
�����������

�	�
�	

�
	���	��

�

���

〒 ��������

奈良県生駒市高山町 ������

奈良先端科学技術大学院大学

情報科学研究科

��������������	��

���� ������
��

������������	 �
 ��
��	����
�������� ����� �	 ������� ����

��	������	 ����������

���� ��� ��� ��	
�	�� ��
�����

���� ����

�������� ������ �� ����������� �������

���� ��������� �� ������� ��� ���������

!��	�
 ��"� ���# �"���# ���� 	$������# %�&��

Classification of Sequential Circuits Based on Acyclic Test

Generation Complexity

Chia Yee OOI and Hideo FUJIWARA
Graduate School of Information Science
Nara Institute of Science and Technology

Kansai Science City 630-0192, Japan
{chiaye-o,fujiwara}@is.naist.jp

Abstract

This paper introduces a new class of sequential circuits called acyclically testable
sequential circuits which is wider than the class of acyclic sequential circuits but whose
test generation complexity is equivalent to that of the acyclic sequential circuits. Based
on several circuit properties, the new class is further divided into three subclasses,
namely acyclically testable sequential circuits class A, acyclically testable sequential
circuits class B and acyclically testable sequential circuits class C. We also present a test
generation procedure for acyclically testable sequential circuits and elaborate a design-
for-test (DFT) method to augment an arbitrary sequential circuit into an acyclically
testable sequential circuit. Since the class of acyclically testable sequential circuits is
larger than the class of acyclic sequential circuits, the DFT method results in lower
area overhead than partial scan method and still achieves complete fault efficiency.
Besides, we show through experiment that the proposed method contributes to lower
test application time compared to partial scan method. Moreover, the proposed method
allows at-speed testing while the partial scan method does not.

1 Introduction

The test generation of acyclic sequential circuits has been shown to be τ2-bounded [1,2]
using time expansion model (TEM) [3]. In other words, the test generation complexity
is at most the square of combinational test generation complexity, which is regarded as
not difficult. This paper introduces a new class of sequential circuits with acyclic test
generation complexity. The new class is called acyclically testable sequential circuits whose
test generation complexity of the new class is bounded by a circuit property called thru
function. [8] has introduced a class of circuits called partially strong testable circuits based
on thru function but the target circuit is datapath only and test generation complexity was
not discussed explicitly. [9] also considered existing thru functions in a scan technique but
those thru functions are activated by primary inputs only. The new class that is defined in
this paper covers some sequential circuits that are cyclic. In an acyclically testable sequential
circuit, the signals that activate a thru function are either the signals at primary inputs or
the signals at registers. Based on the properties of input dependency, thru tree dependency
and the depth of thru trees, two subclasses of acyclically testable sequential circuits, namely

1

acyclically testable sequential circuits type A and acyclically testable sequential circuits
type B, are identified. By introducing stronger conditions, a subclass of acyclically testable
sequential circuits type B is defined[4]. It is named acyclically testable sequential circuits
type C. This paper also introduces a test generation procedure and an analysis of the
test generation complexity of acyclically testable sequential circuits. This is followed by a
design-for-test (DFT) method to augment an arbitrary sequential circuit into an acyclically
testable sequential circuit. An experiment on benchmark circuits is conducted to show the
effectiveness of the DFT method. Finally, the paper is concluded.

2 Acyclically Testable Sequential Circuits

This section defines a circuit representation called R-graph. Using R-graph, new concepts of
circuit properties are introduced. These circuit properties include thru function, thru tree,
thru tree dependency, input dependency and k-consistency. Based on these properties, the
class of acyclically testable sequential circuits whose test generation is equivalent to the test
generation of acyclic sequential circuits is defined. The relationship between the class of
acyclically testable sequential circuits and acyclic sequential circuits are shown in Figure
1. Furthermore, three classes of sequential circuits are categorized as the subclasses of
acyclically testable sequential circuits based on varying circuit properties.

Figure 1: The relationship between acyclic sequential circuits and acyclically testable se-
quential circuits.

Definition 2.1. Let X, Y and Z be a set of boolean variables respectively in a circuit
where X ∩ Y ∩Z = ∅. A thru function tX→Y is a boolean formula in conjunctive normal
form such that

• the boolean connectives of the formula consist of ∧ (AND), ∨ (OR) and ¬ (NOT);

• the boolean variables Z of the formula and X consist of register outputs and primary
inputs while Y consists of register inputs and primary outputs;

• the signals at X transfer to Y if Z has an assignment that makes the thru function
’true’ or active (tX→Y = 1);

2

Example 2.1. Figure 2(a) shows that without depending on the signals at the output X
of feedback register r, Y can be justified by only U with thru function tU→Y active. Figure
2(b) presents another example circuit with a multiplexer MUX. Signals at I transfer to L
when K = 0.

Figure 2: The use of thru functions

Definition 2.2. Two thru functions ti→j and tl→m are said to be dependent if they cannot
be active at the same time.

Example 2.2. Figure 3 shows two functions tI1→O1 and tI3→O1 that are not dependent.
In other words, thru functions t1 can be active at the same time. Figure 4(a) shows two
functions tI1→O1 and tI3→O1 that are dependent because signals at I1 and I3 do not transfer
to O1 simultaneously. Figure 4(b) illustrates another example circuit that consists of three
multiplexers. Thru function ti→o = ¬p ∧ ¬q and thru funtion tk→o = ¬p ∧ q are dependent
as shown by the boolean formula in each thru function.

