Title

Authors

Address

Running head

Keywords

Related areas:

93-DP-0031

FINITE STATE TRANSLATION
SYSTEMS AND PARALLEL MULTIPLE
CONTEXT-FREE GRAMMARS

Yuichi Kajif,
Hiroyuki Seki*, and

ot
Tadao Kasami*, members

T Faculty of Engineering Science, Osaka University
Toyonaka, Osaka 560, Japan
I Nara Institute of Science and Technology

Takayama, Tkoma, Nara 630-01, Japan
FSTS AND PMCFG

finite state translation systems

parallel multiple context-free grammars
tree automata

computational complexity

formal languages

D. Information and Systems
Automaton, Language and Theory of Computing

Algorithm and Computational Complexity

SUMMARY

Finite state translation systems (fsts’) are a widely studied computa-
tional model in the area of tree automata theory. In this paper, the string
generating capacities of fsts’ and their subclasses are studied. First, it
is shown that the class of string languages generated by deterministic
fsts’ equals to that of parallel multiple context-free grammars, which are
an extension of context-free grammars. As a corollary, it can be con-
cluded that the recognition problem for a deterministic fsts is solvable in
O(n“t')-time, where n is the length of an input word and e is a constant
called the degree of the deterministic fsts’. In contrast to the latter fact,
it is also shown that nondeterministic monadic fsts” with state-bound 2

can generate an N P-complete language.

1. Introduction

Many researchers have investigated the “gap” between context-free lan-
guages (cfl’s) and context-sensitive languages (csl’s). Their studies are
motivated by two different interests; an interest from the viewpoint of
natural language processing, and an interest from the viewpoint of com-
putational complexity theory.

In the field of natural language processing, it is fundamentally im-
portant to propose a well-defined grammatical formalism. It has been
often claimed that cfg’s do not have enough power to describe the syn-
tax of natural languages; for example, discontinuous phrase structure
such as “respectively” sentence cannot be described by cfg’s in a simple
manner. On the other hand, csg’s have too much power for efficient han-
dling. According to these considerations, a number of new grammatical
formalisms of which generative power is stronger than that of cfg’s have
been proposed. These new grammars include head grammars (hg)!,
tree adjoining grammars (tag)l'®l and generalized context-free grammars
(gefg’s). Among them, gefg’s are a natural extension of cfg’s and
phrase structure is simply defined in gcfg’s. However, it was shown to
have generative power equal to that of type-0 grammars! and hence it
cannot be handled efficiently.

Parallel multiple context-free grammars (pmefg’s) were introduced
as a subclass of gcfg’sl. For each nonterminal symbol A of a pmcfg G,
A derives tuples of strings. Languages generated by pmcfg’s are called
parallel multiple context-free languages (pmefl’s). Multiple context-free
grammars (mcfg’s) are a subclass of pmefg’s and languages generated
by mefg’s are called multiple context-free languages (mefl’s)I. Linear
context-free rewriting systems (lcfrs’) introduced by Vijay-Shanker et
al.l'l are essentially the same grammatical formalism as mcfg’s. It has
been shown that the class of languages generated by hg’s (tag’s) is prop-

erly included in the class of mcfl’sl' which in turn is properly included

in the class of pmcfl’s. The class of pmcfl’s is properly included in the
class of context-sensitive languages!] and the former is recognizable in
deterministic polynomial timel®.

Let us go back to the gap between cfl’s and csl’s. It has been known
that cfl’s can be recognized in deterministic polynomial time, while there
is an N'P-complete language in csl’s!'?, and hence one may conjecture
that there is a border between P and NP in the gap between cfl’s and
csl’s. A number of computational models have been introduced to clar-
ify the computational theoretic hierarchy in this gap. For example, tree
automata and their variants, extensions of push down automata, and
finite-state translation systems are widely studied models for this pur-
pose.

Finite state translation systems (fsts’) were originally introduced

11]

as a model of transformational grammars™l. Later it was found to be

an interesting computational model, and properties of fsts’ and their

2,3, 191 Ap fsts consists of

subclasses have been extensively investigated!
a tree transducer M and a context-free grammar (cfg) G 19 A tree
transducer M takes a tree as an input, starts from the initial state with
its head scanning the root node of an input. According to the current
state and the label of the scanned node, M transforms an input tree into
an output tree in a top-down way. An fsts (M, () is a tree transducer M
with its input domain being the set of derivation trees of the cfg G 19,
The output set of trees is called the tree language generated by (M, G),
and the yield language generated by (M,G) is defined to be the set of
strings obtained by concatenating (the labels of) leaves of a tree in the
tree language.

As for generative power of fsts’, Engelfriet has studied hierarchy of
language classes generated by fsts” and their subclasses®. He has shown

that the generative power of deterministic fsts’ is properly stronger than

that of finite-copying fsts’, and is properly weaker than that of (nonde-

terministic) fsts’. He also introduced a class of monadic fsts’ (ET0L)
which has properly weaker generative power than nondeterministic fsts’
(see Figure 1). In Ref.[19], it is shown that the class of yield languages
generated by finite-copying fsts” equals to the class of languages gener-
ated by lcfrs’, hence that of mcfl’s.

In this paper, it is shown show that the class of languages generated
by deterministic fsts’ equals to the class of pmcfl’'s. It is also shown
that there is an N"P-complete language in the class of string languages
generated by nondeterministic monadic fsts” with state-bound 2. By our
results, a number of known properties of pmecfl’s and mcfl’s will be used
for the study of fsts’ and their string languages, and vice versa. In fact,
as a corollary of our results, it can be concluded that the recognition
problem for a deterministic fsts is solvable in O(n“t!)-time, where n is
the length of an input word and e is a constant called the degree of the

deterministic fsts.

2. Definitions

2.1 Parallel Multiple Context-Free Grammars

A parallel multiple context-free grammar (pmecfg) is defined to be a 5-
tuple G’ = (Vy, Vp, F, P, S) which satisfies the following conditions (G1)
through (G5)[™ 131,

(G1) Vy is a finite set of nonterminal symbols, and a positive integer

d(A) is given for each nonterminal symbol A € Viy. The dimension

of G is max{d(A) | A € Vy}.
(G2) Vris a finite set of terminal symbols such that Viy N Vy = ¢.

(G3) F'is a finite set of functions satisfying the following conditions.
For a positive integer d, let (V;5)? denote the set of all the d-tuples
of strings over Vr. Let a(f) be the arity of f € F. For each f € F,

positive integers d;(f) (1 < ¢ < a(f)) and r(f) are given, and f
is a total function from (V)4 x (V)W) s ..o (Vi)danth) to

(V;)") which satisfies the following condition (f1). Let

T; = (l’ﬂ, L2y ooy widi(f))
denote the ith argument of f for 1 <¢ < a(f).

