
No. 93-DP-0031

Title FINITE STATE TRANSLATION

SYSTEMS AND PARALLEL MULTIPLE

CONTEXT-FREE GRAMMARS

Authors Yuichi Kajiy,

Hiroyuki Sekiyz, and

Tadao Kasamizy, members

Address y Faculty of Engineering Science, Osaka University

Toyonaka, Osaka 560, Japan

z Nara Institute of Science and Technology

Takayama, Ikoma, Nara 630-01, Japan

Running head FSTS AND PMCFG

Keywords �nite state translation systems

parallel multiple context-free grammars

tree automata

computational complexity

formal languages

Related areas: D. Information and Systems

Automaton, Language and Theory of Computing

Algorithm and Computational Complexity

SUMMARY

Finite state translation systems (fsts') are a widely studied computa-

tional model in the area of tree automata theory. In this paper, the string

generating capacities of fsts' and their subclasses are studied. First, it

is shown that the class of string languages generated by deterministic

fsts' equals to that of parallel multiple context-free grammars, which are

an extension of context-free grammars. As a corollary, it can be con-

cluded that the recognition problem for a deterministic fsts is solvable in

O(ne+1)-time, where n is the length of an input word and e is a constant

called the degree of the deterministic fsts'. In contrast to the latter fact,

it is also shown that nondeterministic monadic fsts' with state-bound 2

can generate an NP-complete language.

2

1. Introduction

Many researchers have investigated the \gap" between context-free lan-

guages (c's) and context-sensitive languages (csl's). Their studies are

motivated by two di�erent interests; an interest from the viewpoint of

natural language processing, and an interest from the viewpoint of com-

putational complexity theory.

In the �eld of natural language processing, it is fundamentally im-

portant to propose a well-de�ned grammatical formalism. It has been

often claimed that cfg's do not have enough power to describe the syn-

tax of natural languages; for example, discontinuous phrase structure

such as \respectively" sentence cannot be described by cfg's in a simple

manner. On the other hand, csg's have too much power for e�cient han-

dling. According to these considerations, a number of new grammatical

formalisms of which generative power is stronger than that of cfg's have

been proposed. These new grammars include head grammars (hg)[10],

tree adjoining grammars (tag)[16] and generalized context-free grammars

(gcfg's)[10]. Among them, gcfg's are a natural extension of cfg's and

phrase structure is simply de�ned in gcfg's. However, it was shown to

have generative power equal to that of type-0 grammars[7] and hence it

cannot be handled e�ciently.

Parallel multiple context-free grammars (pmcfg's) were introduced

as a subclass of gcfg's[7]. For each nonterminal symbol A of a pmcfg G,

A derives tuples of strings. Languages generated by pmcfg's are called

parallel multiple context-free languages (pmc's). Multiple context-free

grammars (mcfg's) are a subclass of pmcfg's and languages generated

by mcfg's are called multiple context-free languages (mc's)[7]. Linear

context-free rewriting systems (lcfrs') introduced by Vijay-Shanker et

al.[17] are essentially the same grammatical formalism as mcfg's. It has

been shown that the class of languages generated by hg's (tag's) is prop-

erly included in the class of mc's[17], which in turn is properly included

3

in the class of pmc's. The class of pmc's is properly included in the

class of context-sensitive languages[7] and the former is recognizable in

deterministic polynomial time[8].

Let us go back to the gap between c's and csl's. It has been known

that c's can be recognized in deterministic polynomial time, while there

is an NP-complete language in csl's[12], and hence one may conjecture

that there is a border between P and NP in the gap between c's and

csl's. A number of computational models have been introduced to clar-

ify the computational theoretic hierarchy in this gap. For example, tree

automata and their variants, extensions of push down automata, and

�nite-state translation systems are widely studied models for this pur-

pose.

Finite state translation systems (fsts') were originally introduced

as a model of transformational grammars[11]. Later it was found to be

an interesting computational model, and properties of fsts' and their

subclasses have been extensively investigated[2; 3; 19]. An fsts consists of

a tree transducer M and a context-free grammar (cfg) G[11; 15]. A tree

transducer M takes a tree as an input, starts from the initial state with

its head scanning the root node of an input. According to the current

state and the label of the scanned node, M transforms an input tree into

an output tree in a top-down way. An fsts (M;G) is a tree transducer M

with its input domain being the set of derivation trees of the cfg G[11; 15].

The output set of trees is called the tree language generated by (M;G),

and the yield language generated by (M;G) is de�ned to be the set of

strings obtained by concatenating (the labels of) leaves of a tree in the

tree language.

As for generative power of fsts', Engelfriet has studied hierarchy of

language classes generated by fsts' and their subclasses[3]. He has shown

that the generative power of deterministic fsts' is properly stronger than

that of �nite-copying fsts', and is properly weaker than that of (nonde-

4

terministic) fsts'. He also introduced a class of monadic fsts' (ET0L)

which has properly weaker generative power than nondeterministic fsts'

(see Figure 1). In Ref.[19], it is shown that the class of yield languages

generated by �nite-copying fsts' equals to the class of languages gener-

ated by lcfrs', hence that of mc's.

In this paper, it is shown show that the class of languages generated

by deterministic fsts' equals to the class of pmc's. It is also shown

that there is an NP-complete language in the class of string languages

generated by nondeterministic monadic fsts' with state-bound 2. By our

results, a number of known properties of pmc's and mc's will be used

for the study of fsts' and their string languages, and vice versa. In fact,

as a corollary of our results, it can be concluded that the recognition

problem for a deterministic fsts is solvable in O(ne+1)-time, where n is

the length of an input word and e is a constant called the degree of the

deterministic fsts.

2. De�nitions

2.1 Parallel Multiple Context-Free Grammars

A parallel multiple context-free grammar (pmcfg) is de�ned to be a 5-

tuple G = (VN ; VT ; F; P; S) which satis�es the following conditions (G1)

through (G5)[7; 13].

(G1) VN is a �nite set of nonterminal symbols, and a positive integer

d(A) is given for each nonterminal symbol A 2 VN . The dimension

of G is maxfd(A) j A 2 VNg.

(G2) VT is a �nite set of terminal symbols such that VN \ VT = �.

(G3) F is a �nite set of functions satisfying the following conditions.

For a positive integer d, let (V �
T
)d denote the set of all the d-tuples

of strings over VT . Let a(f) be the arity of f 2 F . For each f 2 F ,

5

positive integers di(f) (1 � i � a(f)) and r(f) are given, and f

is a total function from (V �
T
)d1(f) � (V �

T
)d2(f) � � � � � (V �

T
)da(f)(f) to

(V �
T
)r(f) which satis�es the following condition (f1). Let

�xi = (xi1; xi2; . . . ; xidi(f))

denote the ith argument of f for 1 � i � a(f).

(f1) For 1 � h � r(f), the hth component of f , denoted by f [h]

is de�ned by a concatenation of some terminal strings in V �
T

and some components of arguments. That is, a nonnegative

integer nh is de�nes and

f [h][�x1; �x2; . . . ; �xa(f)] =

wh;1x�(h;1)�(h;1)wh;2 � � �wh;nh
x�(h;nh)�(h;nh)wh;nh+1 (1)

where wh;k 2 V �
T
for 1 � k � nh + 1, 1 � �(h; j) � a(f) and

1 � �(h; j) � d�(h;j)(f) for 1 � j � nh.

