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Test Generation for Acyclic Sequential Circuitswith Hold Registers

Tomoo Inoue, Chiiho Sano, Takahiro Mihara, and Hideo Fujiwara

Abstract.  We present a method of test generation for
acyclic sequential circuits with hold registers. A complete
(100% fault efficiency) test sequence for an acyclic sequen-
tial circuit can be obtained by applying a combinational test
generator to all the maximal time-expansion models (TEMS)
of the circuit. We propose a class of acyclic sequentia cir-
cuitsfor which the number of maximal TEMsisone, i.e, the
maximum TEM exists. For acircuit in the class, test gener-
ation can be performed by using only the maximum TEM.
The proposed class of sequential circuits with the maximum
TEM properly includes several known classes of acyclic se-
guential circuits such as balanced structures and acyclic se-
quentia circuits without hold registers for which test gen-
eration can be also performed by using a combinational test
generator. Therefore, in general, the hardware overhead for
partial scan based on the proposed structure is smaller than
that based on balanced or acyclic sequential structure with-
out hold registers.

Keywords.  Acyclic sequentia circuits, combinational
test generation, hold registers, maximum time-expansion
model, partial scan.

1 Introduction

Test generation for sequential circuits is generally con-
sidered to be a hard problem. For such sequential circuits,
design for testability (DFT) is an important approach to re-
ducing the test generation cost [1, 2]. On the other hand, for
combinational circuits, efficient test generation algorithms
were proposed, and hence we can obtain a complete (100%
fault efficiency) test set even if the circuit size is large.
Therefore, it is significant to apply DFT to a sequential cir-
cuit so that the resultant circuit can be test-generated using
only acombinational test generator.

Full scan design referring to chaining al of memory el-
ements or flip-flops (FFs) into a shift register is such atra-
ditional DFT technique. In the full scan design, the portion
of the circuit excluding the scan path, which is called the
kernel, is a combinational circuit, and consegquently a com-
binational test generator can be used. However, the full scan
design requires large overhead. Although partial scan de-
sign which makes a subset of FFs scannable can avoid such
apenalty, the kernel circuit is still sequential one[3, 4], and

henceit requiresthe use of sequential test generatorsin gen-
eral.

In order to obtain complete test sequences for sequen-
tial circuits efficiently with low hardware overhead, several
classes of sequential circuits for which test generation can
be performed by using only a combinational test generator
wereidentified [5]-{11]. In[11], we presented a method of
test generation for acyclic sequentia circuits using a time-
expansion model (TEM). One can obtain a compl ete test set
for a given acyclic sequential circuit by applying combina-
tional test generation to the TEM of the given circuit, pro-
vided that the combinational test generator can deal with
multiple faults. Thus, for any sequential circuit, by select-
ing asufficient set of scan FFs so that the resultant kernel is
acyclic, a complete test sequence for the sequentia circuit
can be generated by using a combinational test generator
in spite of partial scan. In [11], however, a hold register
whichisacollection of FFswith ahold modeisregarded as
a self-loop, and consequently it is always chosen as a scan
register.

In this paper, we propose a new TEM (time-expansion
model) for acyclic sequentia circuits with hold registers.
Even if an acyclic sequentia circuit has hold registers, test
generation for the circuit can be performed by applying
combinational test generation to the new TEM. Hence, hold
registers are not necessarily chosen as scan registers, and
consequently the hardware overhead is smaller compared
with that of the partial scan design in which kernels have no
hold register [11].

For an acyclic sequential circuit, aTEM isobtained from
a sequence of load/hold controls. Since there exist many
sequences of load/hold controls, many TEMs are obtained
from an acyclic sequential circuit. Hence, in order to obtain
a complete test sequence for an acyclic sequentia circuit,
we may have to perform test generation for all TEMs of the
circuit. However, that may not be acceptable. Therefore, in
order to reduce the number of TEMs required for the test
generation, we introduce a cover relation among TEMs for
an acyclic sequentia circuit, and show that test generation
for al maximal (ontherelation) TEMsis necessary and suf-
ficient to obtain a complete test sequence. Furthermore, we
present a class of acyclic sequentia circuits for which the
number of maximal TEMs is just one, i.e., the maximum



TEM exists. For acircuit in the class, atest sequencefor any
testable fault can be generated by using only the maximum
TEM of the circuit, and therefore a complete test sequence
for the circuit can be obtained efficiently.