(f1) For 1 < h < r(f), the hth component of f, denoted by fI*
is defined by a concatenation of some terminal strings in V3
and some components of arguments. That is, a nonnegative

integer ny, is defines and

f[h][jjlvj?v .. '7j;a(f)] =

Wh 1T yi(h) Wh2 " Whingy (b)n(hong) Whsptt (1)

where wy, € Viifor 1 <k <n,+1,1<u(h,j) <a(f) and
1 <n(h,j) <dupgy(f) for 1 <5 <ny.

(G4) Pis a finite set of productions of the form A — f[Ay, Ag, ..., Aup)]
where A, Ay, Ag,..., Ay € Viy, f € Fyr(f) = d(A) and di(f) =
d(A;) (1 <4 < a(f)). If a(f) = 0, then f has no argument and f[]
equals to a tuple of strings over Vy. A production with a function
£ such that a(f) = 0 is called a terminating production, otherwise

it is called a nonterminating production. A terminating production

A — f[] is written as A — f.
(G5) S € Vy is the initial symbol, and d(S) = 1.

If all the functions of a pmcfg (7 satisfy the following condition (2),

then G is called a multiple context-free grammar (mefg).

(f2) For each component x;; in the arguments, the total number of oc-
currences of z;; in the right-hand sides of (1) from h = 1 through

r(f) is at most one.

If some variable occurs more than once in the right-hand side of
the definition of f, the string substituted for the variable will be copied
more than once. It has been shown that such copy operations increase
the generative capacity of grammarsl” (see Example 2.2). Condition (£2)
inhibits these copy operations.

The language generated by a pmefg G = (Vn, Vi, F, P, S) is defined
as follows . For A € Vy, let us define Ls(A) as the smallest set satisfying

the following two conditions:

(L1) If a terminating production A — f with f = a € (V5)¥%4 is in P,
then a € Lg(A).

(L2) If A — f[A1, Ay, ..., Ayp] € P and & € Lg(4;) (1 < ¢ <
a(f)), then a = flay, ay,...,a4)] € Lg(A). We say that A —
JlAL, Ag, oo Aggp)) I8 the last production applied to obtain a.

Define L(G)2La(S). L(G) is called the parallel multiple context-
free language (pmefl) generated by G. Tf G is an mefg, L((G) is called the
multiple context-free language (mcfl) generated by G. Let PMCFL and
MCFL denote the class of all pmefl’s and that of all mefl’s, respectively.

Example 2.1: Let Gy = (Vy,Vr, F,P,S) where Vy = {A,B,S}
(d(A) = d(B) = 27d(5) = 1)7 VT = {CL, b,C,d}, F= {f67f17f27g} and
the productions in P be:

ry S — g[A B] where g[(x1,22), (Y1, y2)] = z13122y2
ro A — fi[A] where fi[(xy, 22)] = (axy, cxy)

r3 A — f. where f. = (e,¢)

re B — fo[B] where f3](xq1, 22)] = (baq, dxy)

rs B — f.

"Derivation of pmefg’s can be defined as rewriting steps of a sentential form[* 1.

However, for (aq,...,an) € Lg(A4), oy’s do not always appear consecutively in a

sentential form, and hence this simple form of definition 1s used in this paper.

(i1 1s an mcfg with dimension 2. The language generated by (77 is defined
as follows. By the rule r3, (¢,¢) € Lg, (A). By substituting &’s for a4
and 3 in r2, (a,¢) € Lg, (A). By applying re repeatedly, (a,c™) €
Lg, (A) for m > 0. Similarly, (0",d") € Lg,(B) for n > 0. Lg (S) =

{a™b"¢"d"|m,n > 0} and this is the language generated by (. []

Example 2.2(7: Let Gy, = (Vi, Vi, I, P, S) where Vy = {S} (d(S5) =
1), Vo =Aa}, F=Afao, f}, P ={r1:5 = fao, 7o : 5 — [fI5]}, where
fu = a.f[(z)] = 22. G is a pmefg with dimension 1 but is not an mcfe
since the function f does not satisfy the condition (f2). The language

generated by (5 is {a®" |n > 0}, which cannot be generated by any mcfg
(see Lemma 6 of Ref.[7]). []

Lemma 2.10: For a given pmefg G (resp. mefg (), we can construct an
pmcfg G’ (resp. mefg G') which satisfies L(G') = L(G) and the following

non-erasing condition (f3).

(f3) For each function f of G/, each variable x;; appears at least once

in the right-hand side of (1) for some h (1 < h < r(f)).

Sketeh of Proof: The idea behind the construction is similar to that of
g-rule elimination procedure of a context-free grammar. For example,
assume that there is a production A — f[Bi,..., B,] and z;; does not
appear in the right-hand side of (1). Then a new nonterminal B! with
d(B!) = d(B;) — 1 is introduced, and this production is replaced by
A — f'[By,...,Bl, ..., B,] where f’ is identical to f except that the
dimension of the :th argument is smaller by one than f. Furthermore,
for each production whose left-hand side is B;, add a new production
whose left-hand side is B! and whose function in the right-hand side is

defined by deleting jth component of the original one. For the formal
proof, see Lemma 1 of Ref.[7]. []

2.2 Finite State Translation Systems
A set ¥ of symbols is a ranked alphabet if, for each ¢ € ¥, a unique
non-negative number p(c) which is called the rank of o is associated.

Define 7Ty, as the smallest set such that;
o If p(0) =0 for o € ¥, then 0 € Ty..

o If plo) = n (= 1) for o0 € ¥ and t4,...,t, € Ty, then t =
o(ty,...,t,) € Tg. o is called the root symbol, or shortly, the

root of t.

Hereafter, a term in 75, may be called a tree.

Let G = (Vw, Vi, P, S) be a context-free grammar (cfg) where Vy,
Vi, P and S are a set of nonterminal symbols, a set of terminal symbols,
a set of productions and the initial symbol, respectively. A derivation

tree of the cfg G is a term defined as follows.
(T1) For every a € Vr, a is a derivation tree of (.

(T2) Assume that there are a production r : A — X;--- X, (A4 €
Vv, Xi,..., X, € VyUVp) in P where r is the label of this produc-
tion, and n derivation trees t1,...%, whose roots are labeled with

T1y...,Tn, respectively, and

o if X; € Vy, then r; (1 < ¢ < n)is the label of a production
r; : X; — -+, whose left-hand side is X}, and

o if X; € VT, then r;, = ¢, = X,.
Then r(t1,...,1,) is a derivation tree of (.

(T3) There are no other derivation trees.

Let R(G) be the set of derivation trees whose root is the label of a
production of which the left-hand side is the initial symbol S. Remark
that if we take ¥ = {the labels of productions in P} U Vp, and define

p(ry=nforr:A— X;--- X, € Pand p(a) =0 for a € Vr, then ¥ is a
ranked alphabet and R(G) C Ts.