(G4) P is a �nite set of productions of the form A! f [A1; A2; . . . ; Aa(f)]

where A;A1; A2; . . . ; Aa(f) 2 VN , f 2 F; r(f) = d(A) and di(f) =

d(Ai) (1 � i � a(f)). If a(f) = 0, then f has no argument and f []

equals to a tuple of strings over VT . A production with a function

f such that a(f) = 0 is called a terminating production, otherwise

it is called a nonterminating production. A terminating production

A! f [] is written as A! f .

(G5) S 2 VN is the initial symbol, and d(S) = 1.

If all the functions of a pmcfg G satisfy the following condition (f2),

then G is called a multiple context-free grammar (mcfg).

(f2) For each component xij in the arguments, the total number of oc-

currences of xij in the right-hand sides of (1) from h = 1 through

r(f) is at most one.

6

If some variable occurs more than once in the right-hand side of

the de�nition of f , the string substituted for the variable will be copied

more than once. It has been shown that such copy operations increase

the generative capacity of grammars[7] (see Example 2.2). Condition (f2)

inhibits these copy operations.

The language generated by a pmcfg G = (VN ; VT , F;P; S) is de�ned

as follows 1. For A 2 VN , let us de�ne LG(A) as the smallest set satisfying

the following two conditions:

(L1) If a terminating production A! f with f = �� 2 (V �
T
)d(A) is in P ,

then �� 2 LG(A).

(L2) If A ! f [A1; A2; . . . ; Aa(f)] 2 P and ��i 2 LG(Ai) (1 � i �

a(f)), then �� = f [��1; ��2; . . . ; ��a(f)] 2 LG(A). We say that A !

f [A1; A2; . . . ; Aa(f)] is the last production applied to obtain ��.

De�ne L(G)
4

=LG(S). L(G) is called the parallel multiple context-

free language (pmc) generated by G. If G is an mcfg, L(G) is called the

multiple context-free language (mc) generated by G. Let PMCFL and

MCFL denote the class of all pmc's and that of all mc's, respectively.

Example 2.1: Let G1 = (VN ; VT ; F; P; S) where VN = fA;B; Sg

(d(A) = d(B) = 2; d(S) = 1), VT = fa; b; c; dg, F = ff"; f1; f2; gg and

the productions in P be:

r1 S ! g[A;B] where g[(x1; x2); (y1; y2)] = x1y1x2y2

r2 A ! f1[A] where f1[(x1; x2)] = (ax1; cx2)

r3 A ! f" where f" = ("; ")

r4 B ! f2[B] where f2[(x1; x2)] = (bx1; dx2)

r5 B ! f"

1Derivation of pmcfg's can be de�ned as rewriting steps of a sentential form[4; 5].

However, for (�1; . . . ; �n) 2 L
G
(A), �

i
's do not always appear consecutively in a

sentential form, and hence this simple form of de�nition is used in this paper.

7

G1 is an mcfg with dimension 2. The language generated byG1 is de�ned

as follows. By the rule r3, ("; ") 2 LG1
(A). By substituting "'s for x1

and x2 in r2, (a; c) 2 LG1
(A). By applying r2 repeatedly, (am; cm) 2

LG1
(A) for m > 0. Similarly, (bn; dn) 2 LG1

(B) for n � 0. LG1
(S) =

fambncmdnjm;n � 0g and this is the language generated by G1.

Example 2.2[7]: Let G2 = (VN ; VT ; F; P; S) where VN = fSg (d(S) =

1), VT = fag, F = ffa; fg, P = fr1 : S ! fa; r0 : S ! f [S]g, where

fa = a,f [(x)] = xx. G2 is a pmcfg with dimension 1 but is not an mcfg

since the function f does not satisfy the condition (f2). The language

generated by G2 is fa
2n jn � 0g, which cannot be generated by any mcfg

(see Lemma 6 of Ref.[7]).

Lemma 2.1[7]: For a given pmcfg G (resp. mcfg G), we can construct an

pmcfg G0 (resp. mcfg G0) which satis�es L(G0) = L(G) and the following

non-erasing condition (f3).

(f3) For each function f of G0, each variable xij appears at least once

in the right-hand side of (1) for some h (1 � h � r(f)).

Sketch of Proof : The idea behind the construction is similar to that of

"-rule elimination procedure of a context-free grammar. For example,

assume that there is a production A ! f [B1; . . . ; Bn] and xij does not

appear in the right-hand side of (1). Then a new nonterminal B0
i
with

d(B0
i
) = d(Bi) � 1 is introduced, and this production is replaced by

A ! f 0[B1; . . . ; B
0
i
; . . . ; Bn] where f 0 is identical to f except that the

dimension of the ith argument is smaller by one than f . Furthermore,

for each production whose left-hand side is Bi, add a new production

whose left-hand side is B0
i
and whose function in the right-hand side is

de�ned by deleting jth component of the original one. For the formal

proof, see Lemma 1 of Ref.[7].

8

2.2 Finite State Translation Systems

A set � of symbols is a ranked alphabet if, for each � 2 �, a unique

non-negative number �(�) which is called the rank of � is associated.

De�ne T� as the smallest set such that;

� If �(�) = 0 for � 2 �, then � 2 T�.

� If �(�) = n (� 1) for � 2 � and t1; . . . ; tn 2 T�, then t =

�(t1; . . . ; tn) 2 T�. � is called the root symbol, or shortly, the

root of t.

Hereafter, a term in T� may be called a tree.

Let G = (VN ; VT ; P; S) be a context-free grammar (cfg) where VN ,

VT , P and S are a set of nonterminal symbols, a set of terminal symbols,

a set of productions and the initial symbol, respectively. A derivation

tree of the cfg G is a term de�ned as follows.

(T1) For every a 2 VT , a is a derivation tree of G.

(T2) Assume that there are a production r : A ! X1 � � �Xn (A 2

VN ;X1; . . . ; Xn 2 VN [VT) in P where r is the label of this produc-

tion, and n derivation trees t1; . . . tn whose roots are labeled with

r1; . . . ; rn, respectively, and

� if Xi 2 VN , then ri (1 � i � n) is the label of a production

ri : Xi ! � � �, whose left-hand side is Xi, and

� if Xi 2 VT , then ri = ti = Xi.

Then r(t1; . . . ; tn) is a derivation tree of G.

(T3) There are no other derivation trees.

Let R(G) be the set of derivation trees whose root is the label of a

production of which the left-hand side is the initial symbol S. Remark

that if we take � = fthe labels of productions in Pg [VT , and de�ne

9

�(r) = n for r : A! X1 � � �Xn 2 P and �(a) = 0 for a 2 VT , then � is a

ranked alphabet and R(G) � T�.

A tree transducer is de�ned in Ref.[11] as a generalization of a gen-

eralized sequential machine, and it de�nes a mapping from trees to trees.