2 Time-Expanson Mode for Acyclic Se-
quential Circuits

2.1 Circuit Model

In this paper, we consider synchronous sequential cir-
cuits. A sequentia circuit consists of combinational logic
blocks connected with each other directly or through reg-
isters. A register is a collection of D-type flip-flops (FFs)
driven by the same clock signal. The clock signals of all
registers are assumed to be directly controlled by primary
inputs, and no clock signal feeds datainput of either a com-
binational logic block or aregister.

A combinational logic block (or logic block, for short) in
a sequentia circuit is a region of connected combinational
logic, excluding registers. A logic block may include pri-
mary inputs and primary outputs.

Some registers may have aload enable control signals. A
register with an explicit load enable control signal is called
H-register. An H-register has two modes of operation: a
HOLD mode (in which it retains its value across consec-
utive clock cycles) and a LOAD mode (in which it reads
from the datainput when aclock signal isapplied). A regis-
ter without aload enable control signal is called L-register,
which always operates in the load mode during every clock
cycle. The control signal for each H-register is assumed to
bedirectly controlled by aprimary input independent of that
for the others.

Aninput-pattern for asequential circuit consists of adata
input-pattern and a control input-pattern, which are a col-
lection of signals applied to combinational logics and that
of signals applied to H-registers, respectively.

Under this constraint, the topology of a sequential circuit
can be modeled by atopology graph defined as follows.

Definition 1 (Topology graph): A topology graph is adi-
rected graph G = (V,A,r), where avertex v € V denotes a
logic block and an arc (u,v) € A denotes a connection from
uto v and each arc has alabel r : A — Z* (non-negative
integers) U {h}. When two logic blocks u, v are connected
directly or through one or more L-registers, the label r(u, V)
denotesthe number of L-registers(i.e., r(u,v) € Z*). When
two logic blocks u, v are connected through one H-register
1, thelabel r(u,v) = h. o

1Even if there exist two H-registers or both of L and H-registers be-
tween two logic blocks, the topology graph can also represent such se-
quentia circuits by supposing existence of a combinational logic block
consisting only of lines or buffers between the two logic blocks.

Figure 2. Topology graph of S G.

Example 1. Consider a sequential circuit Sillustrated in
Fig. 1. Inthisfigure, 1,2,...,7 are logic blocks, b,c,...,i
are L-registers, and a and j, which are highlighted, are H-
registers. Thetopology graph G of thiscircuit Sisshownin
Fig. 2. m|

2.2 Time-Expansion Model (TEM)

Test generation for an acyclic sequential circuit can be
performed by applying a combinational test generator to a
time-expansion model of the circuit.

Definition 2 (Time-expansion graph (TEG)): Let Sbean
acyclic sequential circuit and let G = (V,A,r) be the topol-
ogy graph of S. Let E = (Vg,Ag,t,]) be adirected graph,
where Vg isaset of vertices, Ag isaset of arcs, t isamap-
ping from Vg to a set of integers, and | isamapping from Vg
to the set of verticesV in G. If graph E satisfies the follow-
ing five conditions, graph E is said to be a time-expansion
graph (TEG) of G.

C1(Logic preservation) Themapping | isasurjective, i.e.,

YweV,Jue Ve st.v=1(u).

C2(Input preservation) Let u be a vertex in E. For any
direct predecessor v (€ pre(l(u))) of uin G, there ex-
istsavertex U in E suchthat | (U) =vand U’ € pre(u).
Here, pre(v) denotes the set of direct predecessors of
V.

C3(Timeconsistency) For any arc (u,v) (€ Ag), there ex-
ists an arc (I(u),l(v)) such that r(I(u),l(v)) =t(v) —
t(u) or r(I(u),l(v)) = h.

C4(Timeuniqueness) For any vertices u,v (€ Vg), if
t(u) =t(v) andif I(u) = I(v), then the verticesu and v
areidentical, i.e, u=v.
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C5(Hold consistency) For any pair of arcs (ug,v1), (Uz,V2)
(e Ag) such that (I(u1),l(v1)) = (I(up),l(v2)) and
r(l(uy),l(v1)) = r(l(u2),l(v2)) = h, if t(uy) > t(uy),
thent(uy) > t(vy).

O

Example 2. Fig. 3, Fig. 4 and Fig. 5 show TEGs of topol-
ogy graph G. In these figures, the number denoted in a ver-
tex u is the label I(u), and the number located at the top of
each column denotes the value of the labelst(u) of the ver-
tices u in the column. m|

Note that as shown in the above example, the TEG for a
topology graph is not unique in general.