A tree transducer is defined in Ref.[11] as a generalization of a gen-
eralized sequential machine, and it defines a mapping from trees to trees.
But in this paper, since we are mainly interested in a string language gen-
erated by it, a “tree-to-string” version of transducer defined in Ref.[3] is

reviewed. For sets () and X, let

QIX]={qlx] | ¢ € Q.2 € X}.

A tree-to-string transducer (yT-transducer or simply transducer) is

defined to be a 5-tuple M = (Q, X, A, qo, R) where
e () is a finite set of states,
e Y is an input ranked alphabet,

o A is an output alphabet,

qo € () is the initial state, and

R is a set of rules of the form

qlo(x1,...,x,)] — v
where ¢ € Q,0 € ¥, p(o) =n and v € (AUQ[{z1, ...,z }])".

It different rules in R have different left-hand sides, then M is called
deterministicl®

A configuration of a yT-transducer is an element in (A U Q[7x])*.
Derivation of M is defined as follows. Let ¢ = ayqlo(ty, ..., t,)]az be a
configuration where oy, € (AUQ[Tg])*, ¢ € Q, 0 € &, p(c) = n and
t1,...,t, € Tx. Assume that there is a rule ¢[o(xq,...,2,)] — v in R,
and v’ can be obtained from v by substituting t1,...,%, for x1,...,z,,
respectively, then ¢ = a;v’ay. Let = be reflexive and transitive clo-

sure of =. For configurations ¢ and ¢, if ¢=¢/, then ¢ derives /. 1f

10

there is no ¢ € A* such that ¢=¢, then ¢ derives no output. For ex-
ample, if there is no rule whose left-hand side is ¢[o(xy,...,2,)], then

¢ = ayq[o(ty,. .., t,)]as derives no output.
Example 2.30'); Let M = (Q, %, A, g4, R) be a yT-transducer where

Q = {94, 4}
Y={ey,+.-} (plc) =ply) =0,p(+) = p(-) = 2)
A=3xU{0,1}

and the rules in R are:

qile] — ¢ Glyl =y
gil+(z1,22)] = qilea] + gifas]
gil-(x1,22)] = qilwd] - qile]
qalc] = 0 qaly] — 1
qal+(z1,29)] — qal1] + qal7a]
qal-(z1,22)] = qalea] - gilwa] + qilea] - qala].
Intuitively, an element in 7y represents an arithmetic expression, and
state ¢4 and ¢; represent “differential” and “identity”, respectively. Let
t = ql(y, +(c,y))] and 1 = qaly] - ¢i[+(c,y)] + qi[y] - qa[+(c, y)], then
t = ', which corresponds to %(y (ety)) = %y (e+y)+y- %(C +y).

[

A tree-to-string finite state translation system (yT-fsts, or fsts for
short) is defined by a yT-transducer M and a cfg G, written as (M,).
(NOTE: In Ref.[11], a yT-fsts is defined by a yT-transducer and a recog-
nizable set of trees. In Ref.[15], it is shown that the class of recognizable
sets of trees is equal to the class of sets of derivation trees of cfg’s. Hence
a yT-fsts is defined by a yT-transducer and a cfg in this paper.)

Define y L(M,), called the yield language generated by a yT-fsts
(M, G), as

YL(M,G)2{t € A" | 3¢’ € R(G), qult] 1)

11

where A is an output alphabet and ¢q is the initial state of M. Note that
R(G) is a set of derivation trees of the cfg ¢ and hence recognizable set
of trees. An fsts is called deterministicl”) if the transducer M is deter-
ministic. We use a terminology “nondeterministic” when we emphasize
that we don’t assume determinism of the transducer.

Next, a state-bound of fsts and finite-copying fsts’l are defined. Let
(M, G) be an fsts with an output alphabet A and an initial state ¢o. Let
t € R(G) and consider a derivation a : go[t]=w € A*. Let # be a subtree
of t. Now, delete from the original derivation « all the derivation steps
which operates on . This leads to the following new derivation which
keeps t' untouched:

o qol[t]Zwiq, [twy - - wags, [P]wng
where w; € A* (1 <i<n+1).

The state sequence of t' in derivation « is defined to be (i, ..., ¢,).
The derivation « has a state-bound s if, for each subtree of ¢, the number
of different states in the state sequence is at most s. « has a copying-
bound k if, for each subtree of ¢, the length of its state sequence is at
most k. An fsts (M, () has a state-bound s if for each w € yL(M,),
there is a derivation tree ¢ € R((G) such that the derivation go[t]=w
has a state-bound s. An fsts (M, () is a finite-copying fsts if there is a
constant k such that for each w € yL(M,), there is a derivation tree
t € R(G) such that the derivation g[t]=w has a copying-bound k.

An fsts (M,) whose second component (7 is a regular grammar is
called an ETOL system (see Ref.[3]). In this paper, we say a monadic
fsts for an ETOL system.

Figure 1 shows relationship among the generative power of sub-
classes of fsts’. In the figure, d-fsts, fc-fsts and m-fsts denote the classes
of deterministic fsts’, finite-copying fsts’ and monadic fsts’, respectively,
and fsts,, d-fsts, and m-fsts, denote the classes of each fsts’ with state-

bound s, respectively. For finite-copying fsts’, the subscript denotes their

12

copying-bound. An arrow from a class A to another class B means that

A has properly stronger power than B.

3. Generative Power of Deterministic FSTS’

In this section, we show that yL(DFSTS), the class of yield languages
generated by deterministic fsts’, equals to PMCFL. First we show that
yL(DFSTS) C PMCFL. A part of the proof of PMCFL C yL(DFSTS)

is stated in the appendix since the idea behind the proof is similar to

that of yL(DFSTS) C PMCFL.

3.1 yL(DFSTS)C PMCFL
Let (M, @) be a deterministic yT-fsts where M = (Q,%,A,¢1, R) and
G = (Vn,Vr, P,S). We assume that @ = {q1,...,q}, Vr = {a1,...,a,}
and the productions in P are labeled with ry,... r,. Since the input
domain of M is the set of derivation trees of (&, we assume that ¥ =
{ri,...,rm,as, ..., a,} without loss of generality.

A pmcfg G = (Vi Vi, F', P!, S7) such that y L(M, G) = L(G")NA*
is constructed as follows. Let V] = AU{b} where b is a newly introduced

symbol and let
Vi =1{59,Ry,...., R, Ay, ..., A}

where d(R;) = d(A;) = for 1 <7< m and 1 <j <n. Note that each
R, (1 <i < m)and A; (1 <j < n) correspond to production r; and
terminal a; of cfg GG, respectively. Productions and functions of G’ will

be constructed to have the following property.