But in this paper, since we are mainly interested in a string language gen-

erated by it, a \tree-to-string" version of transducer de�ned in Ref.[3] is

reviewed. For sets Q and X, let

Q[X]
4

=fq[x] j q 2 Q;x 2 Xg:

A tree-to-string transducer (yT-transducer or simply transducer) is

de�ned to be a 5-tuple M = (Q;�;�; q0; R) where

� Q is a �nite set of states,

� � is an input ranked alphabet,

� � is an output alphabet,

� q0 2 Q is the initial state, and

� R is a set of rules of the form

q[�(x1; . . . ; xn)]! v

where q 2 Q;� 2 �; �(�) = n and v 2 (� [Q[fx1, . . . ; xng])
�.

If di�erent rules in R have di�erent left-hand sides, then M is called

deterministic[3].

A con�guration of a yT -transducer is an element in (� [Q[T�])
�.

Derivation of M is de�ned as follows. Let c = �1q[�(t1; . . ., tn)]�2 be a

con�guration where �1; �2 2 (� [Q[T�])
�, q 2 Q, � 2 �, �(�) = n and

t1; . . . ; tn 2 T�. Assume that there is a rule q[�(x1; . . . ; xn)] ! v in R,

and v0 can be obtained from v by substituting t1; . . . ; tn for x1; . . . ; xn,

respectively, then c) �1v
0�2. Let

�
) be reexive and transitive clo-

sure of). For con�gurations c and c0, if c
�
)c0, then c derives c0. If

10

there is no c0 2 �� such that c
�
)c0, then c derives no output . For ex-

ample, if there is no rule whose left-hand side is q[�(x1; . . . ; xn)], then

c = �1q[�(t1; . . . ; tn)]�2 derives no output.

Example 2.3[11]: Let M = (Q;�;�; qd; R) be a yT -transducer where

Q = fqd; qig

� = fc; y;+; �g (�(c) = �(y) = 0; �(+) = �(�) = 2)

� = � [f0; 1g

and the rules in R are:

qi[c]! c qi[y]! y

qi[+(x1; x2)] ! qi[x1] + qi[x2]

qi[�(x1; x2)] ! qi[x1] � qi[x2]

qd[c]! 0 qd[y]! 1

qd[+(x1; x2)] ! qd[x1] + qd[x2]

qd[�(x1; x2)] ! qd[x1] � qi[x2] + qi[x1] � qd[x2]:

Intuitively, an element in T� represents an arithmetic expression, and

state qd and qi represent \di�erential" and \identity", respectively. Let

t = qd[�(y;+(c; y))] and t0 = qd[y] � qi[+(c; y)] + qi[y] � qd[+(c; y)], then

t) t0, which corresponds to d

dy
(y � (c+ y)) = d

dy
y � (c+ y) + y � d

dy
(c+ y).

A tree-to-string �nite state translation system (yT-fsts , or fsts for

short) is de�ned by a yT -transducer M and a cfg G, written as (M;G).

(NOTE: In Ref.[11], a yT -fsts is de�ned by a yT -transducer and a recog-

nizable set of trees. In Ref.[15], it is shown that the class of recognizable

sets of trees is equal to the class of sets of derivation trees of cfg's. Hence

a yT -fsts is de�ned by a yT -transducer and a cfg in this paper.)

De�ne yL(M;G), called the yield language generated by a yT-fsts

(M;G), as

yL(M;G)
4

=ft 2 �� j 9t0 2 R(G); q0[t
0]

�
)tg

11

where � is an output alphabet and q0 is the initial state ofM . Note that

R(G) is a set of derivation trees of the cfg G and hence recognizable set

of trees. An fsts is called deterministic[3] if the transducer M is deter-

ministic. We use a terminology \nondeterministic" when we emphasize

that we don't assume determinism of the transducer.

Next, a state-bound of fsts and �nite-copying fsts'[3] are de�ned. Let

(M;G) be an fsts with an output alphabet � and an initial state q0. Let

t 2 R(G) and consider a derivation � : q0[t]
�
)w 2 ��. Let t0 be a subtree

of t. Now, delete from the original derivation � all the derivation steps

which operates on t0. This leads to the following new derivation which

keeps t0 untouched:

�0 : q0[t]
�
)w1qi1[t

0]w2 � � �wnqin[t
0]wn+1

where wi 2 �� (1 � i � n+ 1).

The state sequence of t0 in derivation � is de�ned to be hqi1 ; . . . ; qini.

The derivation � has a state-bound s if, for each subtree of t, the number

of di�erent states in the state sequence is at most s. � has a copying-

bound k if, for each subtree of t, the length of its state sequence is at

most k. An fsts (M;G) has a state-bound s if for each w 2 yL(M;G),

there is a derivation tree t 2 R(G) such that the derivation q0[t]
�
)w

has a state-bound s. An fsts (M;G) is a �nite-copying fsts if there is a

constant k such that for each w 2 yL(M;G), there is a derivation tree

t 2 R(G) such that the derivation q0[t]
�
)w has a copying-bound k.

An fsts (M;G) whose second component G is a regular grammar is

called an ET0L system (see Ref.[3]). In this paper, we say a monadic

fsts for an ET0L system.

Figure 1 shows relationship among the generative power of sub-

classes of fsts'. In the �gure, d-fsts, fc-fsts and m-fsts denote the classes

of deterministic fsts', �nite-copying fsts' and monadic fsts', respectively,

and fstss, d-fstss and m-fstss denote the classes of each fsts' with state-

bound s, respectively. For �nite-copying fsts', the subscript denotes their

12

copying-bound. An arrow from a class A to another class B means that

A has properly stronger power than B.

3. Generative Power of Deterministic FSTS'

In this section, we show that yL(DFSTS), the class of yield languages

generated by deterministic fsts', equals to PMCFL. First we show that

yL(DFSTS) � PMCFL. A part of the proof of PMCFL � yL(DFSTS)

is stated in the appendix since the idea behind the proof is similar to

that of yL(DFSTS) � PMCFL.

3.1 yL(DFSTS) � PMCFL

Let (M;G) be a deterministic yT -fsts where M = (Q;�;�; q1; R) and

G = (VN ; VT ; P; S). We assume that Q = fq1; . . . ; q`g, VT = fa1; . . . ; ang

and the productions in P are labeled with r1; . . . ; rm. Since the input

domain of M is the set of derivation trees of G, we assume that � =

fr1; . . . ; rm; a1; . . . ; ang without loss of generality.

A pmcfg G0 = (V 0
N
; V 0

T
; F 0; P 0; S0) such that yL(M , G) = L(G0)\��

is constructed as follows. Let V 0
T
= �[fbg where b is a newly introduced

symbol and let

V 0
N
= fS 0; R1; . . . ; Rm; A1; . . . ; Ang

where d(Ri) = d(Aj) = ` for 1 � i � m and 1 � j � n. Note that each

Ri (1 � i � m) and Aj (1 � j � n) correspond to production ri and

terminal aj of cfg G, respectively. Productions and functions of G0 will

be constructed to have the following property.

Property 3.1: There is (�1; . . . ; �`) 2 LG0(Rh) (resp. LG0(Ah)) such

that 8><
>:

each of �s1; . . . ; �su
does not contain b, and

each of the remaining �t1; . . . ; �tv contains b

13

if and only if there is a derivation tree t of G such that the root of t is

rh (resp. ah) and8><
>:

qsp[t]
�
)�sp

(1 � p � u)

qtp [t] derives no output (1 � p � v):

The basic idea is to simulate the move of tree transducer M which is

scanning a symbol rh (resp. ah) with state qi by the ith component of

the nonterminal Rh (resp. Ah) of pmcfg G0. During the move of M , it

may happen that no rule is de�ned for a current con�guration and hence

no output will be derived. The symbol b is introduced to represent such

an unde�ned move explicitly.

