bexp]. If
val(p1, s) =spec true and val(p», s) =spec true, both of

bexp(B},8(s,a)) =spec true,

beXp(B’z, 6(5, a)) =gppc true
hold by the definition of bexp. That is, if a isaperformable action in common with B and
Bo, nondeterministic choice (B ¢ By) at state s is replaced by choice between B and B)
a state 6(s, a). Therefore, unlike LOTOS, executing

(a1; -5 an; [p1] = By G a1+ -+ 5 an; [p2] = B))

at state s is equivaent to executing

a;; an; ([pa] = By © [p2] = By)

a s, in the sense that for both of these behavior expressions, a BE interpreter chooses be-
tween [p1] — B} and [py] — Bj at state 6(- - - 6(s, a1), - - - , an).

Similarly, this property holds in the case that bexp(r, s) =gec true, where « €
L[B_id] has more than one behavior definitions. In section 6, we propose an implementa-

tion method which uses this property.

12

5. Trandation from Natural Language Specifications of Commu-

nication Protocolsinto Logical Formulae

Refs. [3] and [9] propose atranslation method from natural language specificationsinto
algebraic specifications. As an example of an input specification, a communication proto-
col specification is considered. In such a specification, a sentence often specifies an action
which a program (or a protocol machine in the case of protocol specifications) has to per-

form. However, it often specifiesimplicitly when the action should be performed.
Example 1. Consider the following consecutive sentencesin Ref. [5]:

(1) A valid incoming MAJOR SYNC POINT SPDU (with ...) results in an S-SYNC-
MAJOR indication.

(2) If Vscisfase, V(A) isset equal to V(M).

“MAJOR SYNC POINT SPDU” and “S-SYNC-MAJOR indication” are names of data,
and “Vsc,” “ V(A),” and “V(M)” are names of registers of a protocol machine. A protocol
machine has to perform the actions specified by (2) immediately after it performsthe actions
specified by (1). However, sentence (2) does not specify explicitly when the actions hasto

be performed. m|

In Ref. [3], astate of the program which is specified implicitly in a natural language speci-
fication is called a situation. Moreover, for aconstituent (i.e., a phrase, clause or sentence)
X, the pre-situation of X is defined as the situation at which the action(s) specified by X
has to be performed, and the post-situation of X is defined as the one immediately after the
action(s) isperformed. The pre-/post-situations are al so defined for a sequence of sentences.

It is assumed that a natural language specification is a set of paragraphs (sequences of
sentences) and there exists no contextual dependency between distinct paragraphs (i.e., for
any constituent X in a paragraph, the pre-situation of X is either the pre-situation of the
paragraph or the post-situation of another constituent). In most of protocol specifications,
for each kind of input data, there is a paragraph which specifies sequences of actionsto be
performed when a protocol machine receives an input data of that kind at the pre-situation

of the paragraph. Therefore, the pre-situation of a paragraph usually denotes a state in

13

which a protocol machine is waiting for an input. And, if a protocol machine reaches the
post-situation of a paragraph, then the machine waits for a next input. Under these assump-
tions, each paragraph in a natural language specification isindependently translated into an
algebraic axiom.

In Ref. [3], situations are formalized as a data type Situation, which is represented by
a sequence of “events’ which the program has performed from the initial situation. By
using type Situation and other primitive data types, a paragraph P of a natural language

specification is translated into an axiom in the form of

oo : Situation, z1: Ay, ..., T, A
[RiA---ARn] D N preds == true, (1)
Sep

where pred isalogical formuladenoting the meaning of sentence S, oo, 21, . . . , ., areal
the distinct variables appearing in A s p predg, and A; (1 < j < m) isthe datatype of x;.
Each sub-formula R; (1 < j < m) iscalled the restriction on z;.

Each sub-predicate of preds which denotes actions has two extra parameters. One
denotes the pre-situation and the other does the post-situation. Since each paragraph is
“contextually closed,” the expression representing the pre-situation of a paragraph is de-
noted by a variable op. And, the expression representing each of other situations is de-
noted by 7(oo, @1, ..., z;), where z1, ..., z; represent input data received up to situation
(00, 21, . . ., T}).