Property 3.1: There is (ay,...,o) € Lg(Ry) (resp. Le(Ap)) such
that

each of ay,,...,a,, does not contain b, and

each of the remaining oy, ..., oy, contains b

13

if and only if there is a derivation tree ¢ of G such that the root of ¢ is

ry, (resp. ap,) and

qs,[1] =a

Sp

qt, [t] derives no output (1 <
I

The basic idea is to simulate the move of tree transducer M which is
scanning a symbol 1, (resp. aj,) with state ¢; by the ¢th component of
the nonterminal Rj, (resp. Aj) of pmefg . During the move of M, it
may happen that no rule is defined for a current configuration and hence
no output will be derived. The symbol b is introduced to represent such
an undefined move explicitly.

To construct productions and functions, Define RS(X) (X € Vy U

Vr) as follows.

R}, | the left-hand side of 7, is X} if X € V]
RS(X) = i | vis X} N
{Ah} if X = ap € VT.
Productions and functions are defined as follows.
Step 1: For each production r, : Yo — Yi--- Y, (Yo € Vi, Y, € Vx U
Vr for 1 <u < k) of cfg GG, construct nonterminating productions

Rh — frh[Zla--ka]

for arbitrary combinations of 7, € RS(Y,) (1 < u < k) where f,,

is defined as follows: For 1 <1 </,

e if there is no rule whose left-hand side is ¢;[rp(x1,..., 28],
then

fllzy, ..., 220, (2)

o if the transducer M has a rule ¢[ry(zq,...,2%)] — wiy

T[T)] Wisz Wi i) [T i on) | Wi 41, then
PaN

@, 2] 2wy

Wi s Luli,n)n(i,ng) Wing+1 (3)

14

where T, = (¥y1,.. ., 2w) (1 <u < k).

(Since M is deterministic, there exists at most one rule whose left-
hand side is ¢;[r4(- - -)] and hence the above construction is consis-

tent.)

Step 2: Foreach aj, € Vp, construct a terminating production A, — f,,

where f,, is defined as follows: For 1 < </,

e if there is no rule whose left-hand side is ¢;[a;], then fiﬂéb.

e if g;[ar] — w;, then fiﬂéwi.

Step 3: For each R, € RS(Y), construct 5" — fawe[R1] where foe[(21,
.., x7)]=x;. Intuitively, the right-hand side of this production
corresponds to the configuration that M is in an initial state ¢;

and scanning the root symbol r, of a derivation tree, where r, is

the label of a production of G whose left-hand side is the initial

symbol S.

In the following, it is shown that the pmcfg G defined as above has
Property 3.1.
(Only if part) It is shown by induction on the number of applications of
(L1) and (L2) in section 2 to obtain a tuple of strings («y,...,a,). For
the basis, assume that & = (ay,...,a;) € Lg/(X)is obtained by only one
application of (L1). It is clear that the applied (terminating) production
is constructed in Step 2, and hence there is some h such that X = A,
Ap — f,, and f,, = a. Let t = a;, and consider how derivations proceed
from ¢;[t] for 1 <@ < (. If a; = b then fiﬂ = b and hence there should
be no rule whose left-hand side is ¢;[ay]. If a; does not contain b, then
transducer M has a rule ¢;[a,] — «;, and the property holds.

Assume that the property holds for every tuple of strings which

can be obtained by d' applications or less, and suppose the case that

15

(a1,...,a0) € Lei(X) is obtained by d' + 1 applications. The last (non-
terminating) production applied in (L2) must be constructed in Step 1,

hence there is some h such that X = R}, and the applied production is
RhﬁfTh[Zl,...,Zk]. (4)

Furthermore, there exist 3, = (Buts- ey Bue) € Lei(Zy) for 1 <u < k
such that (ay,...,a0) = f., [Bi,. .., Bk]. Foreach u (1 <u < k), if Z, =
Ry, for some h, (resp. Z, = Ay, for some h,), then 3, € Lai(Ry,) (resp.
B. € Le:(Ar,)), and by the inductive hypothesis there is a derivation tree
t, which satisfies Property 3.1 with 3,. That is, the root of ¢, is 7, (resp.

ap,), and for v (1 < v < 0),

¢o[tu]= Buw if 8., does not contain b, 5)

¢y|ty] derives no output if 3,, contains b.

We note that since (4) is constructed in Step 1 as a production of pmcfg
(', cfg G has a production r, : Yo — Y;--- Y, and Z, € RS(Y,) holds
for 1 <u < k. Now, Z, = Ry, € RS(Y,) (vesp. Z, = Ay, € RS(Y,))
holds and it follows that the left-hand side of production rj, is Y, by the
definition of RS (resp. Y, is the terminal symbol ay,). Hence, if we take
t = ru(ty,... 1) then t is a derivation tree of cfg . Now, consider a

derivation of M from ¢[t] for 1 <7 < (.

o If a; contains b, then there are two cases.

— f&] is defined to be b by (2). In this case, there exists no rule
whose left-hand side is ¢;[ry(21,...,2x)]. Hence ¢[t] derives
no output and the property holds.

- f&] is defined by (3). In this case, «; can be written as

@ = Wi Bui 1)n(i1)Wi2" * Wi Bl yn(i,ng) Wisna+1 a0d Bugi jyn (i)
contains b for some j (1 < j < n;). By the construction of

function f,, in Step 1, there is a derivation from ¢;[t];
qi[t] = qi[rh(tlv s 7tk)] =

16

wi,qu(i,l)[tu(i,l)]wi,Q cr Wy op, qn(i,ni)[tu(i,ni)]wi,ni-l—l

and there are no other derivation since M is deterministic.
If B.i.jyn6,) contains b, then by (5), ¢yaj)[tui,;)) derives no

output and hence ¢;[t] also cannot derive output.

o If o; does not contain b, then f&] is defined by (3), o; can be writ-
ten as «a; = wi,lﬂu(i,l)n(i,l)wiﬂ : "wi,n,‘6u(i,ni)n(i,n,‘)wi,ni+1 and each
Bugiiymiyy (1 < < n;) does not contain b. By (5), ¢y [tui.j)]

= Buijynti.j) holds for 1 < j < n;, hence

qi[t] = Qi[rh(tlv"'vtk)]

I

wi,qu(i,l) [tu(i,l)]wiﬂ v wi,an(i,n,‘) [tu(i,n,‘)]wi,n,‘—l—l

Uae

wi,lﬂu(i,l)n(i,l)wiﬂ T wi,n,‘6u(i,ni)n(i,n,‘)wi,ni—|—l

= q
and the property holds.

(If part) If part is shown by induction on the size of a derivation tree ¢
of GG. (The size of a tree t is the number of occurrences of symbols of the
ranked alphabet appearing in ¢.) For the basis, assume that the size of ¢
is one, that is, t = a;, for some a;, € V. By Step 2, there is a production
Ay, — f,, and the property holds.

