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Abstract

Data mining is to analyze all the data in a huge database and to obtain

useful information for database users. One of the well-studied problems

in data mining is the search for meaningful association rules in a market

basket database which contains massive amounts of sales transactions.

The problem of mining meaningful association rules is to �nd all the large

itemsets �rst, and then to construct meaningful association rules from the

large itemsets. In our previous work, we have shown that it is NP-complete

to decide whether there exists a large itemset with a given size. Also,

we have proposed a subclass of databases, called k-sparse databases, for

which we can e�ciently �nd all the large itemsets. Intuitively, k-sparsity

of a database means that the supports of itemsets of size k or more are

su�ciently low in the database.

In this paper, we introduce the notion of (k; c)-sparsity, which is

strictly weaker than the k-sparsity in our previous work. The value of

c represents a degree of sparsity. Using (k; c)-sparsity, we propose a larger

subclass of databases for which we can still e�ciently �nd all the large

itemsets. Next, we propose alternative measures to the support. For each

measure, an itemset is called highly co-occurrent if the value indicating

the correlation among the items exceeds a given threshold. In this paper,

we de�ne the highly co-occurrent itemset problem formally as deciding

whether there exists a highly co-occurrent itemset with a given size, and

show that the problem is NP-complete under whichever measure. Fur-

thermore, based on the notion of (k; c)-sparsity, we propose subclasses

of databases for which we can e�ciently �nd all the highly co-occurrent

itemsets.

1. Introduction

Recent developments in computer technology have made it possible to analyze

all the data in a huge database. Data mining is to analyze all the data in a huge

database and to obtain useful information for database users. In this paper, we

deal with so-called market basket databases. A market basket database consists

of transactions, where each transaction consists of a set of items. For example,

consider a market basket databaseD1 shown in Fig. 1. A transaction t1 indicates

that cereal, bacon, eggs, milk, and tea were purchased together by a customer

1



in a single visit to a store. By examining D1, we can identify a rule that \if

cornakes is purchased in a transaction, then it is likely that milk will also be

purchased in that transaction." Such information is useful for marketing plans

such as price management and stock management, also the layout of items.

A set of items is called an itemset. An association rule is a formula of the

form X ) Y , where X and Y are disjoint itemsets. An intuitive meaning of this

formula is that if every item in X is purchased in a transaction, then it is likely

that every item in Y will also be purchased. There are two important measures

for an association rule introduced by Agrawal et al. [1], called support and

con�dence. The support of an itemset is the fraction of transactions that contain

the itemset. An itemset is called large if its support exceeds a given threshold.

The con�dence of a rule X ) Y is the fraction of transactions containing X

that also contain Y . In addition, we have proposed another measure for an

association rule, called right-hand side (rhs) size [7]. For an association rule

X ) Y to be meaningful, X [ Y must be large and the con�dence of the rule

must exceed a given con�dence threshold, and also the rule must have a given

rhs size.

One of the well-studied problems in data mining is the search for meaningful

association rules in a market basket database which contains massive amounts of

transactions [1, 3, 8, 9, 11]. The problem of mining meaningful association rules

can be decomposed into three subproblems:

1. Find all the large itemsets for a given threshold.

2. Construct rules which exceed the con�dence threshold from the large item-

sets in step 1. For example, if fx; y; zg is a large itemset, then we might

check the con�dence of fx; yg ) fzg, fx; zg ) fyg, and fy; zg ) fxg.

3. Select rules which have a given rhs size from the rules obtained in step 2.

Having determined the large itemsets, the second and third subproblems are

rather straightforward. So a lot of further research has been devoted to speed-

ing up the �rst subproblem. Although a number of algorithms for computing

all the large itemsets have been proposed [1{3, 5, 6, 9, 11], the computational

complexity is scarcely discussed. The performances of most of the algorithms

are estimated only by empirical evaluation through benchmark tests. On the

other hand, in our previous work [7], we have de�ned the large itemset problem

formally as deciding whether there exists a large itemset with a given size, and

shown that the problem is NP-complete. From this result, it has become clear

that �nding all the large itemsets (and therefore, all the meaningful association

rules) is impossible in polynomial time in the size of a database unless P=NP.

Furthermore, we have proposed the notion of k-sparsity of databases [7]. Intu-

itively, k-sparsity of a database means that the supports of itemsets of size k or

more are su�ciently low in the database. Using k-sparsity, we have de�ned a

subclass of databases for which we can e�ciently �nd all the large itemsets.

In this paper, we introduce the notion of (k; c)-sparsity of databases, which

is strictly weaker than the k-sparsity. The value of c represents a degree of

sparsity. Using (k; c)-sparsity, we propose a larger subclass of databases for

which we can still e�ciently �nd all the large itemsets.

Several disadvantages of the support-con�dence framework have been

pointed out in Refs. [4, 5, 10]. For example, the support of an itemset tends

to be high if the itemset contains items with high supports, regardless of the

correlation among the items. We will explain this in the following example.

Example 1: Consider D1 shown in Fig. 1. Suppose that the given threshold

r is 0.3. Let Z = fco�ee; eggsg. The number of transactions in D1 is 6.
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t1 fcereal; bacon; eggs; milk; teag
t2 fcornakes; milk; bread; co�ee; eggsg
t3 fbread; co�ee; eggsg
t4 fcornakes; milk; bread; co�eeg
t5 fcornakes; milk; bread; co�eeg
t6 fbread; co�ee; eggsg

Fig. 1: A market basket database D1.

Transactions that contain both co�ee and eggs are t2, t3, and t6, and then

the support of an itemset Z is 3=6 = 0:5 >= r. Therefore, Z is large. On the

other hand, the supports of fco�eeg and feggsg are 5=6 and 4=6, respectively.

Thus, the support of Z is smaller than the expected value of the support of Z

(5=6� 4=6 � 0:56) which is calculated under the assumption that co�ee and eggs

are purchased independently. That is, it cannot be said that the items in Z

have high correlation. 2

In this paper, we propose alternative measures to the support, which are

de�ned by the combinations of the aspects such as

� the ratio of the actual value of the support of a given itemset to the

expected value of the support of the itemset, based on the assumption of

statistical independence,

� the fraction of transactions that do not contain any item in a given itemset,

and so on. Some of these measures are similar to the previous works such as

collective strength in Ref. [4] and dependence in Ref. [10].

For each measure, an itemset is called highly co-occurrent if the value indi-

cating the correlation among the items exceeds a given threshold. In this paper,

we also show that �nding all the highly co-occurrent itemsets is still NP-hard

under whichever measure, including collective strength. Furthermore, based on

the notion of (k; c)-sparsity, we propose subclasses of databases for which we

can e�ciently �nd all the highly co-occurrent itemsets.