To construct productions and functions, De�ne RS(X) (X 2 VN [

VT) as follows.

RS(X) =

8><
>:
fRh j the left-hand side of rh is Xg if X 2 VN

fAhg if X = ah 2 VT .

Productions and functions are de�ned as follows.

Step 1: For each production rh : Y0 ! Y1 � � �Yk (Y0 2 VN ; Yu 2 VN [

VT for 1 � u � k) of cfg G, construct nonterminating productions

Rh ! frh[Z1; . . . ; Zk]

for arbitrary combinations of Zu 2 RS(Yu) (1 � u � k) where frh

is de�ned as follows: For 1 � i � `,

� if there is no rule whose left-hand side is qi[rh(x1; . . . ; xk)],

then

f [i]
rh
[�x1; . . . ; �xk]

4

=b; (2)

� if the transducer M has a rule qi[rh(x1; . . . ; xk)] ! wi;1

q�(i;1)[x�(i;1)]wi;2 � � �wi;ni
q�(i;ni)[x�(i;ni)]wi;ni+1, then

f [i]
rh
[�x1; . . . ; �xk]

4

= wi;1x�(i;1)�(i;1)wi;2 � � �

wi;ni
x�(i;ni)�(i;ni)wi;ni+1 (3)

14

where �xu = (xu1; . . . ; xu`) (1 � u � k).

(Since M is deterministic, there exists at most one rule whose left-

hand side is qi[rh(� � �)] and hence the above construction is consis-

tent.)

Step 2: For each ah 2 VT , construct a terminating production Ah ! fah

where fah is de�ned as follows: For 1 � i � `,

� if there is no rule whose left-hand side is qi[ah], then f [i]
ah

4

=b.

� if qi[ah]! wi, then f [i]
ah

4

=wi.

Step 3: For each Rh 2 RS(S), construct S0 ! f�rst[Rh] where f�rst[(x1,

. . ., x`)]
4

=x1. Intuitively, the right-hand side of this production

corresponds to the con�guration that M is in an initial state q1

and scanning the root symbol rh of a derivation tree, where rh is

the label of a production of G whose left-hand side is the initial

symbol S.

In the following, it is shown that the pmcfg G0 de�ned as above has

Property 3.1.

(Only if part) It is shown by induction on the number of applications of

(L1) and (L2) in section 2 to obtain a tuple of strings (�1; . . . ; �`). For

the basis, assume that �� = (�1; . . . ; �`) 2 LG0(X) is obtained by only one

application of (L1). It is clear that the applied (terminating) production

is constructed in Step 2, and hence there is some h such that X = Ah,

Ah ! fah and fah = ��. Let t = ah and consider how derivations proceed

from qi[t] for 1 � i � `. If �i = b then f [i]
ah

= b and hence there should

be no rule whose left-hand side is qi[ah]. If �i does not contain b, then

transducer M has a rule qi[ah]! �i, and the property holds.

Assume that the property holds for every tuple of strings which

can be obtained by d0 applications or less, and suppose the case that

15

(�1; . . . ; �`) 2 LG0(X) is obtained by d0 + 1 applications. The last (non-

terminating) production applied in (L2) must be constructed in Step 1,

hence there is some h such that X = Rh, and the applied production is

Rh ! frh [Z1; . . . ; Zk]: (4)

Furthermore, there exist ��u = (�u1; . . . ; �u`) 2 LG0(Zu) for 1 � u � k

such that (�1; . . . ; �`) = frh [
��1; . . . ; ��k]. For each u (1 � u � k), if Zu =

Rhu
for some hu (resp. Zu = Ahu

for some hu), then ��u 2 LG
0(Rhu

) (resp.

��u 2 LG0(Ahu
)), and by the inductive hypothesis there is a derivation tree

tu which satis�es Property 3.1 with ��u. That is, the root of tu is rhu (resp.

ahu), and for v (1 � v � `),
8><
>:

qv[tu]
�
)�uv if �uv does not contain b,

qv[tu] derives no output if �uv contains b.
(5)

We note that since (4) is constructed in Step 1 as a production of pmcfg

G0, cfg G has a production rh : Y0 ! Y1 � � � Yk and Zu 2 RS(Yu) holds

for 1 � u � k. Now, Zu = Rhu
2 RS(Yu) (resp. Zu = Ahu

2 RS(Yu))

holds and it follows that the left-hand side of production rh is Yu by the

de�nition of RS (resp. Yu is the terminal symbol ahu). Hence, if we take

t = rh(t1; . . . ; tk) then t is a derivation tree of cfg G. Now, consider a

derivation of M from qi[t] for 1 � i � `.

� If �i contains b, then there are two cases.

{ f [i]
rh

is de�ned to be b by (2). In this case, there exists no rule

whose left-hand side is qi[rh(x1; . . . ; xk)]. Hence qi[t] derives

no output and the property holds.

{ f [i]
rh

is de�ned by (3). In this case, �i can be written as

�i = wi;1��(i;1)�(i;1)wi;2� � �wi;ni
��(i;ni)�(i;ni)wi;ni+1 and ��(i;j)�(i;j)

contains b for some j (1 � j � ni). By the construction of

function frh in Step 1, there is a derivation from qi[t];

qi[t] = qi[rh(t1; . . . ; tk)])

16

wi;1q�(i;1)[t�(i;1)]wi;2 � � �wi;ni
q�(i;ni)[t�(i;ni)]wi;ni+1

and there are no other derivation since M is deterministic.

If ��(i;j)�(i;j) contains b, then by (5), q�(i;j)[t�(i;j)] derives no

output and hence qi[t] also cannot derive output.

� If �i does not contain b, then f [i]
rh

is de�ned by (3), �i can be writ-

ten as �i = wi;1��(i;1)�(i;1)wi;2 � � �wi;ni
��(i;ni)�(i;ni)wi;ni+1 and each

��(i;j)�(i;j) (1 � j � ni) does not contain b. By (5), q�(i;j)[t�(i;j)]

�
)��(i;j)�(i;j) holds for 1 � j � ni, hence

qi[t] = qi[rh(t1; . . . ; tk)]

) wi;1q�(i;1)[t�(i;1)]wi;2 � � �wi;ni
q�(i;ni)[t�(i;ni)]wi;ni+1

�
) wi;1��(i;1)�(i;1)wi;2 � � �wi;ni

��(i;ni)�(i;ni)wi;ni+1

= �i

and the property holds.

(If part) If part is shown by induction on the size of a derivation tree t

of G. (The size of a tree t is the number of occurrences of symbols of the

ranked alphabet appearing in t.) For the basis, assume that the size of t

is one, that is, t = ah for some ah 2 VT . By Step 2, there is a production

Ah ! fah and the property holds.