Figure 3: Not dependent thru functions.

3

Figure 4: Dependent thru functions.

R-graph represents the topology of circuits by grouping flip-flops (FFs) into registers
and including the information about the thru functions available in the logic. R-graph is
used to introduce the new concepts of the circuit properties including thru function, thru
tree, thru tree dependency and input dependency.

Definition 2.3. A circuit representation called R-graph is a directed graph G = (V,A,w, r, t)
that has the following properties.

1. Let FFi denote a flip-flop. Let pre(FFi) = {FFj |FFj c−→FFi} (resp. suc(FFi) =
{FFj |FFi c−→FFj}) where c is a combinational path. v ∈ V is a primary input or
primary output or register that consists of a maximal set of flip-flops such that
pre(FFp) = pre(FFq) and suc(FFp) = suc(FFq) for all FFp, FFq in the set of
flip-flops;

2. (vi, vj) ∈ A denotes an arc if there exists a combinational path from the register
corresponding to vi to the register corresponding to vj;

3. w : V → Z+ (the set of positive integers) defines the number of flip-flops in each
register corresponding to a vertex;

4. r : V → {h, ∅} defines type of a register where the register is a hold register v if
r(v) = h. Else, it is a regular register. Note that r(w) = ∅ if w corresponds to a
primary input or primary output;

5. t : A → T
⋃{∅, 1} (T is a set of thru functions) where t(u, v) = ∅ if there is no thru

function for (u, v) ∈ A and t(u, v) is a thru function that transfer signals from the
output of register u or primary input u to the input of register v or primary output
v. If t(u, v) = 1 (also called identity thru function), the signal values are transferred
from u to v through a wire logic (not a gate logic) directly. Note that identity thru
function is always active.

4

Example 2.3. Figure 6 shows the R-graph of the sequential circuit S1 of Figure 5. The
notation CLB in Figure 5 means combinational logic block that include the information of
logic connection in the block. Black registers are registers with hold functions while others
are regular registers. Register R2 is a hold register. The thru functions t(I→K), t(L→N),
t(O→P) and t(Q→S) which are the thru functions extracted from the high level netlist of S1,
are included in its R-graph. According to the R-graph, R1, R2 and R3 form a loop while
R5 forms a self-loop.

Figure 5: Sequential circuit S1.

Figure 6: R-graph of S1.

If a thru function transfers signal from a register outside a loop or a primary input to a
register inside the loop, the thru function can be used to justify the register in a loop with
a signal from the register or the primary input outside the loop within one clock cycle but
without depending on any signal in the loop. In other words, the loop is broken logically by
the thru function. However, a thru function is not sufficient to guarantee that the register
in the loop can be justified with any signal within the signal range of normal operation.
The following shows an example where a thru function cannot justify a signal to a register
in a loop.

Example 2.4. Let E (resp. G) denote a 4-bit variables consiting of bits e3, e2, e1 and
e0(resp. g3, g2, g1 and g0). Figure 7 shows a sequential circuit that has two 4-bit adder

5

Figure 7: The limitation of thru function in justification.

Figure 8: The limitation of thru function in propagation.

where C = A + B and F = D + I and a stuck-at-1 fault at i3. There is a thru function
tE→G = ¬SEL that transfers signals from E to G when SEL = 0 within one clock cycle
without depending on the signals at the output of feedback register R2 at I. However, if the
range of the signals that are justifiable by the thru function is studied carefully, it is obvious
that the thru function cannot justify some signals that are in the range of the signals at G
in normal operation. In this example, the signal range at E in normal operation is from 8
to 15. If the thru function is used to justify G, the justifiable signal range at G is from 8 to
15. Thus, the stuck-at-1 cannot be activated. However, if the following steps are done, the
stuck-at-1 can be activated after four clock cycles.

• First, D is assigned 8 and then tranfered to G through the thru function with SEL =
0;

• At the next clock cycle, D is assigned 9 with SEL = 1. Note that the signal G is now
1;

• After one clock pulse at R2, I is justified with 1 and the stuck-at fault is activated.

6

Thru function does not guarantee the justification of every signal within the range of
normal operation. Similarly, thru function does not guarantee the propagation of every
signal within the range of normal operation.

Example 2.5. Figure 8 shows a circuit where the stuck-at-1 fault (sa1) can be activated
by assigning signal 0 from primary input u through thru function t1 with SEL1 = 1. When
the fault effect propagates through thru function t2 to the output of flip-flop c after one
clock cycle, the fault effect disappears as it is masked by the constraint 0 at the input of
AND gate y. However, if the fault effect first propagates to the output of flip-flop b, the
fault effect can be observed at z without depending on any thru function.

Therefore, a concept called thru tree is introduced in this paper. Thru tree consists of
a set of thru functions connected in a form of rooted tree that starts from primary inputs
and ends at a primary output.

Definition 2.4. Let R-graph GR = (V,A,w, r, t) represent a given sequential circuit S. A
thru tree is a subgraph of the R-graph such that

1. it is a rooted tree;

2. there is only one sink (root), which is corresponding to a primary output;

3. the sources are vertices that correspond to primary inputs;

4. each arc is labeled with a thru function.

Figure 9: The only thru tree of S1.