The rest of this paper is organized as follows. In Sect. 2, we provide pre-

liminary de�nitions. In Sect. 3, we introduce the notion of (k; c)-sparsity. Then

using (k; c)-sparsity, we propose a subclass of databases for which we can ef-

�ciently �nd all the large itemsets. In Sect. 4, we de�ne several alternative

measures to the support. Then we show that the problem of �nding all the

highly co-occurrent itemsets is NP-hard under whichever measure we de�ne. In

Sect. 5, we propose subclasses of databases for which we can e�ciently �nd all

the highly co-occurrent itemsets. Finally, we discuss our results in Sect. 6.

2. Preliminaries

Let I be a �nite set of items. A subset X of I is called an itemset. The size of X,

denoted by jX j, is the number of items in X. A market basket database (MBD)

D is a �nite multiset of itemsets; that is, D may contain multiple occurrences

of the same itemset. An itemset in D is also called a transaction in D. Let jDj
denote the number of transactions in D. The size of D, denoted by jjDjj, is
de�ned as jDj � jI j (each transaction is supposed to be implemented by a jIj-digit
binary number).
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We say that a transaction t in D supports an itemset X if X �
=
t. By

supD(X), we mean the number of transactions in D that support X. For a

given positive integer s (0 <= s <= jDj), called minimum support number, we say

that an itemset X is large in D if supD(X) >= s. The support rate suprD(X) of

an itemset X in D is de�ned as follows:

suprD(X)
�

=
supD(X)

jDj
:

For a given real number r (0 <= r <= 1), called minimum support rate, we say

that an itemset X is large in D if suprD(X) >= r. Note that when D is provided,

we can use the minimum support number s and the minimum support rate r

interchangeably by letting s = br � jDjc.
By �nding large itemsets in D, we can identify sets of items that are fre-

quently purchased together.

The large itemset problem is de�ned as follows [7].

De�nition 1 (large itemset problem): Given an MBD D, a minimum support

number s (or a minimum support rate r), and a positive integer h, is there a

large itemset in D of size at least h? 2

This problem is shown to be NP-complete [7]. From this result, �nding all the

large itemsets is impossible in polynomial time in the size of a given database

unless P=NP.

3. (k; c)-sparse Databases

3.1 (k; c)-sparsity

In our previous work [7], we have introduced the notion of k-sparsity of

databases, which is de�ned as follows.

De�nition 2 (k-sparsity): A database D is called k-sparse if for any itemsets

X and Y such that jX [ Y j > k,

suprD(X [ Y ) <= suprD(X) � suprD(Y ):

2

Intuitively, k-sparsity of a database means that the supports of itemsets of size

k or more are su�ciently low in the database. However, k-sparsity is very strong

because the inequality in De�nition 2 must be satis�ed for all combinations of

X and Y .

In this section, we introduce the notion of (k; c)-sparsity, which is strictly

weaker than k-sparsity, where k is a positive integer and c is a positive real

number. The value of c represents a degree of sparsity.

De�nition 3 ((k; c)-sparsity): A database D is called (k; c)-sparse if for any

itemset X such that jXj > k, there is some x 2 X which satis�es the following

inequality:

suprD(X) <= c � suprD(X � fxg) � suprD(fxg):

2

In this de�nition, the inequality in De�nition 3 must be satis�ed only for one

x 2 X . Thus, (k; c)-sparsity is more practical compared to k-sparsity.
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t1 fhot dog; colag
t2 fbeerg
t3 fhot dog; popcorn; colag
t4 fpopcorn; beerg
t5 fpopcorn; colag
t6 fhot dogg
t7 fhot dog; beerg
t8 fhot dog; popcorn; cola; beerg
t9 fpopcorn; beerg
t10 fcolag
t11 fpopcorn; colag
t12 fhot dog; beerg

Fig. 2: A market basket database D2.

Example 2: Consider D2 shown in Fig. 2. Let k = 2 and c = 1. Let us check

whether D2 is (2; 1)-sparse. The only itemset of size 4 which appears in D2 is

X = fhot dog; popcorn; cola; beerg, and

suprD2
(X) =

1

12
<= suprD2

(X � fbeerg) � suprD2
(fbeerg) =

1

6
�
1

2
:

Therefore, X and x = beer satisfy the inequality in De�nition 3. It is easy

to see that the inequality holds for all the itemsets of size 3. Therefore, D2 is

(2; 1)-sparse.

On the other hand, D2 is not 2-sparse. Let us consider the case that X[Y =

fhot dog; popcorn; cola; beerg. Then, the inequality in De�nition 2 is not

satis�ed for all combinations of X and Y . 2

3.2 Class (k; c;M)-�

In this section, using (k; c)-sparsity, we propose a subclass of databases, called

(k; c;M)-�, where M is a positive real number. For a database in (k; c;M)-�,

we can e�ciently �nd all the large itemsets. Class (k; c;M)-� consists of all the

(k; c)-sparse databases with the following condition.

Condition 1: For each item x 2 I ,

suprD(fxg) <= M:

2

In addition, we consider the following condition on the minimum support

rate.

Condition 2: There exists some rm (0 < rm < 1) such that the given minimum

support rate r is at least rm. 2

When cM < 1, the size of any large itemset in a database in (k; c;M)-� is

bounded by a constant, which is determined by k, c, M , and rm.

Lemma 1: Suppose that a database D is in (k; c;M)-� with cM < 1, and

Condition 2 is satis�ed. Let X be a large itemset in D. Then, the following

inequality holds:

jXj <= k +

�
log rm

log(cM)

�
:
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Proof: Let X = fx1; . . . ; xtg where t > k. Then, since D is (k; c)-sparse, there

is some x 2 X such that

suprD(X) <= c � suprD(X � fxg) � suprD(fxg):

Without loss of generality, let xt be such x. That is,

suprD(X) = suprD(fx1; . . . ; xtg)

<= c � suprD(fx1; . . . ; xt�1g) � suprD(fxtg):

By repeating the same argument, we can obtain

suprD(X) <= ct�k � suprD(fx1; . . . ; xkg) �
tY

i=k+1

suprD(fxig)

<= ct�k �
tY

i=k+1

suprD(fxig)

<= ct�k �M t�k:

From Condition 2, rm <= r <= suprD(X). Thus,

rm <= ct�k �M t�k

log rm <= (t� k) log(cM)

t <= k +

�
log rm

log(cM)

�

jX j <= k +

�
log rm

log(cM)

�
:

2

Let l = k +
j

log rm
log(cM)

k
. For a given itemset, it can be checked whether the

itemset is large inD in O(jjDjj) time. Since there are at most jI jl itemsets of size

less than or equal to l, all the large itemsets can be computed in O(jjDjj � jIjl)
time.

