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Abstract

In this article, we propose a new reinforcement learning (RL) method for a system having continuous state
and action spaces. Our RL method has an architecture like the actor-critic model. The critic tries to
approximate the Q-function, which is the expected future return for the current state-action pair. The actor
tries to approximate a stochastic soft-max policy de�ned by the Q-function. The soft-max policy is more
likely to select an action that has a higher Q-function value. The on-line EM algorithm is used to train the
critic and the actor. We apply this method to two control problems. Computer simulations show that our
method is able to acquire fairly good control in the two tasks after a few learning trials.

1. Introduction

Reinforcement learning (RL) is a kind of machine learning framework, which automatically acquires an
optimal control based on actual experiences and rewards. RL methods have been successfully applied to
various Markov decision problems that have �nite state/action spaces. On the other hand, many tasks in
the real world have continuous state and action spaces such as human or robot motion control problems.
These tasks are much more diÆcult than the former for the following reasons. A table lookup representation
of the utility function can be used for �nite state/action problems but this is not possible for continuous
problems. Therefore, a good function approximator and a fast learning algorithm are crucial in learning the
utility function. In addition, it is diÆcult to calculate the optimal action that maximizes the utility function
even if the function approximation is precise.

In the previous article [1], we proposed an RL method based on the on-line EM algorithm [2], which can
be applied to continuous state/action problems. The method employed an actor-critic-like architecture, and
the critic approximated the Q-function. The actor's training was based on the gradient of the Q-function.
In our new learning scheme, on the other hand, the actor is trained to approximate a soft-max policy that
is dependent on the critic's Q-function. The soft-max policy is more likely to select an action that has a
higher Q-function value. The actor's learning uses the modi�ed on-line EM algorithm.

To test the method's performance, we apply it to automatic control problems of an inverted pendulum [1,
5] and an acrobot [6]. Our computer simulations show that the method is able to acquire fairly good control
in these tasks after a few learning trials.

2. NGnet & On-line EM algorithm

The NGnet, which transforms an N -dimensional input vector x into a D-dimensional output vector y, is
de�ned by

y =

MX
i=1
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where ~Wi � (Wi; bi) and ~x0 � (x0; 1). M denotes the number of units. The prime (0) denotes a vector
transpose and j�j denotes a matrix determinant. Gi(x) is anN -dimensional full-covariance Gaussian function.
~Wi is a linear regression matrix.

The NGnet can be interpreted as a stochastic model in which a pair of an input and an output, (x; y),
is a stochastic event. For each event, a unit index i is assumed to be selected and is regarded as a hidden
variable. A triblet (x; y; i) is called a complete event. The stochastic model is de�ned by the probability
distribution for a complete event:
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where � � f�i;�i; �i; ~Wi j i = 1; :::;Mg is a set of model parameters. From this distribution, we can easily
prove that the expected value of the output y for a given input x, E [yjx] �

R
yP (yjx)dy, is identical to

the output of the NGnet (1a). Namely, the probability distribution (2) provides a stochastic model for the
NGnet. Then, the stochastic model (2) is called the stochastic NGnet.

From a training data set f(x(t); y(t)) j t = 1; :::tmaxg, the model parameter of the stochastic NGnet (2)
can be determined by the EM algorithm [7], which repeats the following E- and M-steps.

In an E(Expectation)-step, by using the present parameter ��, the posterior probability that the i-th unit
is selected for the t-th datum, P (ijx(t); y(t); ��), is calculated by

P (ijx(t); y(t); ��) = P (x(t); y(t); ij��)

,
MX
j=1

P (x(t); y(t); jj��) : (3)

By using the posterior probability (3), the expected log-likelihood for the set of complete events, L(�j��), is
de�ned by

L(�j��) =

tmaxX
t=1

MX
i=1

P (ijx(t); y(t); ��) logP (x(t); y(t); ij�): (4)

In an M(Maximization) step, the expected log-likelihood is maximized with respect to �. According to the
stationary condition @L=@� = 0, the new model parameter can be determined by using the weighted means:
h1ii(tmax), hxii(tmax), hxx

0ii(tmax), hjyj
2ii(tmax) and hy~x

0ii(tmax), where

hf(x; y)ii(tmax) �
1

tmax

tmaxX
t=1

f(x(t); y(t))P (ijx(t); y(t); ��): (5)

The EM algorithm introduced above is based on batch learning [8], namely, the parameters are updated
after reviewing all of the observed data. Here, we explain the on-line EM algorithm [2]. Hereafter, let �(t)
be the estimated model parameter after the t-th datum (x(t); y(t)).

