Technical Report

An Extension of Pushdown System and Its Model Checking
Method

Naoya Nitta and
Hiroyuki Seki

{naoya-n,seki}@is.aist-nara.ac.jp

June 11, 2003

Graduate School of Information Science

Nara Institute of Science and Technology

Abstract

In this paper, we present a class of infinite transition systems which is an extension
of pushdown systems (PDS), and show that LTL (linear temporal logic) model
checking for the class is decidable. Since the class is defined as a subclass of term
rewriting systems, pushdown stack of PDS is naturally extended to tree structure.

By this extension, we can model recursive programs with exception handling.

1 Introduction

Model checking [2] is a well-known technique which automatically verifies whether
a system satisfies a given specification. Most of existing model checking methods
and tools assume that a system to be verified has finite state space. This is a
serious restriction when we apply model checking to software verification since a
program is usually modeled as a system with infinite state space. There are two
approaches to resolving the problem. One is that if a system to be verified has
infinite state space, then the system is transformed into an abstract system with
finite state space. This transformation is called abstraction and various abstrac-
tion methods have been proposed. Among them are predicate abstraction [12]
and Bandera which uses program slicing and abstract interpretation [4]. How-
ever, the abstract system does not always retain the desirable property which the
original system has, in which case the verification fails.

Another approach is to introduce a new subclass of transition systems which
is wider than finite state systems and investigate model checking method for
the subclass. Pushdown system is such a subclass that is wider than finite state
systems and yet has decidable properties on model checking. A pushdown system
(abbreviated as PDS) is an autonomous transition system with a pushdown stack
as well as a finite control. A PDS can model a system which has well-nested
structure such as a program involving recursive procedure calls. Recently, efficient
algorithms of LTL and CTL* model checking for PDS have been proposed in [5, 6]
(also see related works). The transition relation of a PDS is defined by transition
rules which rewrite the finite control and a prefix of the string in the pushdown
stack. Thus, if we model a program as a PDS, we are forced to define the behavior
of the program by transition rules on strings.

In this paper, we focus on term rewriting system (abbreviated as TRS), which is
one of the well-known general computation models, and define the model checking
problem for TRS. For simplicity, we consider the rewrite relation induced by the
rewriting only at the root position of a term (root rewriting). Since a transition
in a PDS changes the finite control and a prefix of the strings in the stack, PDS
can be regarded as a TRS with root rewriting. Next, a new subclass of TRS,
called generalized-growing TRS (GG-TRS) is defined. GG-TRS properly includes
growing TRS [18] of Nagaya and Toyama. We present a necessary and sufficient

i

condition for a left-linear(LL-)GG-TRS R to have an infinite rewrite sequence
which visits terms in a given set infinitely often. Based on this condition, we then
present a condition for R to satisfy a given LTL formula ¢. The latter condition
is decidable if R has a property called pre-(or post-)recognizability preserving
property. Lastly, we introduce a subclass of TRS called LL-SPO-TRS and show
that every TRS in this subclass has pre-recognizability preserving property. Every
PDS belongs to both of GG-TRS and LL-SPO-TRS. Furthermore, we show that
a program with recursive procedure and exception handling can be naturally
modeled as a TRS in both GG-TRS and LL-SPO-TRS, which is not strongly
bisimilar to any PDS. In this sense, the decidability results on LTL model checking

in this paper is an extension of the results in [5, 6].

Related Works The model checking problem for PDS and the modal p-calculus
is studied in [24]. For LTL and CTL*, efficient model checking algorithms for
PDS are proposed in [5, 6]. Major applications of model checking for PDS are
static analysis of programs and security verification. For the former, Esparza
et al. [6] discuss an application of model checking for PDS to dataflow analysis
of recursive programs. Some results obtained by using their verification tool
including the termination analysis of a quicksort program are also reported in
[7]. The first work which applies model checking of a pushdown-type system to
security verification is Jensen et al.’s study [14]. In that paper, they formally
define a verification problem for a program with access control which generalizes
JDK1.2 stack inspection [11]. However, their approach has severe restrictions,
e.g, a mutual recursion is prohibited. Nitta et al. [19, 20] improve the result
of [14] by using indexed grammar in formal language theory and show that a
verification problem is decidable for an arbitrary program with stack inspection.
The problem for a program which contains no stack inspection in [14, 19] exactly
corresponds to model checking of a safety property (AG) with regular valuation
[6] for a PDS. In [20], a subclass of programs which exactly represents programs
with JDK1.2 stack inspection is proposed and it is shown that verification of the
safety property can be performed in polynomial time of the program size in the
subclass. They also present verification results by using a verification tool. In
[6], it is shown that LTL model checking is decidable for an arbitrary programs
with stack inspection. Jha and Reps show that name reduction in SPKI [22]

1l

can be represented as a PDS, and prove the decidability of a number of security
problems by reductions to decidability properties of model checking for PDS [15].
Among other infinite state systems for which model checking has been studied
are process rewrite system (PRS) [17] and ground TRS [16]. PRS includes PDS
and Petri Net as its subclasses. However, LTL model checking is undecidable for

both of PRS and ground TRS.

v

2 Preliminaries

2.1 Term Rewriting System

We use the usual notions for terms, substitutions, etc (see [1] for details). Let N
denote the set of natural numbers. Let F be a signature and V be an enumerable
set of wariables. An element in F is called a function symbol and the arity of
f € F is denoted by arity(f). A function symbol ¢ with arity(c) = 0 is called a
constant. The set of terms generated by F and V is defined in the usual way and
denoted by T(F,V). The set of variables occurring in ¢ is denoted by Var(t). A
term ¢ is ground if Var(t) = (). The set of all ground terms is denoted by T (F). A
term is linear if no variable occurs more than once in the term. A substitution 6 is
a mapping from V to T (F,V) and written as 0 = {x; > t1,..., 2, > t,} where t;
with 1 < ¢ < nis a term which substitutes for the variable x;. The term obtained
by applying a substitution # to a term ¢ is written as tf. We call t0 an instance of
t. A position in a term t is defined as a sequence of positive integers as usual, and
the root position is the empty sequence denoted by A. The depth of a position
p € (N—{0})*, written as |p|, is the length of p (e.g. |132] = 3). Let <, denote
the prefix relation on positions, defined as usual. The set of all positions in a
term ¢ is denoted by Pos(t). Also let us define Pos_,(t) = {p € Pos(t) | |p| = n}
and Possy(t) = {p € Pos(t) | |p| > n}. A subterm of ¢ at a position p € Pos(t)
is denoted by t,. Pos(t,s) is the set {p | t|, = s}. If |, = f(---), then we write
lab(t,p) = f. If a term t is obtained from a term t' by replacing the subterms of
t' at positions py,...,pm (pi € Pos(t'),p; and p; are disjoint if ¢ # j) with terms
t1, - .., tm, respectively, then we write t = '[p; < ¢; | 1 < i < m]. The depth of
a term ¢ is maz{|p| | p € Pos(t)}. For terms s,t, let mgu(s,t) denote the most
general unifier of s and ¢ if it is defined. Otherwise, let mgu(s,t) =L.