Theorem 1: Suppose that a database D is in (k; c;M)-� with cM < 1, and

Condition 2 is satis�ed. Then, all the large itemsets in D can be computed in

polynomial time in jjDjj. 2

4. Computational Complexity of Finding

Highly Co-occurrent Itemsets

4.1 Highly Co-occurrent Itemsets

Several disadvantages of the support-con�dence framework have been pointed

out in Refs. [4, 5, 10]. For example, the support of an itemset tends to be

high if the itemset contains items with high supports (see Example 1). In this

section, we de�ne alternative measures to the support, which are de�ned by the

combinations of the aspects such as

� the ratio of the actual value of the support of a given itemset to the

expected value of the support of the itemset, based on the assumption of

statistical independence,

� the fraction of transactions that do not contain any item in a given itemset,
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and so on. By ocD(X), we mean a degree of the correlation among the items

in X in D. An itemset X is called highly co-occurrent in D if ocD(X) exceeds

a given user-de�ned threshold, called minimum co-occurrence.

In the next section, we provide several formal de�nitions of ocD(X). Before

proceeding, we introduce the notion of SDI division.

Given an MBD D and an itemset X , the SDI division of D with X is to

divide D into the three disjoint subsets DS(X), DD(X), and DI(X) which are

de�ned below:

DS(X)
�

= ft j t 2 D and X �
= tg;

DD(X)
�

= ft j t 2 D and X \ t = ;g;

DI(X)
�

= D � (DS(X) [DD(X)):

Furthermore, we de�ne VSD(X), VDD(X), and VID(X) as follows:

VSD(X)
�

=
jDS(X)j

jDj
;

VDD(X)
�

=
jDD(X)j

jDj
;

VID(X)
�

=
jDI(X)j

jDj
:

Note that for any itemset X , VSD(X) = suprD(X).

LetX be an itemset. For a given transaction, the probability that the itemset

X occurs in the transaction is
Q

x2X VSD(fxg), which is calculated under the

assumption that each item occurs in D independently. The probability that

none of the items in X occurs in the transaction is
Q

x2X VDD(fxg). Thus the
expected fraction of transactions in which at least one of the items in X occurs

in the transactions and at least one does not is given by 1�
Q

x2X VSD(fxg)�Q
x2X VDD(fxg). In what follows, we use the following notations:

ESD(X)
�

=
Y
x2X

VSD(fxg);

EDD(X)
�

=
Y
x2X

VDD(fxg);

EID(X)
�

= 1�
Y
x2X

VSD(fxg)�
Y
x2X

VDD(fxg):

We omit a database name D in VD(X) and ED(X) if it is clear from the context.

For example, we write VS(X) shortly instead of VSD(X).

4.2 De�nitions of Co-occurrence

4.2.1 Type I

There may be a case that we want to measure the correlation among the items

in a given itemset by comparing the actual value to the expected value. Type I

has the simplest form of the rest of the de�nitions which consider the expected

value.

De�nition 4 (type I):

ocD(X)
�

=
VS(X)

ES(X)
:

2
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t1 fbread; ham; milkg
t2 fbread; lettuce; tomato; co�eeg
t3 feggs; lettuce; milkg
t4 fcornakes; milkg
t5 fbread; lettuce; co�eeg
t6 fbread; eggsg

Fig. 3: A market basket database D3.

The denominator of this formula is the expected value of the support rate of X

under the assumption that each item in X occurs in D independently. When

there is no correlation among the items in X, the value of ocD(X) is equal to 1.

Example 3: Consider D1 shown in Fig. 1. Suppose that the minimum co-

occurrence c is 1.5. Let X = fcornakes; milkg and Z = fco�ee; eggsg. Since

VS(X) = 1=2 and ES(X) = 3=6� 4=6 = 1=3,

ocD1
(X) =

1=2
1=3

= 1:5 >= c:

Therefore, X is highly co-occurrent in D1. On the other hand, since VS(Z) = 1=2
and ES(Z) = 5=6�4=6 = 5=9,

ocD1
(Z) =

1=2
5=9

= 0:9 < c:

Therefore, Z is not highly co-occurrent in D1. 2

Note that Z is large when the minimum support rate is 0.3 as seen in Example 1.

In this de�nition, Z is not considered to have high correlation because its actual

support rate is not su�ciently high compared to the expected value.

4.2.2 Type II

Consider an itemset X = fcornakes; milkg. Then transactions that contain

neither cornakes nor milk can be considered to establish the correlation among

cornakes and milk. We incorporate the fraction of such transactions, that is,

VD(X) into the de�nition of ocD(X).

De�nition 5 (type II):

ocD(X)
�

= VS(X) + VD(X):

2

Example 4: Consider D3 shown in Fig. 3. Suppose that the minimum co-

occurrence c is 0.3. Let X = fcornakes; milkg and Y = fbread; milkg. The

SDI division with X divides D3 into DS(X) = ft4g, DD(X) = ft2; t5; t6g, and
DI(X) = ft1; t3g. Since VS(X) = 1=6 and VD(X) = 1=2,

ocD3
(X) =

1

6
+

1

2
� 0:67 >= c:

Therefore, X is highly co-occurrent in D3. 2

In Example 4, let us consider the case that the minimum support rate is 0.3.

Then, X is not large because its support rate is less than the minimum support

rate, while X is highly co-occurrent in this de�nition. For database users who

want to obtain itemsets like X , this type of de�nition may be acceptable.
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4.2.3 Type III

Type III is de�ned by the combination of type I and type II.

De�nition 6 (type III):

ocD(X)
�

=
VS(X) + VD(X)

ES(X) + ED(X)
:

2

4.2.4 Type IV

Type IV is also de�ned by the combination of type I and II, but has the slightly

di�erent form from type III.

De�nition 7 (type IV):

ocD(X)
�

=
VS(X)

ES(X)
�

VD(X)

ED(X)
:

2

The reason why we consider type IV is that in the de�nition of type III, when

ED(X) is much larger than ES(X),
VS(X)

ES(X)
may not be well reected in the result

value of ocD(X) even if it has very large value. For example, consider the case

that VS(fxg) = VS(fyg) = 10=100, VS(fx; yg) = 10=100, and VD(fx; yg) = 81=100.

Then, ocD(fx; yg) = 10 in type IV, while ocD(fx; yg) � 1:11 in type III.

Although type II may also work in this example, type IV considers VD(X)

while type II does not. On the other hand, this de�nition does not work well

for an itemset X such that DD(X) = ; because in that case, ocD(X) is equal

to 0 even if
VS(X)

ES(X)
is large.

4.2.5 Type V

This is an extension of type III. Type V is the same as collective strength [4],

which has been proposed as alternative to the support. This can be expressed

in our notation as follows.

