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Abstract

State Propagation Net is proposed bymotivations for simplifying an immune network model.

State Propagation Net is a certain class of graph whose nodes have two states: active

and inactive. The behavior of State Propagation Net is discussed by graph theoretical

characterization. Although State Propagation Net is comparable with Life Game,Cellular

Automata, and Majority Net, we discuss its relation with Majority Net in this paper. It is

shown that Majority Net turns out to be a proper subset of State Propagation Net.

1 Introduction

Immune networks [1, 2] and neural networks [3] as a computational model for pattern

recognition and learning can be viewed as a large-scale non-linear network. These systems

are, in principle, the network consisting of the homogeneous unit (or small set of di�erent

types), and one (or small set of types) of the connection. Unit (or di�erent types of units)

and connection can be regarded as a �nite automaton, and hence characterized by the

state-transition function. The next state of unit and connection will be determined by the

states of adjacent nodes and connections.

Most of the immune network models inspired by the concept of idiotype network [4] are

continuous di�erential equations describing the population dynamics [5, 6] of B-cell, anti-

body and T-cell. However, using continuous di�erential equations is not always adequate;

� In order to attain the intelligent nature by parallel distributed processing by the huge

number of units, the continuous di�erential equations are too di�cult to analyze.

� In order to study information processing capabilities such as memory, pattern recogni-

tion and learning, discrete model may be more appropriate to focus on the qualitative

behavior of the systems.
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Several computational models of immune systems have been recently proposed [7, 8] for

the study of information processing models based on immune systems.

In this note, we concentrate on the analysis of behavior of the state propagation in graph

[9, 10] that is obtained by several simpli�cations on Richter model[12]. For the study of

machine learning, the parameter updating scheme for the state-transition functions of node

as well as arcs must be considered. However, learning capability of the model is out of scope

of this note. We also discuss the relation between our model and majority net. Agur [11]

have also discussed the majority rule cellular automaton relating with immune systems.

For the study of immune networks, additional dynamic nature may be necessary: that is

the generation of new units and/or deletion of the existing units according to some rules. If

this dynamic nature should be taken into accounts, the existing approach with continuous

dynamical systems seems almost impossible for large number of units. Although this note

does not deal with the model of the variable number of units, we aim to analyze such

discrete dynamical models in the future.

In section 2, some preliminaries including the de�nition of State Propagation Net is

presented. Section 3 discusses the behavior of the State Propagation Net using the char-

acteristic set de�ned on the signed directed graph. Section 3 also presents the method for

analyzing the behavior of State Propagation Net. Section 4 discusses the relation between

State Propagation Net and Majority Net.

2 Preliminaries

2.1 The state propagation net

De�nition 2.1 Signed Directed Graph

The signed directed graph is a triplet (V; PA;NA) where V is a set of vertices, PA is a set

of positive arcs PA = V � V , and NA is a set of positive arcs NA = V � V .

The following notations are used in this note.

�+(xi) = fxj : (xi; xj) 2 PAg

�
�

(xi) = fxj : (xi; xj) 2 NAg

��1+ (xi) = fxj : (xj; xi) 2 PAg

�k+(xi) = fxik : (xi; xi1); (xi1; xi2); ::; (xik�1; xi1k) 2 PAg

�+(Si) = fxj : (xi; xj) 2 PA; xi 2 Sig

De�nition 2.2 State Propagation Net

State Propagation Net (V S;AS; V F; V A) is de�ned on the signed directed graph (V; PA;NA).

V S and AS are set of �nite states for the set of vertices and the set of arcs respectively.

V F and V A are state transition functions for the set of vertices and the set arcs.
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In this note, we restrict ourselves that the state of arcs has only two state: positive and

negative, that are given by the signed directed graph, and does not change at all. The state

of the vertices will change based on the current state of the adjacent arcs and vertices.

De�nition 2.3 Active Set

Let A(Si) denote the potentially active set when current active set is Si. In this note, we

de�ne A(Si) = fxk : j�
�1

+ (xk) \ Sij > j��1
�

(xk) \ Sijg: In the same manner, the potentially

inactive set IA(Si) can be de�ned; IA(Si) = fxk : j�
�1

+
(xk) \ Sij < j��1

�

(xk) \ Sijg:

That is, the potentially active set consists of such nodes that the number of incoming

positive arcs from Si is greater than that of incoming negative arcs from Si. The potentially

active set A(Si) can be comparable with the reachable set by one step of arcs: �(Si) in

the usual graph with single-type arc. By identifying the activated sets with the reachable

sets in this manner, the propagation in the usual graph with single-type arc has linearity.

