
Virtual Joins for XML Data

Dao Dinh Kha

Graduate School of Information Science

Nara Institute of Sci. & Tech., Japan

kha-d@is.aist-nara.ac.jp

Masatoshi Yoshikawa

Information Technology Center

Nagoya University, Japan

yosikawa@itc.nagoya-u.ac.jp

Shunsuke Uemura

Graduate School of Information Science

Nara Institute of Sci. & Tech., Japan

uemura@is.aist-nara.ac.jp

Abstract

Establishing the hierarchical order among the XML elements is an essential function of the XML
query processing techniques and there are a number of proposals for the task. Although most of XML
documents have associated DTD or XML schema, the prior query processing techniques have not uti-
lized the document structure information efficiently. Each of prior techniques has an advantage in
processing only a type of queries and it is difficult to incorporate them to complement each other.

In this study, we propose a novel XML query processing method that uses DTD or XML schema to
improve the I/O complexity of XML query processing. We design a Structure-based Coding for XML data
(SCX) that incorporates both structure and tag name information extracted from the document structure
descriptions. Given the tag name and the structure code of an element, SCX allows to determine the
tag name and the structure code of the parent element without I/O. This property of SCX provides a
Virtual Join mechanism that greatly reduces I/O workload for processing XML queries. We present the
algorithms to apply the Virtual Joins for processing the queries of both path and twig patterns, where
SCX can be integrated with other structural join techniques to improve the XML query processing. Our
experimental results indicate that SCX accelerates the processing of path queries significantly and the
efficiency increases in correspondence with the join workload of XML queries and the size of data sets.

1. Introduction

XML [18] data has a recursive tree structure, which can be represented by a rooted label tree. The
structure of XML documents in a class can be described by a grammar that is a set of rules of the
hierarchical relationship among XML elements in the instance documents of this class. The hierarchical
order of elements in an XML document physically depends on their location in the physical storage
structure of the document. On the other hand, the elements have to obey the schematic order described
in the grammar associated with the class containing the document.

Queries on XML data typically specify elements by selection predicates and their tree structure re-
lationship. There are a number of proposed methods for verifying the structure relationship of XML
elements. An enumeration that allows the identifier of the parent element to be computed from the
identifier of a child element has been presented in [19], hence the “parent-child” relationship can



be determined using a calculation on the identifiers. The oversize length of identifier and the lack of
ability to determine the tag name of the parent element limit the efficiency of this numbering scheme
in query processing. The pattern of node paths has been used in [7] to select the elements having the
similar hierarchical order. In [6, 8, 10, 12, 15], the 3-tuple (startPos, endPos, level) and equivalent
tuples have been used to present the hierarchical order of XML elements in an XML document. The
recent approaches to the problem use the structural joins, which select the pairs of XML elements from
the candidate sets such that a given hierarchical order holds.

Note that most of XML documents in use are associated with a DTD or XML schema. Since the
descriptions integrate the document structure with data types and define the relation of schemata to
XML document instances, the XML documents exchanged over the web can share their grammars effi-
ciently. However, the prior techniques to process XML queries have not utilized the information about
the schematic structure of XML documents expressed in the descriptions. For example, the enumeration
in [19] has been designed for a general tree without any restriction on its structure. Similarly, the pre-
sentation (startPos, endPos, level) in [6,8,10,12,15] is extracted from an XML instance document
with the assumption that the XML tree can be in any shape.

In structural joins, the indexing data of the candidate sets, a portion of which is only used to produce
the partial answers, has to be provided before joining, normally by I/O access to the secondary memory.
However, the previous papers have not sufficiently investigated the I/O workload needed to get the
candidate sets. This study aims at the improvement of the I/O complexity for XML query processing.
The issue is important since the I/O speed is much slower than the computation speed in the main
memory. We observe that the schematic structure of XML documents can be used to verify the structural
requirement of the elements in an XML query, without the knowledge of their actual position in the
physical storage structure. Based on this observation, we propose a new approach to interpret XML
queries. For example, to process the XML query “a/b”, the prior joining techniques require the indexing
data of the candidate sets {a} and {b} to be loaded then join these sets to find the pairs {ai, bj} such that
ai is the parent element of bj . Actually, the elements {ai} are not of the interest in the final answer of
the query, which consists only of the elements bj . The indexing data of {a} is used just for checking the
parent-child relationship of ai and bj . Using the new approach, rather than joining the elements sets {a}
and {b}, for each bj we seek a method to check if there exists ai that is the parent element of bj using
the indexing data of bj only. Therefore, we can save the I/O workload for loading the indexing data of
the set {a}. Figure 1 illustrates the difference of the prior approaches and our approach in processing
the XQuery expression:

“FOR $b IN /site/people/person/[address=’Japan’]
RETURN $b/city/text()” (S1)

The prior approaches require the indexing data of six elements site, people, person, address,
name, and text. Using the new approach, the indexing data of only two elements address and text

is required.
In this paper, we propose a novel Virtual Join mechanism for XML query processing that utilizes the

information about the schematic structure extracted from the DTD or XML schema of XML documents.
The core of the mechanism is a Structure Coding for XML data , SCX, that compactly expresses the
schematic structure of XML elements. The SCX has the following property:

If the tag name and the structural code of an element are known, the tag name and the structural
code of the parent element can be determined without any I/O.

Therefore, for a given element, the tag names of all of its ancestor elements can be determined recur-
sively. Note that the tag names of elements are essential for evaluating XML path expressions. Our
study provides evidence that the information about the schematic structure of XML documents declared
in DTD or XML schema can be used effectively in the indexes for XML data. In addition, it shows that



different indexing techniques can be integrated to complement each other to improve the XML query
processing.

