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ABSTRACT

First, this paper defines a subclass of algebraic specifications. Each specification of the subclass

consists of two sub-specifications: a BE program and a BE interpreter specification. The syntax of

BE programs resembles the syntax of LOTOS, and the semantics of BE programs is defined as a

behavior of an interpreter, called a BE interpreter, which has a finite number of registers and un-

bounded I/O buffers. Since BE interpreter specifications are based on a state transition model, each

specification of the subclass can be easily compiled into an executable program. Next, the paper

proposes a method of implementing logical formulae, which are derived from natural language spec-

ifications of communication protocols, by BE programs. Such a natural language specification often

specifies valid sequences of actions to be performed by a protocol machine. In this implementation

method, the meaning of each predicate that corresponds to a word denoting actions is defined as a

BE program and stored as a “lexical item” of the predicate. Then, a BE program for logical formu-

lae is constructed in a bottom-up manner. Thus, a natural language specification of communication

protocols can be translated into an executable program in the framework of algebraic specifications.

1. Introduction

In a software development process, informal requirements and/or specifications are of-

ten written in a natural language since they are readable and the intuitive meanings are

understandable. However, it is desirable that such an informal specification is translated

into a formal specification so that one can analyze the informal specification, reduce its am-

biguity, and derive an efficient program which satisfies the specification. Among various
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formal specification methods which have been proposed and studied, algebraic specification

methods [2] are useful and powerful because of the following reasons:

1. Abstract data types can be defined simply in algebraic specifications;

2. Formal semantics of a specification is simply provided by axioms (equations); and

3. One can write a specification which has arbitrary structure and arbitrary degree of ab-

straction.

In Refs. [3] and [9], we proposed a translation method from natural language specifications

of communication protocols into algebraic specifications. A specification such as a protocol

specification defines valid sequences of actions performed by a protocol machine. In the

method, the valid sequences of actions are represented by an axiom in the form of a logical

formula. However, such an axiom is too abstract to be compiled into an executable program

directly.

First, this paper defines a class of interpreters (machines), called BE interpreters, as

a model of protocol machines. A BE interpreter has a finite number of registers and un-

bounded I/O buffers, and performs three kinds of atomic actions: input from a buffer, out-

put to a buffer, and calculation using its registers. An input program for a BE interpreter,

called a BE program, specifies the order of actions by means of such operators as action-

prefix, choice, conditional, and so on. The syntax of BE programs is also defined within the

framework of algebraic specifications. The semantics of BE programs, i.e., the behavior of

BE interpreters, is defined by axioms based on a state transition model. Therefore, a BE

interpreter specification with a given BE program can be easily compiled into an executable

program.

As stated above, we have already proposed a translation method from natural language

specifications of communication protocols into logical formulae. In this paper, we also

propose a method of implementing such logical formulae by BE programs. Each word

which denotes actions in a natural language specification is translated into a predicate, and

the meaning of such a predicate is given as a BE program by a human implementor. Based

on such BE programs, a BE program for logical formulae is constructed in a bottom-up

manner.
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The syntax of BE programs is modeled on the syntax of LOTOS [6]. There are several

reasons why we do not implement the logical formulae by LOTOS. First of all, it is desirable

that the whole translation from natural language specifications into executable programs is

handled in the same framework. By defining BE programs in the framework of algebraic

specification methods, the whole translation becomes simple and concise. Secondly, the

model of processes (machines) in LOTOS is too primitive for our purpose. For example,

natural language specifications of communication protocols (e.g., Ref. [5]) often presuppose

that protocol machines have registers. However, in LOTOS, the model of processes itself

does not have the concept of registers. Therefore, we design BE interpreters so that they

have registers. There is another reason that we introduce registers into BE interpreters.

It is probable that registers (or substitutes for them) are needed to implement rendezvous

(synchronous communication) of LOTOS. For example, to execute a LOTOS specification,

Ref. [1] implements rendezvous by using a shared memory, and Ref. [7] does by assignment

of values to registers.

2. Algebraic Specification Language ASL

In this paper, we adopt ASL [8] as an algebraic specification language. A specification

in ASL is a pair SPEC = (G;AX) of a context-free grammar G and a set AX of axioms.

G specifies the set of expressions and their syntax, and AX specifies their semantics. Let

G = (N; T; P ) where N , T and P are sets of nonterminals, terminals and productions,

respectively. For a nonterminalD 2 N , letLG[D] denote the set of terminal strings derived

from D in G, and let LG =
S
D2N LG[D]. An element in LG is called an expression (in

the specification SPEC). N corresponds to the set of sorts (data types); A nonterminal D is

sometimes called “data type D” and an expression in LG[D] may be called “an expression

of type D.”

An axiom is a pair l == r of expressions with variables. A variable of an axiom is

denoted by a symbol with the upper bar (e.g., x̄). With each variable x̄ in an axiom a

nonterminal Dx̄ is associated (declared by “x̄ : Dx̄” in the specification), and an arbitrary

expression in LG[Dx̄] can be substituted into x̄. The least congruence relation that satisfies

all the axioms in AX is denoted by �SPEC. See Ref. [8] for details.
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Table 1 Specification of sequences.

