
A Design Scheme for Delay Fault Testability of Controllers
Using State Transition Information

Tsuyoshi Iwagaki Satoshi Ohtake Hideo Fujiwara

Graduate School of Information Science, Nara Institute of Science and Technology
Kansai Science City 630-0192, Japan

E-mail: �tsuyo-i, ohtake, fujiwara�@is.aist-nara.ac.jp

Abstract

This paper proposes a non-scan testing scheme to en-
hance delay fault testability of controllers. In this scheme,
the original behavior of a given controller is used in test
application, and the faults which cannot be detected by the
original behavior are tested by an extra logic called an in-
valid test state/transition generator (ISTG). Our scheme al-
lows the following: (1) use of a combinational test gen-
eration tool, (2) achieving short test application time and
(3) at-speed test. We experimentally show the effectiveness
of our method. In our method, unlike scan-based methods,
ISTGs can be designed flexibly in response to test qualities
demanded by circuit designers.

1. Introduction

Modern high speed VLSI circuits need delay fault testing
because conventional stuck-at fault testing cannot guarantee
the timing correctness of the circuits. Usually, such circuits
are designed at register-transfer level (RTL). A VLSI cir-
cuit designed at RTL generally consists of a controller, rep-
resented by a state transition graph (STG), and a data path,
represented by hardware elements (e.g, registers, multiplex-
ers (MUXs) and operational modules). Recently, design for
testability (DFT) techniques for RTL circuits have been pro-
posed [5].

In general, delay test generation for VLSI circuits is a
hard problem. In [1], all the redundant path delay faults in
a sequential circuit are classified into three categories: (1)
combinationally non-activated paths, (2) sequentially non-
activated paths and (3) unobservable fault effect. A sequen-
tial test generation tool (ATPG) spends huge time to identify
these redundant faults, and it is virtually impossible to iden-
tify all of them. To facilitate delay test generation, standard
scan designs [8, 7, 2, 9] and enhanced scan designs [3, 1]
have been proposed [4]. These design methods make most
or all faults in categories (2) and (3) irredundant by making
all the flip-flops (FFs) completely controllable and observ-
able. Thus, since we need only identifying faults in cat-
egory (1) by using a combinational ATPG, the test genera-
tion time is significantly reduced and the fault efficiency be-
comes higher. However, in scan-based delay testing, due to

the scan-shift operation, the test application time becomes
longer. In addition, the scan-shift operation is performed
at a low clock speed while second vectors of two-pattern
tests are launched at the rated clock speed. This situation
may cause inductive voltage drops because the operating
speed, i.e., circuit current, rapidly changes. As a conse-
quence of the voltage drops, the test will fail. Therefore,
it is desirable that the operating speed is constant in test
application. For stuck-at fault model, a DFT method for
controllers, which overcomes the drawbacks of scan-based
testing, has been proposed [6]. This method is a non-scan
based one to achieve 100% fault efficiency by using a com-
binational ATPG, short test application time and at-speed
test. In this method, the above merits are realized by ap-
pending an extra logic, called an invalid test state generator
(ISG), and some extra pins to the original controller.

This paper proposes a non-scan testing scheme, which
is an extension of one in [6], to enhance delay fault testa-
bility of controllers. In this scheme, the original behavior
of a given controller is used in test application. For only the
faults which cannot be detected by the original behavior, we
append an extra logic, called an invalid test state/transition
generator (ISTG), to the original controller. In order to de-
sign ISTGs flexibly in response to test quality demanded
by circuit designers, we classify the redundant faults in a
controller into five categories. Based on these categories,
we can choose test qualities for delay faults by designing
ISTGs appropriately. Our scheme allows the following: (1)
use of a combinational ATPG, (2) achieving short test appli-
cation time and (3) at-speed test. Experimental results show
the effectiveness of our method.

2. Preliminaries

2.1. Target circuit and fault model

In this paper, we target controllers represented by STGs.
Figure 1 is an example of a controller represented by an
STG, and Figure 2 is a gate-level implementation of a con-
troller. It is assumed that a controller has a reset signal, i.e.,
we can make a transition from any state to the reset state by
activating the reset signal. We also assume that, for a given

1

s0

s2

s1

s3

s4

s5

reset

Figure 1. STG representing a controller.

PIs: primary inputs
POs: primary outputs
SR: state register
R: reset signal

Combinational
circuit

PIs POs

SR

R

Figure 2. Synthesized controller.

controller, the mapping information in a state assignment is
known. Our target fault model is the delay fault model.