The outline of this paper is as follows. In Section 2, we present the preliminaries of our study. Our
main contribution is presented the next three sections:
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Figure 1. The prior and new approaches for processing the query S1

• In Section 3, we give the definition and the construction algorithm for SCX that enumerates XML
elements based on the schematic structure deduced from DTD or XML schema. Incorporating
both structural and tag name information, SCX allows the navigation to the parent of an element,
as well as testing the tag name of the parent in the time independent of the document size.

• In Section 4, we describe the Virtual Join mechanism to evaluate XML queries in both path
and twig patterns. The mechanism has an optimal I/O workload: The indexing data of only the
candidate sets that contain the output elements or relate with the selection predicates is needed. It
does not require the indexing data to be sorted. Many intermediate joins can be avoided using the
operations on SCX.

• In Section 5, we present the experimental results to show the efficiency of our method in XML
query processing with various configurations. Not any special indexing structure except the B+-
tree is required.

We describe the related work in Section 6 and conclude this paper with a suggestion for the future work
in Section 7.

2. Preliminaries

2.1. Structure information in DTD and XML schema

An XML document may have a reference to a DTD or an XML Schema, which contain the description
of the hierarchical relationship of XML elements. A DTD that defines the elements of the XML
document in Figure 2 may have the following element type declarations:

<!ELEMENT personnel (company, business, person+)>
<!ELEMENT person (name, email?, person*)>
<!ELEMENT name (family, given)>

The first element type declaration indicates that the personnel element has one element company,
one element business, and one or many elements person.

The hierarchical order of elements can be found also in the complex element descriptions in the XML
schema of the same XML document. For example, the following statement:
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Figure 2. An XML example

<xs:element name="name">
<xs:complexType>
<xs:sequence>
<xs:element name="family" type="xs:string"/>
<xs:element name="given" type="xs:string"/>
</xs:sequence>

</xs:complexType>
</xs:element>

indicates that the complex element name has one element family and one element given. The element
hierarchy extracted from the DTD and XML schema for the XML document in Figure 2 is depicted in
Figure 3.
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givenfamily

company business

Figure 3. Element hierarchy

In practice, the size of a DTD or XML schema is much smaller than the size of the XML documents
associating with them. Let us call the number of parent-child pairs in the DTD or XML schema
referenced by an XML document the structural cardinality of the document. The specifications of the
DTDs of the XMark1 and Shakespeare2 data sets are shown in Table 1.

1http://monetdb.cwi.nl/xml/downloads.html
2http://sunsite.unc.edu/pub/sun-info/xml/eg/shakespeare.1.10.xml.zip



Data set DTD Size Stru. Card.

XMark “auction.dtd” 4304 bytes 117
Shakespeare “play.dtd” 1184 bytes 44

Table 1. The specification of some DTDs

2.2. Notation

In this paper, we present an XML document as a labeled rooted tree, which is abstracted out from the
DOM data model [17]. Each node of the tree corresponds to an element, an attribute, or a text. A node
is the parent of another node if the element corresponding to the former node contains the element, or
attribute, or text corresponding to the latter node.

Hereafter, let T denote an XML tree rooted at r, n be a node of T , the parent node of n be determined
by parent(n), the tag name of n be determined by n.tag, and the length of the path from r to n be the
level of n.

3. SCX: a structure coding

In this section, we describe the design of our novel structure coding SCX and the construction al-
gorithms. For simplicity, we will use the notation of DTD. The main goals of the SCX design is the
efficiency in XML query processing and the robustness in structural update.

The main component of SCX is the structural identifier that presents the schematic order of XML
elements. The schematic order of an XML element is determined by the DTD element type declarations,
in which the element participates. For example, if a tag name b appears in the element type declarations
of the tag names a and f in a DTD then in any instance of the XML document conforming to the DTD,
the tag name of the parent element of an element having the tag name b must be either a or f.

The structural identifier of a node uniquely determines both structural identifier as well as the tag
name of the parent node using two index functions: the function parentSID returns the structural identi-
fier of the parent node and the function nameID returns an integer value used together with the tag name
of the child node to find the tag name of the parent node.

The function nameID is a novel and essential part of our method. Intuitively, each pair of the tag
names of parent and child nodes in the DTD is mapped into an integer called the child order. The child
order together with the tag name of the child node uniquely determines the tag name of the parent node.
In other words, the following dependencies hold:

parent tag,child tag−→child order (1)

parent tag←−child tag, child order (2)

The benefit of the introduction of these functions is the ability to determine the tag names of all ancestor
nodes of a node without the necessity to access to the secondary memory. Therefore, intermediate
structural joins can be avoided and the indexing data of only the leaf nodes in the query tree structure is
necessary for evaluating XML queries.

3.1. The description of SCX

SCX represents the schematic and actual orders of an XML node by the pair [sid, ord], where sid
is the structural identifier and ord is a presentation of the node in an XML instance. There are several
proposed presentations for the position of XML elements in an XML document, each of them uses the
docID and nodeLevel together with one of the pairs (preorder, postorder), (preorder, range),



or (startPos, endPos). The methods to determine the hierarchical relationship among XML nodes
using these presentations are similar and can be converted from one to other with a minor modifica-
tion. In this paper, we adopt the 3-tuple (docID, startPos, endPos) to present XML nodes, i.e. the
component ord of SCX. The nodeLevel parameter used in the prior presentations is omitted. The
element (docID, startPos1, endPos1) is an ancestor of the element (docID, startPos2, endPos2)
iff startPos1 < startPos2 and endPos2 < endPos1. Since the encoding is very useful in defin-
ing the preceding and following orders, the inclusion of the ord in SCX guarantees that SCX can help
the evaluation of queries related to these orders. As will be shown in Section 4, sid and ord comple-
ment each other in query processing. Since the design of SCX helps to reduce the number of elements
and attributes, the indexing data of which needed to be loaded for processing a query, the size of the
combination makes a little impact on the performance of the technique.