A rewrite rule over a signature F is an ordered pair of terms in 7 (F, V), written
as | — r. A term rewriting system (TRS) over F is a finite set of rewrite rules
over F. For terms ¢, t' and a TRS R, we write ¢t —5 ¢’ if there exists a position
p € Pos(t), a substitution § and a rewrite rule [— r € R such that ¢/p = 16
and t' = t[p < rd]. Define —% to be the reflexive and transitive closure of —5.
Sometimes t —% t' is called a rewrite sequence. Also the transitive closure of

—r is denoted by —%. The subscript R of — is omitted if R is clear from the

context. A redex (in R) is an instance of [for some [— r € R. A normal form
(in R) is a term which has no redex as its subterm. Let NF% denote the set of all
ground normal forms in R. A rewrite rule [— r is left-linear(resp. right-linear)
if [is linear (resp. r is linear). A rewrite rule is linear if it is left-linear and
right-linear. A TRS R is left-linear (vesp. right-linear, linear) if every rule in R

is left-linear (resp. right-linear, linear).

2.2 Tree Automata and Recognizability

A tree automaton(TA) [8] is defined by a 4-tuple A = (F, Q, A, Q") where F
is a signature, Q is a finite set of states, Qfimal C Q is a set of final states, and
A is a finite set of transition rules of the form f(q,...,q,) — ¢ where f € F,
arity(f) = n, and q,...,qy,q € Q or of the form ¢ — ¢ where ¢,¢ € Q.
Consider the set of ground terms 7 (F U Q) where we define arity(q) = 0 for
q € Q. A transition of a TA can be regarded as a rewrite relation on 7 (F U Q)
by regarding transition rules in A as rewrite rules over FU Q. For terms ¢ and ¢/
in T(FUQ), we write t b4 ¢ if and only if ¢ —A ¢'. The reflexive and transitive
closure and the transitive closure of 4 is denoted by F% and ¥, respectively.
For a TA A and t € T(F), if t b* ¢y for a final state ¢; € Q"* then we say t is
accepted by A. The set of all ground terms in 7 (F) accepted by A is denoted by
L(A) and we say that A recognizes L(A). A subset L C T(F) of ground terms
is called a tree language. A tree language L is recognizable if there is a TA A

such that L = L£(A).

Lemma 2.1 [8] The class of recognizable tree languages is effectively closed under
union, intersection and complementation. For given recognizable tree languages
Ly and Ly, the inclusion problem (Ly C Lo ?7) is decidable. (Thus, membership
(t € L?), emptiness (L=107), and equivalence (L, = Ly ?) are also decidable.)

O

For a TRS R and a tree language L, let posth (L) = {t | 3s € L s.t. s =% t} and
preq(L) ={t|3s € Ls.t. t =% s}. A TRS R is said to effectively preserve post-
recognizability (abbreviated as post-PR) if, for any TA A, posty(L(A)) is also
recognizable and we can effectively construct a TA which accepts posty (L(A)).
We define pre-PR in a similar way. Fora TRS R,let R~ ={r = 1|l —>r € R}.

vi

By definition, post_.(L) = prekx(L). Thus, a TRS R is pre-PR if and only if
R~ is post-PR. Due to the properties of recognizable tree languages mentioned
in Lemma 2.1, some important problems, e.g., reachability, joinability and local
confluence are decidable for post-PR TRS [10, 13]. However, whether a given
TRS is pre-PR (post-PR) is undecidable [9], and decidable subclasses of pre-PR
or post-PR TRS have been proposed, some of which are listed with inclusion

relation:

RL—SM(semi—monadic)—TRS[3] C RL-GSM(generalized semi-monadic)-
TRrs [13] ¢ RL-FPO(finitely path overlapping)—TRS[%]

where RL stands for ‘right-linear.” As a decidable subclass of pre-PR TRS, left-
linear growing TRS (LL-G-TRS) [18] is known. A TRS R is a G-TRS if for every
rule [— r in R, every variable in Var(l) N Var(r) appears at depth 0 or 1 in /.
Hence, a shallow TRS is always a G-TRS. Note that R is an SM-TRS if and only
if R7!is a G-TRS and the left-hand side of any rule in R is not a constant.

2.3 Transition Systems and Linear Temporal Logic

A transition system is a 3-tuple & = (S, —, s¢), where S is a (possibly infinite)
set of states, =C S x S is a transition relation and sy € S is an initial state.
The transitive closure of — and the reflexive and transitive closure of — are
written by —* and —*, respectively. A run of S is an infinite sequence of states
0 = $18y... such that s; — s;41 for each i > 1. Let At = {1, 9,...,;} be a
set of atomic propositions. The syntax of linear temporal logic (LTL) formula ¢

is defined by
pu=ttla;| =g | s Ao | X | gl

(1 <i<kand ¢y, ¢y are LTL formulas). For a transition system S = (S, —, s¢),
a wvaluation of 8 is a function v : At — 2°. The validity of an LTL formula ¢ for
arun o = §1Sy... w.r.t. a valuation v is denoted by o = ¢, and defined in the
standard way [2]. We say ¢ is valid at s w.r.t. v, denoted as s =" ¢, if and only

if 0 ¥ ¢ for each run o starting in s.

Vil

2.4 Model Checking for TRS

Given a TRS R over a signature F and a term t, € 7T (F), we can define a
transition system Sg = (T (F), sz, to) where —g,=—x U{(t,t) | t € NFx}.
Note that the reflexive relation {(¢,t) | t € NFz} is needed to make the transition
relation —g, total. The validity of LTL formula ¢ at ¢y, in Sg w.r.t. v : At —
27(7) is denoted as R, t, =" ¢. From an LTL formula ¢, we can construct a Biichi
automaton which recognizes the set of models of =¢. Therefore, in the following,
we often assume that we are given a Biichi automaton instead of an LTL formula.
In a similar way to the model checking method in [6], below, we give a definition
of Bichi TRS which synchronizes a transition system Sz given by a TRS R with
a Biichi automaton B. First, to make the definition constructive, we make a few
observations. To synchronize Sg with B, we must construct a Biichi TRS so that
the redex can keep track of the information on the current state of B and the
valuation of the current term of Sz. However, if we are given a TRS R of which
an arbitrary redex can be rewritten, transmitting the above information to the
next redex in the Biichi TRS becomes difficult. For this reason, we consider root
rewriting, which restricts rewriting positions to the root position. Formally, root

rewriting is defined as follows.

Definition 2.1 (Root Rewriting) For terms ¢, ' and a TRS R, we say t —x t'
is root rewriting, if there exist a substitution § and a rewrite rule [— r € R such
that t =160 and t' = r6. O

If we consider root rewriting, it is not difficult to see that there effectively
exists a TRS of which the rewrite relation exactly corresponds to —g,. Let
{A1, ..., A} be a set of terms in T (F,V) such that NFr = Uj<icpn{Aif | 0 :
VYV — T(F) is a substitution}, and mgu(A;, A;) = L(1 < i < j < m). Also, let
R =TRU {A;i = A; | 1 <i < m}. Then, t € NFg if and only if there exists
a unique A; such that ¢ =~ ¢ —~ --- where A; — A; is applied in each rewrite
step. Hence, we know —s,=—7, i.e., the transition relation —s, of Sz can be
induced by TRS R. Next, we extend the definitions of valuations of PDS [5, 6].