The signi�cant di�erence in propagation through State Propagation Net from that of usual

graph with single-type arc is two-fold:

� Non Monotonicity: Ak(S) � Ak+1(S) does not hold in general.

� Non Additivity: A(Si [ Sj) = A(Si) [A(Sj) does not hold in general.

There are two ways of activating potentially active nodes: asynchronous and synchronous.

Asynchronous version activates the potentially active nodes and inactivates the poten-

tially inactive nodes one by one, evaluating active and inactive one after each activa-

tion/inactivation. In contrast, synchronous version activates all the potentially active nodes

and inactivates all the potentially inactive nodes simultaneously. In this note, we focus on

the synchronous version of the model. Asynchronous version of the model can be translated

into Petri-Net. Synchronous version can be translated into the propagation in the graph

de�ned on the power set of the node of the original graph, and the arc from Si to Sj exists

only when Sj = Si [ A(Si)� Si \ IA(Si).

Although State Propagation Net can be theoretically identical with the graph de�ned on

the power set as mentioned above, this approach is impractical for the large-scale net we are

concerned, since the number of nodes become 2N where N is the number of nodes of original

state propagation net. The synchronous version of State Propagation Net model can also

be implemented by the comparator network where the comparator node can compare the

number of positive incoming arcs and negative incoming arcs and activate itself depending

upon the comparison.

2.2 Characteristic sets

De�nition 2.4 (positive/negative dominance)

Positive (negative) indegree of a vertex is the indegree by the positive (negative) arcs. A
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vertex is called positive(negative) dominant when the positive(negative) indegree is

equal to or greater than the negative (positive) indegree. A vertex is called strictly posi-

tive(negative) dominant when the positive(negative) indegree is greater than the negative

(positive) indegree.

De�nition 2.5 (internal dominance)

A set of vertices S � V is called positive(negative) internal dominant 1 when all the

vertices in the subgraph induced by the set S are positive(negative) dominant.

De�nition 2.6 (external dominance)

A set of vertices S � V is called positive(negative) external dominant when all the

vertices in V -S in the subgraph obtained by deleting all the arcs in S and V-S (i.e., only

arcs between S and V-S are remained) are positive(negative) dominant.

3 Analysis and Classi�cation of the Behavior

3.1 Classi�cation by the pattern of activated sets

The behavior of the systems described by State Propagation Net discussed above falls upon

in the following three types.

� Periodic2: After k steps of activation, the activated set will be identical with the

initial activated set. We call the smallest integer k the period.

� Stable: The activated set does not change. Although this behavior can be regarded

as periodic with period 0, we separate this special periodic behavior from the above

periodic classes. Clearly, the null set is stable for all the systems described by State

Propagation Net.

� Transient: The initial activated set will eventually become the above two types of

attractors: periodic or stable. In case of the behavior transient to the stable set, we

will further notice the following two types:

1The concept of positive/negative internal dominance can be related to the concept of internal

stability[13] in the non-oriented graph. A set of vertices S is called internal stable when any vertex in S

is not adjacent to the other vertices in S. Likewise, a set of vertices S is positive internal dominant when

any vertex in S is not strictly negative dominant from S. The concept of positive(negative) external

dominance can also be related to the concept of external stability. The set of vertices S is external

stable when it can cover whole set of vertices. Likewise, a set of vertices S is positive external dominant

when it can cover the whole set of vertices by positive dominance. We do not use the word \stable" for

these concepts to avoid the confusion with the \stability" concept that will be de�ned in the next section.
2The terminology used to describe the behavior in this and the next subsection is mostly from the

analogy from the continuous dynamical systems for conveniences of the researchers in the continuous

dynamical systems.
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{ Divergence: When the stable set is all the set of vertices in the graph.

{ Convergence: When the stable set is some �nite set of vertices including the null

set, but not the whole set of vertices.