Definition 1 A c-group is the maximal group of the consecutive sibling nodes having the same tag name.

The notion of c-group in the Definition 1 can be extended to encompass the sequence of the same
subgroup of elements that appear multiple times. In a DTD element type declaration, a c-group corre-
sponds to a single child element or a subgroup of elements, the cardinality of which is multiple, such as
‘b’, “b*”, or “(c, d)*”. We will discuss the decomposition of DTD in section 3.2.1 to deal with the
extension. For simplicity, the current form of the Definition 1 is used.

Definition 2 An enumeration of the nodes in an XML tree T is called “forehand” if the identifier of a
node is smaller than the identifier of the siblings from the other c-groups to the right of the node in the
same parent node.

The forehand property guarantees that the identifiers of XML nodes reflect their order as described
in DTD declarations.

Definition 3 A function childOrd: (a,b)→ Integer, that maps a pair of tag names a and b, where b
appears in the element content of a in a DTD element type declaration, to an integer, is called “parent-
name-determinable” if ¬∃ a1 and a2 such that a1 �= a2 but childOrd(a1, b) = childOrd(a2, b).

In other words, the child order and the child tag name uniquely determine the parent tag name. The
construction of the “parent-name-determinable” function childOrd from the declarations of a DTD will
be described in section 3.2.1.

The structural identifiers of the nodes in an XML tree are generated in a preorder traversal by a
forehand enumeration. All the nodes in a c-group are assigned the same integer equal to the sum of a
basic value computed from the structural identifier of the parent node and the child order of the c-group
computed by the parent-name-determinable function childOrd. The root node, itself is a c-group, is
enumerated by 1.

3.2. Generating SCX

Before describing the algorithm to generate SCX in section 3.2.2, we present the process to construct
the parent-name-determinable function childOrd from DTD.

3.2.1. The construction of the childOrd function

The function childOrd returns an auxiliary integer used to distinguish the same child in different
parents in a mapping from the child tag to the parent tag. The function is represented as a table
constructed based on the DTD listing all possible arguments and values. In general, a DTD can be
complex because of the complex specification of the type of an element. For example, an element a
can be defined by a DTD declaration such as <!ELEMENT a ((b, c, d)?, (e, f)*)>. A direct



transformation of such a DTD to the function childOrd is not the best solution. Therefore, we can
decompose it using the intermediate elements recursively to reduce the complexity, where the interme-
diate elements are assigned unique tag names. The above example declaration can be presented by an
equivalent group of DTD declarations <!ELEMENT g (b, c, d)>$, <!ELEMENT h (e, f)>, and
<!ELEMENT a (g?, h*)>. The primary decomposition rules of DTD declarations are:

1. (b|c)* is decomposed into d* and d = (b|c)

2. (b, c)* is decomposed into d* and d = (b, c)

3. b*|c* is decomposed into d|e and d = b*, e = c*

Note that the commonly found in practice DTDs do not contain such complex DTD declarations. For
simplicity, we consider only the meaningful DTDs, i.e. any child element in actual data conforming
the DTDs can be mapped uniquely to a child element in the DTD declaration of its parent element.

The core form of DTD declaration. In a DTD declaration, an element may have a number of sub-
elements having the same tag name. The cardinality is omitted in construction of childOrd.

Definition 4 The core form of a DTD declaration is received from the DTD declaration by replacing
the cardinalities of the subelements by one.

For example, the core form of the DTD declaration <!ELEMENT a (b, c?, d*)> is
<!ELEMENT a (b, c, d)>.

Core child-orders. Each element is assigned a core child-order in its parent element equal to the index
of the corresponding c-group.

Definition 5 The index of a c-group is the order of the corresponding tag name in the core form of the
DTD declaration of the parent element. The core child order of the node n in its parent node p, denoted
by p � n, is equal to the index of the c-group containing n in p.

Note that the core child order is different from the actual order of child nodes and independent from
the data size.

Example 1 If an element a that conforms the DTD declaration <!ELEMENT a (b, c, d*, e)> has
five child nodes d then the actual orders of the child nodes of a are: b←1, c←2, d[1]←3, d[2]←4,..,
e←8. The core child orders are: a � b←1, a � c←2, a � d[1]←3, a � d[2]←3,.., a � e←4.

Extended child-order. We extend the core child-order notion to guarantee the dependency (2). If ∃
a1 and a2 such that a1 �= a2 but childOrd(a1, b) = childOrd(a2, b) then an integer value is added to
the core child order of all the child nodes of a2 such that childOrd(a1, b) �= childOrd(a2, b). Since the
cardinalities of XML documents are finite, the extended child-orders always exists.

The extend child-orders are stored in the table StruDTD that has three columns PAR, CHI, and cOrder
containing the tag name of the parent elements, the tag name of the child elements, and the extended
child-orders of the child elements, respectively. A row (a, b, o) of the table StruDTD means that any
element having the tag name b can appear only in the oth c-group of a parent element having the tag
name a.