2.2. Terminologies

Here, we define several terminologies. For any value of
the state register (SR) in a sequential circuit synthesized
from a given STG, if the corresponding state of the value
is reachable from the reset state in the STG, then the state
is called a valid state. Otherwise, it is called an invalid
state. For a synthesized controller (Figure 2), a combina-
tional circuit extracted from the controller by replacing the
SR with pseudo primary inputs (PPIs) and pseudo primary
outputs (PPOs) is called a combinational test generation
model (Figure 3). Given a controller, each two-pattern test,
�V1�V2�, for the combinational test generation model can be
denoted as �I1&S1� I2&S2�, where I1 and I2 are the values of
primary inputs (PIs), S1 and S2 are the values of PPIs, and
& is concatenation. Suppose the value of a present state
is S1 in an STG. Then, if the value of the next state is S2
when I1 is applied, the two-pattern test is called a valid two-
pattern test. Otherwise, it is called a invalid two-pattern
test. The transition corresponding to a valid (resp. invalid)
two-pattern test is called a valid (resp. invalid) test transi-
tion. A valid state that appears in some valid/invalid two-
pattern tests is called a valid test state, and an invalid state
that appears in some invalid two-pattern tests is called an in-
valid test state. We show an example of test states/transition
in Figure 4.

PPIs: pseudo primary inputs
PPOs: pseudo primary outputs

Combinational
circuit

PIs POs

PPOsPPIs

Figure 3. Combinational test generation
model.

s0

s2

s1 s6

s3

s4

s5

reset

: invalid test transition
: valid test transition

: invalid test state
: valid test state

s7

Figure 4. Test states/transitions.

3. Proposed method

3.1. Test architecture

In our testing scheme, the original behavior of a given
controller is used in test application, i.e., valid two-pattern
tests are applied by the original behavior. The faults that
cannot be detected by the original behavior are tested by
an extra logic called an invalid test state/transition gen-
erator (ISTG). Our test architecture is shown in Figure 5.
In Figure 5, respective DFT elements play the following
roles:
� The ISTG generates invalid two-pattern tests.
� The extra pins of tsel distinguish among invalid two-

pattern tests in which first vectors are the same.
� The extra pins of tout observe the value of the SR.
� The extra pin of tmode and MUXs switch between the

signal from the combinational part of the controller
and that from the ISTG.

This architecture can achieve short test application time and
at-speed test because the scan-shift operation is never used.

3.2. Flow of our method

The procedure of our method is as follows:
Step 1: Generate valid two-pattern tests under constraints.
Step 2: Generate invalid two-pattern tests including don’t

care (X) values under no constraints.
Step 3: Make an ISTG.
Step 4: Generate a test sequence for the original circuit.

In the next subsection, the details of these steps are ex-
plained.

2

Combinational
circuit

PIs POs

SRtout

R

tsel

tmode

ISTG

Figure 5. Proposed test architecture.

(2) Sequentially redundant faults
at logic level with tout

(4) Sequentially redundant faults
at functional level with tout

(1) Combinationally redundant faults

(3) Sequentially redundant faults
at logic level without tout

(5) Sequentially redundant faults
at functional level without tout

(1) (2)(3)

(5)

(4)

Figure 6. Classes of redundant faults.

3.3. Details of our procedure

First, we describe several classes of the redundant faults
in a controller. These redundant faults are classified into
five categories shown in Figure 6 based on tout, which is our
DFT element. The redundant faults in class (1) are redun-
dant in the combinational part of the controller. Some irre-
dundant faults in the combinational part become redundant
due to the limitation of state transitions in the synthesized
controller. Such faults belong class (3). In synthesizing a
given STG, some new states and transitions are generally
added to the synthesized controller. This implies that some
irredundant faults in the complement of class (3) become
redundant if we only consider the original behavior of the
given STG. We classify these faults into class (5). If we
append tout to the synthesized controller, some redundant
faults in classes (3) and (5) are detectable. Thus, classes (3)
and (5) change into classes (2) and (4) respectively if tout is
added. In the following discussion, we use the above clas-
sification.

In Step 1 of the previous subsection, for the combina-

Table 1. Truth table of an ISTG.
Inputs Outputs

I1
1 &S1

1 S1
2

I2
1 &S2

1 S2
2

...
...