Example 3.1

Figure 1 shows an example of State Propagation Net. When fx3; x4g is the initial activated

set, the behavior will be periodic with period one. That is, the subset fx3; x4g and fx5; x6g

will be activated alternately. When fx3; x4; x5; x6g is the initial activated set, it does not

change at all, hence the behavior is stable one. When fx2g is the initial activated set, the

behavior will be transient one to the periodic cycle stated above. When fx1g is the initial

activated set, the behavior will be transient to the stable attractor stated above.
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X
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X

+

+
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+
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X

+
+

+
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Figure 1: An Example of a State Propagation Net Indicating Stable Pattern. Black node

indicates active, and white inactive state.

3.2 Characterization of behavior by graphs

In order to characterize the behavior described by the previous subsection, we �rst ana-

lyze when the activated set becomes stable. The following two theorems follow immediately

from the de�nitions of State Propagation Net and positive/negative, internal/external dom-

inances.

Theorem 3.1 (stable set)

A set of vertices S � V is stable if and only if (1) S is positive internal dominant, and (2)

S is negative external dominant.
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Further, we need to know how the non-stable (i.e., periodic or transient) set will change

in the next step.

Theorem 3.2 (transient set)

If a set of vertices Sk � V is the active set, then the active set in the next step Sk+1 satis�es:

(1) Sk+1 is positive dominant from Sk, and (2) Sk � Sk [ Sk+1 is negative dominant from

Sk.

Remarks: A(Sk) corresponds to Sk+1 that is positive dominant from Sk: IA(Sk) corre-

sponds to Sk � Sk [ Sk+1 that is negative dominant from Sk.

By characterizing the stable set by this theorem, divergence or convergence to the

non-empty stable activated set can be done. For the analysis of divergence, �rst the whole

set of vertices must be checked if it is stable or not. (Notice that the whole set of vertices

does not necessarily stable in general.) If it is stable, then let the whole set be Sk, and

�nd the possible activated set at the previous step Sk�1 by the above theorem. The same

procedure will be continued until the procedure does not get new set. We call the sequence

thus obtained divergence sequence: S0; S1; :::::; Sk(= V ).

Convergence sequence can be obtained in the same manner by selecting Sk to be the

stable set on which the active set will converges. Notice that there are many divergence

or convergence sequences for the same �nal stable set Sk, since there are many previous

active sets Sm�1 for the active set Sm .

For the analysis of convergence on the null set, we can use the disappearing set that

will be characterized as follows:

Theorem 3.3 (disappearing set)

A set of vertices S � V is disappearing if (1) S is negative internal dominant, and (2) S is

negative external dominant.

The convergence sequence on the null set can be obtained in the same manner as that

of divergence sequence by selecting the disappearing set to be Sk. There is no need to

check if the null set is stable, since the null set is always stable set.

For �nding periodic sequence, the initial activated set Sk is set to be non-stable set.

Then, obtain the activated set at the previous time Sk�1 that may not be unique, and/or

the active set at the next time Sk+1 that is unique. This search process is continued until;

� new activated set is identical with any activated set in the sequence so far obtained,

or

� new activated set is stable.

Example 3.2

6



In the example shown in Figure 1, there are �ve stable sets:

fx3; x5g; fx4; x6g; fx1; x3; x5g; fx3; x4; x5; x6g; and fx1; x3; x4; x5; x6g: For all these stable

sets, the conditions (1) and (2) of theorem 3.1 are satis�ed.

For the transient state such as Sk = fx2; x3; x4g, the next active set will be Sk+1 =

fx3; x4; x5; x6g. Since Sk+1 is positively dominant from Sk and that Sk�Sk[Sk+1( = fx2g)

is negative dominant from Sk, thus the conditions (1) and (2) of theorem 3.2 are satis�ed.

Since the whole set of this example is not stable, let us consider the convergence sequence

on the largest stable set fx1; x3; x4; x5; x6g: Let this set be Sk, then the previous set Sk�1
may be; fx1; x2; x3; x4; x5; x6g; fx1; x2; x3; x5; x6g; fx2; x4; x5; x6g; fx1; x4; x5; x6g; fx1; x5; x6g;

or

fx1; x3; x4g. For each of these six subsets, Sk�2 will be obtained. One of the possible

convergence sequence obtained in this manner is: fx1g; fx1; x3; x4g; fx1; x3; x4; x5; x6g:

4 State Propagation Net and Majority Net

Majority Net is similar to State Propagation Net so far discussed. In this section, we will

show that Majority Net is one speci�c class of State Propagation Net whose graph has a

symmetry. The next subsection briey presents Majority Net which have been extensively

studied.