� Production schemata:

Seq D ! �;

Seq D ! Seq D �D;

D ! head(Seq D);

Seq D ! tail(Seq D);

Bool ! member(D;Seq D):

� Axioms:

x̄seq : Seq D; x̄; x̄0 : D

head(x̄seq � x̄) == if x̄seq = � then x̄ else head(x̄seq);

tail(x̄seq � x̄) == if x̄seq = � then � else tail(x̄seq) � x̄;

member(x̄; �) == false;
member(x̄; x̄seq � x̄

0) == if x̄ = x̄0 then true else member(x̄; x̄seq):

In this paper, we presuppose a fixed specification SPEC0 = (G0; AX0), G0 =

(N0; T0; P0) of primitive data types (e.g., integer, Boolean, set, and so on), which defines

the data types of the contents of the registers and I/O buffers of a BE interpreter. We assume

that SPEC0 supports the following data types:

1. Boolean; Let Bool be a nonterminal which generates Boolean expressions.

2. Sequence; Let Seq be a constructor on data types to support sequences of a given data

type, i.e., for any data type D, Seq D generates sequences of expressions of type D.

Formally, SPEC0 has the production schemata and axioms shown in Table 1, where

�; �;head; tail;member 2 T0. Constant function � denotes the empty sequence and

function “�” denotes the concatenation operation. For a given sequence, head returns

the first element and tail returns the sequence obtained by eliminating the first element.

Predicate member is true if and only if the first parameter is an element of the second

parameter.

3. BE Programs

As stated in section 1, a BE interpreter has registers and I/O buffers, and performs three

kinds of atomic actions. The syntax and semantics of a BE program are defined to meet the
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following requirements:

(a) Any number of registers and I/O buffers can be introduced into a BE interpreter;

(b) Data types of contents of the registers and I/O buffers are pre-defined as primitive data

types;

(c) All the registers and I/O buffers of a BE interpreter can be directly accessed by per-

forming (atomic) actions; and

(d) The order of actions can be explicitly specified in a BE program.

This section restates these requirements formally, i.e., describes the conditions which a BE

program SPECPRG = (GPRG; AXPRG), GPRG = (NPRG; TPRG; PPRG) has to meet.

First, for the requirement (a), the following two data types, Reg and Buf, are introduced

into GPRG:

1. Reg 2 NPRG generates names of registers of a BE interpreter.

2. Buf 2 NPRG generates names of I/O buffers.

Define REG and BUF as LGPRG[Reg] and LGPRG[Buf], respectively. To ensure that the

number of registers and buffers is finite, we simply assume that each element of REG[BUF

is a terminal symbol. We also assume that REG \ BUF = ;.

Secondly, for the requirement (b), SPECPRG must satisfy the following condition:

3. SPECPRG � SPEC0 (component-wise containment).

4. For each reg 2 REG, there is a unique nonterminal symbolDreg 2 N0 such thatDreg !

reg 2 PPRG. Dreg is denoted by type[reg].

5. For each buf 2 BUF, there is a unique nonterminal symbol Dbuf 2 N0 such that

Seq Dbuf ! buf 2 PPRG. Dbuf is denoted by type[buf ].

Thirdly, for the requirement (c), the following data type, Action, is introduced:

6. Action 2 NPRG generates actions. For each buf 2 BUF and reg 2 REG, the following

productions are in PPRG:

Action ! in(buf ; reg);
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Action ! out(buf ; reg);

Action ! set(reg Dreg);

where in; out; set; 2 TPRG, type[buf ] = type[reg], andDreg = type[reg]. in(buf ; reg)

denotes that a BE interpreter receives a data from buffer buf and the data is stored

in register reg. out(buf ; reg) denotes that a BE interpreter transmits a data stored in

register reg to buffer buf . set(reg  t) denotes an assignment of the value of an

expression t to register reg (the value of an expression is formally defined in section 4).

Lastly, for the requirement (d), we introduce behavior expressions, which specify the

order of actions. Some behavior expressions are associated with behavior identifiers so that

a behavior expression can refer (call) another behavior expression, i.e., a behavior identifier

corresponds to a procedure name. The syntax of behavior expressions is defined as follows:

7. B id 2 NPRG generates behavior identifiers. There are productions of the following

form:

B id! �;

where � 2 TPRG is a behavior identifier.

8. B exp 2 NPRG generates behavior expressions. The following productions are in

PPRG:

B exp ! stop;

B exp ! B id;

B exp ! Action; B exp;

B exp ! (B exp3B exp);

B exp ! (B expjSeq ActionjB exp);

B exp ! [Bool]�>B exp;

B exp ! (B exp�Seq Action�B exp);

B exp ! (B exp [>Seq Action [>B exp);

where stop; ; ;3; j; [; ];�>; (; );�; [> 2 TPRG.
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Table 2 Meanings of operators.

� stop means that no actions are performed, i.e., a BE interpreter which executes it goes
into a dead state.

� Execution of a behavior identifier � is equivalent to execution of the behavior expression
which is associated with �.

� Action-prefix: a;B specifies that a BE interpreter performs action a, then executes be-
havior expression B.

� Choice: (B13B2) specifies that a BE interpreter executes either B1 or B2 nondetermin-
istically. If a BE interpreter performs an action performable in common with B1 and
B2, it is considered that the interpreter is executing “both” of B1 and B2 (see the end of
section 4 for detail).

� Parallel composition: (B1j��a1 � � � anjB2) specifies that a BE interpreter executes behav-
ior expressions B1 and B2 in a “time sharing” manner. Here, each action ai (1 � i � n)
must be simultaneously performed in the executions of B1 and B2.

� Conditional: [p]�>B specifies that a BE interpreter executes behavior expression B if
predicate p holds, and goes into a dead state otherwise.

� Enabling: (B1�� � a1 � � � an�B2) specifies that a BE interpreter executes behavior
expression B1 first. When some action ai (1 � i � n) is performed during the execution
of B1, the interpreter begins to execute behavior expression B2.

� Disabling: (B1 [>� � a1 � � � an [>B2) specifies that a BE interpreter executes behavior
expression B1, and the interpreter can nondeterministically begin to execute behavior
expression B2 until some action ai (1 � i � n) is performed during the execution of B1.