De�nition 8 (type V):

ocD(X)
�

=
VS(X) + VD(X)

ES(X) +ED(X)
�

EI(X)

VI(X)
:

2

Since transactions in DI(X) can be considered to be counterexamples of high

correlation among the items in X, the ratio of VI(X) to EI(X) is incorporated

inversely into the de�nition of ocD(X). More details of this formula is described

in Ref. [4].

4.2.6 Type VI

This is an extension of type IV. Like type V, the ratio of VI(X) to EI(X) is

multiplied inversely.

De�nition 9 (type VI):

ocD(X)
�

=
VS(X)

ES(X)
�

VD(X)

ED(X)
�

EI(X)

VI(X)
:

2

Also, this does not work well for an itemsetX such thatDD(X) = ; or DI(X) =

; from the same reason as stated above.

9



4.3 NP-Completeness of the Highly Co-occurrent Itemset

Problem

In this section, we show that �nding all the highly co-occurrent itemsets is

NP-hard under whichever measure we de�ne.

Although there are several de�nitions of ocD(X), we de�ne the highly co-

occurrent itemset problem uniformly as follows.

De�nition 10 (highly co-occurrent itemset problem): Given an MBD D, a

minimum co-occurrence c in fractional representation in binary, and a posi-

tive integer l in unary, is there a highly co-occurrent itemset in D of size l? 2

It is clear that the highly co-occurrent itemset problem is in NP. Guess an

itemset of size l, and then check whether the itemset is highly co-occurrent in

D. So, in the rest of this section, we concentrate on proving the NP-hardness

of the co-occurrent itemset problem.

By \the problem X", we mean the highly co-occurrent itemset problem

which adopts type X as the de�nition of ocD(X).

4.3.1 Type I

We show the NP-hardness of the problem I by reducing the large itemset prob-

lem to the problem I. To make the reduction simple, we suppose that a minimum

support number s is given in the large itemset problem. We construct an in-

stance (D0; c; l) of the problem I from an instance (D; s; h) of the large itemset

problem. Here, we can assume h >= 2 because the large itemset problem is

NP-complete even if h >= 2.

Let ~[ be the union operator on multisets (i.e., the union operator which

counts multiple occurrences of elements).

Construction method 1:

� Let I be the set of all the items in D. Let Tx = ffxg; . . . ; fxg| {z }
jDj�jDS(fxg)j

g for each

x 2 I. Let DA =~[x2I Tx. Then we de�ne D0 as follows:

D0 �

= D ~[ DA:

Note that jD0j is at most jI j � jDj = jjDjj.

� Let c =
s � jD0jh�1

jDjh
.

� Let l = h.

2

Since D0 can be constructed in O(jjDjj) time and c has at most h log jDj+log s+

(h � 1) log jjDjj digits, the above construction can be done in polynomial time

in jjDjj+s+h, which is the description size of the instance (D; s; h) of the large

itemset problem.

Lemma 2: Consider a database D given as an instance of the large itemset

problem and a database D0 constructed from D. Then, for any item x 2 I ,

VSD0(fxg) =
jDj

jD0j
:
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Proof: Let x be an item in I. Then,

jD0
S
(fxg)j = jDS(fxg)j+ jTxj

= jDS(fxg)j+ jDj � jDS(fxg)j

= jDj:

Thus,

VSD0(fxg) =
jD0

S
(fxg)j

jD0j
=

jDj

jD0j
:

2

Lemma 3: Suppose that (D; s; h) (h >= 2) is given as an instance of the large

itemset problem. Let (D0; c; l) be an instance of the problem I constructed from

(D; s; h). Then, the following 1 and 2 are equivalent.

1. There is an itemset X in D such that supD(X) >= s and jX j >= h.

2. There is an itemset X 0 in D0 such that ocD0(X 0) >= c and jX 0j = l.

Proof: From Lemma 2, for any itemset X 0,

ESD0(X 0) =
Y
x2X0

VSD0(fxg) =

�
jDj

jD0j

�jX0j

:

(1 ! 2): Assume that there is an itemset X in D such that supD(X) >= s

and jXj >= h. If an itemset X is large, then all the subsets of X are also large.

Therefore, we can assume that there is an itemset X 0 such that supD(X
0) >= s

and jX 0j = h. Since jX 0j >= 2 and every transaction in DA consists of just one

item, no transaction in DA supports X 0. Thus,

jD0
S(X

0)j = jDS(X
0)j >= s:

By dividing both sides of the above inequality by jD0jESD0(X),

ocD0(X 0) =
VSD0(X 0)

ESD0(X 0)
=

jD0
S
(X 0)j

jD0jESD0(X 0)

>=
s

jD0jESD0(X 0)

=
s

jD0j �
�

jDj

jD0j

�h
=

s � jD0jh�1

jDjh

= c:

(2 ! 1): Assume that there is an itemset X 0 in D0 such that ocD0(X 0) >= c

and jX 0j = l (= h). Then,

ocD0(X 0) =
VSD0(X 0)

ESD0(X 0)
>= c

VSD0(X 0)�
jDj

jD0j

�h >=
s

jD0j �
�

jDj

jD0j

�h
jD0

S
(X 0)j

jD0j
>=

s

jD0j

jD0
S
(X 0)j >= s

11



Since jX 0j >= 2 and every transaction in DA consists of just one item, no trans-

action in DA supports X 0. Thus,

jD0
S
(X 0)j = jDS(X

0)j = supD(X
0) >= s:

2

4.3.2 Type II

We show the NP-hardness of the problem II by reducing the large itemset prob-

lem to the problem II. We construct an instance (D0;m; u) of the problem II

from an instance (D; r; h) of the large itemset problem by the following con-

struction method.

Construction method 2:

� Assume that D = ft1; . . . ; tng. Let I = fi1; . . . ; ikg be the set of all

the items in D. Let I� = fik+1; . . . ; i2kg be a set of new items, where

I \ I� = ;. Let t0j = tj [ I� be a transaction for each j (1 <= j <= n). Then

we de�ne D0 as follows:

D0 �

= ft01; . . . ; t
0
ng:

� Let m = r.

� Let u = h+ k.

2

The above construction can be done in polynomial time in jjDjj+ r + h, which

is the description size of the instance (D; r;h) of the large itemset problem.

Lemma 4: Suppose that (D; r; h) is given as an instance of the large itemset

problem. Let (D0;m; u) be an instance of the problem II constructed from

(D; r; h). Then, the following 1 and 2 are equivalent.