In
1 &Sn

1 Sn
2

tional test generation model of a given controller, we use a
combinational ATPG. In order to generate valid two-pattern
tests, we give some information (constraints) to the ATPG.
A constraint is a tuple, (C1, C2), including the values of PIs
and PPIs. We extract constraints from a given STG. The
values of PIs and PPIs corresponding to a transition in the
STG are used as the value of a constraint. Some parts of
a constraint have unspecified values. In generating a two-
pattern test, the values of C1 and C2 are set as the values of
the first vector and second vector, respectively. Then, the
ATPG only generates vectors for the unspecified parts of
the first vector and second vector. If the value correspond-
ing to a transition in a given STG is used as a constraint,
generated two-pattern tests under the constraint can be al-
ways applied by the original behavior of the controller. In
Step 1, we use all the constraints corresponding to the tran-
sitions in the STG. Therefore, we can identify all the redun-
dant faults in class (4). If the designer of a given controller
judges that it is sufficient to test only the faults in the com-
plement of class (4), Steps 2 and 3 are skipped, i.e., only tout

is appended to the controller as a DFT element. However,
the remaining faults that are not detected by Step 1 may af-
fect the operation in a manufactured chip if at least one of
them exists in the chip. This is because that the remaining
faults may be activated due to new states and transitions ap-
pended to the original controller in synthesizing. Steps 2
and 3 should be performed if the designer is concerned with
these faults.

In Step 2, we generate two-pattern tests, which are in-
valid, including X values for the remaining faults in Step 1
under no constraint. In Step 3, for each X in invalid two-
pattern tests, we contrive to assign 0 or 1 in order to reduce
the hardware (area and pin) overhead and test application
time. This step identifies all the redundant faults in class (1).

In Step 3, we construct an ISTG. An ISTG realizes
the functions of invalid two-pattern tests for the redundant
faults in class (4) except (1). For example, given n invalid
two-pattern tests t1 � �I1

1 &S1
1� I1

2 &S1
2�, t2 � �I2

1 &S2
1� I2

2 &S2
2�,

� ��, tn � �In
1 &Sn

1� In
2 &Sn

2�, an ISTG must realize the functions
shown in the truth table (Table 1). Note that if there exist m
two-pattern tests that satisfy I 1

1 &S1
1 � I2

1 &S2
1 � � ��� Im

1 &Sm
1

and Si
2 �� S j

2 (�i� j, 1 � i� j � m, i �� j), we need tsel whose
bit width is �logm� to distinguish among them.

The area overhead of an ISTG depends on the number of
varieties of transitions in invalid two-pattern tests. By using
a technique, e.g., [10], which can identify some sequentially
redundant faults in advance, and removing those faults from

3

Table 2. Intersection operator.
	 0 1 X

0 0 /0 0
1 /0 1 1
X 0 1 X

the fault list in Step 1 or 2, we can reduce the area over-
head because the number of invalid two-pattern tests, i.e.,
the number of varieties of transitions, is reduced. More-
over, for each X in invalid two-pattern tests, if we contrive
ways to assign 0 or 1, the hardware overhead and test ap-
plication time can be reduced. We have investigated several
techniques to assign the suitable value to X . However, in
the following discussion, we only pick up two techniques
(Strategy 1 and 2) to reduce the area overhead due to the
limitation of space.

The problem to obtain an ISTG whose area is minimum
is formalized as follows:
Given: The set of invalid two-pattern tests including X val-

ues.
Solution: An ISTG whose area is minimum.
As mentioned previously, the area of an ISTG depends on
the number of varieties of transitions in invalid two-pattern
tests. Therefore, if we reduce the number of rows in the
truth table of the ISTG, the area of the ISTG can be re-
duced. We introduce a terminology here. For two vectors
Vi � �vi

1�vi
2� �� ��vi

n� and Vj � �v j
1�v j

2� � �� �v j
n� (v
 �0�1�X�),

they are said to be compatible if vi
k 	v j

k �� /0 (�vi
k�v j

k), where
	 is the intersection operator defined by Table 2.

Two techniques to reduce the area overhead are as fol-
lows.
Strategy 1: We first consider to minimize the num-
ber of rows in the truth table of the ISTG. Given two
invalid two-pattern tests t i � �Ii

1&Si
1� Ii

2&Si
2� and t j �

�I j
1&S j

1� I j
2&S j

2�, if Ii
1&Si

1&Si
2 and I j

1&S j
1&S j

2 are compat-
ible, we can merge them into one function by assigning
the suitable value. For example, given invalid two-pattern
tests t1 � �0X&01�1X&0X� and t2 � �X1&X1�00&01�,
“0X010X” and “X1X101” are compatible. Therefore, if
we assign the value as follows: t1 � �01&01�1X&01�,
t2 � �01&01�00&01�, we can merge them into the function
of “0101�01” (inputs�outputs). From this observation, we
solve this problem as a clique partitioning problem (CPP)
[5] on a compatibility graph, where a vertex t represent a
vector and an edge �ti� t j� indicate that two vertices ti and t j
are compatible.
Strategy 2: If the values of S1

2�S2
2� �� ��Sn

2 in Table 1 are
the same, the area of the ISTG will be very small. This is
because that the ISTG always output the same value. In the
second way to reduce the area of an ISTG, we consider to
minimize the number of varieties of the output values. This
problem is also solved by using a similar way of Strategy 1.