For the inductive step, assume that the property holds for every

derivation tree whose size is not greater than d0, and consider a derivation

tree t = rh(t1; . . . ; tk) with size d0 + 1. Since t is a derivation tree of

cfg G, rh is a production of the form Y0 ! Y1 � � �Yk and the root of

tu (1 � u � k) is;

8><
>:

rhu (label of a production whose left-hand side is Yu) if Yu 2 VN

ahu if Yu = ahu 2 VT .

By the de�nition of RS, Rhu
2 RS(Yu) (or Ahu

2 RS(Yu)) holds for

1 � u � k, and hence pmcfg G0 has a production Rh ! frh[Z1; . . . ; Zk]

17

where Zu = Rhu
(or Zu = Ahu

). (See the construction of productions in

Step 1.)

Here, the size of each subtree tu (1 � u � k) equals to or less than d0,

by the inductive hypothesis, there exist ��u = (�u1; . . . ; �u`) 2 LG0(Rhu
)

(or LG
0(Ahu

)) such that ��u and tu satisfy Property 3.1. That is, for

v (1 � v � `),8><
>:

�uv does not contain b if qv[tu]
�
)�uv,

�uv contains b if qv[tu] derives no output.
(6)

Now, let

�� = (�1; . . . ; �`) = frh [
��1; . . . ; ��k] 2 LG0(Rh)

and consider how �i is de�ned for 1 � i � `.

� If there is no rule whose left-hand side is qi[rh(x1; . . . ; xk)], then

qi[t] derives no output. In this case, f [i]
rh

is de�ned to be b and

hence �i = b, the property holds.

� If the transducer M has a rule qi[rh(x1; . . . ; xk)]! wi;1q�(i;1)[x�(i;1)]

wi;2 � � �wi;ni
q�(i;ni)[x�(i;ni)]wi;ni+1, then we can write �i as

�i = wi;1��(i;1)�(i;1)wi;2 � � �wi;ni
��(i;ni)�(i;ni)wi;ni+1 (7)

by the construction of functions in Step 1. There are two cases:

{ For some j (1 � i � ni), q�(i;j)[t�(i;j)] derives no output and

hence qi[t] also. In this case, ��(i;j)�(i;j) contains b by (6) and

it follows from (7) that �i also contains b, the property holds.

{ For every j (1 � j � ni), q�(i;j)[t�(i;j)] derives some output.

SinceM is deterministic, and by (6), the derived string should

be ��(i;j)�(i;j) which does not contain b.

qi[t] = qi[rh(t1; . . . ; tk)]

) wi;1q�(i;1)[t�(i;1)]wi;2 � � �wi;ni
q�(i;ni)[t�(i;ni)]wi;ni+1

�
) wi;1��(i;1)�(i;1)wi;2 � � �wi;ni

��(i;ni)�(i;ni)wi;ni+1

= �i

18

and the property holds.

The proof of if part is completed and Property 3.1 has been proved.

Lemma 3.1: yL(DFSTS) � PMCFL.

Proof. Let L1
4

=L(G0) \��. Since pmc's are closed under intersection

with a regular set[7], L1 is also a pmc. We show that yL(M;G) = L1.

By Property 3.1 and the productions constructed in Step 3, w 2 L1 if

and only if there is a derivation tree t of G such that

� the root of t is rh,

� the left-hand side of rh is the initial symbol S, and

� q1[t]
�
)w

and the lemma holds.

3.2 PMCFL � yL(DFSTS)

Let G = (VN ; VT ; F; P; S) be a pmcfg with dimension `. Without loss of

generality, G is assumed to satisfy the non-erasing condition of Lemma

2.1. Also suppose that the nonterminating productions of G are la-

beled with r1; . . . ; rm, and the terminating productions are labeled with

r01; . . . ; r
0
n
. Furthermore, for each nonterminal production rh (1 � h �

m), we suppose that the function of the right-hand side of rule rh is fh

(the su�x of the function is identical to that of the production), hence

each nonterminal production can be written as rh : Y0 ! fh[Y1; . . .,

Yk] (a(fh) = k; Y0; . . . ; Yk 2 VN). We also suppose that each terminating

production can be written as r0
h
: Y0 ! f 0

h
. A yT -fsts (M;G0) such that

yL(M;G0) = L(G) is constructed as follows.

First, de�ne a cfg G0 = (V 0
N
; V 0

T
; P 0; S0) with V 0

N

4

=fS 0; R1; . . . ; Rmg

and V 0
T

4

=fa1; . . . ; ang. Note that each nonterminal Ri (1 � i � m)

19

and terminal aj (1 � j � n) of cfg G0 correspond to nonterminating

production and terminating production of pmcfg G, respectively. To

construct productions, RS0(X) � V 0
N
[V 0

T
for X 2 VN is de�ned as

follows.

RS0(X) = fRh j the left-hand side of rh is Xg

[fah j the left-hand side of r0
h
is Xg:

By using RS0, productions P 0 of cfg G0 are de�ned as follows.

Step A: For each nonterminating production rh : Y0 ! fh[Y1, . . . ; Yk]

of pmcfg G, construct productions

r̂hZ1���Zk : Rh ! Z1 � � �Zk (8)

for Zu 2 RS0(Yu) (1 � u � k).

Step B: For each Z 2 RS0(S), construct

r̂start : S
0 ! Z: (9)

Note that each element in RS0(S) corresponds to the production of

pmcfg G whose left-hand side is the initial symbol S of G.

De�ne �
4

=fthe labels of productions in P 0g[V 0
T
, �(r̂hZ1���Zk) = k for

r̂hZ1���Zk : Rh ! Z1 � � �Zk, �(ah) = 1 for ah 2 V 0
T
and �(r̂start) = 1, then

� is a ranked alphabet.

Next, we de�ne yT -transducer M = (Q;�;�; q1; R) with � de�ned

above and �
4

=VT . Q is de�ned to be fq1; . . . ; q`g (note that ` is the

dimension of G).

The rules in R will be de�ned to have the following property.

Property 3.2: There is �� = (�1; . . . ; �s) 2 LG(X) and the last produc-

tion applied to obtain �� is rh : X ! fh[Y1; . . . ; Yk] (resp. r
0
h
: X ! f 0

h
)

if and only if there is a derivation tree t of G0 such that the root is

20

r̂hZ1���Zk : Rh ! Z1 � � �Zk (Zu 2 RS0(Yu); 1 � u � k) (resp. terminal

symbol ah) and qi[t]
�
)�i for 1 � i � s. (qi[t] derives no output for i > s.)

Intuitively saying, a derivation tree of cfg G0 represents how to apply

productions to obtain tuple of string. The rules of transducer M are

constructed to \expand" the tree into string. The rules in R are de�ned

as follows.

Step I: For each nonterminating production rh : Y0 ! fh[Y1; . . . ; Yk]

with fh de�ned as

f
[i]

h
[�x1; . . . ; �xk] = wi;1x�(i;1)�(i;1)wi;2 � � �wi;ni

x�(i;ni)�(i;ni)wi;ni+1

where �xu = (xu1; . . . ; xud(Yu)) (1 � u � k), de�ne rules

qi[r̂hZ1���Zk(x1; . . . ; xk)]! (10)

wi;1q�(i;1)[x�(i;1)]wi;2 � � �wi;ni
q�(i;ni)[x�(i;ni)]wi;ni+1

where Zu 2 RS0(Yu) (1 � u � k) and 1 � i � d(Y0).