Example 2: The paragraph which consists of the two sentencesin Example 1 istrandated

into an axiom of F' == true, where F' isthe following logical formula:
oo . Situation, z1:SPDU
[valid(z1) A incoming(z1) A MAP(z1)] D
[receive(x1, 09, 51) A send(SSYNMind(z1), 71, 52)] A
[if_then(Vsc = false,
set_equal_to(Va,Vm, o3, 64),
02,05)]]]-
In the above logical formula, variable z; represents an input data MAJOR SYNC POINT

SPDU. And, a9, ..., 05 areexpressions of type Situation, where 6o = o representsthe pre-

14

Table6 Meanings of subexpressions.

e valid(z1): =1 hasavalid data format.

e incoming(z1): x1 isanincoming object.

o MAP(z3): z1 isadataunit MAJOR SYNC POINT SPDU.

e SSYNMind(z;1): The service primitive S-SYNC-MAJOR indication to be sent when a
protocol machine receives 1. Contents of the S-SYNC-MAJOR indication depends on
.

e receive(r, 09, 01): At situation a9, the event “receipt of z;” isalowed to occur and the
situation immediately after the event is 1.

e send(SSYNMind(z1), 61, 02): At situation 01, the event
“transmission of SSYNMind(z1)” has to occur and the situation immediately after the
event is oo.

¢ set_equal_to(Va,Vm, o3, 64): At situation o3, the event “ setting the value of V(A) equal
to the value of V(M)” has to occur and the situation immediately after the event is 4.

o if_then(q, pred, 6, o5): At situation &, the events specified by pred occur if ¢ istrue,
and no events occur otherwise. The situation immediately after these eventsis os.

situation of the paragraph and 64, = (00, 1) (1 < k < 5) represent the other situations.

Intuitive meanings of subexpressionsin the formula are presented in Table 6. a

The semantics of 7, is defined by the semantics of the predicate which includes
71(00,...). Consider the logical formulain Example 2. By the semantics of if then, &
isequal to 3 and o4 isequal to o5 if Vsc = false holds, and o is equal to 65 otherwise.
And, by the semantics of set_equal_to, 54 is egqual to the situation immediately after a pro-
tocol machine assignsthe value of V(M) to V(A) at situation o3 (see Table 6). Asexplained
in the next section, the semantics of predicates which denote actions is defined in terms of

behavior definitions.

6. Implementation of Logical Formulae by Behavior Definitions

In Ref. [3], an “event” is considered as an “atomic action” of a protocol machine (in
the case of protocol specifications) such as transmitting data or updating a particular reg-
ister (see Table 6). However, “atomic action” isinformally used in Ref. [3] since protocol
machines are not defined formally.

In section 4, we defined a BE interpreter, which can be aformal model of protocol ma-

15

chines. Now we consider “atomic actions” as expressions of type Action. Then, Situation
is represented by a sequence of Action, i.e., type Situation is identified with type State
introduced in this paper.

Let SPECy. beanatura language specification, i.e., aset of paragraphs. Let SPEC, F =
(GLr, AXLF) (GLE = (NLF, TLF, P_F)) bethe algebraic specification derived from SPECy ,

where A X | g consists of:
e axioms on primitive data types; and

e axiomsin the following form:

so : Situation, z1: A1, ..., T Am
/\ [(Rl A---ANRy)D preds} == true, 2
sep

where P € SPECy isaparagraph, and for each j (1 < j < m), A; denotesa primitive
data type and R; denotes the restriction on z;. For any paragraph P € SPECyy, the
pre-situation of P is denoted by so, and an input data to be received at the pre-situation

of P isdenoted by z1.

In what follows, a method of implementing SPEC, ¢ by a BE program SPECprg =
(Gpra, AXpra) ispresented. Let SPEC\T be a BE interpreter specification for SPECprg,
and SPEC = SPECprg U SPEC T (seeFig. 2).