Note that, in the above discussion, although we only con-
sider the area overhead, we have developed several tech-
niques to reduce the bit width of t sel and the test application

Table 3. Distance matrix.
R t1 t2 � �� tn

R ∞ d�R� t1� d�R� t2� � �� d�R� tn�
t1 d�t1�R� ∞ d�t1� t2� � �� d�t1� tn�
t2 d�t2�R� d�t2� t1� ∞ � �� d�t2� tn�
...

...
...

...
. . .

...
tn d�tn�R� d�tn� t1� d�tn� t2� � �� ∞

time. However, we omit to describe them due to the limita-
tion of space.

In Step 4, in order to generate a test sequence, we de-
termine an order of applying all the two-pattern tests to the
original controller. Here, we consider the problem to ob-
tain the test sequence which has the minimum length as
an asymmetric traveling salesperson problem (ATSP) on a
graph with a distance matrix, where a vertex t corresponds
to a two-pattern test, and an arc �ti� t j� of corresponds to the
path between ti and t j. The distance d�ti� t j� means the min-
imum clock cycles that are needed to apply the first vector
of t j after applying ti. Note that if the values of the second
vector of ti and the first vector of t j are the same, the value
of d�ti� t j� is �1. Thus, we can generate a test sequence by
solving the corresponding ATSP. Table 3 is an example of a
distance matrix. In this table, d�R� t� (resp. d�t�R�) denotes
the minimum distance from the reset state R (resp. S3) to S1
(resp. R), where S1 is the state in applying the first vector
of t, and S3 is the reaching state after applying the second
vector of t. Note that, in a solution of the ATSP, vertex R is
always visited first because the initial state is R in the test
application.

4. Advantages of our method

4.1. Conventional methods and our method

In this subsection, we compare the proposed method to
conventional methods (standard scan and enhanced scan
methods).
Standard scan method: Test generation for a controller
designed by this method requires a combinational ATPG
which supports the skewed-load [7, 8] or broad-side [9]
mode. In generating tests under the skewed-load mode, re-
dundant faults in class (1) are dealt with as redundant faults
in this scheme. When the mode is the broad-side one, re-
dundant faults in class (1) and a subset of redundant faults in
class (3) except (1) are dealt with as redundant faults. Gen-
erated two-pattern tests are applied to the controller through
a scan chain in the skewed-load or broad-side fashion. The
test application time is estimated as n�nSSFF � 2� � nSSFF,
where n and nSSFF are the number of two-pattern tests and
standard scan FFs (SSFFs), respectively. In this method,
each SSFF in the controller has an additional MUX. There-
fore, the area overhead is AMUX nSSFF, where AMUX is the
area of the additional MUX. Due to the additional MUXs,
the circuit delay increases. The increasing delay is equal to
the delay of an MUX. This method needs three additional