Figure 9 shows the only thru tree of S1, which is also a path whose arcs are labelled
with thru functions. In the thru tree, each register is justifiable from a primary input and
is observable at a primary output through a series of thru functions if each thru function in
the tree is activated by a signal whose corresponding vertex is not in the thru tree. If a thru
function in a thru tree is activated by a signal of the vertex which is also in the same thru
tree, the thru function does not guarantee the justification and propagation. The following
shows an example where a contradiction takes place.

Example 2.6. Figure 10 shows another example circuit S2 and its R-graph. Figure 11
shows a thru tree of S2. Let t1 = y and t2 = c and t3 = ¬v. In order to justify register
c using the thru tree, all the thru functions t1, t2 and t3 must be active. However, t2
depends on c to become active while c is depending on thru function t2 for justification
from primary inputs x and w without depending on feedback a and c. The interdependency
between justifying register c and activating thru function t2 occurs. Therefore, justification
of register c is not guaranteed.

7

Figure 10: S2 (a) and its R-graph (b).

To avoid the interdependency, it is essential to define the concept of the dependency
between a thru tree and the register that activates a thru function in the thru tree as well
as the dependency between two thru trees. Then, the concept is based in the definition of
acyclically testable sequential circuits.

Definition 2.5. If Vti is a set of vertices that activate a thru function ti in a thru tree Tj ,
Tj is said to be dependent on Vti. Furthermore, if Vti includes a vertex in a thru tree Tk,
Tj is said to be dependent on Tk.

Example 2.7. Figure 12 are a sequential circuit S3, its R-graph and its thru trees T1 and
T2. From its R-graph and thru trees, T1 is dependent on I3 while T2 is dependent on R2
and I1. Furthermore, T2 is dependent on T1 since R2 and I1 are included in T2.

Another issue to be discussed here is input dependency. While a thru function tx→y is
being used to justify y, x is fixed at the signals that are needed to justify y. If x is needed
to justify y and another signal, for example z, at the same time, z may not be justified since
x is fixed to justify y through the thru function. Again, justification is not guaranteed.

8

Figure 11: A thru tree of S2.

Definition 2.6. Let GR be the R-graph of a sequential circuit S, and let B be a set of thru
trees in GR. Let (u, v) be a set of all paths starting at u and ending at v. Two distinct
paths p1, p2 ∈ (u, v) have input dependency if the following conditions are satisfied.

i. the first arc of one of the paths is different from the first arc of another path;

ii. the first arc of at least one of the paths is labeled with a thru function in a thru tree
in B;

iii. each path contains at most one cycle that starts from and ends at v;

iv. if the first arc of a path p1 (resp. p2) does not have a thru function in a thru tree in
B, all vertices except the first vertex and the last vertex are not included in any thru
tree in B. Else if the first arc of a path p1 (resp. p2) has a thru function in a thru
tree in B, all vertices except the first vertex, the second vertex and the last vertex are
not included in any thru tree in B;

v. p1 and p2 have same length;

Example 2.8. Figure 13 shows an example circuit S4 with thru functions t0, t1, t2 and
t3 and its R-graph. Figure 14 shows two of the paths from R-graph where the first arc of
path x → v → v is labeled with t1 and both paths are of same length. Suppose v and w
have to be justified 1 respectively in order to excite a fault in CLB2. To justify v, x has to
be assigned 1 one clock cycle before. However, if x needs to be 0 in order to generate 1 at
w using the whole logic in CLB1, a conflict takes place. Thus, the fault cannot be excited
using thru functions t0 and t1 for justification of v.

Input dependency can be resolved by hold registers with certain conditions. The follow-
ing shows one example how a hold register resolves an input dependency.

Example 2.9. Circuit S5 in Figure 15 has an input dependency between two paths, R1 →
R4 → PO and R1 → R5 → PO. The two paths with input dependency is shown in the
aspects of graph and time expansion model in Figure 16. Circuit S6 in Figure 17 is same as
S5 except register R5 of S6 is a hold register. By holding R5 at time T2, input dependency
between paths R1 → R4 → PO and R1 → R5 → PO can be resolved. This is illustrated
in Figure 18.

9

Thru tree dependency has to be resolved in test generation process. Thru tree depen-
dency takes place when the signal of a register is used to activate a thru function and justify
another register simultaneously.

Definition 2.7. Let GR be the R-graph of a sequential circuit S, and let B be a set of
thru trees in GR and let ati ∈ GR be an arc with thru function ti. For each pair of paths
pm and pn, pm and pn have thru tree dependency if

i. pm is a path that starts from the sink vertex u of arc ati and ends at a vertex v;

ii. pn is a path that starts from a vertex w in Vti and ends at v;

iii. pm and pn are the paths where each path is either a simple path or a path that contains
a cycle starting from and ending at v, and each vertex, except the first vertex and the
last vertex, is not included in any thru tree in B;

iv. |pm| < |pn|.
Example 2.10. Figure 19 is a sequential circuit with hold registers u, w, x and z. Note
that signal at register z at time 4 is used to justify CLB1 and at the same time activate
thru function t0 at time 4 in Figure 20. This is because there is a thru tree dependency
between paths x → x and z → u → x.

Thru tree dependency is also resolvable by hold registers.
The number of thru trees that depend on each other in an acyclically testable sequen-

tial circuit is one of the factors that bound its test generation complexity to τ2-bounded.
Therefore, a dependency graph is introduced to represent the property of the dependency
and the number of thru trees that depend on each other.