1. There is an itemset X in D such that suprD(X) >= r and jX j >= h.

2. There is an itemset X 0 in D0 such that ocD0(X 0) >= m and jX 0j = u.

Proof: (1 ! 2): Assume that there is an itemset X �
=
I in D such that

suprD(X) >= r and jX j >= h. If an itemset X is large, then all the subsets

of X are also large. Therefore, we can assume that there is an itemset Xh such

that suprD(Xh) >= r and jXhj = h. Let X 0 = Xh [ I�. Then,

jX 0j = jXh [ I�j = jXhj+ jI�j = h+ k = u:

From the construction method of D0, it is clear that

� if a transaction ti supports Xh in D, then a transaction t0i supports X
0 in

D0. That is, t0i 2 D0
S
(X 0);

� otherwise, there is at least one item in X0 that t0i does not contain, and

both of t0i and X 0 contain I�. That is, t0i 2 D0
I
(X 0).

12



Therefore, Xh�= ti if and only if X 0�
=
t0i for any i, and hence jDS(Xh)j =

jD0
S
(X 0)j. Since any transaction t0i 2 D0 and X 0 contain I�, t0i \ X 0 6= ;.

That is, D0
D
(X 0) = ;. Thus,

ocD0(X 0) = VSD0(X 0) + VDD0(X 0)

=
jD0

S
(X 0)j

jD0j
+
jD0

D
(X 0)j

jD0j

=
jD0

S
(X 0)j

jD0j
=
jDS(Xh)j

jDj

= suprD(Xh)

>= r = m:

(2 ! 1): Assume that there is an itemset X 0�
=
I [ I� in D0 such that

ocD0(X 0) >= m and jX 0j = u. Let X = X 0 \ I. Then,

jXj >= jX 0j � jI�j = u� k = h:

From t0i = ti [ I�, X 0�
= t0i if and only if X �

= ti for any i, and hence jD0
S
(X 0)j =

jDS(X)j. Furthermore, since

jX 0j = u = h+ k > k = jI j;

X 0 contains at least one item in I�.

Since any transaction t0i 2 D0 contains all the items in I�, t0i and X 0 contain

at least one common item. That is, D0
D
(X 0) = ;. Thus,

suprD(X) =
jDS(X)j

jDj
=
jD0

S
(X 0)j

jD0j

=
jD0
S
(X 0)j

jD0j
+
jD0

D
(X 0)j

jD0j

= ocD0(X 0)

>= m = r:

2

4.3.3 Type III

We show the NP-hardness of the problem III by reducing the problem II to

the problem III. We construct an instance (D0; c; l) of the problem III from an

instance (D;m; u) of the problem II.

Construction method 3:

� Assume that D = ft1; . . . ; tng. Let I be the set of all the items in D. Let

t0i = I � ti for each i (1 <= i <= n). Let �D = ft01; . . . ; t
0
ng. Then we de�ne

D0 as follows:

D0 �

= D ~[ �D:

� Let c = m2u�1.

� Let l = u.

2

Since D0 can be constructed in O(jjDjj) time and c has at most (u� 1) + logm

digits, the above construction can be done in polynomial time in jjDjj+logm+u,

which is the description size of the instance (D;m; u) of the problem II.
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Lemma 5: Consider a database D given as an instance of the problem II and

a database D0 constructed from D. Then, for any item x 2 I,

VSD0(fxg) = VDD0(fxg) =
1

2
:

Proof: For any item x 2 I ,

VSD0(fxg) =
jDS(fxg)j+ j �DS(fxg)j

jD0j

=
jDS(fxg)j+ jDj � jDS(fxg)j

jD0j

=
jDj

jD0j
=

1

2
:

The proof for VDD0(fxg) = 1=2 is similar. 2

Lemma 6: Consider a database D given as an instance of the problem II and

a database D0 constructed from D. Then, for any itemset X , the following two

equations hold.

VSD(X) + VDD(X) = VSD0(X) + VDD0(X)

VID(X) = VID0(X)

Proof: From the construction method of �D, it is clear that

� if a transaction ti supports X in D, then the transaction t0i and X are

disjoint in �D;

� if a transaction ti and X are disjoint in D, then the transaction t0i supports

X in �D; and

� if a transaction ti contains at least one item (but not all items) in X in D,

then the transaction t0i also contains at least one item (but not all items)

in X in �D.

Thus, jDS(X)j = j �DD(X)j, jDD(X)j = j �DS(X)j, and jDI(X)j = j �DI(X)j.
Therefore,

VSD0(X) + VDD0(X) =
jD0
S
(X)j

jD0j
+
jD0
D
(X)j

jD0j

=
jDS(X)j+ j �DS(X)j+ jDD(X)j+ j �DD(X)j

2jDj

=
jDS(X)j+ jDD(X)j

jDj

= VSD(X) + VDD(X):

Also,

VID0(X) =
jD0

I
(X)j

jD0j

=
jDI(X)j+ j �DI(X)j

2jDj

=
jDI(X)j

jDj
= VID(X):

2
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Lemma 7: Suppose that (D;m; u) is given as an instance of the problem II. Let

(D0; c; l) be an instance of the problem III constructed from (D;m; u). Then,

the following 1 and 2 are equivalent.

1. There is an itemset X in D such that ocD(X) >= m and jX j = u.

2. There is an itemset X in D0 such that ocD0(X) >= c and jX j = l.

Proof: From Lemma 5, for any itemset X ,

ESD0(X) +EDD0(X)

=
Y
x2X

VSD0(fxg) +
Y
x2X

VDD0(fxg) =

�
1

2

�jXj�1

:

Note that the de�nitions of ocD(X) and ocD0(X) are di�erent. ocD(X) has the

de�nition of type II, whereas ocD0(X) has the de�nition of type III.

(1 ! 2): Assume that there is an itemset X in D such that ocD(X) >= m

and jXj = u. From Lemma 6,

VSD0(X) + VDD0(X) >= m:

Thus,

ocD0(X) =
VSD0(X) + VDD0(X)

ESD0(X) + EDD0(X)
>=

m

(1
2
)jXj�1

= m � 2u�1

= c:

(2 ! 1): Assume that there is an itemset X in D0 such that ocD0(X) >= c

and jXj = l (= u). Then,

VSD0(X) + VDD0(X)

ESD0(X) + EDD0(X)
>= c

(VSD0(X) + VDD0(X)) � 2u�1 >= m � 2u�1

VSD0(X) + VDD0(X) >= m:

Thus, from Lemma 6,

VSD(X) + VDD(X) = ocD(X) >= m:

2

4.3.4 Type IV

We show the NP-hardness of the problem IV by reducing the problem II to

the problem IV. We construct an instance (D0; c; l) of the problem IV from an

instance (D;m; u) of the problem II, as follows.

Construction method 4:

� Assume that D = ft1; . . . ; tng. Let I be the set of all the items in D. Let

t0i = I � ti for each i (1 <= i <= n). Let �D = ft01; . . . ; t
0
ng. Then, we de�ne

D0 as follows:

D0 �

= D ~[ �D:
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� Let c = m2 � 22(u�1).