Definition 3 (Time-expansion model (TEM)): Let Sbean
acyclic sequential circuit, let G = (V, A, r) be the topology
graph of S and let E = (Vg,Ag,t,l) be aTEG of G. The
combinational circuit Cg (S) obtained by the following pro-
cedure is said to be the time-expansion model (TEM) of S
based on E.

(1) For each vertex u € Vg, let logic block | (u) (€ V) be
the logic block corresponding to u.

Figure 6. TEM of Sbased on E;: Cg,(S).

(2) Foreacharc (u,v) € Ag, connect the output of u to the
input of v with abusin the ssmeway as (I(u),l(v)) (€
A). Note that the connection corresponding to (u, V)
has no register even if the connection corresponding to

(I(u),1(v)) has aregister (i.e., r(I(u),l(v)) # 0).

(3) Steps (1) and (2), if it is not reachable to any input of
other logic blocks, then it is removed.

O

Example 3: Fig. 6 showsthe TEM of sequentia circuit S
(Fig. 1) based on TEG E; (Fig. 3). In this figure, a high-
lighted part in alogic block represents a portion of thelines
and gates removed by Step (3) in Def. 3. a

2.3 Test Generation with TEM

Here we consider the relationship between input/output
sequences of an acyclic sequentia circuit and input/output
patterns of its TEM. Let S be an acyclic sequential circuit,
and let G = (V,A,r) be the topology graph of S. Let E =
(Ve,Ae,t,]) be a TEG of G, let Ce(S) be the TEM of S
based on E, and let tyi, be the minimum of labelst inCe ().
Aninput pattern for Ce (S) can be transformed into an input
sequence for circuit Sby the following procedure ts.

Definition 4 (Transfor mation procedure ts):

(1) Control input sequencely. Let Ig(V,vt) denote an
input value which is applied to an H-register (V',v) (€
A) at time t. For each arc (U,u) € Ag such that
r(l(u),l(u)) = h, let

I (1(U), 1 (u),t —tmin)

_ L (LOAD mode) (t=t(U))

- H (HOLD mode) (t(u)+1<t<t(u)—1)
Let the values 14 (V, v,t) which are not defined by the

above equation be X (don’t care).

(2) Data input sequencels. For eachlogic block u e Vg in
CE(S), let

Is(1(u),t(u) —tmin) = Ic(u),



Table 1. Input and output sequences for Sob-
tained by transformation procedure ts.

Time | o] 1] 2 | 3|
X1 l10 I11 X X
Data Input % X I X X
Control Input Reg. a L H X X
Reg. | X X L X
Z1 X X X Ol
Output 2 X X X 0,

where Is(v,t) denotes an input-pattern applied to logic
block v in S a time t, and Ic(u) denotes an input-
pattern applied to logic block uin Ce(S).

O

Note that in the above procedure, a control input se-
guence is obtained only from a TEG E independent of an
input-pattern for TEM Cg(9).

Lemma 1. Let Ic be an arbitrary input-pattern for TEM
Ce(9), and let Isand I be adatainput sequence and a con-
trol input sequence obtained by ts, respectively. The output
pattern Oc(u) obtained from a logic block u € Ve by ap-
plying input pattern Ic to Ce(S) is equal to the output pat-
tern Os(l(u),t(u) —tmin) obtained from the corresponding
logic block 1(u) at timet(u) — tmin by applying data input
sequence |s with control input sequence Iy.

(Proof.) See appendix. |

Example4: Consider a TEM Cg, (S) (Fig. 6) of a sequen-
tial circuit S shown in Fig. 1. Suppose an input-pattern
lc = (X10,%11,%2) = (l10,l11,12) applied to Cg, (S) and the
corresponding output-pattern is Oc = (z,22) = (01,0).
According to the labelst in TEG E; (Fig. 3), the patternsIc
and Oc are transformed into the sequences shown in Table
1 by procedure ts. Here, X denotesadon’t-carevalue. O

Note that the length of the sequence obtained from
a patern for TEM Cg(S) by procedure 1s becomes
MaXyeve {t(U) } — mingeye {t(u)} + 1.