In our implementation method, each variable of a primitive data type in Axiom (2)
corresponds to a register, and each expression of type Situation which includes variables
in Axiom (2) (i.e., sg or 7 (so, . . .) for some k) corresponds to a behavior identifier. To do

this, the following registers and behavior identifiers are introduced into SPECpre:

1. REGyar = {vars,...,var,, }: Eachregister var; is used for storing the value of variable

x; in Axiom (2);

2. REGprep = {reg,, ..., reg, }: Eachregister reg, hasbeen defined in SPEC, ¢ (e.g., Vsc,
Va, and Vm in Example 2);

3. REGtmp: A register in REGryp isatemporary or dummy one, and denoted by tmp with

some subscripts; and

16

Natural Language Specification
SPECw

4

Logical Formulae Behavior Definitions
SPEC, ¢ for Predicates

11

BE Program BE Interpreter Specification
SDECPRG SDECINT

OO0 ooooQgQ
“*Executable’’ Specification SPEC

Fig. 2 Implementation method.

4. ;. For each pre-/post-situation s appearing in Axiom (2), a behavior identifier «; is
introduced into SPECprg. A human implementor specifies behavior definitions so that

for any instantiated term s of s which satisfies Axiom (2),

e bexp(rs, s) =spec true, or

e bexp(ry, s) =spec true for some 73 such that
(7T§l = 7T1) AN (ﬂ'l = 7T2) VANCIIWAY (71'1,1 = 7'('1) AN (’/Tl = 7T§) =gpec true
for somery,...,m € Lg[B-id] (I > 0).

That is, at such a situation s, a BE interpreter can always execute =;. For example, if
apredicate p(..., s, ') (s and s’ are the pre- and post-situations respectively) denotes a
sequence ay, . . ., a; Of actions, a human implementor specifies7; ;= aq;- -+ ay; 73 as

the semantics of p (the details are explained in Step 2.2 below).

The implementation method consists of the following three steps.

17

(a) Looking Ahead

——————————— -- (b) Examining ----------

(c) Performing Actions

Fig. 3 Execution of each of Bp,, Bp,,...,0p.

Step 1: For each paragraph P € SPECy, aset 3p of behavior definitionsis constructed by
Steps 2 and 3. The behavior of a BE interpreter which executes 73, (so is the pre-situation

of P) defined by Bp isasfollows:

(a) the BE interpreter looks ahead the first element d of an input buffer,
(b) it examines whether paragraph P specifies actions for d, and

(c) it performs the actions specified by P if P passes the examination (b).

See Fig. 3. Each of the black circles represents some state s such that bexp(rs,, s) =spec
true, and each of the white circles represents the state at which the BE interpreter performs
the examination (b). Each of the lines from the black circles to the white ones represents
a sequence of actions to perform (a). And, each of the triangles represents sequences of
actionswhich are specified by the paragraph. For each paragraph P, the behavior expression
to perform (@) is the same, and the behavior expression to perform (b) and (c) isin theform
of [pp] — Bp, where pp corresponds to the examination (b) and Bp corresponds to (c)
(see Steps 2.1 and 2.2 below).

Let 8 = Upespec,, Bp- Sincethe pre-situation of any paragraph is denoted by so, 4 has
in general morethan one behavior definitions of 7,. Let s be the state immediately after (a)
is performed. As stated at the end of section 4, bexp([pp] — Bp, s) =sec true for each
paragraph P € SPECy_. Therefore, at state s, only the actions specified by a paragraph P

18

BPl - BPz BPI

Fig.4 Execution of 3.

suchthat val(pp, s) =spec true are performed (see Fig. 4; the oval correspondsto s). Thus,
B =Upespecy, Bp istheimplementation of SPECy .