Step II: For each terminating production r0
h
: Y0 ! f 0

h
with f 0

h
de�ned

as f 0
h

[i] = wi, de�ne rules qi[ah]! wi for 1 � i � d(Y0).

Step III: De�ne

q1[r̂start(x)]! q1[x]: (11)

It is clear that the constructed transducer M is deterministic. A

transducer M and a cfg G0 de�ned as above have Property 3.2. The idea

behind the proof is similar to that of Property 3.1, and its proof is shown

in the appendix.

Theorem 3.2: yL(DFSTS) = PMCFL.

Proof. In Lemma 3.1, it has been shown that yL(DFSTS) � PMCFL,

and hence it su�ces to show that PMCFL � yL(DFSTS). We show that

L(G) = yL(M;G0) for M and G0 constructed as above.

21

If w 2 LG(S), then there is a production of pmcfg

rh : S ! fh[Y1; . . .Yk] (12)

which is the last production applied to obtain w. By Property 3.2,

there is a derivation tree t of G0 such that the root is r̂hZ1���Zk : Rh !

Z1 � � �Zk (Zu 2 RS0(Yu); 1 � u � k) and q1[t]
�
)w holds. Let t0 = r̂start(t)

then, since Rh 2 RS'(S), t0 is also a derivation tree of cfg G0. Hence,

w 2 yL(M;G0) holds by (11).

In a reverse way, we can prove that if w 2 yL(M;G0) then w 2

LG(S), and the theorem holds.

3.3 Recognition of yL(DFSTS)

In the previous sections, we show that yL(DFSTS) equals to PMCFL.

Since deterministic polynomial time recognition algorithm for PMCFL

has been proposed[8], it can be concluded that yL(DFSTS) is in P of

computational complexity. This result has been noted in an earlier paper

Ref.[1] as a corollary of its main result, but the running-time required

for recognition was not analyzed.

By combining the recognition algorithm for PMCFL[8] and the con-

struction procedure described in Section 3.1, we obtain an e�ective proce-

dure to recognize yL(DFSTS). In the rest of this section, we investigate

the complexity of the recognition of yL(DFSTS). First, we review results

on the recognition of PMCFL.

Refer to the condition (G3) and expression (1) in the de�nition of

pmcfg's in Section 2.1. The degree of a function f has been de�ned as
r(f)X
h=1

(nh+1), which equals to the dimension of f plus the total number of

variables appearing in the right-hand side of f [8]. If the maximum degree

among the functions of G is e, then G is called a pmcfg with degree e. In

the same way, an mcfg with degree e is de�ned.

Lemma 3.3[8]: A pmc which is generated by pmcfg with degree e can

22

be recognized in O(jwje+1)-time where jwj denotes the length of an input.

Next we de�ne the degree of a deterministic yT -transducer M =

(Q;�, �; q0; R). For � 2 � and q 2 Q, let nq;� denote the number of

occurrences of variables in the right-hand side of a rule whose left-hand

side is q[�(x1; . . . ; xn)]. If no rule is de�ned for q[�(x1; . . . ; xn)], then

nq;� = 0. Since the yT -transducer is deterministic, nq;� can be de�ned

uniquely. For example, in Example 2.3, nqi;+ = 2 and nqd;� = 4. De�ne

the degree of a symbol � 2 � as jQj +
X
q2Q

nq;�. If the maximum degree

among the symbol in � is e, then M is called a yT-transducer with degree

e. An fsts with degree e is an fsts of which yT -transducer is with degree

e.

The readers can easily verify that a deterministic fsts with degree

e is translated into a pmcfg with degree e by using the construction

described in Section 3.1. Hence the following theorem holds.

Theorem 3.4: The yield language generated by an fsts with degree e

can be recognized in O(jwje+1)-time where jwj denotes the length of an

input.

4. Monadic FSTS' and NP-completeness

In previous sections, the class of yield languages generated by determinis-

tic fsts' is shown to be in P. In Ref.[12], it has been shown that there is an

NP-complete language in the class of yield languages generated by non-

deterministic fsts'. In this section, we give an NP-complete language in

a more \restricted" class of languages, yL(NMFSTS2), the class of yield

languages generated by nondeterministic monadic fsts' with state-bound

2 (this class is denoted as m-fsts2 in Figure 1). First, a language called

Unary-3SAT [9], which is NP-complete, is reviewed, and then it is shown

to belong to yL(NMFSTS2).

23

A Unary-3CNF is a (nonempty) 3CNF in which the subscripts of

variables are represented in unary. A positive literal xi is represented by

1i$ in a Unary-3CNF. Similarly, a negative literal :xi is represented by

1i#. For example, a 3CNF

(x1 _ x2 _ :x3) ^ (x3 _ :x1 _ :x2)

is represented by

1$11$111# ^ 111$1#11#

in a Unary-3CNF. Unary-3SAT is the set of all satis�able Unary-3CNF's.

Clearly, Unary-3SAT is NP-complete.

A nondeterministic monadic yT-fsts (M;G) with state-bound 2

which generates Unary-3SAT is de�ned as follows. First, de�ne a cfg

G = (VN ; VT ; P; S) where VN = fS; T; Fg, VT = feg and the productions

in P are as follows:

rSS : S ! S rTe : T ! e

rST : S ! T rFT : F ! T

rSF : S ! F rFF : F ! F

rTT : T ! T rFe : F ! e

rTF : T ! F:

Note that G is a regular grammar, and hence this fsts is monadic. Let

u be a derivation tree of G. Then u has a following form;

u
4

= rSS(� � � (rSS| {z }
m�1

(rSp1(u
0))) � � �)

where

u0 = rp1p2(rp2p3(� � � (rpne(e)) � � �))

and pi 2 fT; Fg for 1 � i � n. The outer m (m � 1) symbols of u are

the rules whose left-hand side is S, and the next n symbols are the rules

whose left-hand side is T or F .

Next, a yT -transducer M = (Q;�;�; q0; R) is constructed to trans-

duce u into a Unary-3CNF E such that

24

� E has m clauses,

� there are at most n distinct variables x1; . . . ; xn in E, and

� the value of E becomes true if values are assigned to the variables

as

xi =

8><
>:

TRUE if pi is T

FALSE if pi is F
(1 � i � n): (13)

Let Q = fq0; qc; qt; qag, � = frSS ; . . . ; rFe; eg and � = f1;^; $;#g. Since

there are many rules in R, we will use an abbreviated notation. For

example, the following four rules

qa[rTe(x)]! 1$; qa[rTe(x)]! 1#

qa[rFe(x)]! 1$; qa[rFe(x)]! 1#

are abbreviated as \qa[rTe(x)] = qa[rFe(x)] ! 1$ or 1#". By using this

notation, de�ne R as following rules (R1) through (R9):

(R1) q0[rSS(x)]! qc[x] ^ q0[x]:

(R2) qc[rSS(x)]! qc[x]:

By the rules (R1) and (R2), M transduces q0[u] into

qc[rSp1(u
0)] ^ � � � ^ qc[rSp1(u

0)] ^ q0[rSp1(u
0)]| {z }

m

: (14)

As we explain later, each qc[� � �] and q0[� � �] derives one clause.