4

pins. Note that we assume that this method has a single scan
chain.
Enhanced scan method: We can generate tests for a con-
troller designed by this method by using a combinational
ATPG. In the test generation, redundant faults in class (1)
are dealt with as redundant faults in this scheme. The
test application time is estimated as 2n�nESFF�1��nESFF,
where nESFF is the number of enhanced scan FFs (ESFFs).
Each ESFF in the controller has an additional MUX and
a hold latch (HL) [3]. The area overhead is, therefore,
�AMUX � AHL� nESFF. The delay penalty is higher than
that of the standard scan method because of the HL. The
increasing circuit delay is equal to the sum of the delays
of an MUX and an HL. Furthermore, the pin overhead of
this method is high compared with that of the standard scan
method because the HL have to be controlled by an addi-
tional pin. The total number of additional pins is four. Note
that it is also assumed that this method has a single scan
chain.
Our method: In our method, we first generate tests for the
combinational test generation model of a controller by using
a combinational ATPG under the constraints extracted from
the STG. The test generation is repeated nc times, where
nc is the number of constraints. In generating tests, redun-
dant faults in class (4) are dealt with as redundant faults
in this process. Note that if a circuit designer decided that
generating tests for faults in class (4) except (1) is not nec-
essary, the next process can be omitted. Otherwise, we
generate tests for the remaining faults under no constraint.
In this process, redundant faults in class (1) are dealt with
as redundant faults. For the generated invalid two-pattern
tests for the remaining faults, we construct an ISTG. The
test application time is determined by an order of apply-
ing all the two-pattern tests to the controller. Therefore, if
we can obtain a good solution of the corresponding ATSP,
the test application time can be reduced. The area over-
head is AMUXnFF�AISTG, where nFF is the number of FFs
and AISTG is the area of the ISTG. The proposed method
has the same delay penalty compared to that of the standard
scan method. The extra pins (tsel, tout and tmode) are needed
in our method. The sum of the bit width of these pins is
�tsel�� �tout�� 1. In a controller-data path circuit, which is
composed of a controller and a data path, we can use the
primary inputs and outputs of the data path as t sel and tout,
respectively. It allows the pin overhead to be reduced to
two.

Here, we mention several essential differences among
these methods. Since the scan-shift operation is needed
in scan-based methods, we cannot perform at-speed test.
However, our method allows it. Furthermore, in our
method, we can reduce the area overhead by using a tech-
nique, e.g., [10], which can identify some sequentially re-
dundant faults in advance, and removing those faults from
a fault list. In contrast with our method, the hardware over-
heads of scan-based methods cannot be reduced even if the
technique is used. In other words, ISTGs can be designed

flexibly in response to test qualities demanded by circuit de-
signers.

4.2. Experimental results

In this subsection, we evaluate test generation time, fault
efficiency, test application time and hardware overhead of
the proposed method.

We used four MCNC ’91 benchmark circuits shown in
Table 4. Columns “#PIs”, “#POs”, “#States” and “#FFs”
denote the numbers of primary inputs, primary outputs,
states and FFs, respectively. Column “Area” is the area es-
timated by Design Compiler (Synopsys). In synthesizing
benchmark circuits, binary encodings and one-hot encod-
ings were used.

Tables 5 and 6 show test generation results and hardware
overheads in binary encodings and one-hot encodings, re-
spectively. TestGen (Synopsys) was used as a delay test
generation tool, and the transition fault model was targeted.
In Tables 5 and 6, we compared our method (NS) to an stan-
dard scan technique (SS) and an enhanced scan technique
(ES). Note that, in SS and ES, we assumed a single scan
chain. For SS, we compared only the hardware overhead.
Columns “TGT [s]”, “FE [%]” and “TAT [CC (clock cy-
cles)]” denote test generation time, fault efficiency under
the non-robust criterion and test application time, respec-
tively. Columns “Area OH [%]” and “Pin OH” denote area
overhead and pin overhead, respectively. Column “Ratio of
Area OH” denotes the ratio among the area overheads in
respective methods.

In the test generation results, the test generation time of
our method was longer than that of ES because we per-
formed test generation for all the constraints of a given
circuit. However, especially in the one-hot encodings, the
test application time of our method was significantly short
compared with that of ES. Furthermore, unlike ES, we can
perform at-speed test in our method. This implies that the
actual test application time of our method becomes much
shorter than that of ES.

In the result of hardware overhead, the area overhead of
SS was the smallest of all. The area overhead of our method
was smaller than that of ES, except two cases. Note that, in
this experiment, we randomly assigned 0 or 1 to X in in-
valid two-pattern tests for simplicity. Therefore, the area
overhead of our method can be improved if we use the tech-
niques described in Section 3.2. Moreover, by using a tech-
nique, e.g., [10], which can identify sequentially redundant
faults in advance, and removing those faults from a fault
list, the area overhead can be reduced. Also note that if we
do not take into account the redundant faults in class (4)
(Figure 6), ISTGs will not be necessary. In other words,
only tout is appended to the original controller as a DFT el-
ement. The pin overhead of our method was the largest of
all. However, if we consider a controller-data path circuit,
we can use the primary inputs and outputs of the data path
as tsel and tout, respectively. As a result of the sharing, the

5

Table 4. Circuit characteristics.

Circuit name #PIs #POs #States
#FFs Area

Binary One-hot Binary One-hot

dk15 3 5 4 2 4 127 168
dk17 2 3 8 3 8 134 173

kirkman 12 6 16 4 16 360 500
sand 11 9 32 5 32 866 1,020

Table 5. Test generation results and hardware overheads in binary encodings.