Definition 2.2 (Simple Valuation)
Let pu: At — T(F,V) be a function such that for each o € At and | — r € R,

Viil

mgu(l, p(a)) = 1 or =L. The simple valuation v : At — 27F) given by pu is
defined as v(a) = {p(a)f | 6 is a substitution}. O

In the definition, pu(«) specifies a pattern of terms for which proposition « is
true. For example, if u(ay) = f(x,g(y)) then R,t E” a4 if and only if ¢ is an
instance of f(z,g(y)). The restriction that mgu(l, u(«)) = [or =L guarantees
that for a rewrite rule | — r, whether R, 16 =" « is determined independent of a

substitution 6.

Definition 2.3 (Regular Valuation)
For each atomic proposition a@ € At, a TA A, is given. The regular valuation

v: At — 27 given by (A,) is defined as v(a) = L(A,). O

€At

Definition 2.3 says that R, ¢ =" « if and only if ¢ is accepted by A,. This is a
natural extension of regular valuation v of PDS, where a configuration (g, w) is
a pair of a control location ¢ and a sequence w of stack symbols and (¢, w) F «
if and only if the sequence quw is accepted by a finite state automaton A, given

for a.

Definition 2.4 (Biichi TRS) Let At be a set of atomic propositions, R be a
TRS, B = (95, Y5, As, qos, Q¥°) (X5 = 24, QsNF =) be a Biichi automaton,
and v be the simple valuation given by p: At — T(F,V). For R, B and v, we
define Biichi TRS BRY as follows: The signature of BR" is Fgrr = Qp U F(for
any q € Qg, arity(q) = 1), and BR is the minimum set of rules satisfying:

0% ¢ eAg,l—reR,and aC {ae At | mgu(l, pla)) =1}
= q(l) — ¢'(r) € BR".
O

If v is regular, then we can reduce a model checking problem w.r.t. v to a

model checking problem w.r.t. a simple valuation in a similar way to [6].

Lemma 2.2 Let R be a TRS, ty € T (F) be an initial state, ¢ be an LTL formula,
B=(Q5,%5,As, qos, Qi) (X5 =24, QsNF = 0) be a Biichi automaton which
represents ¢, and v be the simple valuation given by p: At — T(F,V). Also,
let Tace = {qa(t) | qa € QF“,t € T(F)}. R,to =¥ ¢ if and only if there exists an
infinite root rewrite sequence of Biichi TRS BRY starting in qos(to) and visiting
Tace tnfinitely often. O

X

3 Generalized-Growing TRS and Its Model Check-
ing

The restriction of root rewriting (Definition 2.1) on TRS R is insufficient to make
the model checking problem for R decidable, because root rewriting TRSs are still
Turing powerful. In fact, we can define an automaton with two pushdown stacks
(which is Turing powerful) as a left-linear root rewriting TRS by encoding a state
of the finite control as a root symbol ¢ with arity 2 and each of the two stacks as
each argument of ¢. The reason why root rewriting TRSs are Turing powerful is
unrestricted information flow between different arguments of a function symbol
such as ¢ above. We introduce a subclass of TRS, called LL-GG-TRS, in which
the information of (function symbol in) an argument is never shifted to another
argument, and show that if an LL-GG-TRS R is post-PR (or pre-PR), then
LTL model checking for R is decidable. For positions pq, ps, we define the least

common ancestor p; LI ps as the longest common prefix of p; and p,.

Definition 3.1 (Left-Linear Generalized-Growing TRS (LL-GG-TRS))
A left-linear rule [— r is generalized-growing, if every two different variables
z,y € Var(l) N Var(r) satisfy the following condition: For the positions of, o] of

z,y in [and for each positions of € Pos(r,z),0Y € Pos(r,y) of z,y in r,
|of | = loyUof| < |of| = |of Uo}|, and |of | —[of Uof| < |of|— |ofLo}|.

R is left-linear generalized-growing (LL-GG), if every rule in TRS R is left-linear

and generalized-growing. O
Obviously, an LL-G-TRS (see section 2.2) is always an LL-GG-TRS.

Example 3.1 Consider Ry = { f(g(z,y)) — f(h(y),z) }. The position of x is
11in [and 2 in r, and the position of y is 12in [and 11 in . Since 11U12 = 1 and
2U11 = A\, Ry is an LL-GG-TRS, but R is not an LL-G-TRS because variables z
and y occur at depth 2 in I. On the other hand, Ry = { f(h(y),z) — f(g9(z,y))}
is not an LL-GG-TRS, since the difference of the depth of positions in [between

y and the least common ancestor of x and y is larger than that in r. O

void main() {

LO: switch (random_integer) {
case O:
Li: main() ; Ra =A \
break; LO(x’y) — Ll(a:,y),
case 1: 'Lo(x’y) _+'L2(x’y)’
L2: try { L0($79>'_9-L5(I>y)7 ¢ seq
L3: main(); Lo(z,y) — Le(z,9),
} catch (e) { = Ly(z,y) — Le(z,y), |
L4: nop; .Lg(x,y) — T, i ret
} Ls(z,y) = v, : throw
break; Li(x,y) = Lo(L(r.9).v). } eall
case 2: Ls(z,y) = Lo(Ls(2,y),),
L5: throw e; Ly(z,y) — L3(z, Ly(z,y)) : try-catch
’)
L6: return;
}

Figure 1: A sample program with exception handling

Example 3.2 (Recursive Program with Exception Handling)

It is well-known that a program with recursive procedure can be naturally mod-
eled as a PDS, and further in [21], a PDS model of Java-like programs including
exception handling was proposed. In this model, the exception handling mech-
anism is implemented by adding extra control states and rules which represent
low-level operations embedded in the language processing system. On the other
hand, in this example, we present an LL-GG-TRS model of recursive programs,
which is closer to the behavioral semantics incorporated with exception handling
in the source code level. For example, a Java-like program in the left half of Fig.1
can be directly modeled as an LL-GG-TRS R, shown in the right half. Note
that the class LL-GG-TRS is propery wider than the class of PDSs w.r.t. strong
bisimulation equivalence, and Ry is an example of LL-GG-TRS which has no
strongly bisimilar PDS. In a Java program, try-catch-throw statements are used
for specifying exception handling. By the execution of a throw statement, an ex-
ception is propagated in the program. If an exception occurs within a try block,

then the control immediately moves to the catch statement coupled with the try

x1

statement (with unwinding the control stack). From a program Prog including
try-catch-throw statements, we can construct an LL-GG-TRS R as follows. In
R, a program location in Prog is represented by a function symbol and a state
of Prog is expressed by a term. Every term ¢ has the form of f(¢,t3) where
f denotes the current program location of Prog, t; denotes the next state of ¢
if a return statement is executed at 7, and t, denotes the next state of ¢ if an
exception occurs at £. A constant symbol O denotes the stack bottom. Every
unit executions of Prog are divided into five types, seq, call, ret, try-catch and
throw. Each rule [— r € R represents a unit execution of Prog and according

to the type of the execution, [— r has one of the following forms:

seq: current(z,y) — succe(x,y),
call: caller(z,y) — callee(suce(x,y),y),
ret: ret(z,y) — z,
try-catch: try(z,y) — succ(z, catch(z,y)),
throw: throw(z,y) —y.