In Algorithm BuildStruDTD, a segment is a sequence of consecutive rows having the same value in
the PAR column. The step 1 lists the pairs of parent-child tag names. For example, the DTD declaration
<!ELEMENT a (b*, c|d)> corresponds to three rows in StruDTD, the columns PAR and CHI of
which are a and b, a and c, a and d, respectively. Steps 2-7 compute the initial values of cOrder. Steps
8-12 generate the extended child orders. Steps 13 returns the table StruDTD and the fanout f .



Algorithm: BuildStruDTD

Input: A DTD or XML schema
Output: Table StruDTD and fanout f

1. save pairs a->b in PAR-CHI
/*initiating the possible value of the cOrder */
2. for each pair a->b
3. if element content type is ’choice’
4. cOrder ← 1;

else /*sequence*/
5. if (a->b is the start of a segment)
6. cOrder ← 1;
7. else cOrder←previous cOrder + 1; endif

endif
endfor

/* eliminating the duplication*/
8. loop
9. for each pair a->b
10. if ∃ a preceding pair a’->b &&

cOrders are equal then
11. ⇑ cOrder of a->* by 1

endif
endfor

12. if all segments are fixed then break;
endloop

13.returnPAR, CHI, cOrder, f←max(cOrder)

Note that this algorithm runs once with DTD or XML schemas, the size of which are independent
from the size of the data sets associated with them. The table StruDTD is loaded in to main memory
when the queries are processed. The intermediate elements resulted from decomposition of complex
DTD declarations, if exist, also are included in the StruDTD table.

Example 2 The table StruDTD of the element hierarchy in Figure 3 is shown in Table 2. The fanout f
is equal to four. Both of the nodes personnel and person may have a node person as a child node,
hence personnel � person must be different from person � person.

PAR CHI cOrder

personnel company 1
personnel business 2
personnel person 3
person name 2
person email 3
person person 4
name family 1
name given 2

Table 2. A StruDTD table

Function childOrd. The function childOrd takes the values in the columns PAR and CHI in each
line of the table StruDTD and returns the integer in the column cOrder. For example, in Table 2,
childOrd(person, name) = 2. Since the dependency (2) holds, let parentTAG denote the function from
(cOrder, CHI) to PAR, and we have



parentTAG(childOrd(a, b), b) = a (3)

3.2.2. Algorithm for SCX construction

The Algorithm ConstructSCX generates SCX of the nodes of an XML document in a preorder traver-
sal. Set the fanout f equal to the maximal value of the column cOrder in StruDTD that is independent
from the size of XML documents. If n is a child node of p then the structural identifier of n is the sum
of the base value equal to (p.sid -1) × f + 1 and childOrd(n.tag, p.tag).

Algorithm: ConstructSCX

Input: T rooted at r, a fanout f >1
Output: SCX of nodes in T

1. travel T in the preorder
2. if n is the root
3. n.sid ← 1;
4. else p ← parent(n);
5. corder ← childOrd(p.tag, n.tag);
6. n.sid ← f * (p.sid - 1) + 1 + corder;

endif
7. n.ord.startPos ← start position;
8. n.ord.endPos ← end position;

endtravel

The steps 5 and 6 of the algorithm ConstructSCX incorporate the child-orders computed by the func-
tion childOrd into the structural identifiers. The sid of the nodes of the XML document in Figure 2 are
shown in Figure 4, where the fanout f is equal to four.
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Figure 4. sid of the document in Fig. 2

Example 3 In Figure 4, suppose we have to generate the sid of the node name of the first node person.
Since the code is generated in a preorder traversal, the sid of the parent node person is already known
to be equal to four. The function nameID(person, name) = 2. Therefore, the sid of the node name is
equal to 4× (4− 1) + 1 + 2, or 15.



3.3. Index functions

The index functions are used to navigate between a node and its parent node based on the structural
identifier of SCX. Given the fanout f and a node n, the function parentSID is defined as the following:

parentSID(n.sid) = �(n.sid− 2)/f�+ 1 (4)

The purpose of the function parentSID is to compute the structural identifier of the parent node. This
property of SCX is similar to the enumeration introduced in [19]. However, our structural identifier
system is more robust and realistic. In addition, the introduction of the nameID function makes SCX
more efficient than the method in [19]. The function nameID is defined as the following:

nameID(n.sid) = n.sid− f × �(n.sid− 2)/f� − 1 (5)

This function returns the child order of n in its parent node. In other words, it computes the distance
from the start of the interval of possible structural identifiers for the child nodes to the structural identifier
of n.

Lemma 1 If the structural identifiers of SCX are generated by Algorithm ConstructSCX then given a
node, the structural identifier and the tag name of the parent node of the node can be determined.

Proof: Let n and p denote a node and its parent node. We shall show

p.sid = n.sid− f × �(n.sid− 2)/f� − 1 (6)

From the steps 5 and 6 of the algorithm ConstructSCX, we have

n.sid = f × (p.sid− 1) + 1 + childOrd(p.tag,n.tag) (7)

Since 1 ≤ childOrd(p.tag, n.tag) ≤ f ,

f × (p.sid− 1) + 2 ≤ n.sid ≤ f × (p.sid− 1) + 1 + f (8)

or
f × (p.sid− 1) ≤ n.sid− 2 < f × (p.sid) (9)

Divide to f > 0, we have
p.sid− 1 ≤ (n.sid− 2)/f < p.sid (10)

Therefore,
p.sid = �(n.sid− 2)/f�+ 1 (11)

Thus, (6) holds and the structural identifier of p can be computed by Formula 4. Furthermore, to
determine the tag name of p, from (11) and f > 0, we have

f × �(n.sid− 2)/f� = f × (p.sid− 1) (12)

or
n.sid− f × �n.sid− 2

f
� − 1 = n.sid− f × (p.sid− 1)− 1 (13)

From (5), (7), and (13), we have

nameID(n.sid) = childOrd(p.tag,n.tag) (14)

From (3) and (14),
p.tag = parentTAG(nameID(n.sid),n.tag) (15)

The lemma holds. �

Note that the determination of the sid and the tag name of the parent node is independent from the ord
of the child node.