� Let l = u.

2

Since D0 can be constructed in O(jjDjj) time and c has at most 2 logm+2(u�1)

digits, the above construction can be done in polynomial time in jjDjj+logm+u,

which is the description size of the instance (D;m; u) of the problem II.

Lemma 8: Consider a database D given as an instance of the problem II and

a database D0 constructed from D. Then, for any item x 2 I,

VSD0(fxg) = VDD0(fxg) =
1

2
:

Proof: The proof of this lemma is similar to Lemma 5. 2

Lemma 9: Consider a database D given as an instance of the problem II and

a database D0 constructed from D. Then, for any itemset X, the following

equation holds.

VSD0(X) = VDD0(X) =
VSD(X) + VDD(X)

2

Proof: The proof of this lemma is similar to Lemma 6. 2

Lemma 10: Suppose that (D;m; u) is given as an instance of the large itemset

problem. Let (D0; c; l) be an instance of the problem IV constructed from

(D;m; u). Then, the following 1 and 2 are equivalent.

1. There is an itemset X in D such that ocD(X) >= m and jX j = u.

2. There is an itemset X in D0 such that ocD0(X) >= c and jX j = l.

Proof: From Lemma 8, for any itemset X ,

ESD0(X) =
Y
x2X

VSD0(fxg) = EDD0(X)

=
Y
x2X

VDD0(fxg) =

�
1

2

�jXj

:

Note that the de�nitions of ocD(X) and ocD0(X) are di�erent. ocD(X) has the

de�nition of type II, whereas ocD0(X) has the de�nition of type IV.

(1 ! 2): Assume that there is an itemset X in D such that ocD(X) >= m

and jXj = u. Then, from Lemma 9,

ocD0(X) =
VSD0(X)

ESD0(X)
�
VDD0(X)

EDD0(X)

=

�
VSD0(X)

( 1
2
)jXj

�2

=

 
(
VSD(X)+VDD(X)

2
)

(1
2
)jXj

!2

>=

� m
2

(1
2
)u

�2

= m2 � 22(u�1)

= c:
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(2 ! 1): Assume that there is an itemset X in D0 such that ocD0(X) >= c

and jXj = l (= u). Then, from Lemma 9,

ocD0(X) =
VSD0(X)

ESD0(X)
�
VDD0(X)

EDD0(X)
>= c

�
VSD0(X)

(1
2
)jXj

�2

>= c

 
(
V
SD

(X)+V
DD

(X)

2
)

(1
2
)jXj

!2

>= c

(VSD(X) + VDD(X))2 � 22(u�1) >= m2 � 22(u�1)

(ocD(X))2 >= m2

(ocD(X) +m)(ocD(X)�m) >= 0

ocD(X) >= m:

2

4.3.5 Type V

We show the NP-hardness of the problem V by reducing the problem II to

the problem V. We construct an instance (D0; c; l) of the problem V from an

instance (D;m; u) of the problem II, as follows.

Construction method 5:

� Assume that D = ft1; . . . ; tng. Let I be the set of all the items in D. Let

t0i = I � ti for each i (1 <= i <= n). Let �D = ft01; . . . ; t
0
ng. Then, we de�ne

D0 as follows:

D0 �

= D ~[ �D:

� Let c =
m

1�m
� (2u�1 � 1).

� Let l = u.

2

Since D0 can be constructed in O(jjDjj) time and c has at most log(1 �m) +

logm+(u�1) digits, the above construction can be done in polynomial time in

jjDjj + logm + u, which is the description size of the instance (D;m; u) of the

problem II.

Lemma 11: Consider a database D given as an instance of the problem II and

a database D0 constructed from D. Then, for any item x 2 I,

VSD0(fxg) = VDD0(fxg) =
1

2
:

Proof: The proof of this lemma is similar to Lemma 5. 2

Lemma 12: Consider a database D given as an instance of the problem II and

a database D0 constructed from D. Then, for any itemset X , the following two

equations hold.

VSD(X) + VDD(X) = VSD0(X) + VDD0(X)

VID(X) = VID0(X)
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Proof: The proof of this lemma is similar to Lemma 6. 2

Lemma 13: Suppose that (D;m; u) is given as an instance of the problem II.

Let (D0; c; l) be an instance of the problemV constructed from (D;m; u). Then,

the following 1 and 2 are equivalent.

1. There is an itemset X in D such that ocD(X) >= m and jX j = u.

2. There is an itemset X in D0 such that ocD0(X) >= c and jX j = l.

Proof: From Lemma 11, for any itemset X ,

ESD0(X) +EDD0(X)

=
Y
x2X

VSD0(fxg) +
Y
x2X

VDD0(fxg) =

�
1

2

�jXj�1

:

Note that the de�nitions of ocD(X) and ocD0(X) are di�erent. ocD(X) has the

de�nition of type II, whereas ocD0(X) has the de�nition of type V.

(1 ! 2): Assume that there is an itemset X in D such that ocD(X) >= m

and jXj = u. From Lemma 12,

VSD0(X) + VDD0(X) >= m:

Then,

ocD0(X) =
VSD0(X) + VDD0(X)

ESD0(X) + EDD0(X)
�
EID0(X)

VID0(X)

=
VSD0(X) + VDD0(X)

VID0(X)
�
(1� (1

2
)jXj�1)

(1
2
)jXj�1

>=
m

1� (VSD0(X) + VDD0(X))
� (2u�1 � 1)

>=
m

1�m
� (2u�1 � 1)

= c:

(2 ! 1): Assume that there is an itemset X in D0 such that ocD0(X) >= c

and jXj = l (= u). Then,

ocD0(X) =
VSD0(X) + VDD0(X)

ESD0(X) + EDD0(X)
�
EID0(X)

VID0(X)
>= c

VSD0(X) + VDD0(X)

VID0(X)
� (2u�1 � 1) >=

m

1�m
� (2u�1 � 1)

VSD0(X) + VDD0(X)

1� (VSD0(X) + VDD0(X))
>=

m

1�m
:

Thus, from Lemma 12,

VSD(X) + VDD(X)

1� (VSD(X) + VDD(X))
>=

m

1�m

ocD(X) � (1�m) >= m � (1� ocD(X))

ocD(X)�m � ocD(X) +m � ocD(X)�m >= 0

ocD(X) >= m:

2
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4.3.6 Type VI

We show the NP-hardness of the problem VI by reducing the problem II to

the problem VI. We construct an instance (D0; c; l) of the problem VI from an

instance (D;m; u) of the problem II, as follows.