A seq rule represents a sequential execution in a method in Prog where succ
denotes an immediate successor of current. A call rule represents a method
invocation in Prog where calee denotes the entry point of the method invoked
by caller and succ denotes an immediate successor of caller. A try-catch rule
represents the behavior of a try-catch block and try, succ and catch denote the
program location of the try statement, the entry point of the try block and
the entry point of the catch block, respectively. A ret rule represents a return
statement and a throw rule represents a throw statement. It is interesting to
recognize a symmetry between (call, ret) rules and (try-catch, throw) rules.
Recall the program in Fig.1. Since the statement at L2 is try, the entry point
of the try block is L3, and the entry point of the catch block is L4, Ly(z,y) —
Ls(z, Ly(z,y)) € Ro. O

In the following, we only consider root rewrite sequences consisting of ground
terms. The first lemma for LL-GG-TRS states that for any root rewrite sequence
o if there exists a position o0y in the first term ¢, of o such that the depth of (a
residual of) og is never shortened in o, then for every ‘sufficiently deep’ position

Po in tg, every residual of py never be contained in any redex. For a TRS R,

xii

let maz,(R) be the maximum depth of positions of variables in the left-hand
sides of rules in R, and maz;(R) be the maximum depth of positions of function
symbols in both sides of rules in R. For a rewrite sequence o : t —% t' and
p € Pos(t), the set of residuals of p in o, denoted as Res(p, o), is defined as
follows. Res(p,t —% t) = {p}. Assume t =10 —5 rf = ' for a rule [— r and a

substitution 6.

(oo | iy = 2} if p=pips and I}, =z € Var(l),
1] otherwise.

Res(p,t =g t') = {

For a rewrite sequence t —% t' —g t", Res(p,t =5 t' =g t") = {p" | P €
Res(p,t —% t')andp" € Res(p',t' —x t")}. We abbreviate Res(p,t —% t') as

Res(p,t') if the sequence t —% t' is clear from the context.

Lemma 3.1 Let R be an LL-GG-TRS and ¢ = maz,(R) + maz;(R) + 1. Also
leto =ty = ti =g " =g k1 =r tk = tkr1 of R be a root rewrite sequence
and oy € Pos(ty) be a position. If there exists a position o; € Res(og,t;) such that
log| < o] for each i(1 < i < k), then every position py € Pos>.(ty) satisfies the
following (a) and (b):

(a) For an arbitrary py € Res(po, tx),
|pk| — |okx U pk| > |po| — oo Upo| and |px| > maz;(R).
(b) For an arbitrary s € T (F),

tolpo < s] =% tkr1[Res(po, tir1) < s|.

Proof Sketch. (a) By induction on the length & of o (see Appendix for the
detail). (b) By (a), each p; € Res(po,t;)(0 < i < k) satisfies |p;| > maz;(R).
Hence, we can construct a rewrite sequence starting in to[py < s|, applying the
rules in the same order as o. O

The next lemma states that for any infinite root rewrite sequence o of an LL-
GG-TRS and any term %, in o, one can find a term ¢, after ¢, such that every

‘sufficiently deep’ position in t,, does not affect the rewrite sequence after t,,.

Xiil

Definition 3.2 (Longest-living position) Let ¢ty —x t; —% --- be a rewrite
sequence and oy € Pos(ty) be a position. The lifetime of 0 (in t) is defined as k,
if there exists k such that Res(og, ;) # 0 (0 <i < k) and Res(oo,t;) =0 (i > k).
Otherwise (Res(o0g,t;) # (0 for any i > 0), the lifetime of 0y is undefined. A
position which has the maximum lifetime in ¢ is called the longest-living position,

if the lifetime of every position in %, is defined. O

Lemma 3.2 Let R be an LL-GG-TRS and ¢ = maz,(R) + maz;(R) + 1. If
there exists an infinite root rewrite sequence 0 =tqg —g t; =g -+ of R, then for
any n > 0, there exists m > n such that for every p, € Poss(ty), kK > m and
s€ T(F):

tm|[Pm < S| =5 te|Res(pm, tr) < s].

Proof Sketch. Assume that there exists a position p,, in %, of which the lifetime
is undefined (the proof for the other case is included in Appendix). Let p; be
the deepest residual of p, in ¢;(i > n), and m be the minimum j(> n) such that
Ipj| < |pi| for each i(> j). Note that m is always defined since t,, =% t,41 =% ...
is an infinite sequence. Also, t,, =% tmi1 —xr ... and p,, satisfy the hypothesis
of Lemma 3.1. Hence, by Lemma 3.1(b), the lemma holds. O

Definition 3.3 (Inclusion order J,) The inclusion order J, w.r.t. constant a

is the least relation satisfying the following condition:
e For any term ¢, t J, a.
o Ift; Jut),ty o th, .. .ty Jo b, then f(ty, to, ... t,) Do f(E 1, ... 10).
|

In the rest of this section, we assume a is a new constant which is not a member
of F. For a term t € T(F U {a}), let |t|, denote |Pos(t,a)]. When a tuple
of terms = 01,...,0,) € T"(F U {a}) is given where n = |[t|,, let t6 denote
tlpg + 0; | 1 < i < n] for Pos(t,a) = {pi1,...,pn}, by slightly abusing the
notation. The following lemma states that every infinite root rewrite sequence of
an LL-GG-TRS has a kind of cyclic property.

xXiv

Lemma 3.3 Let R be an LL-GG-TRS and ¢ = maz,(R) + maz;(R) + 1. For
an infinite root rewrite sequence o =ty —x t; =g -+ of R, there exist a term
tr € T(FU{a})(n = |tr|a) of which the depth is ¢ or less and tuples of terms
0 € T(FU{a}),d € T"(F) such that tg € pre*({trf}) and to € pre*({trd})
hold.

Let To € T(FU{a}) be a set of terms, which is downward-closed w.r.t C,. If
terms in T appear infinitely often in o, then tg € pre*(Tg N pre*({th})) and
to € pre*({trf'}) hold.

Proof. We define an infinite sequence o, 01,09, ... of infinite sequences and a
function f : N — N as follows (Fig.2). The kth element of o; is denoted as o;(k).

e 1 =0: gy =o0.

e i > 0: f(0)is defined as m in Lemma 3.2 when infinite root rewrite sequence

o;_1 and n = fi1(0) are given. o;(k) is defined according to k as follows:
— k < f4(0): o;(k) is undefined.