Definition 2.8. Let GR be the R-graph of a sequential circuit S, and let B be a set of thru
trees in GR. The dependency graph of B is a directed graph GD = (VD, AD) such that

i. vertex v ∈ VD is a thru tree in B;

ii. (vi, vj) ∈ AD denotes an arc if there exists a vertex (of GR) in thru tree vi that
activates a thru function in thru tree vj;

Example 2.11. Figure 21 shows the dependency graph of T1 and T2 of S3.

Based on the concepts of thru function, thru tree, thru tree dependency and input de-
pendency, three classes of acyclically testable sequential circuits are detailed in the following
subsections.

2.1 Acyclically Testable Sequential Circuits Type A

Acyclically testable sequential circuits type A is a class of acyclically testable sequential
circuits that does not have input dependency as well as thru tree dependency.

Definition 2.9. Let R-graph GR = (V,A,w, r, t) represent a given sequential circuit S. S
is called to be acyclically testable if GR contains a set of disjoint thru trees such that the
following conditions are satisfied.

10

1. The thru trees cover all the vertices of a feedback vertex set;

2. Let Vti be a set of all vertices that activate a thru function ti. For any thru function
ti in each thru tree Tj, the following conditions are satisfied.

i. Vti does not include any vertex of Tj;
ii. Vti does not include any register vertex that is not included in any thru tree.

Note that Vti can include an input vertex or output vertex that is not included
in any thru tree;

iii. All the register vertices in Tj and Vti are hold registers;

3. Let Ti and Tj be two different trees.

i. For each pair of thru function ti in Ti and tj in Tj , Vti and Vtj are disjoint;
ii. If Ti (resp. Tj) is dependent on Tj (resp. Ti), Tj (resp. Ti) is not dependent on

Ti (resp. Tj), and
iii. If Ti is dependent on Tj , |pi| ≥ |pj| for each pair of pi and pj such that pi (resp.

pj) is a path starting from vertex ui in Ti (resp. vertex uj in Tj) and ending at
vertex v with at most one cycle starting from and ending at v, where |pi| (resp.
|pj |) denotes the length of path pi (resp. pj);

4. For each pair of reconvergent paths p1 and p2, p1 and p2 does not have input depen-
dency;

5. For each pair of paths p1 and p2, p1 and p2 does not have thru tree dependency.

2.2 Acyclically Testable Sequential Circuits Type B

Different from acyclically testable sequential circuits type A, acyclically testable sequential
circuits type B are allowed to have input dependency and thru three dependency with
conditions that there exists a set of hold registers that can resolve the input dependency
and thru tree dependency. As a tradeoff between the input dependency (resp. thru tree
dependency) and test generation complexity, the multiplication of the maximum length of
paths in the dependency graph and the maximum depth of thru trees in the sequential
circuit is to be bounded by a constant.

Definition 2.10. Let R-graph GR = (V,A,w, r, t) represent a given sequential circuit S. S
is called to be acyclically testable if GR contains a set of disjoint thru trees B such that
the following conditions are satisfied.

1. B is a set of thru trees that satisfies the following conditions.

i. The thru trees in B cover all the vertices of a feedback vertex set; and
ii Let the maximum depth of thru trees in B be Dmax. Let the maximum length

of paths in the dependency graph of B be Lmax. Dmax ×Lmax is bounded by k;

2. Let Vti be a set of all vertices that activate a thru function ti. Let ati ∈ A be an arc
with thru function ti. For any thru function ti in each thru tree Tj in B, the following
conditions are satisfied.

11

i. Vti does not include any vertex of Tj;

ii. Vti does not include any register vertex that is not included in any thru tree in B.
Note that Vti can include an input vertex or output vertex that is not included
in any thru tree in B;

iii. The sink vertex of arc ati in Tj and the register vertices in Vti are corresponding
to hold registers;

iv. For each pair of paths pm and pn, if pm and pn have thru tree dependency then
there exists a hold register vertex x (r(x) = h) that satisfies either Condition A
or Condition B.

(A) i. x is on pm but not pn, and x �= u; and
ii. Let pk be a path that starts from x and ends at v. Let pp be the subpath

of pm that starts from x and ends at v. |pp| ≥ |pk| for all pk.
(B) i. x is on pn but not pm, and x �= w; and

ii. Let pk be a path that starts from x and ends at v. Let pp denote the
subpath of pn that starts from x and ends at v. |pp| ≥ |pk| for all pk.

|pm| (resp. |pn|, |pk|) denotes the length of path pm (resp. pn, pk);

3. Let Ti and Tj be two different trees in B.

i. For each pair of thru function ti in Ti and tj in Tj , Vti and Vtj are disjoint;

ii. If Ti (resp. Tj) is dependent on Tj (resp. Ti), Tj (resp. Ti) is not dependent on
Ti (resp. Tj), and

4. For each pair of reconvergent paths p1 and p2 that start from u and end at v, there
exists a hold register vertex w on p1 such that the length of the subpath of p1 that
starts from w and ends at v is equal or longer than the length of pk for all pk if p1 and
p2 have input dependency where pk denotes a path that starts from w and ends at v.