Example 4 In Figure 4, for the node given, the sid of which is equal 267, the sid of the parent node
is equal to �(267 - 2) / 4 � + 1, which is equal to 67. The functions nameID returns 267− 4× �(267−
2)/4� − 1, which is equal to 2. The function parentTAG(given, 2) returns the value name. Similarly,
the tag names of the ancestor nodes are found to be person, person, and personnel, respectively.
Therefore, the full node path for the node given is “personnel/person/person/name/given”.



3.4. Other features of SCX

3.4.1. Coding complexity

We generated SCX for an XML document using the SAX parser [2]. A stack, the size of which
is the maximal height of the XML tree, keeps the current node path. Two other buffers keep the tag
names and the sids of the previous nodes. A node is visited after the sid of its parent node is known.
The cost of the function childOrd is log2(size(StruDTD)). Therefore, the cost for generating SCX is
O(log2(size(StruDTD))× (data size)). In our experiments, it took 90 seconds for generating in the main
memory the SCX of a data set of 4103211 elements and attributes.

3.4.2. Coding size

The interesting feature of the SCX is that the fanout used to compute sid depends on the number of
c-groups rather than the degree of the nodes in the XML instances. For example, according to the DTD
declaration <!ELEMENT a (b?, c*, d)>, the degree of a increases in parallel to the number of c.
However, the number of c-groups is 3, a fixed value. The small size of the fanout keeps the size of SCX
small. In Table 3, we provide the sizes of the data sets used in our experiments and of the SCX indexing
data (in the column StrInxSize) generated from the data sets as an illustration.

3.4.3. Robustness of SCX

The structural identifier of SCX is robust for the structural update. Taking into account the DTD or
XML schema, SCX anticipates the position of updated nodes in the associated XML documents. The
structural updates that significantly affect the robustness of the numbering schemes are:

1. The increase of the number of nodes having the same tag in a parent node. For example,
according to the DTD declaration <!ELEMENT a (b?, c*, d)>, a node having the tag name
a may have a number of nodes having the tag name c. All these nodes c have the same sid. A
newly inserted node c must belong to the c-group of existing c, hence it has the same sid.

2. The uncertain occurrence of an element in its parent element: Let consider the same DTD
declaration <!ELEMENT a (b?, c?, d)>. A node having the tag name a may or may not have
a child node having the tag b. According to the construction of SCX, a place for such a b is
reserved.

Therefore, in both cases, the insertion of a new node does not cause the change of the sid of the other
nodes.

3.4.4. Coping with changing DTD

A radical change of DTD, which leads to the entire change of document content and structure, re-
quires rebuilding the index from scratch. The insertion of an element in the content specification of the
DTD declaration of an existing element may change the SCX of related elements in the actual data. If
insertions are predicted then a sparse mode of SCX construction can reserve the location for the ele-
ments to be inserted. If an inserted element is the last child element of its parent element and does not
increase the maximal value of cOrder then SCX of existing data is not changed. In practice, the changes
in a DTD are rarer than the changes in the content and structure of the XML documents conforming to
the DTD.



4. Virtual Joins with SCX

SCX provides the Virtual Joining mechanism that can avoid many the intermediate structural joins in
XML query processing. To perform Virtual Join mechanism, we need several the basic functions.

Determining the tag name of the parent node. For a given node, the function findParentSidAndTag
calls the parentSID and nameID functions to compute the sid of the parent node and the child order,
which is used by the function parentTAG to find the tag name of the parent node.

Function: findParentSidAndTag

Input: n.sid, n.name
Global: the fanout f of T

1. sid←parentSID(n.sid);
2. tid←nameID(n.sid);
3. name←parentTAG(n.name, tid);
4. return sid, name;

Establishing node path. The function generateNodePath establishes the full node path for a given
node by recursively performing the function findParentSidAndTag.

Checking the existence of an ancestor having a specific tag name. For a given node with its isd and
tag name, the function findAncByName look for the lowest ancestor that has a given name.

Function: findAncByName

Input: n.sid, n.name, ancname
Global: the fanout f of T

1. name←n.name, sid←n.sid;
2. loop(sid >1)
3. sid, o ←findParentSidAndTag(sid, name);
4. name←parentTAG(name, o);
5. if (name is empty) return null;
6. else if (name = ancname) return sid, name;

endloop

The function findAncByName can be modified by replacing the step 6 by the command:
if(name = ancname &&((l >0 && i=l)|| l=0))

to incorporate the level of the ancestor to be looked for. It checks if the l-level ancestor has a given tag
name. If l is equal to 0, the level requirement is omitted.

4.1. Basic path-predicate queries

In this section, we describe how to apply the Virtual Join mechanism to process the queries repre-
sented by a path expression ended with a predicate.