— k= f4(0):
oi(k) = 0, _1(k)[Pos=c(0;_1(k)) < al. (3.1)

— k > fY0): By the definition of f?(0), we can use Lemma 3.2 and

obtain:

01 (f1(0))[Pos=c(0i1(f(0))) <= a] =% o1 (B)[P™ «a], (3.2)

where:
Pk = Res(Pos—.(0;_1(f4(0))),0,_1(k)) C P08 (mazy(R)+1)(0i-1(k)).
Now, let

oi(k) = 0i_1(k)[P"* « a], (3.3)
then (3.2) can be written as o;(f*(0)) —% o;(k) by (3.1).

For the infinite sequence og, 0y, 09, ...,
00(k) Do 01(k) Do 03(k) Da -+ Do 3(k) (FO) S k< 710 (34)

holds by (3.3). Now, we consider the infinite sequence o1(f(0)), o2(f?(0)),... by
picking up the ‘diagonal’ terms. Then, the depths of these terms are always c or

XV

less. By this fact, we can see that there exist an integer ¢ and an infinite sequence

i < jo < ji < jo <---of numbers such that for every j,(h > 0),

0i(f'(0)) = 0;,(f(0)). (3.5)

By (3.4) and (3.5), 0;(f1(0)) C, 0;(f%(0)). Hence, for tg = 0;(f*(0)), there exists
0 € T"(F U {a}) such that o;(f%(0)) = trf. Since o;(fi(0)) —% o;(f¥(0)),
lr € pre*({th}) holds. Similarly, by (3.4), we can obtain o;(f*(0))(= tr) Ca
ao(f1(0))(= th’) for some @' € T™(F), and thus o¢(0)(= to) € pre*({th'})
holds. By (3.1), the depth of ¢z is ¢ or less. Next, we consider the case that
terms in 7 appear infinitely often in 0. We can easily see that there exist
integers [,m and oo(l) € Tg such that f/(0) < [< f/(0) holds. By (3.4),
oo(l) dg 0i(l), and thus o;(l) € T because T is a downward-closed set. On
the other hand, since tg = 0;(f(0)) =% 0;(1) =% o;(f'(0)), we can obtain
oi(l) € T N pret({trf}) and tg € pre*({o:(1)}) in a similar way to the above

case. Hence, tg € pre*(Tg N pret ({tr6})). 0
0i(0) G(f(0) O(f(0)+1)
SO0 G((0)+1) - G(1(1(0))) OW(f(f(0))+1)

(), G(1(1(0)) +1)

max depth <= ¢ C‘\\ Q i \ >

Figure 2: Proof of Lemma 3.3: infinite sequence oy, oy, - -

Theorem 3.4 Let R be an LL-GG-TRS and ¢ = maz,(R) + maz;(R) + 1. Let
To C T(FU{a}) be a set of terms, which is upward-closed and downward-closed

w.r.t C,. There exists an infinite root rewrite sequence of R starting in tg in

XVi

which terms in T appear infinitely often if and only if there exist tr € T (F U
{a})(Itr]e = n) of which the depth is ¢ or less and tuples of terms § € T™(F U
{a}),d € T™(F) such that ty € pre*(TeNpret({trf})) and to € pre*({tad'}) (or
equivalently, trl € post™ (post*({tr}) N Te) and trl' € post*({to})) hold.

Proof. The only if part of this theorem follows from Lemma 3.3.

The if part is proved as follows. If ¢, € pre*({tRG_”}) and tg € pre*(Te N
pret({trf})), then there exists a term tg € T such that g € pre*({tc}) and
tq € pret({trf}) hold. By these facts, we can construct infinite root rewrite
sequence ty —% trd —% tal' —5 tr 00" —% ta06 —5 tr 026" —% -+, Where
0 = #,,...,0)and 00" is a term obtained by replacing a in @ by one of 0,....0,.
Since tggngl T, tg and T is upward-closed, tnggl € Ta. Therefore, terms in Tg

appear infinitely often in the above sequence. O

Theorem 3.5 Let R be an LL-GG-TRS, to € T(F), ¢ be an LTL formula, v be
a simple valuation. There exists a term tg € {q(t') | ¢ € Qp,t' € T(FU{a})} of
which the depth s ¢ or less, and

Rito " ¢ & tr € prefug(Tace N prefpra(TR)) and qos(to) € prefur.(Tr)
2N postﬁim,,] (postE‘BR,,]({tR}) N Tace) N Tg # 0
and Tr 0 postipr.({qos(to)}) # 0,

acc

where B is a Bichi automaton representing —¢, qop and Qg are the wnitial
state and accepting states of B, Tace = {qu(t) | ¢a € Ot € T(F U {a})},
To={tr0 |0 € T"F)}, Ta = {trf | 6 € T"(F U {a})}.

Proof. If R is an LL-GG-TRS, then BR" is also an LL-GG-TRS. 7. is upward-
closed and downward-closed w.r.t C,. Therefore, by Lemma 2.2 and Theorem
3.4, the theorem holds. O

Corollary 3.6 Let R be an LL-GG-TRS, to € T(F), ¢ be an LTL formula, v be
a simple valuation. If BRY is pre-PR or post-PR, then R,ty =" ¢ is decidable.

Proof. The corollary follows from the facts that the number of candidates for

tg in Theorem 3.5 is finite, that we can construct TAs which recognize T,

Xvil

{qo5(to)}, Tr and Tg, and Lemma 2.1.

XViil

4 Computing pre*

By Corollary 3.6, if an LL-GG-TRS R is post-PR or pre-PR, then LTL model
checking for R is decidable. Unfortunately, an LL-GG-TRS is not always post-
PR. For example, R = {f(z,y) — f(g9(x),g(y))} is an LL-GG-TRS. However,
post}({f(a,a)}) is not recognizable and thus R is not post-PR. It is unknown
whether every LL-GG-TRS is pre-PR. In this section, we propose a decidable
subclass of pre-PR TRS. Let R be a TRS. By the definition of pre-PR, for a given
TA A, if we can extend A so that t =z s € prex(L(.A)) implies ¢ € prek(L(A))
(backward closedness w.r.t.—%) then R is pre-PR. This requires us to add to
A new states and transition rules to satisfy the condition that t =z s F% ¢
implies t F% ¢. For example, let f(g(z,v)) — g(h(y),z) € R, t = f(g(a,b)),
s = f(h(b),a), and s F* f(h(q2),q1) F¥ ¢ for states ¢1,¢2 and ¢ of a TA A. Note
that ¢ —% s with substitution § = {z + a,y — b}. Then, we add the following
states and transition rules to A so that ¢ % q.

states: (g9(q1,42)), (f(9(q1,q2)))-
rules: ¢(q1,92) = (9(q1,42)), f({9(q1,92))) = (f(9(a1,42))), (f(9(q1,42))) = q.

That is, we use a subterm of the left-hand side of the rewrite rule as a state to keep
track of the position where the head of A is located. However, states substituted
into variables such as ¢y, g2, ¢ above may recursively be subterms, and hence the
above construction does not always halt. The condtion for a TRS R to be an
LL-SPO-TRS stated below is a sufficient condition for R not to have a kind of
overlapping between subterms of rewrite rules, which guarantees that the above

construction always halts.