Construction method 6:

� Assume that D = ft1; . . . ; tng. Let I be the set of all the items in D. Let

t0i = I � ti for each i (1 <= i <= n). Let �D = ft01; . . . ; t
0
ng. Then, we de�ne

D0 as follows:

D0 �

= D ~[ �D:

� Let c =
m2

1�m
�

�
2u�2 �

1

2

�
.

� Let l = u.

2

Since D0 can be constructed in O(jjDjj) time and c has at most log(1 �m) +

2 logm+ (u� 2) digits, the above construction can be done in polynomial time

in jjDjj+logm+u, which is the description size of the instance (D;m; u) of the

problem II.

Lemma 14: Consider a database D given as an instance of the problem II and

a database D0 constructed from D. Then, for any item x 2 I,

VSD0(fxg) = VDD0(fxg) =
1

2
:

Proof: The proof of this lemma is similar to Lemma 5. 2

Lemma 15: Consider a database D given as an instance of the problem II

and a database D0 constructed from D. Then, for any itemset X, the following

equation holds.

VSD0(X) = VDD0(X) =
VSD(X) + VDD(X)

2

Proof: The proof of this lemma is similar to Lemma 6. 2

Lemma 16: Suppose that (D;m; u) is given as an instance of the problem

II. Let (D0; c; l) be an instance of the problem VI constructed from (D;m; u).

Then, the following 1 and 2 are equivalent.

1. There is an itemset X in D such that ocD(X) >= m and jX j = u.

2. There is an itemset X in D0 such that ocD0(X) >= c and jX j = l.

Proof: From Lemma 14, for any itemset X ,

ESD0(X) = EDD0(X) =
Y
x2X

VSD0(fxg) =

�
1

2

�jXj

:

Note that the de�nitions of ocD(X) and ocD0(X) are di�erent. ocD(X) has the

de�nition of type II, whereas ocD0(X) has the de�nition of type VI.
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(1 ! 2): Assume that there is an itemset X in D such that ocD(X) >= m

and jXj = u. Then, from Lemma 15,

ocD0(X) =
VSD0(X)

ESD0(X)
�
VDD0(X)

EDD0(X)
�
EID0(X)

VID0(X)

=

�
VSD0(X)

(1
2
)jXj

�2

�

 
1� ( 1

2
)jXj�1

1� 2VSD0(X)

!

=

 
(
VSD(X)+VDD(X)

2
)

(1
2
)jXj

!2

�

 
1� ( 1

2
)jXj�1

1� 2(
VSD(X)+VDD(X)

2
)

!

>=

�
(m
2
)

( 1
2
)u

�2

�

�
1� (1

2
)u�1

1� 2(m
2
)

�

=
m2

1�m
� 2u�2

 
1�

�
1

2

�u�1
!

=
m2

1�m
� (2u�2 �

1

2
)

= c:

(2 ! 1): Assume that there is an itemset X in D0 such that ocD0(X) >= c

and jXj = l (= u). Then, from Lemma 15,

ocD0(X) =
VSD0(X)

ESD0(X)
�
VDD0(X)

EDD0(X)
�
EID0(X)

VID0(X)
>= c

�
VSD0(X)

(1
2
)jXj

�2

�
1� (1

2
)jXj�1

1� 2VSD0(X)
>= c

(VSD(X) + VDD(X))2

1� 2(
VSD(X)+VDD(X)

2
)
� (2u�2 �

1

2
) >=

m2

1�m
� (2u�2 �

1

2
)

(VSD(X) + VDD(X))2

1� (VSD(X) + VDD(X))
>=

m2

1�m

(ocD(X))2 � (1�m) >= m2 � (1� ocD(X))

(1�m)(ocD(X))2 +m2ocD(X)�m2 >= 0

((1�m)ocD(X) +m)(ocD(X)�m) >= 0

ocD(X) >= m:

2

5. Subclasses of Databases for which All the

Highly Co-occurrent Itemsets can be Com-

puted E�ciently

In this section, we propose subclasses of databases for which we can e�ciently

�nd all the highly co-occurrent itemsets. We consider type I, type II, and type

IV as the de�nitions of ocD(X). Each subclass is de�ned based on the notion

of (k; c)-sparsity.

The following condition on the minimum co-occurrence is assumed through-

out this section.

Condition 3: There exists some bm (0 < bm < 1) such that the given minimum

co-occurrence b is at least bm. 2
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5.1 Type I: Class (k; c; �)-�

Class (k; c; �)-� consists of all the (k; c)-sparse databases which satisfy the fol-

lowing condition.

Condition 4: For each item x,

� <= VS(fxg);

where � is a positive real number. 2

When c < 1, the size of any highly co-occurrent itemset in a database in

(k; c; �)-� is bounded by a constant, which is determined by k, c, �, and bm.

Lemma 17: Suppose that a database D is in (k; c; �)-� with c < 1, and Con-

dition 3 is satis�ed. Let X be a highly co-occurrent itemset in D. Then, the

following inequality holds:

jXj <= k +

�
log bm + k log �

log c

�
:

Proof: Let X = fx1; . . . ; xtg. Then,

ocD(X) =
VS(X)

ES(X)
=

VS(fx1; . . . ; xtg)Qt

i=1 VS(fxig)
:

Suppose that t > k. Then, since D is (k; c)-sparse, there is some x 2 X such

that

VS(X) <= c � VS(X � fxg) � VS(fxg):

Without loss of generality, let xt be such x. Thus,

ocD(X) <= c �
VS(fx1; . . . ; xt�1g) � VS(fxtg)Qt

i=1 VS(fxig)

= c �
VS(fx1; . . . ; xt�1g)Qt�1

i=1 VS(fxig)
:

By repeating the same argument, we can obtain

ocD(X) <= ct�k �
VS(fx1; . . . ; xkg)Qk

i=1 VS(fxig)

<= ct�k � ��k � VS(fx1; . . . ; xkg)

<= ct�k � ��k:

From Condition 3, bm <= b <= ocD(X). Thus,

bm <= ct�k � ��k

log bm <= (t� k) log c� k log �

log bm + k log � <= (t� k) log c

t <= k +

�
log bm + k log �

log c

�

jXj <= k +

�
log bm + k log �

log c

�
:

2

Let l = k +
j
log bm+k log �

log c

k
. For a given itemset, it can be checked whether the

itemset is highly co-occurrent in D in O(jjDjj) time. Since there are at most

jI jl itemsets of size less than or equal to l, all the highly co-occurrent itemsets

can be computed in O(jjDjj � jIjl) time.
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Theorem 2: Suppose that a database D is in (k; c; �)-� with c < 1, and Con-

dition 3 is satis�ed. Then, all the highly co-occurrent itemsets in D can be

computed in polynomial time in jjDjj. 2

5.2 Type II: Class (k; c;M)-�0

Class (k; c;M)-�0 consists of all the databases which satisfy the following two

conditions.