Definition 6 A path query is called basic path-predicate query if it is expressed in the form: a1�1a2�2· · ·�k−1ak

or a1�1a2�2· · ·�k−1[P of ak], where k ≥ 1, �i (i = 1 to k-1) is either the parent axis ’/’ or the ancestor
axis ’//’, and P is a predicate of ak.

For example, “person/name/[given = ’Smith’]” is a basic path-predicate query. In the basic path-
predicate queries, all the nodes having the tag names ai, i �= k, and the nodes having the tag name ak



filtered by the predicate P participate in the structural joins. The predicate P is optional and can be
void.

A basic path-predicate query is presented by a table called query pattern with four columns. The
column TAG contains the tag names in the query path expression in reverse order, i.e. ai, (i = k-1 to 1).
The column AXIS contains the �i (i = k-1 to 1). The column ANS indicate the lines having the axis ’//’
in the column AXIS. In the column FROM, only the values of the lines having the axis ’//’ in the AXIS
column are used and initially equal to 0.

The function matchPattern checks if a node having the tag name ak matches a query pattern. The
function step(i) looks for the element having the tag name TAG[i] in the axis AXIS[i] of the current
node by calling the function findAncByName. If the AXIS[i] is ’//’ and FROM[i] > 0 then sid of the
node to be found must be less than FROM[i]. The function step returns null if there is no such a node,
otherwise returns the found sid and tag name. The step 11 seeks the next possible root for a sub-path
starting by ’//’. The function matchPattern returns true if all the steps in the query pattern are satisfied.

Function: matchPattern

Input: a node n, a query pattern

1. cursid ←ak.sid; curtag ←ak.tag; curstep ←1;
2. while (true)
3. b ← step(curstep)
4. if (b!=null)
5. cursid = b.sid; curtag = b.tag;
6. if (AXIS[curstep]=’//’)
7. FROM[curstep] = b.sid;

endif
8. if curstep = sizeOf(querypattern)
9. return true;
10. else curstep++;

else
11. Seek max j < curstep: AXIS[j]=’//’&& FROM[j] > 1
12. if ∃: curstep ← j; ∀ i>j FROM[i] ← 0;
13. else break;

endif
endwhile;

14.return false;

Function step(i)
1. s ← cursid; t ← curtag;
2. n←findAncByName(s, t, TAG[i], AXIS[i]);
3. return n;

In function matchpatter, the function generateNodePath can be applied to avoid the repetition of the
function step.

Lemma 2 The matchPattern function correctly verifies if the element ak satisfies the path expression
a1�1a2�2· · ·�k−1ak. �

Performing Virtual Joins. The VirtualJoin procedure takes a set of the nodes ak, which satisfy the
predicate P , and a query pattern as the input. By a single scan over the set, for each index i the function
matchPattern checks if the node ai

k matches the query pattern. Note that the function matchPattern will
terminate early for the disqualified nodes and the checking process run totally in main memory. The



function virtualJoin can process the ancestor-level joins, where the hierarchy level is required, such as
“a/b”, “a/*/b”, as well as the “a//b” join.

Function: VirtualJoin
/*for basic path-predicate query*/

Input: dlist[], queryPattern

1. for (i from 0 to the size of dlist - 1)
2. if matchPattern(dlist[i], pattern) = true
3. output dlist[i];
4. endif;

endfor;

The Virtual Join mechanism does not require the candidate nodes to be sorted and evaluates basic
path-predicate queries without I/O except the indexing data of the output candidate set. For queries
with long location paths, as shown by the experiment results, the Virtual Join mechanism has a clear
advantage since the indexing data of only the last elements in the location paths is needed to be loaded.

4.2. Complex path-predicate queries

A path query may be associated with several selection predicates.

Definition 7 A path query is called complex path-predicate query if it is expressed in the form of a finite
sequence of basic path-predicate queries separated by the parent axis ’/’ or the ancestor axis ’//’.

A complex path-predicate query B1�1B2�2· · ·�k−1Bk, k ≥ 1, is evaluated by integrating the result
of the basic path-predicate queries Bi, i = 1 to k, which are evaluated separately using the Virtual
Joins. Let {ri} denote the list of result nodes of Bi, {si} denote the list of sid of the nodes in the
highest hierarchical structure of Bi corresponding to {ri}. From the description of matchPattern, {si}
is generated together with {ri}. The lists {ri} are joined using the conventional structural join technique
to produce the final result. Two elements rj

i and ak
i+1, 1≤i<k − 1, are matched in the structural joins

of {ri} and {ri+1} if:

1. rj
i .startPos < rk

i+1.startPos && rj
i+1.endPos < rk

i .endPos, and

2. (�i is ’/’ && rj
i .sid = parentSID(sj

i )||(�i is ’//’ && rj
i .sid < sj

i )

For example, the complex path-predicate query a/b/c/[d: P1]/e/f/[g: P2] is decomposed into two
subqueries a/b/c/[d: P1] and e/f/[g: P2]. For the first subquery, the d satisfying the predicate P1 are
loaded and virtually joined with c, b, a. For the second subquery, the g satisfied the predicate P2 are
loaded and virtually joined with f and e. The sid of the nodes e corresponding to the intermediate
nodes g are also available. These d and g are joined by the condition:“d is an ancestor of g and d.sid
= parentSID(e.sid), where the e corresponds to the g”.

4.3. Processing twig queries

Queries on XML data typically specify elements by selection predicates and their tree structure rela-
tionship that can be represented as a node label twig pattern with elements with or without predicates in
the leaf nodes.