2.3 Acyclically Testable Sequential Circuits Type C

In [4], a subclass of acyclically testable sequential circuits type B is introduced. This class
is called acyclically testable sequential circuits type C, which has stronger conditions. A
property called k-consistency is introduced. Then, the class of acyclically testable sequential
circuits type C is defined based on k-consistency.

Definition 2.11. Let R-graph GR = (V,A,w, r, t) represent a given sequential circuit S.
A set of thru tree B in GR is said to be k-consistent with GR if the following conditions
are satisfied.

i. The dependency graph of B is acyclic;

ii. All thru trees in B are disjoint;

iii. Let the maximum depth of thru trees in B be Dmax. Let the maximum length of
paths in the dependency graph of B be Lmax. Dmax × Lmax is bounded by k;

12

iv. Any vertex that activates a thru tree Ti in B is either an input vertex or a hold register
vertex in B, and activates no other thru tree Tj in B;

v. For each pair of reconvergent paths p1 and p2 that start from u and end at v, there
exists a hold register vertex w on p1 but not on p2 such that w is not the second
vertex x of p1 and the length of the subpath w → v of p1 is equal to or longer than
the length of any other path pk that starts from w and ends at v if all vertices on
p1 and p2 except u, v and x are not included in any thru tree in B and either of the
following Conditions a and b is satisfied.

a. p1 and p2 are of equal length and the first arc (u, x) on p1 is labeled with a thru
function of a thru tree in B; or

b. p1 is equal to or shorter than p2 and the first arc (u, x) on p1 activates the thru
function coming to the vertex x.

Definition 2.12. A sequential circuit S is said to be k-acyclically testable if the R-
graph GR of S contains a set of thru trees B that is k-consistent with GR and covers all
the vertices of a feedback vertex set of GR. A sequential circuit S is said to be acyclically
testable if S is k-acyclically testable for some constant k.

Example 2.12. S3 is an acyclically testable sequential circuit. Its ATEG will be showed
in the following subsection.

Since an acyclic sequential circuit is an acyclically testable sequential circuit with empty
feedback vertex set according to definitions of acyclically testable sequential circuits, a se-
quential circuit is acyclically testable if it is acyclic but the converse is not correct. There-
fore, the following theorem is concluded.

Theorem 2.13. The class of acyclically testable sequential circuits is a proper superset of
the class of acyclic sequential circuits. (Figure 22)

3 Time Expansion Model

Time expansion model (TEM) has been introduced in [5] as a test generation model for
acyclic sequential circuits based on time expansion graph (TEG). A topology graph is a
directed graph of circuit representation where a vertex v denotes a combinational logic block
while an arc (u, v) represents a connection from combinational logic block u to combinational
logic block v. The authors defined time expansion graph (TEG) for the topology graph of
a given acyclic sequential circuit. To facilitate the discussion of test generation model for
acyclically testable sequential circuits, the time expansion graph (TEG) that is used to
derive a time expansion model for a given acyclic sequential circuit represented by R-graph
is redefined.

Definition 3.1. Let S be an acyclic sequential circuit and let GR = (V,A,w, h, t) be the
R-graph of S. Let GT = (VE , AE , T, l) be a directed graph, where VE is a set of vertices,
AE is a set of arcs, T is a mapping from VE to a set of integer and l is a mapping from VE

to the set of vertices in R. If graph GT satisfies the following five conditions, graph GT is
said to be a time-expansion graph (TEG) of GR.

13

C1 (Input/Output and register preservation): The mapping l is a surjective, i.e., ∀v ∈
V,∃u ∈ VE , s.t.v = l(u).

C2 (Logic preservation) Let u be a vertex in GT . For any direct predecessor v(∈ pre(l(u)))
of l(u) in GR where v �= l(u), there exists a vertex u′ in GT such that l(u′) = v and
u′ ∈ pre(u). Here, pre(v) denotes the set of direct predecessors of v.

C3 (Time consistency) For any arc (u, v) (∈ AE), there exists an arc (l(u), l(v)) such
that T (v) − T (u) = 1 if l(u) corresponds to a register or a primary input and l(v)
corresponds to a register. T (v) − T (u) = 0 if l(u) corresponds to a register and l(v)
corresponds to a primary output.

C4 (Time uniqueness) For any pair of vertices u, v (∈ VE), if T (u) = T (v) and if l(u) =
l(v), then the vertices u and v are identical, i.e., u = v.

C5 (Hold consistency): For any arc (u, v) in GT , if T (v)− T (u) = 1 and l(v) = l(u) = w,
w is a hold register (r(w) = h) that is in hold mode at T (u) and the number of
predecessors of v is one.

Definition 3.2. Let S be an acyclic sequential circuit, let GR = (V,A,w, h, t) be the R-
graph of S, and let GT = (VE , AE , T, l) be a TEG of GR. The combinational equivalent
CE(S) obtained by the following procedure is said to be the time expansion model
(TEM) of S based on GT .

1. For each time frame, replace each vertex with a connection without a register and
replace each arc with the combinational logic block where the corresponding com-
binational path (represented by the arc) is located. Each combinational logic block
appears at most once at each time frame.

2. A logic gate in each logic block is removed if it is not reachable to any input of other
logic blocks.

Example 3.1. Figure 23(b) shows the R-graph of one of the acyclic sequential circuit S8
in Figure 23(a). Its time expansion graph (TEG) and its time expansion model (TEM) are
derived in Figure 23(c) and 23(d).