Table 2 shows the intuitive meanings of the operators used in behavior expressions. The

formal semantics is defined in section 4 as the behavior of a BE interpreter.

Now we introduce a predicate := which associates a behavior expression with a behavior

identifier.

9. There is a production

Bool! B id := B exp

in PPRG, and for each � 2 LGPRG [B id], there are one or more axioms

� := B == true

in AXPRG, where := 2 TPRG and B 2 LGPRG[B exp]. � := B �SPECPRG true means

that � is defined as B in SPECPRG. An expression in the form of � := B is called a

behavior definition (of �).

Among the behavior identifiers defined by operator :=, exactly one behavior identifier

must be specified as the main (top level) behavior expression, i.e., the one which should be
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executed first by a BE interpreter.

10. There is a production

Bool! main(B id)

in PPRG, and there is exactly one axiom

main(�) == true

in AXPRG, where main 2 TPRG and � 2 LGPRG [B id]. main(�) �SPECPRG true means

that � is the main behavior expression.

To execute the main behavior expression, the initial values of the registers and I/O

buffers must be specified:

11. For each y 2 REG [ BUF, the following production is in PPRG:

Dy ! initial(y);

where initial 2 TPRG, Dy = type[y] if y 2 REG, and Dy = Seq type[y] if y 2 BUF.

Moreover, for each y 2 REG [ BUF, there is exactly one axiom

initial(y) == cy

in AXPRG, where cy 2 LGPRG[type[y]] if y 2 REG and cy 2 LGPRG[Seq type[y]] if

y 2 BUF. initial(y) �SPECPRG cy means that the initial value of y is cy .

4. BE Interpreter Specifications

In this section, the semantics of BE programs is defined in terms of the behavior of a BE

interpreter. Let SPECINT = (GINT; AXINT) where GINT = (NINT; TINT; PINT) be a BE inter-

preter specification, and let SPECPRG = (GPRG; AXPRG) whereGPRG = (NPRG; TPRG; PPRG)

be a BE program.

First, we assume that GINT � GPRG (component-wise containment). SPECINT will be

defined so that SPECINT [ SPECPRG (component-wise union) specifies the behavior of a

BE interpreter when SPECPRG is given as its input program (see Fig. 1). Define REG and

BUF as LGPRG[Reg] and LGPRG [Buf], respectively.
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PRGSPEC

BE Program

SPEC‘‘Executable’’ Specification

SPECINT

BE Interpreter Specification

Fig. 1 Executable specification SPEC.

To define the semantics of the operators used in behavior expressions, a quadruple

relation EXEC is introduced. Let B;B0 2 LGINT[B exp], p 2 LGINT[Bool], and a 2

LGINT[Action]. hB; p; a;B0i 2 EXEC means that “if a BE interpreter is about to execute

behavior expression B, and the values of the registers and I/O buffers of the BE interpreter

satisfy predicate p, then, the BE interpreter is allowed to perform action a, and it executes

behavior expression B0 after a.” In SPECINT, relation EXEC is represented by a predicate

exec. A production

Bool! exec(B exp;Bool;Action;B exp)

is included in PINT, and the axioms shown in Table 3 is included in AXINT.

We introduce State 2 NINT, which is a data type representing states of the BE inter-

preter. The productions whose left-hand side is State are as follows:

State ! sinit;

State ! �(State;Action);

where sinit, � 2 TINT. sinit denotes the initial state of the BE interpreter, and �(s; a) denotes

the state immediately after action a is performed at state s.

By using the notion of states of a BE interpreter, we define the semantics of each action

a as relation between the values of the registers and I/O buffers before a is performed and

their values after a is performed. To express this relation in SPECINT, for each D 2 N0, a

production

D ! val(D;State)

is introduced into PINT, where val 2 TINT. For any expression t which includes some of
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Table 3 Axioms for exec.

B̄; B̄0; B̄1; B̄
0

1; B̄2; B̄
0

2 : B exp; ā : Action;
p̄; p̄0; p̄1; p̄2 : Bool; �̄ : B id; Ā : Seq Action
� Action-prefix:

exec(ā; B̄; true; ā; B̄) == true:

� Choice:

exec(B̄1; p̄1; ā; B̄
0

1) � exec((B̄13 B̄2); p̄1; ā; B̄
0

1) == true;
exec(B̄2; p̄2; ā; B̄

0

2) � exec((B̄13 B̄2); p̄2; ā; B̄
0

2) == true:

� Behavior identifier:

((�̄ := B̄) ^ exec(B̄; p̄; ā; B̄0)) � exec(�̄; p̄; ā; B̄0) == true:

� Parallel composition:

(exec(B̄1; p̄1; ā; B̄
0

1) ^ :member(ā; Ā)) �

exec((B̄1jĀjB̄2); p̄1; ā; (B̄
0

1jĀjB̄2)) == true;
(exec(B̄2; p̄2; ā; B̄

0

2) ^ :member(ā; Ā)) �

exec((B̄1jĀjB̄2); p̄2; ā; (B̄1jĀjB̄
0

2)) == true;
(exec(B̄1; p̄1; ā; B̄

0

1) ^ exec(B̄2; p̄2; ā; B̄
0

2) ^member(ā; Ā)) �

exec((B̄1jĀjB̄2); p̄1 ^ p̄2; ā; (B̄
0

1jĀjB̄
0

2)) == true:

� Conditional:

exec(B̄; p̄; ā; B̄0) � exec([p̄0]�>B̄; p̄ ^ p̄0; ā; B̄0) == true:

� Enabling:

(exec(B̄1; p̄1; ā; B̄
0

1) ^ :member(ā; Ā)) �

exec((B̄1� Ā� B̄2); p̄1; ā; (B̄
0

1� Ā� B̄2)) == true;
(exec(B̄1; p̄1; ā; B̄

0

1) ^member(ā; Ā)) �

exec((B̄1� Ā� B̄2); p̄1; ā; B̄2) == true:

� Disabling:

(exec(B̄1; p̄1; ā; B̄
0

1) ^ :member(ā; Ā)) �

exec((B̄1 [>Ā [>B̄2); p̄1; ā; (B̄
0

1 [>Ā [>B̄2)) == true;
(exec(B̄1; p̄1; ā; B̄

0

1) ^member(ā; Ā)) �

exec((B̄1 [>Ā [>B̄2); p̄1; ā; B̄
0

1) == true;
exec(B̄2; p̄2; ā; B̄

0

2) � exec((B̄1 [>Ā [>B̄2); p̄2; ā; B̄
0

2) == true:
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Table 4 Axioms for val.

s̄ : State
� Calculation: For each c 2 T0,

val(c; s̄) == c;

and for each f 2 T0 such that A! f (A1; . . . ; An) 2 P0,

t̄1 : A1; . . . ; t̄n : An

val(f(t̄1; . . . ; t̄n); s̄) == f(val(t̄1; s̄); . . . ; val(t̄n; s̄)):

� Initial value: For each reg 2 REG and buf 2 BUF,

val(reg;sinit) == initial(reg);

val(buf ; sinit) == initial(buf ):

� in(buf ; reg): For each reg; reg0 2 REG such that reg 6= reg0, and for each buf ; buf 0 2 BUF
such that buf 6= buf 0,

val(reg; �(s̄; in(buf ; reg))) == head(val(buf ; s̄));

val(reg0; �(s̄; in(buf ; reg))) == val(reg0; s̄);

val(buf ; �(s̄; in(buf ; reg))) == tail(val(buf ; s̄));

val(buf 0; �(s̄; in(buf ; reg))) == val(buf 0; s̄):

� out(buf ; reg): For each reg; reg0 2 REG, and for each buf ; buf 0 2 BUF such that buf 6=
buf 0,

val(reg0; �(s̄;out(buf ; reg))) == val(reg0; s̄);

val(buf ; �(s̄;out(buf ; reg))) == val(buf ; s̄) � val(reg; s̄);

val(buf 0; �(s̄;out(buf ; reg))) == val(buf 0; s̄):

� set(reg t): For each reg; reg0 2 REG such that reg 6= reg0, and for each buf 0 2 BUF,

t̄ : type[reg]

val(reg; �(s̄;set(reg t̄))) == val(t̄; s̄);

val(reg0; �(s̄;set(reg t̄))) == val(reg0; s̄);

val(buf 0; �(s̄;set(reg t̄))) == val(buf 0; s̄):

members of REG [ BUF, val(t; s) denotes the value of t at state s. The semantics of the

actions is defined by the axioms shown in Table 4.

Lastly, a production

Bool! bexp(B exp;State)

is introduced into P , where bexp 2 TINT, and the axioms shown in Table 5 into AXINT.

Let SPEC (= (G;AX)) be SPECPRG[SPECINT. Intuitively, bexp(B; s) �SPEC true means

that the BE interpreter can execute behavior expression B at state s. By using bexp, define

the behavior of BE interpreters as follows:

Definition 1: A BE interpreter has to perform, at state s, an action a such that
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Table 5 Axioms for bexp.

�̄ : B id; B̄; B̄0 : B exp; s̄ : State; p̄ : Bool; ā : Action
main(�̄) � bexp(�̄; sinit) == true;

(bexp(B̄; s̄) ^ exec(B̄; p̄; ā; B̄0) ^ val(p̄; s̄)) � bexp(B̄0; �(s̄; ā)) == true:

bexp(B; �(s; a)) �SPEC true for some B 2 LG[B exp]. If such an action does not ex-

ist, the BE interpreter goes into a dead state. 2

Suppose that bexp((B13B2); s) �SPEC true, where s 2 LG[State] and B1; B2 2

LG[B exp] such that

exec(B1; p1; a; B
0

1) �SPEC true;

exec(B2; p2; a; B
0

2) �SPEC true

for some p1; p2 2 LG[Bool], a 2 LG[Action], and B0

1; B
0

2 2 LG[B exp]. If

val(p1; s) �SPEC true and val(p2; s) �SPEC true, both of

bexp(B0

1; �(s; a)) �SPEC true;

bexp(B0

2; �(s; a)) �SPEC true

hold by the definition of bexp. That is, if a is a performable action in common with B1 and

B2, nondeterministic choice (B13B2) at state s is replaced by choice between B0

1 and B0

2

at state �(s; a). Therefore, unlike LOTOS, executing

(a1; � � � ; an; [p1]�>B0

13 a1; � � � ; an; [p2]�>B0

2)

at state s is equivalent to executing

a1; � � � ; an; ([p1]�>B0

13 [p2]�>B0

2)

at s, in the sense that for both of these behavior expressions, a BE interpreter chooses be-

tween [p1]�>B0

1 and [p2]�>B0

2 at state �(� � � �(s; a1); � � � ; an).

Similarly, this property holds in the case that bexp(�; s) �SPEC true, where � 2

LG[B id] has more than one behavior definitions. In section 6, we propose an implementa-

tion method which uses this property.
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5. Translation from Natural Language Specifications of Commu-

nication Protocols into Logical Formulae

Refs. [3] and [9] propose a translation method from natural language specifications into

algebraic specifications. As an example of an input specification, a communication proto-

col specification is considered. In such a specification, a sentence often specifies an action

which a program (or a protocol machine in the case of protocol specifications) has to per-

form. However, it often specifies implicitly when the action should be performed.

