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Abstract

In this paper, we propose a round-robin burst assembly and constant burst transmission for
optical burst switching (OBS) network. In the proposed method, ingress edge node has multiple
buffers where IP packets are stored depending on their egress edge nodes, and bursts are assembled
at the buffers in round-robin manner. Moreover, bursts are transmitted at fixed intervals with
scheduler. To evaluate the performance of the proposed method, we construct a loss model with
deterministic and Poisson arrivals, and explicitly derive burst loss probability, burst throughput,
and data throughput. In numerical examples, we show the effectiveness of our analysis and compare
the performance of the proposed method with Erlang loss system.

Index Terms: Optical burst switching, Round-robin burst assembly, Constant transmission
scheduling, Queueing analysis

I. INTRODUCTION

Optical burst switching (OBS) has received considerable attention as one of the most promis-
ing technologies for supporting the next-generation Internet in wavelength division multiplexing
(WDM) network [1], [3], [12], [13], [14]. In OBS network, multiple IP packets are assembled into a
burst with variable length at an edge node and is transmitted from ingress node to egress one. A
burst is pure payload and has a related control packet which contains control information such as
burst length and routing information [4].

In order to reduce signaling delay, source node starts burst transmission without receiving any
acknowledgement from egress edge node. As for the signaling protocol, just-in-time (JIT) and just-
enough-time (JET) have been proposed [4], [7], [8]. In JIT, a wavelength for burst transmission
is reserved using two control packets: setup and release packets [11]. A source node first sends a
setup packet to reserve a wavelength and after some offset time, the associated burst is transmitted
without waiting for acknowledgment. Then the source node sends a release packet to release the
wavelength.

Similarly, in JET, a source node sends a control packet and then sends a burst after some offset
time. The different feature from JIT is that wavelength is reserved during the burst duration
indicated in the control packet [6], [13], [L14]. Therefore the overhead of control packet decreases
and wavelength is utilized efficiently. The readers are referred to [2] for details.

Burst assembly is also an important issue in OBS and several burst assembly techniques have been
proposed. Most techniques are classified into threshold-based and timer-based burst assemblies. [9]
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Fig. 1. OBS network.

and [10] have proposed a threshold-based burst assembly technique which utilizes a threshold as a
parameter to determine the number of packets in a burst to be assembled.

In [3], timer-based burst assembly technique has been proposed. In this technique, a time counter
is started at the arrival time of first packet and a burst is assembled when the time counter reaches
a pre-specified value. [2] has proposed the extended timer-based technique called assured horizon
which has introduced a coarse-grained bandwidth reservation.

The assembled burst is sent into OBS network after some offset time calculated according to burst
scheduling. In [10], first-come first served (FCFS), priority queueing (PQ), weighted round-robin
(WRR), and waiting time priority (WTP) have been considered. Among their scheduling principles,
[10] has adopted FCFS where bursts are served in the same order that they are assembled.

Most of burst assembly and scheduling techniques, however, are rather complex and have difficulty
in implementation. In this paper, we propose round-robin burst assembly and constant burst
transmission for OBS network. In our proposed method, a burst is assembled in round-robin
manner and assembled bursts are transmitted into OBS network at fixed intervals. The strong point
of round-robin discipline is that timer-based burst assembly is easily implemented. We evaluate
the performance of the proposed method at edge node using a loss model with deterministic and
Poisson arrivals and derive performance measures explicitly.

The rest of the paper is organized as follows. Section II describes the round-robin burst assembly,
and in Section III, we represent our analytical model. In section IV, we explain the performance
analysis of the proposed method and numerical examples are shown in Section V. Finally, conclu-
sions are presented in Section VI.

II. ROUND-ROBIN BURST ASSEMBLY

The OBS network consists of edge and core nodes as shown in Fig. 1. In the OBS network, data
is transmitted with burst consisting of multiple IP packets. Burst is assembled at ingress edge node
and is transmitted to egress edge node. At core node, burst is switched in optical domain.