4.1 Majority Net and its behavior

De�nition 4.1 (Majority Net)

A graph whose nodes are labeled by one state in the state set fs1; s2; � � � ; sng is called

Majority Net if the label is updated simultaneously obeying Majority Rule: The new label

of a node is that of the majority of its neighbors. The label of a node is assumed to retain

its original label if tie occurs.

We further assume the state set consists of only two symbols; f1(active); 0(inactive)g,

for simplicity and for comparison with State Propagation Net. Remarkable feature about

the behavior of Majority Net is stated in the following theorem quoted from [14].

Theorem 4.1 ([15, 16, 14])

For every graph, and every initial 01-labeling, the sequence of labelings obtained by the

majority rule has eventually period at most two.

The above theorem is known to hold for the state set consisting of more than two symbols

[16].

Example 4.1
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Figure 2 shows one example of Majority Net and its initial labeling. The labeling switches

between that shown in Figure 2 and its complementary state obtained by making all the

state opposite (i.e. period two).

1 0

0 1

Figure 2: An Example of a Majority Net and Its Initial Labeling

4.2 Relation between State Propagation Net and Majority Net

Although Majority Net having two states: active(1) and inactive(0) looks similar to State

Propagation Net, they are not equivalent. In fact, Majority Net is a proper subset of State

Propagation Net. This is known from the fact that State Propagation Net with period

greater than two can be easily constructed and the following transformation scheme from

Majority Net to State Propagation Net.

Scheme(Transformation From Majority Net to State Propagation Net)

(1)Network Transformation: Each pair of adjacent nodes in Majority Net shown in the left

of Figure 3 is transformed to the four nodes symmetrically interacting shown in the right

of Figure 3.

(2)State Transformation: Labeling of Majority Net is translated from 1(0) to the combi-

nation of active upper node and inactive lower node(inactive upper node and active lower

node). The distinction between lower and upper is ignored after state of all the nodes are

translated here.

Example 4.2

Figure 4 shows State Propagation Net Transformed from the Majority Net shown in Figure

2. It can be observed that the State Propagation Net has several symmetries originated

from the Majority Net; (1) there is no orientation between two adjacent nodes, and (2)

label 1 and 0 can be exchanged without changing the qualitative behavior such as the

period.
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Figure 3: Transformation from Majority Net to State Propagation Net

5 Concluding Remarks

Based on the motivation for simplifying and discretizing the model of population dynamics

found in immune network theory, we proposed a graphical model called State Propagation

Net. The condition for State Propagation Net to have stable pattern is characterized graph

theoretically. State Propagation Net is a �nite automaton similar to Life Game,Cellular

Automata, and Majority Net, hence the behavior eventually become periodic. State Prop-

agation Net is shown to be more general than Majority Net that has the mode of period

at most two.

Although State Propagation Net is motivated by immune network model, it is too un-

matured to state any implication on immune systems, and it has been left untouched in

this paper. An interesting class of systems from the viewpoint of immune memory in the

immune network is that the class where the following memory set can be characterized3.

A set of vertices S is memory set when the set S is activated, it will converge

on the stable set Q such that S \Q 6= �.

Although State Propagation Net is shown to be more complex than Majority Net in

the sense that it has the mode of longer period, further modi�cation may be needed to

analyze the complex networks found in biological systems such as immune networks and

ecological systems. In fact, State Propagation Net proposed in this paper is just a �rst step

for describing complex networks found in biological systems by discrete systems rather than

continuous dynamical systems. In order to make the model more practical, the following

modi�cations should be considered;

(1) Population of the nodes may change dynamically.

(2) Other types of interactions such as inhibition of the dynamic interaction among units

3Immune system has a memory in the sense that it will more e�ciently eliminate anti-gen in its secondary

response than its �rst encounter. This may be because some units activated in the �rst encounter are kept

active, and they will generate antibodies speci�c to the anti-gen more e�ciently in the secondary encounter.
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Figure 4: The State Propagation Net Transformed from Majority Net shown in Figure 2

may be needed.

(3) State-transition function may change by the local topology of units.
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