Example 1: Consider the following consecutive sentences in Ref. [5]:

(1) A valid incoming MAJOR SYNC POINT SPDU (with . . . ) results in an S-SYNC-

MAJOR indication.

(2) If Vsc is false, V(A) is set equal to V(M).

“MAJOR SYNC POINT SPDU” and “S-SYNC-MAJOR indication” are names of data,

and “Vsc,” “ V(A),” and “V(M)” are names of registers of a protocol machine. A protocol

machine has to perform the actions specified by (2) immediately after it performs the actions

specified by (1). However, sentence (2) does not specify explicitly when the actions has to

be performed. 2

In Ref. [3], a state of the program which is specified implicitly in a natural language speci-

fication is called a situation. Moreover, for a constituent (i.e., a phrase, clause or sentence)

X , the pre-situation of X is defined as the situation at which the action(s) specified by X

has to be performed, and the post-situation of X is defined as the one immediately after the

action(s) is performed. The pre-/post-situations are also defined for a sequence of sentences.

It is assumed that a natural language specification is a set of paragraphs (sequences of

sentences) and there exists no contextual dependency between distinct paragraphs (i.e., for

any constituent X in a paragraph, the pre-situation of X is either the pre-situation of the

paragraph or the post-situation of another constituent). In most of protocol specifications,

for each kind of input data, there is a paragraph which specifies sequences of actions to be

performed when a protocol machine receives an input data of that kind at the pre-situation

of the paragraph. Therefore, the pre-situation of a paragraph usually denotes a state in
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which a protocol machine is waiting for an input. And, if a protocol machine reaches the

post-situation of a paragraph, then the machine waits for a next input. Under these assump-

tions, each paragraph in a natural language specification is independently translated into an

algebraic axiom.

In Ref. [3], situations are formalized as a data type Situation, which is represented by

a sequence of “events” which the program has performed from the initial situation. By

using type Situation and other primitive data types, a paragraph P of a natural language

specification is translated into an axiom in the form of

�̄0 : Situation; x̄1 : A1; . . . ; x̄m : Am

[R1 ^ � � � ^Rm] �
^

S2P

predS == true; (1)

where predS is a logical formula denoting the meaning of sentence S, �̄0; x̄1; . . . ; x̄m are all

the distinct variables appearing in
V
S2P predS , and Aj (1 � j � m) is the data type of x̄j .

Each sub-formula Rj (1 � j � m) is called the restriction on x̄j .

Each sub-predicate of predS which denotes actions has two extra parameters: One

denotes the pre-situation and the other does the post-situation. Since each paragraph is

“contextually closed,” the expression representing the pre-situation of a paragraph is de-

noted by a variable �̄0. And, the expression representing each of other situations is de-

noted by �k(�̄0; x̄1; . . . ; x̄j), where x̄1; . . . ; x̄j represent input data received up to situation

�k(�̄0; x̄1; . . . ; x̄j).

Example 2: The paragraph which consists of the two sentences in Example 1 is translated

into an axiom of F == true, where F is the following logical formula:

�̄0 : Situation; x̄1 : SPDU

[valid(x̄1) ^ incoming(x̄1) ^MAP(x̄1)] �

[receive(x̄1; �̂0; �̂1) ^ send(SSYNMind(x̄1); �̂1; �̂2)] ^

[if then(Vsc = false;

set equal to(Va;Vm; �̂3; �̂4);

�̂2; �̂5)]]]:

In the above logical formula, variable x̄1 represents an input data MAJOR SYNC POINT

SPDU. And, �̂0; . . . ; �̂5 are expressions of type Situation, where �̂0 = �̄0 represents the pre-
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Table 6 Meanings of subexpressions.

� valid(x̄1): x̄1 has a valid data format.

� incoming(x̄1): x̄1 is an incoming object.

� MAP(x̄1): x̄1 is a data unit MAJOR SYNC POINT SPDU.

� SSYNMind(x̄1): The service primitive S-SYNC-MAJOR indication to be sent when a
protocol machine receives x̄1. Contents of the S-SYNC-MAJOR indication depends on
x̄1.

� receive(x̄1; �̂0; �̂1): At situation �̂0, the event “receipt of x̄1” is allowed to occur and the
situation immediately after the event is �̂1.

� send(SSYNMind(x̄1); �̂1; �̂2): At situation �̂1, the event
“transmission of SSYNMind(x̄1)” has to occur and the situation immediately after the
event is �̂2.

� set equal to(Va;Vm; �̂3; �̂4): At situation �̂3, the event “setting the value of V(A) equal
to the value of V(M)” has to occur and the situation immediately after the event is �̂4.

� if then(q; pred; �̂2; �̂5): At situation �̂2, the events specified by pred occur if q is true,
and no events occur otherwise. The situation immediately after these events is �̂5.

situation of the paragraph and �̂k = �k(�̄0; x̄1) (1 � k � 5) represent the other situations.

Intuitive meanings of subexpressions in the formula are presented in Table 6. 2

The semantics of �k is defined by the semantics of the predicate which includes

�k(�̄0; . . .). Consider the logical formula in Example 2. By the semantics of if then, �̂2

is equal to �̂3 and �̂4 is equal to �̂5 if Vsc = false holds, and �̂2 is equal to �̂5 otherwise.

And, by the semantics of set equal to, �̂4 is equal to the situation immediately after a pro-

tocol machine assigns the value of V(M) to V(A) at situation �̂3 (see Table 6). As explained

in the next section, the semantics of predicates which denote actions is defined in terms of

behavior definitions.