Let Is and Iy be a data input sequence and a control in-
put sequence for acyclic sequential circuit S such that the
sequences determine the output pattern Os(v,t) of alogic
block v (€ V) in Sat timet, respectively. Here, a pattern
that does not affect Og(v,t) in the input sequences Isand Iy
is considered as don't-care. Input sequences Is and Iy for
Scan be transformed into a TEG E and an input-pattern Ic
for the TEM Cg(S) by the following procedure tc.

Definition 5 (Transfor mation procedure 1c):

(1) TEGE. CreateaTEG E = (Vg,Ag,t,l) in which there

exists avertex u € Vg that satisfies the following con-
ditions.

(D) I(u) =vAt(u)=t,and

(2) For the control input value Iy (v1,Vv2,t') applied to
an H-register (v1,v2) (r(v1,v2) = h) at timet’,

if 1y (vi,vo,t') = L, then there exists a vertex u; €
Pre(u) suchthat I (ug) = viAt(ug) =t',

if Iy (v1,vo,t") = H, then there existsan arc (ug, up) (€
Ag) such that ug,up € Pre(u) At(up) <t/ At(up) >t
Here, Pre(u) denotes the set of all predecessors of u.

(2) Input-pattern Ic. For every input pattern Is(V,t') ap-
plied to each logic block V' at timet', if 15(V/,t’) affects
output Os(v,t), then for the logic block U’ that satisfies
U el=H(v) andt(u) =t', letIc(U) = Is(V,t).

O

Lemma2: Letv(eV)beanarbitrary logicblock inacyclic
sequentia circuit S, and let Is and |y be a data input se-
guence and a control input sequence that are required to set
the output of v to a pattern Os(v,t) at timet, respectively.
Let E and Ic be a TEM and an input-pattern obtained from
Is and Iy by procedure 1c, respectively. Let u (€ Vi) be
the logic block that corresponds to v by the first step (1) in
procedure tc. The output pattern Oc(u) obtained from the
logic block u by applying theinput pattern Ic to TEM Ce(S)
isequal to the output pattern Os(v,t).

(Proof.) See Appendix. m|

Note that as shown in the above procedure tc, aTEG (or
TEM) is obtained from a control input sequence applied to
H-registersin a sequential circuit, independent of datainput
sequences.

Next, let us consider the relationship between faults in
an acyclic sequential circuit and thoseinits TEMs. Herewe
consider single stuck-at faults only in logic blocks as those
inan original sequential circuit. The stuck-at faultson lines
between logic blocks and in registers can be considered to
be equivalent to those on input/output lines of logic blocks.

Definition 6 (Fault in TEM): Let Shbe an acyclic sequen-
tial circuit. Let G = (V, A r) be the topology graph of S, let
E = (Vg,Ag,t,l) beaTEG of G, and let Cz(S) bethe TEM
of Shased onE. Let F bethe set of faultsin S, and let Fe be
the set of faultsin Ce(S). Suppose afault f € F in alogic
block uin circuit S. Let fe € Fg be the fault correspond-
ing to fault f. Fault fe is a multiple fault that consists of
al the faults existing on the same line in every logic block
uel1(v). That is, if the number of logic blocks u such
that [(u) = v isjust one, then the fault fe is a single fault,
otherwise, fe isamultiple fault. O

Theorem 1: Let Sbe an acyclic sequentia circuit, and let
F betheset of faultsin S. Let G = (V, A, r) be the topology
graph of S.



(1) A fault f € F istestable (or irredundant) in Sif and
only if there exists a TEG E of G such that the fault
fe (€ Fg) corresponding to f is testable in the TEM
Ce(S) based on E.

(2) A test pattern for a fault fe (€ Fg) obtained using a
TEM Cg(S) can be transformed into a test sequence
for thefault f (€ F) corresponding to fault fe.

(Proof.) See Appendix. |

From this theorem, we can see that test generation for an
acyclic sequential circuit can be performed by using severa
different TEMs. Furthermore, since TEMs are fully com-
binational, a combinational test generator can be used for
the test generation provided that the test generator can deal
with multiple faults. However, from Theorem 1, we can
aso have the following corollary.

Corollary 1: Let Sbe an acyclic sequentia circuit. Let
F be aset of faultsin S. A fault f € F is untestable (or
redundant) in Sif and only if the fault corresponding to fe
is untestablein any TEM for S. |

Hence, in order to obtain a complete test sequence (i.e.,
to identify all testable faults) for a sequentia circuit, we
may have to perform test generation for all TEMs of the
circuit. However, that is practically prohibitive. Therefore,
in order to reduce the number of TEMs required for the test
generation, we introduce cover relation of TEMs, and con-
sider the TEMs used for complete test sets.