Circuit name
TGT [s] FE [%] TAT [CC] Area OH [%] Pin OH Ratio of area OH

ES NS ES NS ES NS SS ES NS SS ES NS SS : ES : NS

dk15 0.16 0.77 100.00 100.00 170 138 11.0 22.0 11.8 3 4 4 1 : 1�10 : 1�01
dk17 0.13 1.27 100.00 100.00 211 144 15.7 31.3 18.7 3 4 4 1 : 1�14 : 1�03

kirkman 0.50 14.20 100.00 100.00 934 429 7.8 15.6 19.2 3 4 8 1 : 1�07 : 1�11
sand 1.52 30.09 100.00 100.00 1,973 979 4.0 8.1 17.8 3 4 10 1 : 1�04 : 1�13

Table 6. Test generation results and hardware overheads in one-hot encodings.

Circuit name
TGT [s] FE [%] TAT [CC] Area OH [%] Pin OH Ratio of area OH

ES NS ES NS ES NS SS ES NS SS ES NS SS : ES : NS

dk15 0.11 0.92 100.00 100.00 294 153 16.7 33.3 17.9 3 4 6 1 : 1�14 : 1�01
dk17 0.11 1.03 100.00 100.00 494 153 32.4 64.7 41.0 3 4 11 1 : 1�24 : 1�07

kirkman 0.57 15.88 100.00 100.00 2,974 645 23.0 45.9 31.6 3 4 18 1 : 1�19 : 1�07
sand 1.32 21.88 100.00 100.00 9,470 977 22.0 43.9 29.5 3 4 36 1 : 1�18 : 1�06

pin overhead can be reduced.

5. Conclusions and future works

This paper proposed a non-scan testing scheme to en-
hance delay fault testability of controllers. Our scheme al-
lows the following: (1) use of a combinational ATPG, (2)
achieving short test application time and (3) at-speed test.
In the proposed method, for only the faults needed to be
tested, we append DFT elements to a given controller. That
is, in response to test qualities demanded by circuit design-
ers, we can design ISTGs flexibly. We showed the effective-
ness of our method by the experiment. Our future works are
to develop ways to reduce pin overhead and test generation
time.

Acknowledgments

We would like to thank Prof. Michiko Inoue of Nara
Institute of Science and Technology for her valuable com-
ments. This work was supported in part by 21st Century
COE Program and in part by Japan Society for the Promo-
tion of Science (JSPS) under Grants-in-Aid for Scientific
Research B(2) (No. 15300018).

References

[1] T. J. Chakraborty, V. D. Agrawal and M. L. Bushnell, “De-
sign for testability for path delay faults in sequential cir-
cuits,” Proc. 30th ACM/IEEE Design Automation Conf., pp.
453–457, 1993.

[2] K.-T. Cheng, S. Devadas and K. Keutzer, “Delay-fault test
generation and synthesis for testability under a standard scan
design methodology,” IEEE Trans. on CAD, Vol. 12, No. 8,
pp. 1217–1231, Aug. 1993.

[3] B. I. Dervisoglu and G. E. Stong, “Design for testability:
using scanpath techniques for path-delay test and measure-
ment,” Proc. Int. Test Conf., pp. 365–374, 1991.

[4] A. Krstić and K.-T. Cheng, Delay fault testing for VLSI cir-
cuits, Boston: Kluwer Academic Publishers, 1998.

[5] M. T.-C. Lee, High-level test synthesis of digital VLSI cir-
cuits, Boston: Artech House, 1997.

[6] S. Ohtake, T. Masuzawa and H. Fujiwara, “A non-scan ap-
proach to DFT for controllers achieving 100% fault effi-
ciency,” Journal of Electronic Testing: Theory and Appli-
cations (JETTA), Vol. 16, No. 5, pp. 553–566, Oct. 2000.

[7] S. Patil and J. Savir, “Skewed-load transition test: part II,
coverage,” Proc. Int. Test Conf., pp. 714–722, 1992.

[8] J. Savir, “Skewed-load transition test: part I, calculus,” Proc.
Int. Test Conf., pp. 705–713, 1992.

[9] J. Savir and S. Patil, “On broad-side delay test,” Proc. VLSI
Test Symp., pp. 284–290, 1994.

[10] R. C. Tekumalla and P. R. Menon, “On redundant path delay
faults in synchronous sequential circuits,” IEEE Trans. on
Computers, Vol. 49, No. 3, Mar. 2000.

6