4.1 LL-SPO-TRS

For an ordinary rewrite relation not limited to root rewriting, LL-FPO '-TRS
is known as a decidable subclass of pre-PR TRS (see section 2.2). Based on the

definition of LL-FPO !-TRS, we define a new subclass called LL-SPO-TRS and
show that every LL-SPO-TRS is pre-PR with respect to root rewriting.

Definition 4.1 (Sticking out relation)
Let s and ¢ be terms in T (F, V). We say s sticks out of ¢ if ¢ ¢ V and there exists

XiX

a position 0,4, € Pos(t) (lab(t, 044,) € V) such that

e for any positions 0 (A <prer 0 <pref Owar), 0 € Pos(s) and lab(s,0) =
lab(t,o0), and

® 0y, € Pos(s) and s,,,, is not a ground term.

When the position o0,,, is of interest, we say that s sticks out of ¢ at 0,,,.. If s
sticks out of ¢ at 0,4, and lab(s, 044y) is nOt a variable, then we say that s properly
sticks out of ¢ (at 0yqr). O

For example, f(g(x),a) sticks out of f(g(y),b) at 11 and f(g(g(x)),a) properly
sticks out of f(g(y),b) at 11. Remember that a configuration of a PDS is a pair

(q,w) of a control location (finite control) ¢ and a sequence w of symbols stored
in the pushdown stack. In the rest of this section, we assume that a signature F
is decomposed into II and X, that is, F = [IUX and I[INY = (). For each 7 € II,
we assume arity(m) = 1. Each 7 € II is called a control symbol and each f € ¥

is called a data symbol.

Definition 4.2 (Simply Path Overlapping TRS (SPO-TRS))

A TRS R is SPO if every rule in R has the form either 7y (1) — ma(r), m(l) = r
or [— r where my,m, € Il and [, € T(X,V), and the sticking-out graph G of
R has no cycle with weight one or more. The sticking-out graph of a TRS R is a
weighted directed graph Gg = (R, E). Let v, N vy denote a directed edge from
a node v; to a node vy, with weight 7. F is defined as follows. Let vy : [; — 1
(or m1(ly) — 71 or mi(ly) — ma(r1)) and vy @ Iy — 19 (or me1(ly) — 7o or
To1(ly) — Toa(ry)) be rules in R. Replace each variable in Var(l;)\Var(ry) or
Var(ly)\Var(ry) with a constant not in F, say o.

(1) If [y properly sticks out of 7y, then v, Lo, € E.
(2) If ry sticks out of Iy, then v; S v, € E.
O

If R is an LL-SPO-TRS, then for any TA A, we can construct a TA A, such that
L(A,) = prex(L(A)) (see Appendix). That is, every LL-SPO-TRS is pre-PR.

XX

Theorem 4.3 For every recognizable tree language L and LL-SPO-TRS R, prel (L)

18 also recognizable. O

Corollary 4.4 Assume t, € T(F), ¢ is an LTL formula and v is a simple
valuation. If R € LL-GG-TRS N SPO-TRS, then R,ty =" ¢ is decidable.

Proof. Let B = (Qp, Y5, Ap, qos, Q5°) be a Biichi automaton representing
—¢ and II be the set of control symbols of R. Consider the construction of
Biichi TRS BRY from R, B and v. If R is an SPO-TRS, then by constructing
(qg,p)(1) = (¢, p")(r) € BR” instead of ¢q(p(l)) — ¢'(p'(r)) € BR" for each rule
p(l) = p'(r) € R (p,p' € P), BR” becomes an SPO-TRS. By Corollary 3.6 and
Theorem 4.3, Rty =" ¢ is decidable. O

4.2 Application

As mentioned in section 3, we can model a recursive program with exception
handling by an LL-GG-TRS. If the LL-GG-TRS is always an SPO-TRS, then
LTL model checking for the TRS is decidable. Recall R, in Example 3.2. Since
for any two rules [y — r; and [y, — 79 in R4, [never properly sticks out of r9, Rs
is an SPO-TRS. Similarly, we can easily see that every LL-GG-TRS constructed
by the method in Example 3.2 is always an SPO-TRS. Thus, LTL model checking

problem is decidable for recursive programs with exception handling.

27/, --- LTL model checking

is decidable

Figure 3: The relation between TRS subclasses

XX1

5 Conclusion

In this paper, we introduced two classes of TRS, LL-GG-TRS and SPO-TRS,
and showed that for a TRS in LL-GG-TRS N SPO-TRS, LTL model checking is
decidable. Since every PDS is a member of LL-GG-TRS N SPO-TRS, this model
checking is considered as an extension of LTL model checking for PDS. In fact,
a recursive program with exception handling can be modeled as a TRS to which
this model checking method can be applied and to which no PDS is strongly
bisimilar.

We can reduce some decision problems of TRS to LTL model checking problems.
For example, let v be a regular valuation and ayr be an atomic proposition such
that v(ayr) = NFr. Whether there exists no infinite rewrite sequence starting
in to (strongly normalizing) is checked by R,ty = <&(anr), and whether there
exists a finite rewrite sequence starting in ¢, (weakly normalizing) is checked by
R, to [O(—ayr).

The following problems remain as future study:
e finding a wider subclass of TRS in which LTL model checking is solvable,
e developing an efficient LTL model checking method w.r.t. regular valuation,

e and finding other applications of this model checking method.

Acknowledgments The authors would like to thank Professor Igor Walukiewicz

of Université Bordeaux I for his valuable comments and discussions.

XXi11

References

1]

[10]

[11]

F. Baader and T. Nipkow: Term Rewriting and All That, Cambridge Uni-
versity Press, 1998.

E. M. Clarke, O. Grumberg and D. Peled: Model Checking, MIT Press, 2000.

J. L. Coquidé, M. Dauchet, R. Gilleron and S. Vagvolgyi: Bottom-up tree
pushdown automata: classification and connection with rewrite systems,
Theoretical Computer Science, 127, 69-98, 1994.

J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby
and H. Zheng: Bandera: Extracting finite-state models from Java source
code, Int’l Conf. on Software Engineering, 439448, 2000.

J. Esparza, D. Hansel, P. Rossmanith and S. Schwoon: Efficient algorithms
for model-checking pushdown systems, CAV2000, LNCS 1855, 232-247,
2000.

J. Esparza, A. Kucera and S. Schwoon: Model-checking LTL with regular
variations for pushdown systems, TACS01, LNCS 2215, 316-339, 2001.

J. Esparza and S. Schwoon: A BDD-based model checker for recursive pro-
grams, CAV2001, LNCS 2102, 324-336, 2001.

F. Gécseq and M. Steinby: Tree Automata, Académiai Kiado, 1984.

R. Gilleron: Decision problems for term rewriting systems and recognizable
tree languages, STACS’91, LNCS 480, 148-159, 1991.

R. Gilleron and S. Tison: Regular tree languages and rewrite systems, Fun-
damenta Informaticae, 24, 157-175, 1995.

L. Gong, M. Mueller, H. Prafullchandra and R. Schemers: Going beyond
the sandbox: An overview of the new security architecture in the Java’™
development kit 1.2, USENIX Symp. on Internet Technologies and Systems,

103-112, 1997.