Condition 5: For any itemset X such that jXj > k, there is some x 2 X which

satis�es the following inequality:

VS(X) + VD(X)

<= c � (VS(X � fxg) + VD(X � fxg)) � (VS(fxg) + VD(fxg)):

2

Condition 6: For each item x 2 I ,

VS(fxg) + VD(fxg) <=M;

where M is a positive real number. 2

When cM < 1, the size of any highly co-occurrent itemset in a database in

(k; c;M)-�0 is bounded by a constant, which is determined by k, c, M , and bm.

Lemma 18: Suppose that a database D is in (k; c;M)-�0 with cM < 1, and

Condition 3 is satis�ed. Let X be a highly co-occurrent itemset in D. Then,

the following inequality holds:

jXj <= k +

�
log bm

log(cM)

�
:

Proof: Let X = fx1; . . . ; xtg where t > k. Then, since D satis�es Condition 5,

there is some x 2 X such that

VS(X) + VD(X) <= c � (VS(X � fxg) + VD(X � fxg)) � (VS(fxg) + VD(fxg)):

Without loss of generality, let xt be such x. That is,

ocD(X) = VS(X) + VD(X)

<= c � (VS(X � fxtg) + VD(X � fxtg)) � (VS(fxtg) + VD(fxtg)):

By repeating the same argument, we can obtain

ocD(X)

<= ct�k � (VS(fx1; . . . ; xkg) + VD(fx1; . . . ; xkg)) �
tY

i=k+1

(VS(fxig) + VD(fxig))

<= ct�k �
tY

i=k+1

(VS(fxig) + VD(fxig))

<= ct�k �M t�k:
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From Condition 3, bm <= b <= ocD(X). Thus,

bm <= ct�k �M t�k

log bm <= (t� k) log(cM)

t <= k +

�
log bm

log(cM)

�

jX j <= k +

�
log bm

log(cM)

�
:

2

Let l = k +
j

log bm
log(cM)

k
. For a given itemset, it can be checked whether the

itemset is highly co-occurrent in D in O(jjDjj) time. Since there are at most

jI jl itemsets of size less than or equal to l, all the highly co-occurrent itemsets

can be computed in O(jjDjj � jIjl) time.

Theorem 3: Suppose that a database D is in (k; c;M)-�0 with cM < 1, and

Condition 3 is satis�ed. Then, all the highly co-occurrent itemsets in D can be

computed in polynomial time in jjDjj. 2

5.3 Type IV: Class (k; c; c0; �;M)-�0

Class (k; c; c0; �;M)-�0 consists of all the (k; c)-sparse databases which satisfy

the following two conditions.

Condition 7: For any itemset X such that jXj > k, there is some x 2 X which

satis�es the following inequality:

VD(X) <= c0 � VD(X � fxg) � VD(fxg);

where c0 is a positive real number. 2

Condition 8: For each item x,

� <= VS(fxg) <=M;

where � and M are positive real numbers. 2

When cc0 < 1, the size of any highly co-occurrent itemset in a database in

(k; c; c0; �;M)-�0 is bounded by a constant, which is determined by k, c, c0, �,

M , and bm.

Lemma 19: Suppose that a databaseD is in (k; c; c0; �;M)-�0 with cc0 < 1, and

Condition 3 is satis�ed. Let X be a highly co-occurrent itemset in D. Then,

the following inequality holds:

jXj <= k +

�
log bm + k log(�(1�M))

log(cc0)

�
:

Proof: Let X = fx1; . . . ; xtg. Then,

ocD(X) =
VS(X)

ES(X)
�
VD(X)

ED(X)

=
VS(fx1; . . . ; xtg)Qt

i=1 VS(fxig)
�
VD(fx1; . . . ; xtg)Qt

i=1 VD(fxig)
:

23



Suppose that t > k. Then, since D is (k; c)-sparse, we can obtain the following

inequality by the same argument as in Lemma 17.

ocD(X) <= c(t�k) � ��k �
VD(fx1; . . . ; xtg)Qt

i=1 VD(fxig)

Also, since D satis�es Condition 7, and VD(fxg) = 1 � VS(fxg) >= 1 �M , we

can obtain the following inequality from the above.

ocD(X) <= c(t�k) � ��k � c0(t�k) � (1�M)�k

= (cc0)(t�k) � (�(1�M))�k

From Condition 3, bm <= b <= ocD(X). Thus,

bm <= (cc0)(t�k) � (�(1�M))�k

log bm <= (t� k) log(cc0)� k log(�(1�M))

log bm + k log(�(1�M)) <= (t� k) log(cc0)

t <= k +

�
log bm + k log(�(1�M))

log(cc0)

�

jXj <= k +

�
log bm + k log(�(1�M))

log(cc0)

�
:

2

Let l = k+
j
log bm+k log(�(1�M))

log(cc0)

k
. For a given itemset, it can be checked whether

the itemset is highly co-occurrent in D in O(jjDjj) time. Since there are at most

jI jl itemsets of size less than or equal to l, all the highly co-occurrent itemsets

can be computed in O(jjDjj � jIjl) time.

Theorem 4: Suppose that a database D is in (k; c; c0; �;M)-�0 with cc0 < 1,

and Condition 3 is satis�ed. Then, all the highly co-occurrent itemsets in D

can be computed in polynomial time in jjDjj. 2

6. Conclusions

In Sect. 3, we have introduced the notion of (k; c)-sparsity of databases. Any

database is (k; c)-sparse for some su�ciently high k or c. Thus, the (k; c)-

sparsity is a general condition on databases. In fact, the test data in Refs. [1{

3, 5, 6, 9, 11] are all (k; c)-sparse for some small k and c unless these algorithms

need exponential time of the size of databases. Based on the notion of (k; c)-

sparsity, we have proposed a subclass of databases. For a database in that

subclass, we can e�ciently �nd all the large itemsets.

In Sect. 4, we have de�ned alternative measures to the support, called co-

occurrence. Of course, no de�nition of the co-occurrence achieves the best qual-

ity. In other words, according to the property of the database, database users

have a chance to determine which de�nition of the co-occurrence they should

use.

However, we have shown that �nding all the highly co-occurrent itemsets is

NP-hard under whichever measure we have de�ned. From these results, it has

become clear that �nding all the highly co-occurrent itemsets is impossible in

polynomial time in the size of a database unless P=NP. It seems that the lack of

the monotonicity such as \if an itemset has some property, then all the subsets

of the itemset has the same property" makes the problem more di�cult than to

�nd all the large itemsets.
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In Sect 5, we have proposed subclasses of databases for which we can ef-

�ciently �nd all the highly co-occurrent itemsets. These subclasses are also

de�ned based on the notion of (k; c)-sparsity. To propose weaker conditions on

databases is the future work.
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