Step 2: For each sentence S € P, (R1 A --- A R,,) D predg istranslated into behavior
definitions (denoted by behavior[(R;, ..., R,), predg]) asfollows:

Step 2.1: The “subroutines’ for “variable bindings’ are defined as a set of behavior def-
initions (denoted by bind[(R1, ..., R.),predgs]). Let a{vi/v1,---,7,/7m} denote the
expression obtained by replacing each subexpression v; (1 < 7 < m) of expression «
by expression 75. Let prefpreds] denote the actual parameter of predg which represents
the pre-situation of predy, and let post[preds] denote the actual parameter of predg which
represents the post-situation of predg. For simplicity, define 75, where so denotes the
pre-situation of the paragraph, as the identity function on type Situation. Suppose that
prefpredg] = 7x(s0, z1,..., ;) (0 < j < m) and post[preds] = 74(s0, 1, ..., ;1)
(j < 7' < m). Then, during the “execution” of predg, the input data represented by
zj+1,...,z; arereceived and each of z;.1,...,z; is bound to some value. A behavior
identifier which simulates these variable bindings is denoted by pprefpred,],postipreds]- The

behavior definition of pprefpreds] postipreds] 1S 1N the following form:

Pprefpredg] postfpreds] = S€t(Varj«y — £j41); - set(var — &;r);
[(Rj+1 A --- A Rj){vary/wy, ..., var /c;}] =

set(tmpying <— tMPping); Stop.

19

Here, 0 (j +1 < j” < j') is an expression which indicates how the value of var
is obtained, and is specified by a human implementor. Action set(tmpy;,g < tMPyig) IS
performed asa“signal” which denotes successful completion of the variable bindings.
Step 2.2: The “main routing” of predy is defined as a set of behavior definitions (denoted
by dic[preds]). Asshown inthefollowing examples, abehavior definition of mpreqprea) has
tobeindic[preds], and mpostpred) hasto appear in some behavior definitionsin dic[pred,].

If dic[predg] is already defined and stored as a “lexical item” of predg, then a human
implementor has only to define bind[(R4, ..., R,), predg].

Example 3: dic[receive(i, 3, §')] isshown in Table 7 (&), where type[tmp,,] = D such that
Bool — receive(D, Situation, Situation) € P_f.

The meaning of the behavior definition is as follows. When buf;,sppy is not empty, then
look ahead the first element d of bufi,sppy, Copy d to atemporary register tmp;,,, and per-
form variable bindings p; 5. During the execution of p; 5, set(tmpy,g < tMpPy;g) is per-
formed if the variable bindings are completed successfully. Then, move the first element d
of bufi,sppy to tmp;,, and execute ;.

Also,
bind[{valid(z1) A incoming(z1) A MAP(z1)), receive(zx1, o9, 01)]
can be defined as

Péo51 .= Set(vary < tmp;,);
[valid(vary) A incoming(vari) A MAP(var)] —

set(tmMpying — tMPying); Stop.

Here, it is specified that the value of z; is equal to the value of tmp,,,, i.e., the first element

of bUfinSPDU' O

As shown in Example 3, a human implementor should specify dic so that the behavior
definitions for any predicate which involves an input action (such asreceive) usethe same
temporary register tmp,, to storean input data. Then, he/she can specify tmp,, ast appearing
in bind.

20

Table7 “Lexical items’ for predicates.

(a) dic[receive(t, §, §')].
w3 = ([bufinsppu 7 Al = set(tmp;, — head(bufi,sppu)); ps,s
> X - set(tmpyng — tMPping) >
[(tmpy, = t{vary/@1,. .., Var, /2, })] = in(bufisppu, tpy,); 74).

(b) dic[send(t, 3, §')].
75 = (s
> X - set(tmpying — tMPying) >
set(tmpyy < t{Vary/z1, ..., Varm /@m }); out(bufoussprm, thiPoy); 7s1).-

(c) dic[set_equal_to(t1, to, 5, §)].
™ = (ps @
> A - set(tmpying < tMPying) >
set(t] — fz{Varl/:?]_, ce VAl /T, }); Ta).

Example 4: dic[send(t, 5, §')] is defined as shown in Table 7 (b), where type[tmp,,] = D
such that

Bool — send(D, Situation, Situation) € P_f.

First, perform the variable bindings p; ;. When thisis completed successfully, calculate t,
assign the result to a temporary register tmp,,,, and output it to bufoytssprm.