Hence m clauses will be derived from q0[u].

(R3) q0[rST (x)] = q0[rSF (x)] = qc[rST (x)] = qc[rSF (x)]!

qt[x]qa[x]qa[x] or qa[x]qt[x]qa[x] or qa[x]qa[x]qt[x]:

By these rules, each qc[rSp1(u
0)] (q0[rSp1(u

0)]) in (14) derives one of

qt[u
0]qa[u

0]qa[u
0], qa[u

0]qt[u
0]qa[u

0] or qa[u
0]qa[u

0]qt[u
0].

(R4) qt[rTT (x)] = qt[rTF (x)]! 1qt[x] or 1$:

(R5) qt[rTe(x)]! 1$:

25

(R6) qt[rFT (x)] = qt[rFF (x)]! 1qt[x] or 1#:

(R7) qt[rFe(x)]! 1#:

Suppose that a derivation from qt[u
0] has been proceeded and the

current con�guration is qt[rpipi+1
(� � �)]. Now, transducerM has two

choices (see rules (R4) and (R6));

� generate 1 and continue a translation of subtree, or

� generate 1$ if pi is T , 1# if pi is F and complete a translation.

If M completes a translation and pi is T (resp. F), then qt[u
0] has

derived 1i$ (resp. 1i#). Note that this is a literal xi (resp. �xi)

which becomes \true" under the assignment (13).

(R8) qa[rTT (x)] = qa[rTF (x)] = qa[rFT (x)] = qa[rFF (x)]!

1qa[x] or 1$ or 1#:

(R9) qa[rTe(x)] = qa[rFe(x)]! 1$ or 1#:

These are similar to the rules (R4) through (R7); qa[u
0] derives

some literal but it is not guaranteed to become \true".

Now, the readers can easily verify that this fsts has a state-bound 2, and

that this fsts can derive an arbitrary satis�able Unary-3CNF.

Theorem 4.1: Unary-3SAT is in yL(NMFSTS2).

5. Conclusions

We have shown that the class of yield languages generated by determin-

istic fsts' equals to the class of parallel multiple context-free languages.

Also we have shown that the class of yield languages generated by nonde-

terministic monadic fsts' with state-bound 2 contains at least one NP-

complete language. These results together with already known results

are summarized in Figure 2. The hierarchy with respect to state-bounds

26

(and copying-bounds) is omitted from the �gure for simplicity. In the

�gure, D-FSTS, FC-FSTS and M-FSTS denote the classes of yield lan-

guages generated by deterministic fsts', �nite-copying fsts' and monadic

fsts', respectively. Corresponding to the hierarchy in Figure 2, some sub-

classes of lexical-functional grammars (lfg's) can be de�ned. Relations

between the generative capacities of lfg's, fsts' and pmcfg's are investi-

gated in Ref.[14]. For further study, it remains to clarify the relation be-

tween dimensions of pmcfg's and state-bounds (and also copying-bounds)

of deterministic fsts'.

Acknowledgement

We'd like to thank to an anonymous referee and Prof. David Weir of

Sussex University for their helpful suggestions.

References
[1] Engelfriet J.: \The Complexity of Languages Generated by At-

tribute Grammars", SIAM J. Comput., 15-1, pp.70{86 (Feb. 1986).

[2] Engelfriet J. and Heyker L.: \The String Generating Power of
Context-Free Hypergraph Grammars", J. Comput. & Syst. Sci., 43,
pp.328{360 (1991).

[3] Engelfriet J., Rosenberg G. and Slutzki G.: \Tree Transducers, L
Systems, and Two-Way Machines", J. Comput. & Syst. Sci., 20,
pp.150{202 (1980).

[4] Kaji Y., Nakanishi R., Seki H. and Kasami T.: \The universal recog-
nition problems for multiple context-free grammars and for linear
context-free rewriting systems", IEICE Trans. on Information and
Systems, E75-D, 1, pp.78{88 (Jan. 1992).

[5] Kaji Y., Nakanishi R., Seki H. and Kasami T.: \The universal recog-
nition problems for parallel multiple context-free grammars and for
their subclasses", IEICE Trans. on Information and Systems, E75-
D, 7, pp.499{508 (Jul. 1992).

[6] Kaji Y., Nakanishi R., Seki H. and Kasami T.: \Parallel Multi-

ple Context-Free Grammars and Finite State Translation Systems",
IEICE Technical Report, COMP92-34 (Sep. 1992).

27

[7] Kasami T., Seki H. and Fujii M.: \Generalized Context-Free Gram-
mars and Multiple Context-Free Grammars", Trans. IEICE, J71-
D-I, 5, pp.758{765 (May 1988) (in Japanese).

[8] Kasami T., Seki H. and Fujii M.: \On the Membership Problem

for Head Languages and Multiple Context-Free Languages, Trans.
IEICE, J71-D-I, 6, pp. 935{941 (June 1988) (in Japanese).

[9] Nakanishi R., Seki H. and Kasami T.: \On the Generative Capacity
of Lexical-Functional Grammars", IEICE Trans. Inf. and Syst., 75-
D, 7, pp.509{516 (July 1992).

[10] Pollard C.J.: \Generalized Phrase Structure Grammars, Head
Grammars and Natural Language", Ph.D. dissertation, Stanford
University (1984).

[11] Rounds W.C.: \Context-Free Grammars on Trees", Proc. of ACM
Symp. on Theory of Computing, pp.143{148 (May 1969).

[12] Rounds W.C.: \Complexity of Recognition in Intermediate-Level
Languages", IEEE 14th Annual Symp. on SWAT., pp.145{158,
(Oct. 1973).

[13] Seki H., Matsumura T., Fujii M. and Kasami T.: \On Multiple
Context-Free Grammars", Theoretical Computer Science, 88, 2,
pp.191-229 (Oct. 1991).

[14] Seki H., Nakanishi R., Kaji Y., Ando S. and Kasami T.: \Paral-
lel Multiple Context-Free Grammars, Finite-State Translation Sys-
tems, and Polynomial-Time Recognizable Subclasses of Lexical-
Functional Grammars", Proc. of 31st meeting of Assoc. Comput.
Ling. pp.130{139 (June 1993).

[15] Thatcher J.W.: \Characterizing Derivation Trees of Context-Free

Grammars through a Generalarization of Finite Automata Theory",
J. Comput. & Syst. Sci., 1, pp.317{322 (Dec. 1967).

[16] Vijay-Shanker K., Weir D.J. and Joshi A.K.: \Tree Adjoining and
Head Wrapping", Proc. 11th Intl. Conf. on Comput. Ling., pp.202{
207 (1986).

[17] Vijay-Shanker K., Weir D.J. and Joshi A.K.: \Characterizing struc-
tural descriptions produced by various grammatical formalisms",
Proc. of 25th meeting of Assoc. Comput. Ling., pp.104{111 (June
1987).

[18] Weir D.J. : \Characterizing Mildly Context-Sensitive Grammar For-
malisms", Ph.D. thesis, University of Pennsylvania (1988).

[19] Weir D.J.: \Linear Context-Free Rewriting Systems and Determin-
istic Tree-Walking Transducers", Proc. of 30th meeting of Assoc.

28

Comput. Ling. (June 1992).