Round-robin burst assembly is performed at ingress edge node which consists of a burstifier,
a scheduler, and an OBS switch (see Fig. 2). The burstifier has multiple buffers and IP packets
arriving from access network are stored in the buffers depending on their egress edge nodes. Bursts
are assembled with multiple IP packets stored in each buffer and burst assembly at each buffer is
processed in round-robin fashion. Burst assembly processing time at each buffer is constant and
we define the cycle time of round-robin as the total processing time at all buffers. Therefore, in
each buffer, bursts are assembled with IP packets stored during the cycle time.

The scheduler sends the associated control packet to the egress edge node before transmitting
the burst and it transmits the burst into the OBS network after some offset time. In our proposed
method, the scheduler sends control packets so that bursts depart from the scheduler at fixed
intervals. That is, bursts are transmitted to the burst switch at fixed intervals.
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Fig. 2. Round-robin burst assembly.

In the burst switch, wavelengths are used not only by bursts from the scheduler but also by those
from other OBS nodes. When there are no available output wavelengths, control packets cannot
reserve wavelengths, and hence bursts cannot be transmitted to its egress edge node and those are
lost.

III. ANALYTICAL MODEL

We focus on an ingress edge node where bursts are assembled in round-robin fashion. In the
burstifier of the edge node, there are L buffers as shown in Fig. 3 and IP packets coming from
access network are stored in the buffers.

We assume that IP packets arrive at the edge node from the access network according to a
Poisson process with rate A and that egress edge nodes of IP packets are equally likely. Because
each IP packet is stored in a buffer depending on its egress node, IP packets arrive at each buffer
according to a Poisson process with rate \/L. Moreover, we assume that the mean length of an
arriving IP packet is M bits. When the transmission speed of a wavelength is B bps, an IP packet
is transmitted with the mean transmission time equal to 1/p = M/B.

The processing time of a burst assembly at a buffer is a fixed time equal to T. A burst is
assembled with multiple IP packets which are stored during the cycle time LT. Hence the mean
transmission time of a burst is given by \T'/u = AMT/B.

The assembled bursts are forwarded to the scheduler. Then the bursts depart from the scheduler
at fixed intervals equal to T" and are transmitted to egress edge nodes with W output wavelengths.
We assume that the bursts transmitted from other nodes arrive at the output wavelengths according
to a Poisson process with rate A, and that the mean transmission time of the bursts is also given
by AT/ .

From the above assumptions, we have a D,M/M/W /W queueing model and in the following, we
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Fig. 3. Analytical model.



analyze the performance of the round-robin burst assembly with the model.

IV. PERFORMANCE ANALYSIS

In this section, we explicitly derive burst loss probability, burst throughput, and data throughput
with our analytical model as shown in Fig. 3. In the following, we assume that the system is in
equilibrium.

Let N(t) denote the number of bursts being transmitted in the system at time ¢. Here we assume
that the first burst arrival from scheduler occurs at time 0 and we have N(0) = 1. First, we focus
on the arrival of burst which departs from scheduler, and consider the state of system at its arrival
point.

We define the number of bursts in the system just before the nth arrival of burst from scheduler
as N, =N(nT7) (n=0,1,---,). With the assumptions of Poisson arrival and exponential service
for bursts transmitted from other nodes, the process {N,, : n =0,1,---} is a discrete-time Markov
chain. We define the steady state probability for the Markov chain as

gr = lim P{N; =k}, 0<k < W, (1)

To derive the transition probability of g, we focus on the state transition between N, and N .
It is easily seen that the state transition between N and N, is the same as an M/M/W /W
queueing model in which the arrival process is Poisson with rate )\, and the service time is exponen-
tially distributed with the mean A7T'/u. The state transition diagram for the M/M/W /W queueing
model is illustrated in Fig. 4. Let @ denote the infinitesimal generator of the M/M/W /W . Note
that Q is a (W + 1) x (W + 1) matrix whose (i, j)th element is given by

Dos 1<i<W, j=i+l,
o= e G s =i, o)
ij (2;711)#’ 2<i<WH4+1, j=i-1,
0, otherwise.