The behavior definition

bind[{valid(z1) A incoming(z1) A MAP(z1)),

send(SSYNMind(z1), 51, 62)]

is simply defined as ps, 5, = Set(tmpyq — tMP,ing); Stop, since there are no variables to

be bound. O
Example5: dic[set_equal_to(t1, #», §, §)] is defined as shown in Table 7 (c). Also,

bind[{valid(z1) A incoming(z1) A MAP(z1)),

set_equal_to(Va,Vm, o3, 54)]
can be defined as ps, 5, := set(tmMpying < tMPy;,g); Stop. O

21

As shown in the following example, one can construct behavior definitions for a predi-

cate which takes other predicates as its parameters.
Example 6;: We define

behavior[(Ry, ..., Rm), if then(d, p, &, 3]

behavior[(Ry, ..., Rm),],

dic[if then(q, , 5, #)].

And, dic[if_then(q, p, 3, §')] isthe set of the following behavior definitions:

ms = ([q{vary/z,...,varn /Tm}] — Tprds)

&
[-g{vary/zy,...,Varn /T }] = ms),

7Tpost[13] = st

O

Step 3: Let fp = Ugep behavior[(Ry, ..., Ry),predg]. Let 7y(so,...) be the post-
situation of paragraph P. Then, m,,.) = 75, IS added to 5. That is, after the com-
pletion of performing the actions specified by P, aBE interpreter executes 7, i.€., it |ooks
ahead the next input (recall that the pre-situation of any paragraph P’ isdenoted by sg). The

resultant set of behavior definitionsis gp.

Example 7: For the logical formulain Example 2, the behavior definitions in Table 8 are
obtained. Here, we write mj, instead of w5, (0 < k < 5). By Step 3, the behavior definition
of 75 isadded. O

7. Implementation System

We have implemented a prototype system which implements logical formulae derived

from natural language specifications by BE programs. This system iswrittenin Prolog (100

22

Table8 Implementation of the logical formulain Example 2.

mo = ([bufizsppy 7 Al = set(tmp;, < head(bufi,sppu)); £so,6:

m =

T =

w3 .=

Y =
g .=

P5o,51 -

Pé1,62 -

P&3,64 -

> A - set(tMPying — tMPying) >
[(tmpy, = vary)] —> in(bufi,sppu, tMP;y); 1),
(51,5,
> A - set(tMPying — tNMPying) >
set(tmp,,; — SSYNMind(vary));
OUt(bUfoutSSprma tMPoe); 72),
([Vsc = false] — w3 ¢ [—(Vsc = false)] — 7s),
(Pé3,64
> A-set(tMpying — tMPping) >
set(Va «— Vm); ma),
s,
0,
set(vary < tmp,,);
[valid(var1) A incoming(vari) A MAP(var1)] —>
set(tmpying < tMpPying); Stop,
set(tMPying — tMPping); Stop,
set(tmpyng — tMpg;ng); Stop.

23

clauses). Using this system, we have implemented the logical formulae derived from a part
of the OS| session protocol specification [5] (18 paragraphs, 45 sentences). The number of
the “lexical items” (dic[predg]) specified by the human implementor is 27, and the output
of the system is 189 behavior definitions.

We have aso implemented a simulator which executes a given BE program. Thissim-
ulator is written in C, lex, and yacc (1954 lines). The simulator executing the behavior
definitions obtained by the implementation system behaved just as the human implementor
intended.

Fig. 5 shows a part of the execution of the simulator when the behavior definitionsin
Table8 aregivenasitsinput program. When the simulator executesabehavior expression, it
computes actionsto be performed by using the axiomson exec (Table 3). Since, in general,
there may be behavior definitions which cause infinite applications of the axioms (such as
7 .= (w ©a; 7)), the simulator tries only n applications of the axioms for a given constant
n (10 by default, but the user can change n to a greater value). Then, the user selects an
action to be performed. The user can also request the simulator to show the contents of all

registers and buffers.

8. Conclusion

This paper has described a method of implementing natural language specifications
of communication protocols by executable specifications. By using this implementation
method and the simulator stated in section 7, one can apply rapid prototyping techniques to
such a natural language specification. Then, he/she can detect and correct errors, if any, in

the natural language specification easily.