4 Acyclically-Extended Time Expansion Model

This section introduces a test generation model called acyclically-extended time expansion
model (ATEM) to perform the test generation on acyclically testable sequential circuits.
The procedure of test generation is also described. In the following text, the vertex that
corresponds to a primary input (resp. primary output) is called input vertex (resp. output
vertex) while the vertex that corresponds to a register (resp. flip-flop) is called register
vertex (resp. flip-flop vertex). First, acyclically-extended time expansion graph (ATEG) is
defined. Some properties of ATEG are introduced. Based on ATEG and the properties,
ATEM is redefined.

14

Definition 4.1. Let S be an acyclically testable sequential circuit with acyclic test thru
trees B and let GR = (V,A,w, h, t) be the R-graph of S. The acyclically-extended time
expansion graph (ATEG) GA = (VA, AA, T, l) with respect to B is a directed graph that
satisfies the following conditions.

C1 (Input/Output and register preservation): The mapping l is a surjective, i.e., ∀v ∈ V ,
∃u ∈ VA, s.t. v = l(u).

C2 (Logic preservation for fault excitation phase): Let u be a vertex in GR. For any direct
predecessor v(∈ pre(u)) of u in GR, there exists vertices w and x in GA such that
l(w) = u, l(x) = v, x ∈ pre(w) and |pre(w)| = |pre(u)|. Here, pre(w) (resp. pre(u))
denotes the set of direct predecessors of w (resp. u) and |pre(w)| (resp. |pre(u)|)
denotes the number of all direct predecessors of w (resp. u).

C3 (Thru tree for justification and propagation): Let u be a vertex in a thru tree Ti in B
in GR. Let W ⊂ pre(u) be a set of all direct predecessors of u in Ti. Let tj be a thru
function on all incoming arcs of u in Ti and Vtj be a set of vertices that activate tj .
For each u in Ti in B in GR, there exists a vertex v in GA which satisfies the following
conditions.

i l(v) = u;

ii For each vertex x in pre(v), the following conditions are satisfied.

a. If there exists a vertex w′ in W such that l(x) = w′ then x /∈ pre(z) for any
z where l(z) is a vertex included in any other thru tree Tk except Ti and
x /∈ pre(y) such that l(y) = l(x);

b. Let Tk be a thru tree that is activated by l(x). If l(x) = l(v), then |pre(v)| =
1 and x /∈ pre(z) for any z where l(z) �= l(v) and l(z) is a vertex that is not
included in thru tree Tk;

c. If l(x) ∈ Vtj , then x /∈ pre(z) for any z where l(z) �= l(x) and l(z) is a vertex
that is not included in thru tree Ti.

|pre(v)| is the number of vertices in pre(v).

C4 (Time consistency): For any arc (u, v) (∈ AA), there exists an arc (l(u), l(v)) such
that T (v) − T (u) = 1 if l(u) corresponds to a register or a primary input and l(v)
corresponds to a register. T (v) − T (u) = 0 if l(u) corresponds to a register and l(v)
corresponds to a primary output.

C5 (Time uniqueness): For any pair of vertices u, v (∈ VA), if T (u) = T (v) and if l(u) =
l(v), then the vertices u and v are identical, i.e., u = v.

C6 (Hold consistency): Let u be a vertex in GA. Let v (∈ pre(u)) be a predecessor of u.
If |pre(u)| < |pre(l(u))| and l(u) = l(v) = w, then r(w) = h and |pre(u)| = 1.

C7 (Input Independency): Let u, v be two vertices in GA. Let pi and pj be a pair of
reconvergent paths that start from u and end at v. Let w be a vertex on pi such that
u ∈ pre(w). Let x be a vertex on pj such that u ∈ pre(x). For each pair of paths pi,
pj where w �= x, |pre(w)| = |pre(l(w))| and |pre(x)| = |pre(l(x))|.

15

The following three examples are used to explain condition C3.

Example 4.1. Figure 24(a) shows the time expansion models of S3 that does not satisfy
condition C3(ii)(a). Condition C3(ii)(a) tells that if a vertex w′ at time m is used to justify
another vertex u at time m + 1, then w′ cannot be used simultaneously to activate a thru
function at time m. In Figure 24(a), I1 at time 3 (corresponding to w′ at time m) is used
to justify R2 at time 4 (corresponding u at time m + 1) but at the same time I1 is used to
activate thru functions t1 and t4. This violates Condition C3(ii)(a).

Example 4.2. Condition C3(ii)(b) tells that if a vertex r = l(x) is in HOLD mode at time
m, r cannot be used to justify signal for any thru tree through a thru function at time m.
But r can be used to activate a thru function in a thru tree at time m. In Figure 24(b), R2
is in hold mode at time 2 (corresponding to r at m). At time 2, R2 is used to activate thru
functions t1. At the same time, R2 is used to justify the value of O2 at 3. This violates
Condition C3(ii)(b).

Example 4.3. Condition C3(ii)(c) tells that when a vertex r = l(x) at time m is used to
activate a thru function going to vertex u at time m + 1, r cannot be used to justify signal
for any thru tree through a thru function at time m. But r can be in HOLD mode. For
example, Figure 24(c) shows that R2 (corresponding to r) is activating thru function t1 at
time 3 and at the same time R2 is justifying R5. But these two events are not allowed to
happen at the same time.