For s and ¢t (0 < s <t < T), we define H(s,t) as the state transition probability matrix from
the state at time s to the state at time ¢, and H (s,t) satisfies the forward Chapman-Kolmogorov
equation

M0 His Q. @
In the following, H(0,t) = H (t) and I is the identity matrix. With the initial condition H(0) = I
and (3), H(t) is given by H(t) = €@

Note that the time interval between the nth and the n + 1st observation points is T and that the
system state at nth arrival point is min(V,; + 1, W). The transition probabilities for g; are then
given by

Uij = Pr{Nr:+1 = jIN, =i},
_ ) H(T)ip15, 0Ki<W =1, 0<j<W, (4)

With U = [Ujj], ¢ = (g0, *,qw), and e = (1,---,1)T, q is determined from the equilibrium
equations ¢ = qU and the normalizing condition ge = 1. Hence the loss probability of burst which
departs from the scheduler is given by g .
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Fig. 4. State transition diagram.

Next, we consider the steady-state probability at an arbitrary point defined as pr = lim;_ o
P.{N(t) = k}. We define the nth cycle as the time interval [nT, (n + 1)T). From the assumptions
in our analytical model, it is clear that the process N(t) regenerates itself at nT (n = 0,1,---).
With the renewal-reward theorem [15, p. 60], we have for £ =0,1,2,---,

t 1 rT™
pr = Jim o /0 Lin=rydt = 7 /0 B 1=y dt, (5)

where 1/ is the indicator function of event X. In the following, we consider time average of the
number of bursts in the system over one cycle.

Let {ry : k=0,---, W} denote the state probability at the beginning of a cycle. With the steady
state probability qx, ri is given by the following equations.

0, k=0,
Tk = k-1, 0<k<W, (6)
qw-1+qw, k=W.

Let p = (po,---,pw) and r = (rg,---,rw). For 0 <t < T, we have

E [1{N(t):k}] = [’"th]k’ (7)

where [z], denote the kth element of vector . Substituting (7) into (5), we obtain

1 [T 1 QF Tk
= eQ! - -
p Tr/o dt=7r Z (k1) ®)

where we use the continuity of e@* in the last equality.

In (8), Q is the infinitesimal generator of M/M/W /W and hence Q is singular. Now we consider
the matrix e — Q where 7 is the steady-state probability vector of M/M/W /W such that 7Q = 0
and we = 1. Noting that e — Q is nonsingular [5], we have

Q=Q*(Q—em) .. (9)

With (8) and (9), p is explicitly given by

p= r{IT—i—(eQT—I—QT)(Q—eﬂ')*I}. (10)

T
Because Poisson arrivals see time average (PASTA) [15], the loss probability for the bursts from
other nodes is given by py .



With qw and pw, the burst loss probability P, is given by the following equation.

qw + AT pw
P = 11
loss 1+ >\oT ( )
The burst throughput defined as the number of transmitted bursts per unit of time, T,E:Z), is given
by
w _1—qw
Thr - T

Finally, the data throughput defined as the amount of transmitted data (bits) per unit of time,

+>\o(1 _pW)' (12)

T,Eﬁ), is derived as

T = AM {(1 — aw) + AT(L — pw)} . (13)

V. NUMERICAL EXAMPLES

In the following, we assume that the transmission speed of each output wavelength is B = 10
Gbps. Moreover, we assume that IP packets with the mean size of 1250 bytes, i.e. M = 10,000,
arrive at edge node from access network. Thus, the mean transmission speed of an IP packet, 1/,
is 1.0 ps and the unit of time is 1.0 us in the following. In this section, we set L =5 and p = 1.0.

A. Impact of burst assembly processing time

First, we consider how burst assembly processing time 7' affects burst loss probability, burst
throughput, and data throughput. Here, we set W = 32 and A = 1.0. ), is determined so that the
system utilization factor p = A(1 4+ \,7)/W p is constant.

Fig. 5 illustrates the loss probability against burst assembly processing time with p = 0.5, 0.75,
1.0, and Fig. 6 illustrates the burst and data throughputs. These results are calculated by our
analysis and simulation. From both figures, we observe that analytical and simulation results are
almost the same regardless of T and p.

Fig. 5 shows that the burst loss probability does not change as the burst assembly processing time
becomes large. When the burst assembly processing time is large, large bursts are assembled at
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Fig. 5. Burst loss probability vs. burst assembly processing time.
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Fig. 6. Burst and data throughputs vs. burst assembly processing time.

edge node. However, burst transmission interval also becomes large. Therefore the burst assembly
processing time does not affect the burst loss probability in our proposed method. In Fig. 5, we
also find that the burst loss probability becomes large as the system utilization factor p increases.