XX1il

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

S. Graf and H. Saidi: Construction of abstract state graphs with PVS,
CAV97, LNCS 1254, 72-83, 1997.

P. Gyenizse and S. Vagvolgyi: Linear generalized semi-monadic rewrite sys-
tems effectively preserve recognizability, Theoretical Computer Science, 194,
87-122, 1998.

T. Jensen, D. Le Métayer and T. Thorn: Verification of control flow based
security properties, IEEE Symp. on Security and Privacy, 89-103, 1999.

S. Jha and T. Reps: Analysis of SPKI/SDSI certificates using model check-
ing, IEEE Computer Security Foundations Workshop, 129-144, 2002.

C. Loding: Model-checking infinite systems generated by ground tree rewrit-
ing, FOSSACS, LNCS 2303, 280-294, 2002.

R. Mayr: Process rewrite systems, Inform. € Comput., 156, 264—286, 1999.

T. Nagaya and Y. Toyama: Decidability for left-linear growing term rewriting
systems, RTA99, LNCS 1631, 256270, 1999.

N. Nitta, Y. Takata and H. Seki: Security verification of programs with stack
inspection, 6th ACM Symp. on Access Control Models and Technologies, 31—
40, 2001.

N. Nitta, Y. Takata and H. Seki: An efficient security verification method
for programs with stack inspection, 8th ACM Conf. on Computer and Com-
munication Security, 68—77, 2001.

J. Obdrzalek: Model checking Java using pushdown systems, ECOOP Work-

shop on Formal Techniques for Java-like Programs, 2002.
http://www.pobox.com/"cme/spki.txt

T. Takai, Y. Kaji and H. Seki: Right-linear finite path overlapping term
rewriting systems effectively preserve recognizability, RTA2000, LNCS 1833,
246-260, 2000.

XX1V

[24] 1. Walukiewicz: Pushdown processes: Games and model-checking, CAV96,
LNCS 1102, 62-74, 1996.

XXV

Appendix

A.1 Proof of Lemma 3.1(a)

Lemma 3.1 (a) Let R be an LL-GG-TRS and ¢ = maz,(R) + maz;(R) + 1.
Also let 0 =ty =»r t1 =R -+ =R tk1 =R tk =R tke1 of R be a root rewrite
sequence and oy € Pos(ty) be a position. If there exists o; € Res(og,t;) such that

loo| <'|o;| for each i(1 <i < k), then every position py € Pos>(ty) satisfies:

For an arbitrary py € Res(po, tx),
|pk| — ok U pk| > |po| — oo Upo| and |px| > maz;(R).

Proof. The proof is shown by induction on the length &k of o (Fig.4).
o k=0: |pr| = |po| > ¢ = maz,(R) + maz;(R) + 1 > maz;(R).

e k> 1: Let p; € Res(pj_1,t;) (1 <j <k), o; be the deepest residual of 0;_;
in term ¢;. By the induction hypothesis, |py_1|—|0k—1Upk—_1] > |po|—|0oLIpo|.
Since R is generalized-growing, |px| — ok U pk| > |pr_1| — |ok—1 U pr_1]-
Consequently,

[pk| — ok U pr| > |po| — |oo U pol. (A1)

Next, we show |px| > maz;(R) according to the following two cases.

— ok U pk| >]oo L po:
By (A.1),

lpk| > |po| > ¢ = maz,(R) + mazs(R) + 1 > mazp(R). (A.2)

— ok U pk| < oo U pol:
Since |og| > |og| by the hypothesis of the lemma, |ogx| — |ox U pg| >
|oo| — |00 U po|. Therefore, there exists i(1 < ¢ < k) such that

0| — [0; Up;i| > |0i—1] — |0i—1 U pi—1]| = |0o] — oo L po- (A.3)

Let l; 1 — r;_1 be the rule applied in t; | —x t;, then by (A.3), there
exists a variable v in /;_; and its occurrence o, satisfies 0;_1Up;—1 <pref

0y =pref 0j—1. Hence,

loi-1 Upi 1| < |oy| < maz,(R). (A.4)

XXV1

Again, by the hypothesis of the lemma, |og| < |o; 1|. Therefore, by
(A.3),

loo U po| = |oo] — |0i—1| + [0i1 Upi1| < o1 LUip; 4] (A.5)
By (A.4) and (A.5), we have
loo L po| < maz,(R). (A.6)
Also, by the hypothesis of the lemma,
Ipo| > ¢ = maz,(R) + maz;(R) + 1. (A.7)
Finally, by (A.1),(A.6) and (A.7),

P> Jox U pk| + |po| — oo L po|
> maz,(R) + maz;(R) + 1 — |og U po|
> maz;(R)

holds.

Figure 4: Proof of Lemma 3.1: The depth of p

A.2 Proof of Lemma 3.2

Lemma 3.2 Let R be an LL-GG-TRS and ¢ = maz,(R) + maz;(R) + 1. If

there exists an infinite root rewrite sequence o =tqg —g ty =g --- of R, then for

XXVil

any n > 0, there exists m > n such that for every p,, € Pos>.(tm), k > m and
se€ T(F):
tn|Pm < 8| =% te[Res(pm,) < s|.

Proof. There are two cases.

e Assume that there exists a position p, in t,, of which the lifetime is un-
defined. Let p; be the deepest residual of p, in t;(i > n), and m be the
minimum j(> n) such that |p;| < |p;| for each i(> j). Note that m is
always defined since ¢, —x t,4+1 —® ... is an infinite sequence. Also,
tm =R tma1 —r ... and p,, satisfy the hypothesis of Lemma 3.1. Hence,
by Lemma 3.1(b), the lemma holds.

e Assume that the lifetime of every position in ¢, is defined and let p? be
the longest-living position of ¢,, and 7 be the lifetime of p2. For each term
ti(n <i < n+7), let p? be the deepest residual of p in ¢;, and mg be the
minimum j(> n) such that |p2[< |p?| for each i(j <i < n+ 7). Note that
if 7 =0, then mo = n+1 and if V;(up1<i<ntr).[pi_1] > [P}, then mo = n+7.
An integer m and a position o are calculated by the following recursive
procedure. The procedure starts with ¢+ := 0 and at each recursion step,
let p'™ be a position in Poss.(tm,), which has the maximum lifetime in
Possc(tm,).

— The lifetime of p*' is n + 7 — m; or less:

m:=m;, 0= pﬁni and the procedure terminates.

— The lifetime of p*! is more than n + 7 — m;:
In this case, there is no position in ¢,, which has p'*! as a residual since
the lifetime of the longest-living position in ¢, is 7. Let ¢, be the first

term in o containing a position p’ which has p'*! as a residual (i.e.,
yepose,) D' € Res(p,tw —% tm,)). Let pitt

which has p**! as a residual for n’ < j < m,, and be the most shallow

be a position in ?;

residual of p"*! in ¢; for m; < j < n+ 7. Note that p’! = p™*!. Since

mg
pﬁjl is created by t, 1 — g tw,

Ip | < maz; (R). (A.8)

,nl

XXViil

In this procedure, we assume the induction hypothesis on i: For j(m; <
j<n+7), |ph.| < |pj|. Remember that [pji!| = [p""!| > c. Hence by
Lemma 3.1(a),

|p§~+1] > mazs(R). (A.9)

Let m; ;1 be the minimum j(n' < j < m;) such that Vj'(n' <j<j'<my)- p?—l’ <
|p§-7"1 . Then, by (A.8) and (A.9), for any j(n' < j <n+7), |p?@11| <
|p;-+1] holds (Fig.5). Finally, let i := i + 1.