3 Sequential Circuitswith Maximum TEM

3.1 Cover Relation of TEMs

Here we consider the relation between TEMs (or TEGS)
obtained for an acyclic sequentia circuit. Let S be an
acyclic sequential circuit. Let G = (V,A r) be the topol-
ogy graph of S and let E; = (V1,Aq,11,11) and Ep; =
(V2,A2,12,12) be arbitrary TEGs of G. Let Cg (S and
Ck, (S) bethe TEMs based on E; and E; of S, respectively.

Definition 7 (Cover relation): TEG E; is said to cover
TEG E; if, for any vertex v, € Vo, there existsavertex vy €
V1 which satisfies the following two conditions.

(1) |(V1) = |(V2).

(2) LetV] =Pre(vq) and let V; = Pre(v,), where Pre(v)
denotes the set of all predecessors of v. There existsa
mapping m: V] — V; which satisfies the following two
conditions.

(2.1) l1(v2) =I2(m(va)).

(2.2) For any vertex v, € V,,

Wi € mH(vy) [La(Vp) D La(Vh)],

Figure 8. Mapping mfrom V3 in Ez to V4 in E;.

where Li(V') = {v € V|v = lj(u),u € suc(V)) N V/}.
Here, suc(v) denotes the set of direct successors of
v. That is, Lj(V') denotes the set of logic blocksinV
corresponding to those which are reachable from logic
block V in TEG V.

O

When a TEG E; coversa TEG E,, we denote that E; >
Eo. Further, it is also said that TEM Cg, (S) covers TEM
Ce,(S) (Cei(9) = Ce,(9).

Example 5:  Consider two TEMs Cg, (S) (Fig. 3) and
Ce;(S) (Fig. 5) for the topology graph G (Fig. 2) of a se-
guentia circuit S(Fig. 1). Suppose a mapping m as shown
in Fig. 8. In this figure, a highlighted arrow from a vertex
v3 € V3 to avertex vi € Vi denotesm(vs) = vy. For simplic-
ity, unique correspondences such that the number of vertices
v1 € V1 whoselabels|(v1) arethe samevertex (inV of G) is
just one are omitted. Since this mapping m which satisfies
al the conditions in Def. 7, TEG E3 covers TEG E;. Note
that E; % Es. |

The mapping m in the above definition represents the
relationship between logic blocks corresponding to a logic
block v (€ G) ina TEG E; and those corresponding to the
same onevin a TEG E;. When E; covers E;, since the re-
lation m is mapping from V1 to Vo, multiple vertices in Vi
may correspond to one vertex inV,. For example, there exist
three and two vertices that are labeled with 1 in Ez and Eq,
respectively, and two of them in E3 correspond to one ver-



tex in E;. Here, let u denote one of the two vertices, which
is connected vertices labeled with two 2's, and let v denote
the other vertex connected the vertex labeled with 6 in E3.
Further, let v, denote the vertex corresponding to u,v in E;
by mapping m. By Condition C4 in Def. 2 (the definition of
TEGS), inaTEG, for two different verticesu, vwhoselabels
arethe same, i.e., | (u) = 1(v), thelabelst(u) and t(v) must
be different (e.g., t3(u) = 1,t3(v) = 0). While vertex v1 is
reachableto a vertex labeled with 7 viatwo paths (1,2,3,7)
and (1,6,7) in Ez, vertex uisreachable to the corresponding
vertex labeled with 7 viaapath (1, 2, 3,7) and the other ver-
tex v can reach the vertex 7 viaapath (1,6, 7). This means
that the number of logic blocks that affect a particular logic
block in Cg,(S) (acovering TEM) is equal to or larger than
that in Cg, (S) (a covered TEM). In other words, for any
output-pattern O(v;) obtained by applying an input-pattern
11 to Cg, (S), the same output-pattern O(v;) can be obtained
from the corresponding logic block v in Cg,(S) by apply-
ing the input-pattern I3 that is obtained from |1 according to
mapping m as follows.