From Fig. 6, we observe that the burst throughput becomes small as the burst assembly processing
time increases. This is because the increase of burst assembly processing time causes large burst
transmission interval. As a result, the transmission delay of burst becomes large and the number
of transmitted bursts per unit of time becomes small. The burst throughput also decreases as the
system utilization factor becomes small, however, the impact of the system utilization factor on the
burst throughput is smaller than that of the burst assembly processing time. On the other hand,
the data throughput does not change as the burst assembly processing time becomes large.

From these observations, the burst loss probability and data throughput do not change as burst
assembly processing time becomes large. However, the transmission delay of burst becomes large
and the burst throughput decreases.

B. Impact of bursts transmitted from other nodes

Next we investigate how bursts transmitted from other nodes affect the performance of round-
robin burst assembly. We also consider another burst scheduling in which bursts are transmitted
at exponential intervals. This burst scheduling corresponds to the well-known Erlang loss system.
The loss probability, burst throughput, and data throughput in the case of exponential intervals
are given by Erlang loss formula.

Fig. 7 shows the relation between arrival rate of bursts transmitted from other nodes, \,, and
burst loss probability in the cases of A = 3.0, 5.0, and 10.0. Fig. 8 shows the results for burst and
data throughputs. Here, we set W = 32 and T' = 1.0 ms. In both figures, the analytical results are
almost the same as the simulation results regardless of A\, and A.

From Fig. 7, we observe that the burst loss probability for the round-robin burst assembly
increases as the arrival rate of bursts transmitted from other nodes becomes large. This is simply
because the system is overloaded. We also observe that the burst loss probability increases as
the arrival rate of packets from access network becomes large. This is because large bursts are
assembled with many IP packets at each edge node.

Comparing the loss probabilities for fixed and exponential interval cases in Fig. 7, we can see that
the loss probability for the fixed interval case is smaller than or equal to one for the exponential one
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when ), is greater than 0.001. This implies that the scheduler with the fixed interval transmission
is effective when the arrival rate of burst transmitted from other nodes is larger than the arrival
rate of burst from the scheduler. Moreover, the loss probability for the fixed interval case decreases
as A becomes small. Therefore, the scheduler with the fixed interval transmission is effective when
the traffic load is small.

From Fig. 8, we observe that the burst and data throughputs become large and converge to
constant values as the arrival rate of bursts transmitted from other nodes increases. We find that
the burst throughput becomes small as the arrival rate of IP packets from access network, A,
increases. This is because the length of burst becomes large and this results in the increase of the
burst loss probability. However, the number of packets assembled into a burst also increase and
this causes large data throughput.

C. Impact of the number of wavelengths

Fig. 9 shows how the number of wavelengths affects loss probabilities for the two burst scheduling
with fixed and exponential intervals. In this figure, we set A = 10.0 and T" = 1.0 ms. The loss
probabilities are calculated by analysis and simulation in the cases of A, = 0.001, 0.002, 0.003
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and 0.004. From this figure, we also find that the analytical results are almost the same as the
simulation results regardless of W and A,. Hence our analysis is efficient to evaluate the performance
of round-robin burst assembly.

From Fig. 9, we observe that the loss probability for the fixed interval case is smaller than or equal
to one for that in the exponential interval case. We find that the difference between the both loss
probabilities becomes large as the number of wavelengths increases. Therefore round-robin burst
assembly is effective in OBS network where many wavelengths are multiplexed into an optical fiber
and many fibers are used.

VI. CONCLUSIONS

In this paper, we proposed a round-robin burst assembly in which bursts are assembled at edge
node in round-robin manner and are transmitted to egress edge node at fixed intervals with sched-
uler. To evaluate the performance of the proposed method, we considered the loss model with
deterministic and Poisson arrivals and explicitly derived burst loss probability, burst throughput,
and data throughput. In numerical examples, we observed that our analysis is efficient to evaluate
the performance of our proposed method. Comparing the results of Erlang loss system, the round-
robin burst assembly is effective for OBS network where a number of wavelengths are utilized and
the arrival rate of bursts transmitted from other nodes is relatively small. Therefore a round-robin
burst assembly is effective for OBS networks with mesh topology.
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