Consider the case of m; = m;.1 = m;,o = Since the life-time of pini

i-+1 i+2

. . . l
increases with i, p;, , Pryirs Prmgyor -

are different positions in ¢,,,. There-
fore, from the fact that n < m;;; < m;, the procedure always terminates.
In any case, there is no position p' € Pos>.(t,) of which the lifetime is
more than n + 7 —m. Thus, for an arbitrary position p' € Poss.(ty,),
Res(p',tg) =0 (k > n+ 7+ 1) holds. On the other hand, for each j(m <
j < n+7), there exists 0 € Res(o,t;) and |o| < |o}] holds by the above
procedure. Therefore, by Lemma 3.1(b), t,[p" < s] =% t;[Res(p',t;)
s| =% tnirr1[Res(V tniri1) < S| = tnirs1r =% te = tp[Res(p,tgy) < s
(m<j<n+r1,k>n+7+1) and the lemma holds.

o+t

i+1

Figure 5: Proof of Lemma 3.2: Selection of p'™ and m;,

A.3 Constructing A,

Construction 1

For simplicity, we first consider the case that P = ().

XX1X

Input: Left-linear TRS R
Deterministic and complete TA A = (F, Q, A, Qfinal)
Output: A, such that £(A,) = preks (L(A))
Procedure: In the following steps, a series of TA Ay, Ay, Ay,... are con-
structed. Let Ay = (Fy, Qk, Ax, Qﬁnal) and k4, is abbreviated as .
Stepl: A := (F, QU Qfinel A Qfinal |y Qfinaly where QFfnl = [| ¢ € QFinet};
k = 0;
Step2: Qi1 := 9, Qﬁj_“ll = Qf"“l, Apy1 = Ay;
Step3:
Il —-1rewR,
Var(r) ={zy,...,2m},
z;(1 < i< 'm) occurs at 0;1,..., 04, in 7,
rloij + ai; € Qk1 <i <m,1<j <] F;qe Q™
where no e-move occurs at a variable position of r,
L# =gl <j<v}(A<i<m),
P Var(l) \ Var(r) — O,
p={zi— 1 <i<m}up

(A.10)
<lp> — q € Ak+15
ADDREC(1, p),
(t;) € Qrp1(1 <i<m).
ADDREC(f(t1,. .. ,tn), p) (A1)
Ftap), o (tnp)) = (f(tr, s tn)) € Dpa,

ADDREC (t;, p)(1 < i < n),
(f(t1y . ytn)) € Qpar.
In (A.10) and (A.11), if ¢ = ¢’ for ¢ € Q" then ¢ denotes ¢ itself. Also,
if t € Qy, then (t) denotes ¢t. For example, if ¢o € Qp, then () = qo, and if
t={(f(q)) € Qx, then (t) =t.

Step4: If Axyy = Ay, then output Ay as A, and halt. Otherwise, k ==k + 1
and goto Step2.

XXX

The operation LI used in (A.10) is defined as:

(t ift=t¢€c Qor
teT(ZUQ)\ Q. € Qtkit

t ifte @t e T(XUQ)\ Q' Hit,

fleyudy, ... t,ut)
ift = f(ty,...,tn) €T(ZUQ)\ Q,
= f(t,....t) e T(XUQ)\ Q, and
tiUt# L(1<i<n),

\ 1 otherwise.

tut =

In the general case where IT # (), add to Step 3 a construction rule obtained from
(A.10) by replacing Il - r € R with 7(l) > r € R (m € II, I € T(3,V) and
r € T(F,V)) in the premise and replacing (Ip) — § € Agyq with (lp) — [7, 4],
7([m,q]) = ¢ € Agt1, [7,q] € Qk41 in the conclusion.

O

The above construction satisfies the following properties. The proofs are similar
to those in [23] and omitted here.

Lemma 4.1 (Soundness and Completeness) Jyo : t 5 q or G (@ € Q™) if and
only if t —% Is k2 q. O

Lemma 4.2 (Termination) For every TA A and LL-SPO-TRS R, Construction
1 halts. a

By Lemmas 4.1 and 4.2, we can show that every LL-SPO-TRS is pre-PR.

XxXX1

A.4 Non-Bisimilarity between PDS and Program with
Exception Handling

Consider the following LL-GG-TRS R; with F = {L, 0} (arity(L) = 2,arity(0) =
0):

Rg :{
L(z,y) — x, : ret
L(z,y) — v, : throw
L(z,y) = L(L(z,y),y), : call
L(z,y) = L(x,L(z,y)) : try-catch
}.
aco) a) a2) a(3)
S N " "
oo O L L R
SN N SN N N
w Lo o L LO O
N /N /N
0 O O L OO
S
0 O

Figure 6: An infinite root rewrite sequence of R

R3 models a program with exception handling and is an example of LL-GG-
TRS having no strongly bisimilar PDS, which will briefly show here. (Let L(O, O)
be the initial state of R3 as a transition system.) Assume that there exists a PDS
P = (P,T,A,q) which is strongly bisimilar to Rz, where P is a finite set of
control locations, I' is a finite stack alphabet, A C (P x ') x (P x ') is a
finite set of transition rules, ¢y € P is an initial location. Note that the initial
configuration of P is (go, A). Let R C T(F) x (P x I'*) be a strong bisimulation
relation and h : T(F) — (P x I'*) be a function such that ¢ Rh(t) for any term
t. Consider an infinite root rewrite sequence o (Fig.6) such that o(0) = L(O, 0),
o(1) = L(0O, L(0O,0)) (obtained by applying the try-catch rule), and o(n+1) is
obtained by applying the call rule to o(n) for n > 1, where o(n) (n > 0) denotes

the n-th term in 0. We can see that for any two different integers n’ > n > 0,

XXXil

there exists no configuration (g, w) in P such that o(n) R (¢, w) and o(n’) R (g, w)
by the following reason. Assume that there exists such a configuration (g, w).
From bisimilarity of R, 0(0) can be reached by n' times transitions from o(n).
This is a contradiction since o(0) can be reached only by n or less transitions
from o(n). Hence, h(o(n)) # h(o(n')) whenever n # n'. Since o is an infinite
sequence, {h(co(n)) | n > 0} is also infinite. Let (g,,w,) = h(o(n)). Then, from
the finiteness of P, we can see that W = {w,, | n > 0} is infinite. On the other
hand, o(n) —g, 0(0) for any n > 0. This implies (gn, w,) — (g, A\) € A and
thus w, is bounded. This contradicts the infinity of W.

XXX111