24

**%* recursion depth = 10 **x*
bexp: \pi_{s1}

action: \set (\tmpbind \leftarrow \tmpbind)

next bexp: \set (\tmpout \leftarrow \ssynmmind (\var_{1})) ; \out
(\bufoutssprm , \tmpout) ; \pi_{s2}

which 7 1

**x*x recursion depth = 10 **x*

bexp: \set (\tmpout \leftarrow \ssynmmind (\var_{1})) ; \out
(\bufoutssprm , \tmpout) ; \pi_{s2}

—_ 1 —_

action: \set (\tmpout \leftarrow \ssynmmind (\var_{1}))

next bexp: \out (\bufoutssprm , \tmpout) ; \pi_{s2}

which 7 1

*%% recursion depth = 10 **x

bexp: \out (\bufoutssprm , \tmpout) ; \pi_{s2}
_ 1 _

action: \out (\bufoutssprm , \tmpout)

next bexp: \pi_{s2}

which 7 1

**x*x recursion depth = 10 **x*

bexp: \pi_{s2}

_ 1 _

action: \set (\tmpbind \leftarrow \tmpbind)

next bexp: \set (\regva \leftarrow \regvm) ; \pi_{s4}
which 7 s

\bufinspdu: \lambda \cdot 2001

\tmpin: 2000

\tmpbind: \true

\var_{1}: 2000

\tmpout: 22000

\bufoutssprm: \lambda \cdot 22000

\regvsc: \false

\regva: 0
\regvm: 0
which 7 1

**%* recursion depth = 10 **x*

Fig.5 Execution of the simulator.

25

References

[1]

[2]

[3]

[4]

[3]
[6]

[7]

[8]

[9]

Cheng, Z., Takahashi, K., Shiratori, N. and Noguchi, S.: An Automatic Implementation
Method of Protocol Specificationsin LOTOS, |IEICE Trans. Inf. & Syst., Vol. E75-D,
No. 4, pp. 543-556 (1992).

Goguen, J. A., Thatcher, J. W. and Wagner, E. G.: An Initial Algebra Approach to the
Specification, Correctness and |mplementation of Abstract Data Types, IBM Research
Report, RC 6487 (1976), dso in ed, Yeh, R., Current Trendsin Programming Method-
ology |V: Data Structuring, Prentice Hall, pp. 80-144 (1978).

Ishihara, Y., Seki, H., Kasami, T., Shimabukuro, J. and Okawa, K.: A Trandation
Method from Natural Language Specifications of Communication Protocols into Al-
gebraic Specifications Using Contextual Dependencies, |IEICE Trans. Inf. & Syst., Vol.
E76-D, No. 12, pp. 1479-1489 (1993).

Ishihara, Y., Seki, H. and Kasami, T.: An Algebraic Definition of aLOTOS-Like Lan-
guage and Its Application, Preprint of WG on Software Engineering of |1PS Japan, SE-
99-1 (1994).

ISO: Basic Connection Oriented Session Protocol Specification, 1SO 8327 (1987).

ISO: Information Processing Systems— Open Systems Interconnection — LOTOS —
A Formal Description Technique Based on the Temporal Ordering of Observational
Behaviour, |SO 8807 (1989).

Karjoth, G.: Implementing Process Algebra Specifications by State Machines, Testing
and Verification VI, pp. 47-60 (1988).

Kasami, T., Taniguchi, K., Sugiyama, Y. and Seki, H.: Principles of Algebraic Lan-
guage ASL/*, Trans. IECE Japan, Vol. J69-D, No. 7, pp. 1066-1074, Jul. 1986 (in
Japanese), also in Systems and Computersin Japan, Vol. 18, No. 7, pp. 11-20 (1987).

Seki, H., Kasami, T., Nabika, E. and Matsumura, T.: A Method for Trandating Natural
Language Program Specifications into Algebraic Specifications, Trans. |EICE Japan,
Vol. J74-D-1, No. 4, pp. 283-295 (1991) (in Japanese).

26