As the first step of designing a test generation procedure for acyclically testable sequen-
tial circuits, the logic for hold function is assumed fault free. The tests for these faults can
be generated separately and the test generation procedure for these faults will be consid-
ered in the future works. To guarantee the test generation for faults in thru functions, each
register in the feedback vertex set are regarded as having reset function.

Definition 4.2. Let S be a given acyclically testable sequential circuit. The acyclically-
extended time expansion model (ATEM) of S is the combinational equivalent obtained
by the following procedure.

1. For each time frame, replace each vertex with a connection without a register and
replace each arc with the combinational logic block where the corresponding com-
binational path (represented by the arc) is located. Each combinational logic block
appears at most once at each time frame.

2. A logic gate in each logic block is removed if it is not reachable to any input of other
logic blocks.

3. Each input that corresponds to an output of a register is assigned don’t care value.

Example 4.4. Figure 23 shows the ATEM of S3 with respect to output O2.

16

5 Test Generation Procedure

For each stuck-at fault in a given acyclically testable sequential circuit, the test generation
process is done as follows using ATEM test generation algorithm. Multiple fault modeling
of [6] is considered.

Step 1 Generate an acyclically-extended time expansion model (ATEM) of the sequential
circuit.

Step 2 Transform the combinational equivalent ATEM into its multiple fault model.

Step 3 Apply combinational ATPG on the multiple fault model.

Step 4 Derive the test sequence from the test pattern obtained from the test generation on
the multiple fault model of the ATEM.

Theorem 5.1. The ATEM test generation algorithm can identify redundancy and all
testable faults.

Theorem 5.2. The test generation complexity of the acyclically testable sequential circuits
is τ2-bounded.

6 Design-for-Test Method

In this section, a design-for-test(DFT) method to augment a given sequential circuit into
an acyclically testable sequential circuit is introduced. The DFT method performs some
operations on R-graph and it is designed to induce minimum area overhead. The procedure
consists of the following three steps.

Step 1 Identify the vertices of minimum feedback vertex set (MFVS).

Step 2 Identify existing thru trees.

Step 3 Group the vertices of MFVS into two groups, G1, G2 and G3 as follows.

3.1 Group a vertex u into G1 if it corresponds to a register or input/output that
activate a thru function. If the vertex is in an existing thru tree Ti, group all the
vertices in Ti in G1. If G1 has only input/output, G1 is made empty.

3.2 Group the remaining register vertices in MFVS into G2.

3.3 Group the remaining input/output vertices into G3.

Step 4 For each group of G1 and G2, the following is done.

4.1 Check that at least one input vertex and one output vertex exist in the group.
If the group does not have input vertex (resp. output vertex), one input vertex
(resp. output vertex) is taken from G3. If G3 does not have one, a new vertex
is added into the group.

4.2 Group each vertex (except output vertex) into a group called potential source if
the vertex does not have an outgoing arc labeled with a thru function.

17

4.3 Group each vertex (except input vertex) into a group called potential destination
if the register vertex does not have an incoming arc labeled with a thru function.

4.4 For each vertex u in the group of potential source, introduce a new outgoing arc
labeled with a new thru function tnew to connect u to a vertex v in the group of
potential destination. u and v are taken out from the groups of potential sources
and potential destination, respectively.

4.5 Repeat 4.4 until the group of potential destination is empty or the group of
potential desitination has only output vertices.

4.6 For each vertex u in the group of potential source, introduce a new outgoing arc
labeled with a new thru function tnew to connect u to an output vertex v that
does not have an incoming arc labeled with thru functions. If the group does not
have one, an output vertex is taken from G3 to the group. If G3 does not have
one, a new output vertex is introduced to the group.

Step 5 If G1 is not empty, each register in G1 and G2 is augmented into a hold register. For
other register vertices in MFVS, each register is augmented into a register with reset
function.

Step 1 is done by using an exact algorightm for selecting partial scan flip-flops introduced in
[7]. All the new thru functions tnew introduced in the DFT method are same. For example
tnew = r means the new thru function is activated when r = 1 where r can be an existing
primary input or a new primary input.

7 Case Studies

In the case studies, experiments are conducted on RTL benchmark circuits, which are
datapaths of varying bit width. Our DFT method is applied on the datapaths of GCD,
LWF, JWF, and MPEG and compare the area overhead of the augmented circuits with that
of the full scanned circuits and the partial scanned circuits. Partial scanned circuits are the
circuits whose minimum feedback set of flip-flops are scanned so that the augmented circuits
are acyclic. Thus, the circuits modified with partial scan and with our DFT method have
same test generation complexity. Table 1 presents the characteristics of the benchmark
circuit. Table 2 shows the fault coverage and fault efficiency of each benchmark circuit.
Each fault testable in the partial scan designed circuits is also testable in the corresponding
circuit augmented by our DFT method, and vice versa. Table 3 shows the area overhead
where one unit of area corresponds to the size of an inverter and pin overhead. It shows
that the area overhead of the benchmark circuits augmented by our method is less than
that of the full scanned circuits and the partial scanned circuits. The pin overhead in our
method comes from the reset function and extra input to control the new thru functions.
Table 4 tells that the test generation time for the original circuits is large while the test
generation time for the partial scan designed circuits as well as the acyclically testable
sequential circuits is small. Table 5 gives the information that the test application time of
the circuits under our augmentation is more than the original circuits’ but less than the
partial scan.