For the inductive step, assume that the property holds for every
derivation tree whose size is not greater than d’, and consider a derivation
tree t = rp(t1,...,t) with size d’ + 1. Since ¢ is a derivation tree of
cfg G, rp 1s a production of the form Yy — Y;---Y; and the root of
t, (1 <u<k)is;

., (label of a production whose left-hand side is Y,) if Y, € Viy
ifY, = ap, € Vr.

ap,

U

By the definition of RS, R, € RS(Y,) (or A,, € RS(Y,)) holds for
1 < u <k, and hence pmcfg G has a production R, — f,, [Z1,..., Zk]

17

where Z, = Ry, (or Z, = Ap,). (See the construction of productions in
Step 1.)

Here, the size of each subtree ¢, (1 < u < k) equals to or less than d',
by the inductive hypothesis, there exist 3, = (Bu1, .., fur) € Lar(Ry,)
(or Lgi(Ay,)) such that 3, and t, satisfy Property 3.1. That is, for
v (1l <o <),

B,y does not contain b if ¢,[t,]= Bue,

(6)

Bue contains b if ¢,[t,] derives no output.

Now, let
o = (Oél,. . .,Oég) = fTh[Bl7 PR ,Bk] & LG/(Rh)
and consider how «; is defined for 1 <1 < /.

e If there is no rule whose left-hand side is ¢;[rn(21,...,2)], then
¢;[t] derives no output. In this case, f&] is defined to be b and
hence a; = b, the property holds.

o If the transducer M has a rule ¢;[ry (21, ..., 25)] = wi1¢,6.10)[%ui1)]

Wi+ Wi Qn(ini) [Cu(imi) | Wini41, then we can write «; as

Qi = W01 Bu(i V(i) Wi 2+ Wi, Buiing)n(i i) Wiinit1 (7)

by the construction of functions in Step 1. There are two cases:

— For some j (1 <4 < ng), ¢,3.)tui,;] derives no output and

hence ¢;[t] also. In this case, 3, j)yi ;) contains b by (6) and

]

it follows from (7) that «; also contains b, the property holds.

— For every j (1 < j < ny), ¢y(ij)[tu.y)] derives some output.
Since M is deterministic, and by (6), the derived string should

be B,)n(i.;) Which does not contain .

qi[t] = Qi[rh(tlv s 7tk)]

= Wiy [t Wiz Wi G in) u(inn) [Wi mit

Uae

wi,lﬂu(i,l)n(i,l)wiﬂ T wi,ni6u(i,ni)n(i,ni)wi,n,‘—|—l

18

and the property holds.

The proof of if part is completed and Property 3.1 has been proved.

]

Lemma 3.1: yL(DFSTS) C PMCFL.

Proof. Let LléL(G’) N A*. Since pmcfl’s are closed under intersection
with a regular setl”l] L, is also a pmcfl. We show that yL(M,G) = L.
By Property 3.1 and the productions constructed in Step 3, w € Ly if

and only if there is a derivation tree ¢ of G such that
e the root of ¢ is ry,
o the left-hand side of ry, is the initial symbol S, and
o qi[t]Zw

and the lemma holds. []

3.2 PMCFL C yL(DFSTS)
Let G = (Vn, Vi, F, P, S) be a pmcfg with dimension (. Without loss of
generality, G is assumed to satisfy the non-erasing condition of Lemma
2.1. Also suppose that the nonterminating productions of GG are la-
beled with ry,...,r,,, and the terminating productions are labeled with
ri,...,r". Furthermore, for each nonterminal production r, (1 < h <
m), we suppose that the function of the right-hand side of rule ry is f3
(the suffix of the function is identical to that of the production), hence
each nonterminal production can be written as r, : Yy — fu[Yq, ...,
Yi] (a(fr) = k, Yo, ..., Yr € Vn). We also suppose that each terminating
production can be written as r}, : Yo — fi. A yT-fsts (M, G’) such that
yL(M,G") = L(G) is constructed as follows.

First, define a cfg G' = (Vi, V4, P', S") with Vi={S", Ry,..., R}

and Vfé{al,...,an}. Note that each nonterminal R, (1 < ¢ < m)

19

and terminal a; (1 < j < n) of cfg GG’ correspond to nonterminating
production and terminating production of pmctg G, respectively. To
construct productions, RS'(X) C V{, U V] for X € Vy is defined as

follows.

RS(X) = {Ry. |the left-hand side of rj, is X}

U {ay | the left-hand side of r} is X}.

By using RS’, productions P’ of cfg G’ are defined as follows.

Step A: For each nonterminating production rj, : Yo — fi[V7, ..., Yi]

of pmcfg G, construct productions
Fhzy oz, + B — Z1- - 7y (8)
for Z, € RS'(Y,) (1 <u < k).
Step B: For each Z € RS'(S), construct
Patart © S — 7. 9)

Note that each element in RS(.S) corresponds to the production of
pmcfg ¢ whose left-hand side is the initial symbol S of G.

Define ¥={the labels of productions in P'YUVZ, p(fhz,..z,) = k for
Phzyz, @ Bn — Zy-+ - Zy, play) = 1 for a;, € V] and p(Tstart) = 1, then
Y is a ranked alphabet.

Next, we define yT-transducer M = (Q, ¥, A, ¢1, R) with ¥ defined
above and A=Vy. Q is defined to be {q1,...,q} (note that is the
dimension of (7).

The rules in R will be defined to have the following property.

Property 3.2: Thereis a = (ay,...,a5) € Le(X) and the last produc-
tion applied to obtain ais r, : X — fu[Y1,...,Yi] (vesp. v}, : X — f})

if and only if there is a derivation tree ¢ of G’ such that the root is

20

Phzyz, @ Bn — Zy-- 7y (Z, € RS'(Y,),1 < u < k) (resp. terminal

symbol a;,) and ¢;[t]=a; for 1 <1 < s. (g[t] derives no output for i > s.)
I

Intuitively saying, a derivation tree of cfg G’ represents how to apply
productions to obtain tuple of string. The rules of transducer M are
constructed to “expand” the tree into string. The rules in R are defined

as follows.

Step I: For each nonterminating production r, : Yo — fi[¥7,..., Yi]
with f), defined as

f;[;][i‘h S Wi 1T (i 1)n(i1) Wi 2 Wiing i ng)n(ing) Wiong+1
where Ty, = (21, ..., Tud(y,)) (1 < u < k), define rules
qi[f“hzl...zk(l'l,...,l'k)] — (10)

Wi 1 Gn(,1) [T (i) Wi2 Wiy @) [T i m) [Wi s 41
where 7, € RS'(Y,) (1 <u <k)and 1 <7< d(Yp).

Step II: For each terminating production r} : Yo — f; with f] defined

as f;’b[i] = w;, define rules ¢[a),] — w; for 1 <7 < d(Yy).