A twig query is decomposed into three complex path-predicate subqueries that are processed sepa-
rately using the Virtual Joins. The result elements of these queries then are joined using the component



ord of SCX by conventional structural join techniques that base on the (startPos, endPos) presen-
tation of the position of elements, e.g. [12], [8] etc. The compatibility with the prior researches is an
interesting feature of SCX.

Figure 5 illustrates a twig query, the result elements of which have the tag name b. The twig query
is decomposed into three subqueries represented by the paths from a to b, from the node bellow b in
the left branch to p, and from the node bellow b in the right branch to q. The join of the outputs of
these subqueries to produce the final answer is similar to the join of intermediate results in a complex
path-predicate query.

a

b
indexing data I/O

p

predicate

p

predicate

virtual join

Figure 5. Processing a twig query

Example 5 For the SCX technique, the XQuery statement “FOR $b IN /site/people/person

WHERE $b/address/city = ‘Nara’] RETURN $b/name/text” is decomposed into the basic path-
predicate queries “/site/people/person”, “address/city = ’Nara’]”, and “name/text”.

Note that, in general, the I/O complexity is optimal since only the indexing data of elements that
have to be verified by predicates is loaded or belong to the candidate set of the output. For example, in
Example 5, the indexing data of elements person, city and text are needed to perform the joins.

Data sets Size #element #attribute StrInxSize Q1 Q2 Q3 Q4 Q5 Q6

Data set 1 23.4MB 336224 76867 23MB 1952 7350 2400 3528 3173 50
Data set 2 57.6MB 832911 191162 55MB 4875 10875 6000 8361 7471 134
Data set 3 87.2MB 1253793 286576 87MB 7312 16312 9000 12759 11341 203
Data set 4 115.7MB 1666315 381878 110MB 9750 21750 12000 16640 14954 271
Data set 5 145.1MB 2088879 478374 148MB 12187 27187 15000 21123 19030 318
Data set 6 174.0MB 2502484 573122 158MB 14625 32625 18000 25499 22917 412
Data set 7 203.4MB 2921324 669773 188MB 17062 38062 21000 29706 26551 448
Data set 8 232.2MB 3337649 765562 219MB 19500 43500 24000 33954 30377 521

Table 3. Specifications of the data sets

5. Experiment

We have implemented SCX and the Virtual Join mechanism in a system called Virtual Joins Engine
for XML(VJEX). The current version of VJEX has the module for evaluating the basic path-predicate
queries. We maintain the main file structure for storing the structure coding as the following:

<scx, element_name, add_infor>



where scx is the SCX, including both sid and ord, element_name is the tag name, and add_infor
consists of an indicator whether the item is an element or attribute and a pointer to data. The primary
functions on the structures are:

F1: For a given scx, retrieve the elements or attributes having that identifier.

F2: For a given name, retrieve all the elements or attributes having that name.

The XML content and the coding data are indexed using B+-tree. We create two B+-trees on scx
and element_name. Since it is not necessary to sort the indexing data in Virtual Joins, the data is
sorted by the scx.ord.startPos as required by most of the structural join techniques . For the
purpose of this paper, the physical data presentation of the XML content is not material and its details
is not relevant to the results of this paper.

VJEX keeps the table StruDTD in the main memory during the query evaluation. The input query of
VJEX is transformed into a basic path-predicate, a complex path-predicate, or a twig forms. The basic
path-predicate subqueries are evaluated separately using the Virtual Join mechanism. The partial results
are joined using non-virtual join algorithms (not shown here) to produce the final result.

5.1. Experiment setup

We measure the full processing time that includes the elapsed times for loading the indexing data and
for performing structural joins in XML queries.

We compare our method with the method Stack-Tree-Decs in [12] and PathStack in [8]. Both of
the Algorithms use the tuple (docID, startPos, endPos, nodeLevel) to present an XML element.
Stack-Tree-Decs is the highest performance method among four methods described in [12], where stacks
are used to reduce the number of the match tests for the pairs of elements from the joined candidate sets
in structural joins. PathStack also uses stacks to compactly present the partial and total answers to avoid
the large intermediate answers.

5.2. Experimental platform and Data sets

Our experiments were conducted in a workstation running on Windows XP Professional with a 2GHz
CPU. The SAX parser available from the Xerces project [2] were used to parse XML data. Other
programs for extracting structure information from DTD, generating SCX, and processing the Virtual
Joins were written in Java. The maximal Java heap size was set to be equal 300MB.

We used the XML data generator xmlgen provided by XMark [1] to generate synthetic XML docu-
ments conforming the DTD “auction.dtd”. This DTD has a fairly complex structure to make the exper-
iments objective. The specifications of these data sets are shown in Table 3. As shown in the column
StrInxSize of Table 3, the size of the SCX indexing data is approximately equal to the size of the XMark
data sets from which it was generated.

5.3. Experimental results

To evaluate SCX, we use the queries that features the various complexities of structural joins, some
of them were borrowed from prior researches in the same topic. The queries contain both ’/’ and ’//’
axes and include short, medium, and long location paths.

Q1: //closed_auction/item

Q2: //items/name

Q3: //open_auction//description

Q4: //open_auction//description//listitem
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(c)Elapsed query time for Q3

Figure 6. The elapsed times for processing the short queries Q1-Q3
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(d)Elapsed query time for Q4
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(e) Elapsed query time for Q5
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(f)Elapsed query time for Q6

Figure 7. The elapsed times for processing the medium and complex queries Q4-Q6

Q5: //open_auction//description//keyword

Q6: //closed_auctions/closed_auction/annotation/description/parlist/
listitem/text/emph/keyword/

The experiment results are shown in Figures 6 and 7, where the methods SCX, Stack-Tree-Decs, and
PathStack are abbreviated by SCX, STD and PS, respectively. The number of matches of the queries
are shown by the columns Q1, Q2, Q3, Q4, Q5, and Q6 in Table 3 according to the data sets.