In an E-step, the posterior probability for the t-th datum Pi(t) � P (ijx(t); y(t); �(t � 1)) is calculated
by using the current parameter �(t � 1) according to equation (3). In an M-step, the weighted mean (5) is
replaced by the discounted mean:

hhf(x; y)iii(t) � �(t)

tX
�=1

 
tY

s=�+1

�(s)

!
f(x(t); y(t)Pi(t); (6)

where �(s) (0 � �(s) � 1) is a time-dependent discount factor. �(t) �
hPt

�=1

�Qt
s=�+1 �(s)

�i
�1

is a

normalization coeÆcient that plays a role like a learning rate. The discounted means: hh1iii(t), hhxiii(t),
hhjyj2iii(t) and hhy~x

0iii(t), can be calculated by using the step-wise equation:

hhf(x; y)iii(t) = hhf(x; y)iii(t� 1) + �(t) [f(x(t); y(t))Pi(t)� hhf(x; y)iii(t� 1)] (7a)

�(t) = [1 + �(t)=�(t � 1)]
�1

: (7b)

After that, the new model parameter �(t) is obtained as follows:

�i(t) = hhxiii(t)=hh1iii(t) (8a)
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where Tr(�) denotes a matrix trace. ~�i(t) � [hh~x~x0iii(t)]
�1

is used to calculate ��1i (t) by using the following
relation:

~�i(t)hh1iii(t) =

�
��1i (t) ���1i (t)�i(t)

��0i(t)�
�1
i (t) 1 + �0i(t)�

�1
i (t)�i(t)

�
: (9)



If the discount factor �(t) converges to 1 over time, the on-line EM algorithm becomes a stochastic approx-
imation method for �nding the maximum likelihood estimator [2].

We also use dynamic unit manipulation mechanisms in order to eÆciently allocate the units according
to the input-output distribution of data [2]. If a given datum is too distant from all of the present units, a
new unit is produced to account for it. A unit that has rarely been used to account for the data is deleted.

3. On-line EM reinforcement learning

In this section, we propose a new RL method based on the on-line EM algorithm. We consider optimal
control problems for deterministic nonlinear dynamical systems that have continuous state and action spaces.
The learning system is assumed to be able to observe the system state and to receive a reward corresponding
to the state and the control at every time step.

3.1. Actor-critic architecture

Our learning method employs an architecture like the actor-critic model [3]. The actor yields a control
signal for the current state. The critic predicts the expected return, which is the accumulation of rewards
over time. However, our learning scheme di�ers from that used in the original actor-critic model as explained
below.

For the observed current state xc(t), the actor yields a control signal (action) u(t) based on a policy 
(�),
i.e., u(t) = 
(xc(t)). Using u(t), the state xc(t) is changed into the next state xc(t+1) based on the system
dynamics. After that, the learning system is given a reward r(xc(t); u(t)). The goal of the learning system
is to �nd the policy 
(�) that maximizes the discounted expected return de�ned by

V (xc) �

1X
t=0

tr (xc(t);
 (xc(t)))

�����
xc(0)=xc

; (10)

where (0 <  < 1) is a discount factor. V (xc), which is called the value function, is dependent on the
current policy 
(�). In addition, the Q-function is de�ned by

Q(xc; u) = r(xc; u) + V (xc(t+ 1)); (11)

where xc(t) = xc and u(t) = u are assumed. Q(xc; u) indicates the expected return for the current state-
action pair (xc; u), when the policy 
(�) is used for the subsequent states.

3.2. Critic learning

From (10) and (11), the value function V (�) has the following relation to the Q-function.

V (xc) = Q(xc;
(xc)): (12)

From (10), (11) and (12), the Q-function should satisfy the following consistency condition:

Q (xc(t); u(t)) = r (xc(t); u(t)) + Q (xc(t+ 1);
 (xc(t+ 1))) : (13)

The critic approximates the Q-function based on (13). The critic is represented by the NGnet (1) and trained
using the on-line EM algorithm.