Step III: Define
QI[fstart(x)] — 0 [l‘] (11)
It is clear that the constructed transducer M is deterministic. A
transducer M and a cfg G’ defined as above have Property 3.2. The idea

behind the proof is similar to that of Property 3.1, and its proof is shown
in the appendix.

Theorem 3.2: yL(DFSTS) = PMCFL.

Proof. In Lemma 3.1, it has been shown that y L(DFSTS) C PMCFL,
and hence it suffices to show that PMCFL C y L(DFSTS). We show that
L(G) = yL(M,G") for M and G constructed as above.

21

If w e Lg(S), then there is a production of pmcfg
rn s S — fulYi, ... Y] (12)

which is the last production applied to obtain w. By Property 3.2,
there is a derivation tree ¢ of G’ such that the root is r1z,..z, + B, —
Zy-o Zp (Zy € RS'(V2),1 <u < k) and ¢i[t]Zw holds. Let #' = fyarc(t)
then, since R, € RS’(5), t' is also a derivation tree of cfg GG'. Hence,
w € yL(M,G") holds by (11).

In a reverse way, we can prove that if w € yL(M,G") then w €
Lg(S), and the theorem holds. []

3.3 Recognition of y(DFSTS)

In the previous sections, we show that yL(DFSTS) equals to PMCFL.
Since deterministic polynomial time recognition algorithm for PMCFL
has been proposed® it can be concluded that yL(DFSTS) is in P of
computational complexity. This result has been noted in an earlier paper
Ref.[1] as a corollary of its main result, but the running-time required
for recognition was not analyzed.

By combining the recognition algorithm for PMCFLE! and the con-
struction procedure described in Section 3.1, we obtain an effective proce-
dure to recognize y L(DFSTS). In the rest of this section, we investigate
the complexity of the recognition of y L(DFSTS). First, we review results
on the recognition of PMCFL.

Refer to the condition (G3) and expression (1) in the definition of

pmcfg’s in Section 2.1. The degree of a function f has been defined as
r(f)
Z(nh + 1), which equals to the dimension of f plus the total number of
h=1
variables appearing in the right-hand side of f®l. If the maximum degree

among the functions of (G is e, then G is called a pmefg with degree e. In

the same way, an mcfg with degree e is defined.

Lemma 3.38: A pmcfl which is generated by pmcfg with degree e can

22

be recognized in O(|w|*T!)-time where |w| denotes the length of an input.

]

Next we define the degree of a deterministic yT'-transducer M =
(Q.%2, A,qo, R). For o € ¥ and ¢ € @, let n,, denote the number of
occurrences of variables in the right-hand side of a rule whose left-hand
side is ¢[o(a1,...,2,)]. If no rule is defined for ¢lo(xy,...,x,)], then
nge = 0. Since the yT-transducer is deterministic, n,, can be defined
uniquely. For example, in Example 2.3, n,, . = 2 and n,,. = 4. Define

the degree of a symbol o € ¥ as |Q| + Z ngo- If the maximum degree

among the symbol in ¥ is e, then M is C(.Jaelﬁed a yT-transducer with degree
e. An fsts with degree e is an fsts of which yT-transducer is with degree
e.

The readers can easily verify that a deterministic fsts with degree
e is translated into a pmcfg with degree e by using the construction

described in Section 3.1. Hence the following theorem holds.

Theorem 3.4: The yield language generated by an fsts with degree e

can be recognized in O(|w|*t!)-time where |w| denotes the length of an

input. []

4. Monadic FSTS’ and N'P-completeness

In previous sections, the class of yield languages generated by determinis-
tic fsts’ is shown to be in P. In Ref.[12], it has been shown that there is an
NP-complete language in the class of yield languages generated by non-
deterministic fsts’. In this section, we give an NP-complete language in
a more “restricted” class of languages, y L(NMFSTS,;), the class of yield
languages generated by nondeterministic monadic fsts” with state-bound
2 (this class is denoted as m-fstsy in Figure 1). First, a language called
Unary-3SATY, which is N'P-complete, is reviewed, and then it is shown
to belong to y L(NMFSTS,).

23

A Unary-3CNF is a (nonempty) 3CNF in which the subscripts of
variables are represented in unary. A positive literal x; is represented by

1'$ in a Unary-3CNF. Similarly, a negative literal —z; is represented by
1'4. For example, a 3CNF

((El vV Lo vV —|x3) A ([L’g vV —Xq vV _‘[EQ)

is represented by

1$11STT14 A 11114114

in a Unary-3CNF. Unary-3SAT is the set of all satisfiable Unary-3CNF’s.
Clearly, Unary-3SAT is N'P-complete.

A nondeterministic monadic yT-fsts (M,) with state-bound 2
which generates Unary-3SAT is defined as follows. First, define a cfg
G = (Vn,Vr, P,S) where Vy = {S,T, F'}, V7 = {e} and the productions

in P are as follows:

rss : S —=5 rre @ 1 —e
rsy S —=T rpr 2 F—T
rsgp S — F rpp 2 = F
rer T =T rre @ I'— e
rep o 1 — FL

Note that GG is a regular grammar, and hence this fsts is monadic. Let
u be a derivation tree of G. Then u has a following form;

ué Tss(‘ . (TSS(TSM (u/))) o)

m—1

where
u = rp1p2(rp2p3(' o (rpne(e)) o))
and p; € {T,F} for 1 < ¢ < n. The outer m (m > 1) symbols of u are

the rules whose left-hand side is 5, and the next n symbols are the rules

whose left-hand side is T' or F.
Next, a yT-transducer M = (Q), X, A, qo, R) is constructed to trans-
duce u into a Unary-3CNF F such that

24

e [has m clauses,
e there are at most n distinct variables x4,...,z, in E, and

o the value of F becomes true if values are assigned to the variables

as

T, =

TRUE if p; is T ,
(1 << n). (13)

FALSE if p; is I

Let @ = {90, Ges 91, Ga }» 2 = {rss, .-, rre, e} and A = {1, A, $,#}. Since
there are many rules in R, we will use an abbreviated notation. For

example, the following four rules

Galrre(2)] — 1%, qu[rre(x)] — 14
Qalrre(@)] = 15, qu[rpe(z)] — 1

are abbreviated as “g,[rre(2)] = qu[rre(z)] — 1% or 1#”. By using this
notation, define R as following rules (R1) through (R9):

(R1) gofrss(e)] — g[] A gol2]:

(R2) qclrss(z)] = ¢c[z].

By the rules (R1) and (R2), M transduces go[u] into

QC[TSM(UI)] A N gersp, (u/)] A qO[rSm(u/)] . (14)

m

As we explain later, each ¢.[---] and go[---] derives one clause.

Hence m clauses will be derived from go[u].