5.3.1. Simple joins

The queries with a single structural join have been discussed in detail in the [10] such as parent-child
joins “E1/E2” or ancestor-descendant joins “E1//E2”. We omit the discussion about the element
and attribute join, considering it as a special case of E1/E2 join. Both of the queries Q1 and Q2

involve a single parent-child join of two element sets. The query Q3 has an ancestor-descendant join.
The cardinalities of the XML element sets participating in the structural joins are different. From the
Figure 6(a), we can see the SCX is slightly better than Stack-Tree-Decs in the smallest data set and
significantly better in the bigger data sets. The elapsed times for processing the short queries on different
data sets are shown in Figure 6(a)-(c).

5.3.2. Medium complex queries

The queries contain several structural joins that may be ancestor-descendant or parent-child joins.
The queries Q4 and Q5 are borrowed from [15]. In the queries Q4 and Q5, there are only the ancestor-
descendant joins. The elapsed times for processing the queries on different data sets are shown in
Figure 7(d)-(e). As expected, the axis ‘//’ can be processed efficiently using Virtual Joins. For the



location paths of Q4 and Q5, the indexing data of only two elements listitem and keyword was
loaded and the remaining part of the evaluation process was done in main memory.

5.3.3. Complex queries

A number of queries introduced in XMark [1] have complex structure. The evaluation of such queries
requires many structural joins. An example of such queries is Q6. Performing the structural joins in Q6 is
the main workload of the evaluating the query: “Print the keywords in emphasis in annotations of closed
auctions”. The elapsed time for processing the query on different data sets is shown in Figure 7(f). For
the complex query, the advantage of the SCX over STD and PS is greatly significant. It can be explained
by that the amount of indexing data saved by SCX from loading from secondary memory, that is required
by other indexing methods, is larger for such queries. For the location path of Q6, the indexing data of
the only element keyword was loaded and the remaining part of the evaluation process was done in
main memory despite of the number of joins in the location path.

In our query set, the join workloads are increased from queries Q1 to Q6. In all experiments, we can
see an interesting tendency that when the sizes of data sets increase, the comparison result is changed
in the favor of the SCX method. The advantage of SCX steadily increases in correspondence with the
size of the experimental data sets as well as the join workload. The experiment result accords with our
expectation that for the large data sets and the queries with the heavy join workload, the advantage SCX
in I/O complexity for XML query processing becomes more significant since the amount of data saved
from I/O becomes larger.

6. Related works

Querying on the structure is an essential task of the databases of semistructure and XML data. The
structural summary has been presented as a graph for semistructured data in [9, 11, 14]. A path-based
approach to query the XML data by storing all available node paths in a table of RDBMS and making
queries over the pattern of the node paths has been proposed [7]. An integration of XML node numbers
in query statements and an algorithm for transformation from XPath to SQL have been discussed in [5].
A general approach to store XML data in tables of RDBMS, where a query is evaluated by joining the
tables containing the data items related to the query, has been presented in [6].

The presentation of XML elements by (docID, startPos, endPos, nodeLevel) and the equiv-
alent tuples using pre and post order, preorder and range have been used in [3, 8, 10, 12, 13] for
processing structural joins. In our work, to present the actual order of elements in an XML document,
we adopted the presentation. Both [12] and [8] use stacks in the structural join algorithms to reduce
the number of match tests between candidate sets of a join. The algorithms in [12] can produce the
result sorted either by ancestor or descendant nodes. The algorithms in [8] can process both of the path
and twig queries, where the partial and total answers have been in compact stacks to avoid the large
intermediate answers. The indexing structures such as B+-tree and R-tree built-in in RDBMSs have
been exploited in [15] to index the presentation values.

The current works related to our approach are [4,16]. XML documents are embedded in a binary tree
in [16], hence the depth of the binary tree is high in practice. [4] has proposed the XR-tree to manage
the stab lists used to find the qualified pairs of elements in the ancestor-descendant structural join. The
index permits skipping over the portions of the candidate sets that are guaranteed not to produce any
match. The index implementation requires a new data structure other than the widely used B+-tree and
does not support well the parent-child relationship.

Our research investigates the whole query processing procedure, including the I/O workload for the
indexing data. The function (4) of SCX was inspired by the UID method presented in [19], which
enumerates the nodes of a tree by sequent integers, starting from one at the root. Besides the Virtual



Join mechanism, the design of SCX solves the issues of coding size and robustness in structural update
that limit the efficiency of the original UID method in query processing.

7. Conclusion

Prior techniques for processing XML queries have not utilized efficiently the document structure
described in DTD and XML schema and heavily depended on the actual order of XML elements in XML
instances. In this study, we proposed the Virtual Join mechanism for structural joins using the Structure
Coding for XML data (SCX) that incorporates both structure and tag name information extracted from
DTD or XML schema. SCX greatly improves the I/O complexity of XML query processing. Many
intermediate containment joins can be avoided by computing the result set using the operations on the
SCX only. According to our experiments, SCX significantly improves the query processing efficiency
in correspondence with the structural join workload and the size of data sets. In addition, SCX and prior
structural joins techniques can be integrated to improve the XML query processing.

Our plan for the next development of the study is the investigation into the application of SCX to
query the XML data stored in RDBMS.
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