6. Implementation of Logical Formulae by Behavior Definitions

In Ref. [3], an “event” is considered as an “atomic action” of a protocol machine (in

the case of protocol specifications) such as transmitting data or updating a particular reg-

ister (see Table 6). However, “atomic action” is informally used in Ref. [3] since protocol

machines are not defined formally.

In section 4, we defined a BE interpreter, which can be a formal model of protocol ma-
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chines. Now we consider “atomic actions” as expressions of type Action. Then, Situation

is represented by a sequence of Action, i.e., type Situation is identified with type State

introduced in this paper.

Let SPECNL be a natural language specification, i.e., a set of paragraphs. Let SPECLF =

(GLF; AXLF) (GLF = (NLF; TLF; PLF)) be the algebraic specification derived from SPECNL,

where AXLF consists of:

� axioms on primitive data types; and

� axioms in the following form:

s̄0 : Situation; x̄1 : A1; . . . ; x̄m : Am

^

S2P

h
(R1 ^ � � � ^Rm) � predS

i
== true; (2)

where P 2 SPECNL is a paragraph, and for each j (1 � j � m), Aj denotes a primitive

data type and Rj denotes the restriction on x̄j . For any paragraph P 2 SPECNL, the

pre-situation of P is denoted by s̄0, and an input data to be received at the pre-situation

of P is denoted by x̄1.

In what follows, a method of implementing SPECLF by a BE program SPECPRG =

(GPRG; AXPRG) is presented. Let SPECINT be a BE interpreter specification for SPECPRG,

and SPEC = SPECPRG [ SPECINT (see Fig. 2).

In our implementation method, each variable of a primitive data type in Axiom (2)

corresponds to a register, and each expression of type Situation which includes variables

in Axiom (2) (i.e., s̄0 or �k(s̄0; . . .) for some k) corresponds to a behavior identifier. To do

this, the following registers and behavior identifiers are introduced into SPECPRG:

1. REGVAR = fvar1; . . . ; varmg: Each register varj is used for storing the value of variable

x̄j in Axiom (2);

2. REGPRED = freg1; . . . ; regng: Each register regi has been defined in SPECLF (e.g., Vsc,

Va, and Vm in Example 2);

3. REGTMP: A register in REGTMP is a temporary or dummy one, and denoted by tmp with

some subscripts; and

16



NLSPEC
Natural Language Specification

PRGSPEC
BE Program

SPECINT

BE Interpreter Specification

SPEC‘‘Executable’’ Specification

         
Behavior Definitions

for Predicates
Logical Formulae

SPECLF

Fig. 2 Implementation method.

4. �ŝ: For each pre-/post-situation ŝ appearing in Axiom (2), a behavior identifier �ŝ is

introduced into SPECPRG. A human implementor specifies behavior definitions so that

for any instantiated term s of ŝ which satisfies Axiom (2),

� bexp(�ŝ; s) �SPEC true, or

� bexp(�ŝ0; s) �SPEC true for some �ŝ0 such that

(�ŝ0 := �1) ^ (�1 := �2) ^ � � � ^ (�l�1 := �l) ^ (�l := �ŝ) �SPEC true

for some �1; . . . ; �l 2 LG[B id] (l � 0).

That is, at such a situation s, a BE interpreter can always execute �ŝ. For example, if

a predicate p(. . . ; ŝ; ŝ0) (ŝ and ŝ0 are the pre- and post-situations respectively) denotes a

sequence a1; . . . ; ak of actions, a human implementor specifies �ŝ := a1; � � � ; ak;�ŝ0 as

the semantics of p (the details are explained in Step 2.2 below).

The implementation method consists of the following three steps:
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…

β
1P 2Pβ

lPβ

(a) Looking Ahead

(b) Examining

(c) Performing Actions

… ===

Fig. 3 Execution of each of �P1 ; �P2 ; . . . ; �Pl .

Step 1: For each paragraph P 2 SPECNL, a set �P of behavior definitions is constructed by

Steps 2 and 3. The behavior of a BE interpreter which executes �s̄0 (s̄0 is the pre-situation

of P ) defined by �P is as follows:

(a) the BE interpreter looks ahead the first element d of an input buffer,

(b) it examines whether paragraph P specifies actions for d, and

(c) it performs the actions specified by P if P passes the examination (b).

See Fig. 3. Each of the black circles represents some state s such that bexp(�s̄0 ; s) �SPEC

true, and each of the white circles represents the state at which the BE interpreter performs

the examination (b). Each of the lines from the black circles to the white ones represents

a sequence of actions to perform (a). And, each of the triangles represents sequences of

actions which are specified by the paragraph. For each paragraphP , the behavior expression

to perform (a) is the same, and the behavior expression to perform (b) and (c) is in the form

of [pP ]�>BP , where pP corresponds to the examination (b) and BP corresponds to (c)

(see Steps 2.1 and 2.2 below).

Let � =
S
P2SPECNL

�P . Since the pre-situation of any paragraph is denoted by s̄0, � has

in general more than one behavior definitions of �s̄0 . Let s be the state immediately after (a)

is performed. As stated at the end of section 4, bexp([pP ]�>BP ; s) �SPEC true for each

paragraph P 2 SPECNL. Therefore, at state s, only the actions specified by a paragraph P

18



…

β
1P 2Pβ

lPβ

(a) Looking Ahead

(b) Examining

(c) Performing Actions

Fig. 4 Execution of �.

such that val(pP ; s) �SPEC true are performed (see Fig. 4; the oval corresponds to s). Thus,

� =
S
P2SPECNL

�P is the implementation of SPECNL.