(R3) qolrsr(2)] = qolrsr(z)] = qe[rsr(2)] = ¢lrsp(z)] —
ge[*]qal2]qu[2] or qulz]gi[2]gu[2] or qu2]gal]g:[].
By these rules, each ¢.[rs,, (v')] (golrsp, (u')]) in (14) derives one of

%l

@[] qa[t']qa[v], qulw]gi[u]qu[u'] or ¢ufu]ga[u']q [u].
(R4) q[rrr(2)] = ¢lrrr(x)] — 1giz] or 18.

(R5) ¢ frre(z)] — 15.

25

(R6) ¢:[rrr(x)] = q:lrrr(x)] — lgx] or 1#.

(R7T) qifrre(x)] — 14

Suppose that a derivation from ¢/[u'] has been proceeded and the

current configuration is ¢;[r,,,,., (- - -)]. Now, transducer M has two

choices (see rules (R4) and (R6));

o generate 1 and continue a translation of subtree, or

e generate 15 if p; is T, 14 if p; is F' and complete a translation.

If M completes a translation and p; is T' (vesp. F'), then ¢;[u’] has
derived 1°$ (resp. 1'#). Note that this is a literal z; (resp. z;)

which becomes “true” under the assignment (13).

(R8) qulrrr(7)] = qulrrr(2)] = u[rrr(2)] = qurrr(z)] —
lg,[x] or 1% or 1#.
(R9) qulrre(®)] = qalrre(x)] — 15 or 1#.

These are similar to the rules (R4) through (R7); ¢.[u’] derives

some literal but it is not guaranteed to become “true”.

Now, the readers can easily verify that this fsts has a state-bound 2, and

that this fsts can derive an arbitrary satisfiable Unary-3CNF.

Theorem 4.1: Unary-3SAT is in y L(NMFSTS;). []

5. Conclusions

We have shown that the class of yield languages generated by determin-
istic fsts’ equals to the class of parallel multiple context-free languages.
Also we have shown that the class of yield languages generated by nonde-
terministic monadic fsts’ with state-bound 2 contains at least one AP-
complete language. These results together with already known results

are summarized in Figure 2. The hierarchy with respect to state-bounds

26

(and copying-bounds) is omitted from the figure for simplicity. In the
figure, D-FSTS, FC-FSTS and M-FSTS denote the classes of yield lan-
guages generated by deterministic fsts’, finite-copying fsts’ and monadic
fsts’, respectively. Corresponding to the hierarchy in Figure 2, some sub-
classes of lexical-functional grammars (Ifg’s) can be defined. Relations
between the generative capacities of Ifg’s, fsts’ and pmecfg’s are investi-
gated in Ref.[14]. For further study, it remains to clarify the relation be-
tween dimensions of pmefg’s and state-bounds (and also copying-bounds)

of deterministic fsts’.

Acknowledgement
We'd like to thank to an anonymous referee and Prof. David Weir of

Sussex University for their helpful suggestions.

References

[1] Engelfriet J.: “The Complexity of Languages Generated by At-
tribute Grammars”, SIAM J. Comput., 15-1, pp.70-86 (Feb. 1986).

[2] Engelfriet J. and Heyker L.: “The String Generating Power of
Context-Free Hypergraph Grammars”, J. Comput. & Syst. Sci., 43,
pp-328-360 (1991).

[3] Engelfriet J., Rosenberg G. and Slutzki G.: “Tree Transducers, L
Systems, and Two-Way Machines”, J. Comput. & Syst. Sci., 20,
pp.150-202 (1980).

[4] Kaji Y., Nakanishi R., Seki H. and Kasami T.: “The universal recog-
nition problems for multiple context-free grammars and for linear
context-free rewriting systems”, IEICE Trans. on Information and

Systems, E75-D, 1, pp.78-88 (Jan. 1992).
[5] Kaji Y., Nakanishi R., Seki H. and Kasami T.: “The universal recog-

nition problems for parallel multiple context-free grammars and for
their subclasses”, IEICE Trans. on Information and Systems, E75-
D, 7, pp.499-508 (Jul. 1992).

[6] Kaji Y., Nakanishi R., Seki H. and Kasami T.: “Parallel Multi-
ple Context-Free Grammars and Finite State Translation Systems”,

[EICE Technical Report, COMP92-34 (Sep. 1992).

27

7]

[3]

[11]

[12]

[15]

[16]

[17]

[18]

[19]

Kasami T., Seki H. and Fujiit M.: “Generalized Context-Free Gram-
mars and Multiple Context-Free Grammars”, Trans. IEICE, J71-
D-1, 5, pp.758-765 (May 1988) (in Japanese).

Kasami T., Seki H. and Fujii M.: “On the Membership Problem
for Head Languages and Multiple Context-Free Languages, Trans.
[EICE, J71-D-1, 6, pp. 935-941 (June 1988) (in Japanese).

Nakanishi R., Seki H. and Kasami T.: “On the Generative Capacity
of Lexical-Functional Grammars”, IEICE Trans. Inf. and Syst., 75-
D, 7, pp.509-516 (July 1992).

Pollard C.J.: “Generalized Phrase Structure Grammars, Head
Grammars and Natural Language”, Ph.D. dissertation, Stanford
University (1984).

Rounds W.C.: “Context-Free Grammars on Trees”, Proc. of ACM
Symp. on Theory of Computing, pp.143-148 (May 1969).

Rounds W.C.: “Complexity of Recognition in Intermediate-Level
Languages”, IEEE 14th Annual Symp. on SWAT., pp.145-158,
(Oct. 1973).

Seki H., Matsumura T., Fujii M. and Kasami T.: “On Multiple
Context-Free Grammars”, Theoretical Computer Science, 88, 2,

pp.191-229 (Oct. 1991).

Seki H., Nakanishi R., Kaji Y., Ando S. and Kasami T.: “Paral-
lel Multiple Context-Free Grammars, Finite-State Translation Sys-
tems, and Polynomial-Time Recognizable Subclasses of Lexical-
Functional Grammars”, Proc. of 31st meeting of Assoc. Comput.

Ling. pp.130-139 (June 1993).

Thatcher J.W.: “Characterizing Derivation Trees of Context-Free
Grammars through a Generalarization of Finite Automata Theory”,

J. Comput. & Syst. Sci., 1, pp.317-322 (Dec. 1967).

Vijay-Shanker K., Weir D.J. and Joshi A.K.: “Tree Adjoining and
Head Wrapping”, Proc. 11th Intl. Conf. on Comput. Ling., pp.202—
207 (1986).

Vijay-Shanker K., Weir D.J. and Joshi A.K.: “Characterizing struc-
tural descriptions produced by various grammatical formalisms”,
Proc. of 25th meeting of Assoc. Comput. Ling., pp.104-111 (June
1987).