3.3. Actor learning

According to our learning scheme, the actor approximates the soft-max policy that is dependent on the
current Q-function. The soft-max policy � is de�ned by the conditional probability of an action u for a given
state xc:

�(ujxc) =
exp [Q(xc; u)=T ]R
exp [Q(xc; u)=T ]du

; (14)

where T (T > 0) is the temperature parameter. The soft-max policy is more likely to select an action that
has a higher Q-function value. In the low temperature limit (T ! 0), the soft-max policy always selects the

optimal action that has the highest Q-function value. Namely, E[ujxc]
T!0
�! argmaxuQ(xc; u), where E[ujxc]

is the expected value of u for a given state xc.
The conditional probability (14) can be derived from the following joint probability distribution for a

state-action pair (xc; u):
PQ;�(xc; u) = exp [Q(xc; u)=T ]�(xc)/ZQ;�; (15)



where �(xc) is an unknown distribution density of a state xc. ZQ;� �
RR

exp [Q(xc; u)=T ]�(xc)dxcdu is a
normalization factor. In our learning scheme, the actor approximates the probability distribution (15). Let
P (xc; uj�) be the probability distribution realized by the stochastic NGnet corresponding to the stochastic ac-
tor. Here, x and y in equation (2) are replaced by xc and u, respectively. The distance between the stochastic
NGnet P (xc; uj�) and the probability distribution PQ;�(xc; u) is given by the following KL-divergence:

KL(�) �

Z
PQ;�(xc; u) log

�
PQ;�(xc; u)

P (xc; uj�)

�
dxcdu

= �

Z
PQ;�(xc; u) logP (xc; uj�)dxcdu+ (�-independent term): (16)

The criterion of the learning is to minimize KL(�), namely, to maximize the following objective function
with respect to the actor's model parameter �.

J(�) �

Z
PQ;�(xc; u) logP (xc; uj�)dxcdu: (17)

J(�) becomes maximum when P = PQ;�, i.e., P represents the soft-max policy (14).
The stochastic NGnet P (xc; uj�) has a hidden variable i. The maximization of (17) can be achieved by

de�ning the following expected objective function:

JC(�j��) �

Z
PQ;�(xc; u)

MX
i=1

P (ijxc; u; ��) logP (xc; u; ij�)dxcdu; (18)

where �� is the current model parameter of the stochastic NGnet. We can prove that JC(�j��) � JC(��j��)
implies J(�) � J(��). In order to maximize J(�) with respect to �, we maximize JC(�j��) with respect to �
by using the modi�ed EM algorithm.

In the actor learning phase, the stochastic NGnet is trained to approximate the soft-max policy from
the state-action trajectory X � f(xc(t); u(t)) j t = 1; :::; tmaxg. X is assumed to be drawn independently
according to a distribution �(xc) and the current �xed stochastic actor with parameter �0. Namely, (xc; u) �
�(xc)P (ujxc; �0). In this case, the expectation of any function f(xc; u) can be approximated from its empirical
mean: Z

f(xc; u)�(xc)P (ujxc; �0)dxcdu �
1

tmax

tmaxX
t=1

f(xc(t); u(t)): (19)

The approximation becomes exact as tmax ! 1. By using (15), (18) and (19), JC(�j��) is estimated from
the observation X and the current Q-function as follows:

JC(�j��;X ) �
1

tmax

1

ZQ;�

tmaxX
t=1

MX
i=1

�h(ijxc(t); u(t); ��) logP (xc(t); u(t); ij�) (20a)

�h(ijxc(t); u(t); ��) �
P (ijxc(t); u(t); ��)

P (u(t)jxc(t); �0)
exp [Q(xc; u)=T ] : (20b)

Note that equation (20a) is similar to equation (4). In addition, the actual value of ZQ;� is not important for

the maximization of JC(�j��;X ). Since equation (20a) has a similar form to (4), the M-step can be exactly
solved.

Accordingly, the EM algorithm for the stochastic actor is de�ned as follows. In an E-step, �h(ijxc(t); u(t); ��)
is calculated by (20b). This can be done by using the previous model parameter ��, the current Q-function,
and the �xed actor model �0 that produces the observed trajectory X . The solution for @JC(�j��;X )=@� = 0
is obtained in an M-step. We derive the modi�ed M-step equations by replacing the weighted mean (5) with
the following equation:

hf(xc; u)ii(tmax) �
1

tmax

tmaxX
t=1

f(xc(t); u(t))�h(ijxc(t); u(t); ��): (21)

J(�) can be maximized by repeating the above E- and M-steps. Similarly, the on-line EM algorithm for
the stochastic actor is derived. �h(ijxc(t); u(t); �(t � 1)) is calculated in the modi�ed E-step. The step-wise
equation (8a) is then replaced by

hhf(xc; u)iii(t) = hhf(xc; u)iii(t� 1) + �(t)
�
f(xc(t); u(t))�h(ijxc(t); u(t); �(t � 1))� hhf(xc; u)iii(t� 1)

�
: (22)



In the modi�ed M-step, the weighted means are updated by (22) and the new model parameter is determined
by (8).