Appendix

A. Proof of Property 3.2

(Only if part) It is shown by induction on the number of applications of

(L1) and (L2) to obtain a tuple of strings (�1; . . . ; �s). For the basis,

assume that �� = (�1; . . . ; �s) 2 LG(X) and it is obtained by one appli-

cation of (L1). Then the applied terminating production is r0
h
: X ! f 0

h

where f 0
h
= ��. If we take t = ah, then t is a derivation tree of cfg G0 and

the property holds by the construction of rules in Step II.

Next, assume that the property holds for every tuple of strings which

can be obtained by d0 or less applications of (L1) and (L2), and consider

the case that �� = (�1; . . . ; �s) 2 LG(X) is obtained by d0+1 applications.

Let

rh : X ! fh[Y1; . . . ; Yk] (15)

be the last production applied to obtain �� where fh is de�ned as

f
[i]

h
[�x1; . . . ; �xk] = wi;1x�(i;1)�(i;1)wi;2 � � �wi;ni

x�(i;ni)�(i;ni)wi;ni+1 (16)

for 1 � i � d(X). Then, there are ��u = (�u1; . . . ; �ud(Yu)) 2 LG(Yu) (1 �

u � k) such that

�� = fh[��1; . . . ; ��k]: (17)

Each ��u can be obtained by d0 applications or less, and there is a nonter-

minating production rhu : Yu ! fhu [Yu1; . . . ; Yuku] (or terminal produc-

tion r0
hu

: Yu ! f 0
hu
) which is the last production applied to obtain ��u.

By the inductive hypothesis, there are derivation trees tu (1 � u � k)

such that

qv[tu]
�
)�uv (18)

for 1 � v � d(Yu), and the root of tu is r̂huZu1���Zuku : Rhu
! Zu1 � � �Zuku

(or ahu). Note that Rhu
2 RS'(Yu) (or ahu 2 RS'(Yu)) holds for 1 � u �

29

k. Since pmcfg G has a nonterminating production rh (see (15)), cfg G0

has a production r̂hZ1���Zk : Rh ! Z1 � � �Zk such that
8><
>:

Zu = Rhu
if the root of tu is r̂huZu1���Zuku ,

Zu = ahu if the root of tu is ahu .
(19)

Hence if we take t = r̂hZ1���Zk(t1; . . . ; tk) then t is a derivation tree of G0

and

qi[t] = qi[r̂hZ1���Zk(t1; . . . ; tk)]

) wi;1q�(i;1)[t�(i;1)]wi;2 � � �wi;ni
q�(i;ni)[t�(i;ni)]wi;ni+1 by (10)

�
) wi;1��(i;1)�(i;1)wi;2 � � �wi;ni

��(i;ni)�(i;ni)wi;ni+1 by (18)

= f
[i]

h
[��1; . . . ; ��k] by (16)

= �i by (17)

for 1 � i � d(X). That is, qi[t]
�
)�i (1 � i � d(X)) and the property

holds.

(If part) The only if part is shown by induction on the size of a derivation

tree t of cfg G0. For the basis, consider a derivation tree of size one, that

is, t = ah for some ah 2 VT , and assume that qi[t]
�
)�i for 1 � i � s and

it derives no output for i > s. Then, there are rules qi[ah] ! �i (1 �

i � s) and by the construction of rules of M in Step II, pmcfg G has a

terminating production r0
h
: Y0 ! f 0

h
with d(Y0) = s and f 0

h

[i]
= �i for

1 � i � s. Hence, (�1; . . . ; �s) 2 LG(Y0) and the property holds.

Assume that the property holds for every derivation tree whose size

is d0 or less, and consider a derivation tree t = r̂hZ1���Zk(t1; . . . ; tk) of size

d0 + 1 such that

qi[t]) wi;1q�(i;1)[t�(i;1)]wi;2 � � �wi;ni
q�(i;ni)[t�(i;ni)]wi;ni+1 (20)

�
) wi;1��(i;1)�(i;1)wi;2 � � �wi;ni

��(i;ni)�(i;ni)wi;ni+1

= �i (21)

for 1 � i � s. Let r̂huZu1���Zuku (or ahu possibly) be the root of subtree

tu (1 � u � k). To apply the inductive hypothesis to each subtree

30

tu (1 � u � k), we �rst investigate the nonterminal on the left-hand

side of rhu which is a corresponding production of pmcfg G. Since t is

a derivation tree of cfg G0 and the left-hand side of r̂huZu1���Zuku is Rhu

(see 8), there is a production r̂hZ1���Zk : Rh ! Z1 � � �Zk such that (19)

holds. By the construction of productions of G0 in Step A, pmcfg G has

a production

rh : Y0 ! fh[Y1; . . . ; Yk] (22)

such that Zu 2 RS0(Yu) holds for 1 � u � k. By the de�nition of RS0

and (19), it follows that the left-hand side of rhu (or r0
hu
) is Yu.

Next, consider the rules of transducer M which are used in (20).

Apparently, the rules used are de�ned in Step I, and it follows that the

function fh in (22) is de�ned as

f
[i]

h
[�x1; . . . ; �xk] = wi;1x�(i;1)�(i;1)wi;2 � � �wi;ni

x�(i;ni)�(i;ni)wi;ni+1 (23)

for 1 � i � d(Y0) = s where �xu = (xu1; . . . ; xud(Yu)) (1 � u � k). Since

pmcfg G satis�es the non-erasing condition, for every u (1 � u � k) and

v (1 � v � d(Yu)), the variable xuv appears at least once on the right-

hand side of (23) for some i (1 � i � s). Hence, qv[tu] appears at least

once on the right-hand side of (20) for some i (1 � i � s), and it follows

that qv[tu]
�
)�uv holds for every u (1 � u � k) and v (1 � v � d(Yu)).

Since the size of tu (1 � u � k) equals to d0 or less, by the inductive

hypothesis,

��u = (�u1; . . . ; �ud(Yu)) 2 LG(Yu) (24)

for each u (1 � u � k). (Remind that the root of tu is r̂huZu1���Zuku (or

ahu) and the left-hand side of rhu (or r
0
hu
) is Yu.) Now, replacing �x's with

��'s in (23), and by (21),

f
[i]

h
[��1; . . . ; ��k]

= wi;1��(i;1)�(i;1)wi;2 � � �wi;ni
��(i;ni)�(i;ni)wi;ni+1

= �i (25)

31

for 1 � i � d(Y0). By (22),(24) and (25), (�1; . . . ; �s) 2 LG(Y0) and the

property holds. Hence, Property 3.2 has proved.

32

2

2

2

2

1

1

1

1

cfg =

s

ss

s

fc−fsts

d−fsts

fsts

m−fsts

m−fsts

fsts

d−fsts

fc−fsts

fc−fsts

fc−fsts

d−fsts

d−fsts

fsts

fsts

m−fsts

m−fsts

Figure 1: Generative power hierarchy of subclasses of fsts'[3].

33

CFL
(ET0L)

Unary−3SAT
(if ≠)

D−FSTS
= PMCFL

FC−FSTS
= MCFL

M−FSTS

FSTS

A language which belongs to the shaded region in the �gure is

recognizable in deterministic polynomial time.

Figure 2: The inclusion relations of the classes of languages.

34