Step 2: For each sentence S 2 P , (R1 ^ � � � ^ Rm) � predS is translated into behavior

definitions (denoted by behavior[hR1; . . . ; Rmi; predS]) as follows:

Step 2.1: The “subroutines” for “variable bindings” are defined as a set of behavior def-

initions (denoted by bind[hR1; . . . ; Rmi; predS]). Let �f01=1; . . . ; 0m=mg denote the

expression obtained by replacing each subexpression j (1 � j � m) of expression �

by expression 0j . Let pre[predS] denote the actual parameter of predS which represents

the pre-situation of predS, and let post[predS] denote the actual parameter of predS which

represents the post-situation of predS . For simplicity, define �s̄0 , where s̄0 denotes the

pre-situation of the paragraph, as the identity function on type Situation. Suppose that

pre[predS] = �k(s̄0; x̄1; . . . ; x̄j) (0 � j � m) and post[predS] = �k0(s̄0; x̄1; . . . ; x̄j0)

(j � j0 � m). Then, during the “execution” of predS , the input data represented by

x̄j+1; . . . ; x̄j0 are received and each of x̄j+1; . . . ; x̄j0 is bound to some value. A behavior

identifier which simulates these variable bindings is denoted by �pre[pred
S

];post[pred
S

]. The

behavior definition of �pre[pred
S

];post[pred
S

] is in the following form:

�pre[pred
S

];post[pred
S

] := set(varj+1  t̂j+1); � � � ; set(varj0  t̂j0);

[(Rj+1 ^ � � � ^Rj0)fvar1=x̄1; . . . ; varj0=x̄j0g]�>

set(tmpbind  tmpbind); stop:
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Here, t̂j00 (j + 1 � j 00 � j 0) is an expression which indicates how the value of varj00

is obtained, and is specified by a human implementor. Action set(tmpbind  tmpbind) is

performed as a “signal” which denotes successful completion of the variable bindings.

Step 2.2: The “main routine” of predS is defined as a set of behavior definitions (denoted

by dic[predS]). As shown in the following examples, a behavior definition of �pre[pred
S

] has

to be in dic[predS], and �post[pred
S

] has to appear in some behavior definitions in dic[predS].

If dic[predS] is already defined and stored as a “lexical item” of predS , then a human

implementor has only to define bind[hR1; . . . ; Rmi; predS].

Example 3: dic[receive(t̂; ŝ; ŝ0)] is shown in Table 7 (a), where type[tmpin] = D such that

Bool! receive(D;Situation;Situation) 2 PLF:

The meaning of the behavior definition is as follows. When bufinSPDU is not empty, then

look ahead the first element d of bufinSPDU, copy d to a temporary register tmpin, and per-

form variable bindings �ŝ;ŝ0 . During the execution of �ŝ;ŝ0 , set(tmpbind  tmpbind) is per-

formed if the variable bindings are completed successfully. Then, move the first element d

of bufinSPDU to tmpin, and execute �ŝ0 .

Also,

bind[hvalid(x̄1) ^ incoming(x̄1) ^MAP(x̄1)i; receive(x̄1; �̂0; �̂1)]

can be defined as

��̂0;�̂1 := set(var1  tmpin);

[valid(var1) ^ incoming(var1) ^MAP(var1)]�>

set(tmpbind  tmpbind); stop:

Here, it is specified that the value of x̄1 is equal to the value of tmpin, i.e., the first element

of bufinSPDU. 2

As shown in Example 3, a human implementor should specify dic so that the behavior

definitions for any predicate which involves an input action (such as receive) use the same

temporary register tmpin to store an input data. Then, he/she can specify tmpin as t̂ appearing

in bind.
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Table 7 “Lexical items” for predicates.

(a) dic[receive(t̂; ŝ; ŝ0)].

�ŝ := ([bufinSPDU 6= �]�>set(tmpin  head(bufinSPDU)); �ŝ;ŝ0

�� � set(tmpbind  tmpbind)�

[(tmpin = t̂fvar1=x̄1; . . . ; varm=x̄mg)]�> in(bufinSPDU; tmpin);�ŝ0):

(b) dic[send(t̂; ŝ; ŝ0)].

�ŝ := (�ŝ;ŝ0

�� � set(tmpbind  tmpbind)�

set(tmpout  t̂fvar1=x̄1; . . . ; varm=x̄mg); out(bufoutSSprm; tmpout);�ŝ0):

(c) dic[set equal to(t̂1; t̂2; ŝ; ŝ0)].

�ŝ := (�ŝ;ŝ0

�� � set(tmpbind  tmpbind)�

set(t̂1  t̂2fvar1=x̄1; . . . ; varm=x̄mg);�ŝ0):

Example 4: dic[send(t̂; ŝ; ŝ0)] is defined as shown in Table 7 (b), where type[tmpout] = D

such that

Bool! send(D;Situation;Situation) 2 PLF:

First, perform the variable bindings �ŝ;ŝ0 . When this is completed successfully, calculate t̂,

assign the result to a temporary register tmpout, and output it to bufoutSSprm.

The behavior definition

bind[hvalid(x̄1) ^ incoming(x̄1) ^MAP(x̄1)i;

send(SSYNMind(x̄1); �̂1; �̂2)]

is simply defined as ��̂1;�̂2 := set(tmpbind  tmpbind); stop, since there are no variables to

be bound. 2

Example 5: dic[set equal to(t̂1; t̂2; ŝ; ŝ0)] is defined as shown in Table 7 (c). Also,

bind[hvalid(x̄1) ^ incoming(x̄1) ^MAP(x̄1)i;

set equal to(Va;Vm; �̂3; �̂4)]

can be defined as ��̂3;�̂4 := set(tmpbind  tmpbind); stop. 2
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As shown in the following example, one can construct behavior definitions for a predi-

cate which takes other predicates as its parameters.