Weir D.J. : “Characterizing Mildly Context-Sensitive Grammar For-
malisms”, Ph.D. thesis, University of Pennsylvania (1988).

Weir D.J.: “Linear Context-Free Rewriting Systems and Determin-
istic Tree-Walking Transducers”, Proc. of 30th meeting of Assoc.

28

Comput. Ling. (June 1992).

Appendix

A. Proof of Property 3.2

(Only if part) It is shown by induction on the number of applications of
(L1) and (1.2) to obtain a tuple of strings (a1,...,as). For the basis,
assume that & = (ay,...,a5) € Lg(X) and it is obtained by one appli-
cation of (L1). Then the applied terminating production is r; : X — f,
where f] = a. If we take t = ap, then ¢ is a derivation tree of cfg G and
the property holds by the construction of rules in Step II.

Next, assume that the property holds for every tuple of strings which
can be obtained by d’ or less applications of (I.1) and (L2), and consider
the case that & = (aq,...,a5) € Lg(X)is obtained by d'41 applications.
Let

rp: X — filYa, ..., Y] (15)

be the last production applied to obtain a where f}, is defined as
ff[;] [i'lv ceey i'k] = WiaTu(i)y Wi,2 " Wing Lu(ing)n(ing) Wing+1 (16)

for 1 <¢ < d(X). Then, there are B, = (Buts s Budva)) € La(Ya) (1 <
u < k) such that

a= fulB, ..., 5 (17)
Each (3, can be obtained by d’ applications or less, and there is a nonter-
minating production 7, : Y, — fr.[Yuts- ., Yur,] (or terminal produc-
tion r; : Y, — f}) which is the last production applied to obtain Ba.

By the inductive hypothesis, there are derivation trees ¢, (1 < u < k)
such that

ultu]= Buo (18)

for 1 <wv < d(Y,), and the root of ¢, is 7, 7,0z, Bny — Zu1 -+ Zur,

ukqy

(or ap,). Note that Ry, € RS'(Y,) (or ap, € RS’(Y,)) holds for 1 <u <

29

k. Since pmcfg ¢ has a nonterminating production r, (see (15)), cfg G’

has a production 7pz,..z, + By — 2 -+ Zj such that

Zy = Ry, if the root of ¢, is 74,7,,..72,., ;

(19)
Z, = ay, if the root of ¢, is ay,,.
Hence if we take ¢t = 74,7,..7,(t1, ..., tx) then ¢ is a derivation tree of G
and
Gt = Glrnzz(ts . 1))
= Wity a2 Wi Qo) Lt) Wini 41 by (10

:*> wi,lﬂu(i,l)n(i,l)wiﬂ T wi,n,‘6u(i,ni)n(i,ni)wi,ni—|—l by 18

= oy by

(10)
(18)
(16)
(17)
for 1 <4 < d(X). That is, ¢[tf]=a; (1 < i < d(X)) and the property
holds.
(If part) The only if part is shown by induction on the size of a derivation
tree t of cfg G'. For the basis, consider a derivation tree of size one, that
is, t = ay, for some a;, € Vp, and assume that qi[t]:*>oq for 1 <: < s and
it derives no output for ¢ > s. Then, there are rules ¢ay] — a; (1 <
i < s) and by the construction of rules of M in Step II, pmcfg G has a
terminating production r}, : Yo — f; with d(Yy) = s and 1 = o for
1 < < s. Hence, (ay,...,a;5) € La(Yo) and the property holds.
Assume that the property holds for every derivation tree whose size

.y
is d’ or less, and consider a derivation tree t = 7,7,z (t1,...,1;) of size

d" + 1 such that

Glt] = wirgyentu Wiz Wi g Euging Wi 41 (20)
= W01 Bl) (1) Wiz Wi Bt ne (i) Wisni+1

for 1 <i <s. Let 74,2,..7,, (or a,, possibly) be the root of subtree

ukqy

ty (1 < u < k). To apply the inductive hypothesis to each subtree

30

t, (1 < u < k), we first investigate the nonterminal on the left-hand
side of r,, which is a corresponding production of pmcfg G. Since ¢ is
a derivation tree of cfg ' and the left-hand side of PhoZurZug, 15 Bhy,
(see 8), there is a production #yz,..z, : R, — Z1--- Zk such that (19)
holds. By the construction of productions of G' in Step A, pmecfg G has
a production

rh s Yo — fulYa, ..., Vi (22)

such that Z, € RS'(Y,) holds for 1 < u < k. By the definition of RS’
and (19), it follows that the left-hand side of 7, (or 7}) is Y.
Next, consider the rules of transducer M which are used in (20).

Apparently, the rules used are defined in Step I, and it follows that the
function fj, in (22) is defined as

f}[LZ] [*%17 ceey jk] — wi,lxu(i,l)n(i,l)wiﬂ Tt wi,nixu(i,ni)n(i,ni)wi,ni-l—l (23)

for 1 <7 < d(Yy) = s where z, = (2y1,...,%uap,)) (1 < u < k). Since
pmcfg G satisfies the non-erasing condition, for every u (1 <wu < k) and
v (1 < v <d(Y,)), the variable z,, appears at least once on the right-
hand side of (23) for some ¢ (1 <7 < s). Hence, ¢,[t.] appears at least
once on the right-hand side of (20) for some 7 (1 < < s), and it follows
that ¢,[t.]= Buv holds for every u (1 < u < k) and v (1 < v < d(V,)).
Since the size of ¢, (I < u < k) equals to d or less, by the inductive

hypothesis,

6u = (6@,17 s 7ﬁud(Yu)) € LG(KL) (24)

for each u (1 < u < k). (Remind that the root of ¢, is 7y, 2,,..7,,, (or

ap,) and the left-hand side of rj,, (or 7},)is Y,.) Now, replacing z’s with

f’s in (23), and by (21),

f]!:LZ]I:Bl7 s 7Bk]
— wi,lﬂu(i,l)n(i,l)wiﬂ e wi,ni6u(i,ni)n(i,ni)wi,n,‘—|—l

= (25)

31

for 1 <4 < d(Yy). By (22),(24) and (25), (ai,...,a5) € La(Ys) and the

property holds. Hence, Property 3.2 has proved. [

32

fsts

. T
d—fsts m-—fsts
fc—fsts §
. \/ g
v fs:t% — v
\ d-fstg m—fsts
fc—fsts, 5 V :
| fst
Y -— 2 N |
Y d—fsts, l m—fsts,
fc—fsts, l fsts,
- S
l d—fsts m-—fsts;
cfg =fc—fsts;

Figure 1: Generative power hierarchy of subclasses of fsts’l*l,

33

— Unary—3SAT
(ifPZNP)

A language which belongs to the shaded region in the figure is

recognizable in deterministic polynomial time.

Figure 2: The inclusion relations of the classes of languages.

34