18

Table 1: Characteristics

Original
B/mark #Flip-flops Area #Primary inputs #Primary outputs
GCD 48 1383 40 19
LWF 80 1763 39 32
JWF 224 5925 106 80

MPEG 1928 46772 499 128

Table 2: Number of faults, fault efficiency and fault coverage

Original Full scan Partial scan Our method
B/mark FC(%) FE(%) FC(%) FE(%) FC(%) FE(%) FC(%) FE(%)
GCD 99.75 99.75 100 100 100 100 100 100
LWF 99.94 99.94 100 100 100 100 100 100
JWF 98.70 98.70 100 100 100 100 100 100

MPEG 84.80 84.80 100 100 100 100 100 100

8 Conclusion

A new class called acyclically testable sequential circuits has been introduced. The test
generation complexity of the acyclically testable sequential circuits is τ2-bounded. On the
other hand, acyclically testable sequential circuits are at-speed testable. The DFT method
to augment an arbitrary sequential circuit into an acyclically testable sequential circuit
has been introduced. Experimental results showed that the area overhead of the resulting
augmented circuits is less compared to the partial scan designed circuits. Complete fault
efficiency is also achieved and the test generation time is low. Moreover, the test application
time is less than the test application time of the full scanned circuits and partial scanned
circuits.

Table 3: Area and pin overhead

Full scan Partial scan Our method
B/mark Area(OH%) Pin OH Area(OH%) Pin OH Area(OH%) Pin OH
GCD 1719(24.30) 3 1495(8.10) 3 1415(2.31) 1
LWF 2323(31.76) 3 1875(6.36) 3 1798(1.99) 2
JWF 7493(26.46) 3 6485(9.45) 3 5957(0.54) 2

MPEG 60268(28.85) 3 47612(1.80) 4 47556(1.68) 2

19

Table 4: Test generation time and test application time

Test generation time(s) Test application time (clock cycles)
B/mark Original Full Partial Our Original Full Partial Our

scan scan method scan scan method
GCD 87.19 0.02 0.19 0.43 159 6124 3334 815
LWF 49.02 0.02 0.06 0.40 59 4049 1444 196
JWF 1689.14 0.08 0.50 13.48 103 17100 12488 1648

MPEG 2646.42 0.18 12.05 33.91 114 162035 31822 9690

References

[1] C. Y. Ooi and H. Fujiwara, “Classification of sequential circuits based on τk-Notation,”
Proc. of ATS, pp. 348-353, Nov. 2004.

[2] C. Y. Ooi, T. Clouqueur and H. Fujiwara, “Classification of sequential circuits based
on τk notation and its applications,” Trans. of IEICE on Information and Systems, pp.
2738-2747, Dec. 2005.

[3] T. Inoue, T. Hosokawa, T. Mihara and H. Fujiwara, “An optimal time expansion model
based on combinational ATPG for RTL circuits,” Proc. 7th ATS, pp. 190-197, Dec.
1998.

[4] C. Y. Ooi and H. Fujiwara, “A new class of sequential circuits with acyclic test generation
complexity,” 24th IEEE ICCD, October 2006 (To appear).

[5] T. Inoue, D. K. Das, C. Sano, T. Mihara, H. Fujiwara, ”Test generation for acyclic
sequential circuits with hold registers,” Proc. 18th Int. Conf. on Computer Design, pp.
550-556, 2000.

[6] C. Y. Ooi, T. Clouqueur and H. Fujiwara, ”Test generation complexity for stuck-at
and path delay faults based on τk-notation,” NAIST Technical Report, NAIST-IS-
TR2005003, May 2005.

[7] S. T. Chakradhar, A. Balakrishnan, V. D. Agrawal, ”An exact algorithm for selecting
partial scan flip-flops,” JETTA, pp. 83-93, 1995.

[8] H. Iwata, T. Yoneda, S. Ohtake and H. Fujiwara, ”A DFT method for RTL data paths
based on partially strong testability to guarantee complete fault efficiency,” Proc. IEEE
the 14th ATS, pp. 306-311, Dec. 2005.

[9] C. Lin, M. Marek-Sadowska, M.T. Lee and K. Chen, ”Cost-free scan: a low-overhead
scan path design,” IEEE Trans. CAD Integra. Circuit and Sys., Vol. 17, No. 19, pp.
852-861, Sept. 1998.

20

Figure 12: Sequential circuit S3.

21

Figure 13: S4 (a) and its R-graph (b).

Figure 14: Two paths that have input dependency.

22

Figure 15: Sequential circuit S5.

23

Figure 16: Input dependency in S5.

24

Figure 17: Sequential circuit S6 with hold register R5.

25

Figure 18: Resolution of the Input dependency in S6.

26

Figure 19: S7 (a) and its R-graph (b).

27

Figure 20: Time expansion model of S7.

28

Figure 21: Dependency graph of T1 and T2 of S3.

Figure 22: Relationship between acyclically testable sequential circuits and acyclic sequen-
tial circuits.

29

Figure 23: Example of time expansion model.(a) Acyclic sequential circuit S8. (b) R-graph
of S8. (c) Time expansion graph of S8. (d) Time expansion model of S8.

30

Figure 24: Time expansion models of S3 that violates C3.

31

Figure 25: ATEM for S3.

32