Example 6: We define

behavior[hR1; . . . ; Rmi; if then(q̂; p̂; ŝ; ŝ0)]

as

behavior[hR1; . . . ; Rmi; p̂];

dic[if then(q̂; p̂; ŝ; ŝ0)]:

And, dic[if then(q̂; p̂; ŝ; ŝ0)] is the set of the following behavior definitions:

�ŝ := ([q̂fvar1=x̄1; . . . ; varm=x̄mg]�>�pre[p̂]

3

[:q̂fvar1=x̄1; . . . ; varm=x̄mg]�>�ŝ0);

�post[p̂] := �ŝ0 :

2

Step 3: Let � 0P =
S
S2P behavior[hR1; . . . ; Rmi; predS]. Let �l(s̄0; . . .) be the post-

situation of paragraph P . Then, ��l(s̄0;...) := �s̄0 is added to �0P . That is, after the com-

pletion of performing the actions specified by P , a BE interpreter executes �s̄0 , i.e., it looks

ahead the next input (recall that the pre-situation of any paragraph P 0 is denoted by s̄0). The

resultant set of behavior definitions is �P .

Example 7: For the logical formula in Example 2, the behavior definitions in Table 8 are

obtained. Here, we write �k instead of ��̂k (0 � k � 5). By Step 3, the behavior definition

of �5 is added. 2

7. Implementation System

We have implemented a prototype system which implements logical formulae derived

from natural language specifications by BE programs. This system is written in Prolog (100
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Table 8 Implementation of the logical formula in Example 2.

�0 := ([bufinSPDU 6= �]�>set(tmpin  head(bufinSPDU)); ��̂0;�̂1

�� � set(tmpbind  tmpbind)�

[(tmpin = var1)]�> in(bufinSPDU; tmpin);�1);

�1 := (��̂1;�̂2

�� � set(tmpbind  tmpbind)�

set(tmpout  SSYNMind(var1));

out(bufoutSSprm; tmpout); �2);

�2 := ([Vsc = false]�>�33 [:(Vsc = false)]�>�5);

�3 := (��̂3;�̂4

���set(tmpbind  tmpbind)�

set(Va Vm);�4);

�4 := �5;

�5 := �0;

��̂0;�̂1 := set(var1  tmpin);

[valid(var1) ^ incoming(var1) ^MAP(var1)]�>

set(tmpbind  tmpbind); stop;
��̂1;�̂2 := set(tmpbind  tmpbind); stop;
��̂3;�̂4 := set(tmpbind  tmpbind); stop:
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clauses). Using this system, we have implemented the logical formulae derived from a part

of the OSI session protocol specification [5] (18 paragraphs, 45 sentences). The number of

the “lexical items” (dic[predS]) specified by the human implementor is 27, and the output

of the system is 189 behavior definitions.

We have also implemented a simulator which executes a given BE program. This sim-

ulator is written in C, lex, and yacc (1954 lines). The simulator executing the behavior

definitions obtained by the implementation system behaved just as the human implementor

intended.

Fig. 5 shows a part of the execution of the simulator when the behavior definitions in

Table 8 are given as its input program. When the simulator executes a behavior expression, it

computes actions to be performed by using the axioms on exec (Table 3). Since, in general,

there may be behavior definitions which cause infinite applications of the axioms (such as

� := (�3 a;�0)), the simulator tries only n applications of the axioms for a given constant

n (10 by default, but the user can change n to a greater value). Then, the user selects an

action to be performed. The user can also request the simulator to show the contents of all

registers and buffers.

8. Conclusion

This paper has described a method of implementing natural language specifications

of communication protocols by executable specifications. By using this implementation

method and the simulator stated in section 7, one can apply rapid prototyping techniques to

such a natural language specification. Then, he/she can detect and correct errors, if any, in

the natural language specification easily.
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.....

*** recursion depth = 10 ***

bexp: \pi_{s1}

--- 1 ---

action: \set ( \tmpbind \leftarrow \tmpbind )

next bexp: \set ( \tmpout \leftarrow \ssynmmind ( \var_{1} ) ) ; \out

( \bufoutssprm , \tmpout ) ; \pi_{s2}

which ? 1

*** recursion depth = 10 ***

bexp: \set ( \tmpout \leftarrow \ssynmmind ( \var_{1} ) ) ; \out

( \bufoutssprm , \tmpout ) ; \pi_{s2}

--- 1 ---

action: \set ( \tmpout \leftarrow \ssynmmind ( \var_{1} ) )

next bexp: \out ( \bufoutssprm , \tmpout ) ; \pi_{s2}

which ? 1

*** recursion depth = 10 ***

bexp: \out ( \bufoutssprm , \tmpout ) ; \pi_{s2}

--- 1 ---

action: \out ( \bufoutssprm , \tmpout )

next bexp: \pi_{s2}

which ? 1

*** recursion depth = 10 ***

bexp: \pi_{s2}

--- 1 ---

action: \set ( \tmpbind \leftarrow \tmpbind )

next bexp: \set ( \regva \leftarrow \regvm ) ; \pi_{s4}

which ? s

\bufinspdu: \lambda \cdot 2001

\tmpin: 2000

\tmpbind: \true

\var_{1}: 2000

\tmpout: 22000

\bufoutssprm: \lambda \cdot 22000

\regvsc: \false

\regva: 0

\regvm: 0

which ? 1

*** recursion depth = 10 ***

.....

Fig. 5 Execution of the simulator.
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