3.4. Actor-critic learning

The learning process for the actor-critic architecture process is as follows.

1. Control and critic-learning phase

1-1. For the current state xc(t), the current actor outputs a stochastic action u(t). The stochastic
action is generated by using the stochastic NGnet in the following way. A unit i is selected with
the conditional probability P (ijxc) for state xc. After that, an action u(t) is generated with the
conditional probability P (ujxc; i) for state xc and the selected i.

1-2. Using u(t), the system changes its state to xc(t + 1) according to the system dynamics. The
learning system observes reward r(xc(t); u(t)).

1-3. The on-line EM algorithm is used to train the critic. The input to the critic NGnet is the state-
action pair, i.e., (xc(t); u(t)). The target output is the right-hand side of (13). Note that the
second right-hand side term can be de�ned for either the stochastic policy or the deterministic
policy. We use the deterministic policy, which is de�ned by the expected output of the stochastic
actor, because we use the deterministic actor after the training. Therefore, the target output for
the critic NGnet is calculated using the current critic and the current deterministic actor, both
evaluated at t+ 1.

The learning system repeats this process for a certain period of time (tmax), using a �xed actor. In
this period, the critic NGnet is modi�ed to approximate the Q-function for the �xed actor, and the
state-action trajectory X � f(xc(t); u(t)) j t = 1; 2; :::; tmaxg is saved.

2. Actor-learning phase

The actor NGnet is trained from the saved trajectory X by using the modi�ed on-line EM algorithm
described in Section 3.3.

4. Experiment

In order to examine the performance of the above learning method, we consider two control tasks. The
�rst task is to swing up and stabilize a single pendulum with a limited torque controller [1, 5]. The state of
the system is denoted by xc � (q; _q), where q is the angle of the pendulum from the upright position and _q
is the angular velocity. The torque u is assumed to be limited to the range juj � umax, where umax is not
large enough to bring the pendulum up without swinging.

The following process is conducted during a single learning episode. After the pendulum is released from
the vicinity of the upright position, the learning system observes the system state and yields a control signal
according to the stochastic actor at every 0.01 second. A reward r (xc(t); u(t)) is given by ~r (xc(t+ 1)),
which is de�ned by

~r(xc) = exp
�
�q2=�1 � _q2=�2

�
; (23)

where �1 and �2 are constants. The reward ~r(xc) 2 [0; 1] encourages the pendulum to stay in a high position.
This control process is conducted for 7 seconds. The learning process for a single episode has been described
in Section 3.4. The reinforcement learning proceeds by repeating these episodes.

After 17 learning episodes, the system is able to stabilize the pendulum at the upright position from almost
all initial states. For example, the system is able to swing-up and stabilize the pendulum at the upright
position when the system initially stays still at the bottom. Figure 1 shows a stroboscopic time-series of this
control process.

The second task is to balance an acrobot near an upright position [6]. The acrobot is the two-link
underactuated robot depicted in �gure 2. The second joint exerts torque while the �rst joint does not.
This task is very diÆcult because the system has a nonlinear and unstable dynamics. After 18 learning
episodes, however, our method is able to make the acrobot stand straight up when the initial state is close
to the upright position. Figures 3 and 4 show a typical control process after the learning. Figure 3 shows
a stroboscopic time-series of the acrobot state and �gure 4 shows the time sequence of the state and the
control signal. The dashed (dotted) line denotes the angle of the �rst (second) joint and the solid line denotes
the control signal. The system gradually suppresses the oscillation of the two joints and �nally makes them
stand straight up at the upright position.

These two tasks were also examined in our previous studies [1, 6], where the actor's deterministic NGnet
was trained according to the on-line EM algorithm by using the gradient of the critic NGnet. In the previous
method, good control for the inverted pendulum (for the balancing acrobot) was acquired after 40 (37)
episodes. The new learning method is thus more eÆcient than the previous method.
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5. Conclusion

In this article, we have proposed a new RL method, which has an architecture like the actor-critic model.
The critic approximated the Q-function. The actor approximated a stochastic soft-max policy de�ned by
the Q-function. The on-line EM algorithm is used to train the critic and the actor. The new method was
applied to two automatic control problems and fairly good control was obtained after a few learning trials.
We can thus con�rm that our new RL method is based on a good function approximator and a fast learning
algorithm, which are crucial for tasks that have continuous state and action spaces.
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