Example 6: Suppose an output-pattern (z;,z;) = (O1,05)
for an input-pattern (X10,X11,%2) = (la, Ip, Ic) inCg, (S) (Fig.
6). The same output-pattern (z1,z) = (O1,02) can be
obtained by applying (Xi0,X11,X12,X2) = (la,la,lb,lc) tO
Cg,(9) (Fig. 7). |

As shown in the above example, if aTEM C; coversan-
other TEM Cp, C; can ‘simulate’ Cp. On the other hand, by
definition Def. 6, for any fault in an acyclic sequential cir-
cuit, the corresponding fault is defined in either TEM of Cy
and C,. Thus, we can form the following conjecture.

Conjecture 1. Let Sbe an acyclic sequentia circuit. Let
CiandC, be TEMs of S. Let F; and F, be the set of faults
in Cy and Cy, respectively (Def. 6). If TEM C; covers TEM
Cy, thefollowing holds: If afault f2 (€ F) inC; istestable,
fault f1 (€ F1) inCy corresponding to fo isalso testable. O

We believe that this conjecture holds as a theorem,
though the proof has not obtained yet.

For any pair of TEGs E; and E; for an acyclic sequentia
circuit S, if E; = E and Ep # E1, E; is said to cover E;
properly, and it is denoted by E; = Ep. For a TEG E, if
there exists no TEG E’ such that E’ - E, TEG E is caled
maximal. Then, we can obtain the following corollary.

Corollary 2: A fault f istestable in an sequential circuit
Sif and only if there exists a maximal TEM in which fy,
corresponding to f istestable. a

This implies that test generation for all the maximal
TEMs of an acyclic sequential circuit is necessary and suf-
ficient to obtain a complete test sequence for all testable
faultsin the circuit.

0 1 2 3 4 5
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Figure 9. Example of inconsistent graph.

3.2 Classof Max-Testable Structure

In the above discussion, we showed that test generation
for al the maximal TEMs of an acyclic sequential circuitis
necessary and sufficient to obtain a complete test sequence
for the circuit. In general, however, there exist several max-
imal TEMs for an acyclic sequential circuit.

Example 7. Consider TEMs for a sequentia circuit S
showninFig. 1. AsshowninFigs. 3,4 and 5, several TEMs
for Scan be constructed. Asmentioned previously, E3 - Ej,
but E; # E3 and E3 ¥ Ep. Further, there is no TEM which
coverseither E, or E3 properly. Asaresult, all the maximal
TEMsfor Sare E; and Es. O

If the number of maximal TEMs is one, i.e., there ex-
ists the maximum TEM for a sequential circuit, a complete
test set for the circuit can be generated only by perform-
ing combinational test generation for the maximum TEM.
If a sequential circuit has the maximum TEM, the sequen-
tial circuit is called max-testable.

Example 8: Consider sequentia circuit S (Fig. 1) again.
Suppose a directed graph as shown in Fig. 9. We can make
amapping m described in Def. 7 from the vertex set in this
graph to that in either of maximal TEGs E, and E3. This
graph, however, is not a TEG for S because it does not sat-
isfy Condition C5in Def. 2, i.e., there exists no control input
sequence corresponding to the graph: an H-register a can-
not load a value at time 2 while holding a value loaded at
time O to be used at time 4. |

Asshown in the above example, the condition C5 in Def.
2 is for more than one arcs that correspond to a certain H-
register in an acyclic sequential circuit. Such arc duplica
tion for an H-register is possible in a TEG when there ex-
ist more than one paths from the H-register to an primary
output in the circuit. Hence, here we consider a class of
max-testable sequential circuits as follows.

Definition 8 (Path-adjustable structure): Let S be an
acyclic sequential circuit. Let G = (V,A,r) be the topol-
ogy graph of S. Let P(u,v) denote a set of paths from u to v
(u,v e V). If G satisfies the following condition, sequential
circuit Sis said to be path-adjustable.

(CPA) LetV' (CV) beaset of verticeswhich arereachable
from somearc an(€ A) suchthat r (ap) = h (H-register). Let



Figure 10. Sequential circuit S.

u, v beany pair of verticesinV'’. For any pair of paths p,q e
P(u,v),

(1) ifH(p) =H(q), thend(p) = d(q), else
(2) ifH(p) #H(a), then
H(p)NH(a) # ¢ = H(p) C H(q) VH(p) D H(q).

Here d(p) denotes the number of arcs a (€ A) such that
r(a) € Z* (L-register) inapath p, and H(p) denotes the set
of arcsa such that r(a) = h (H-register) in apath p. a

In the above condition CPA, the former case (1) means
that arc duplication for arc a,, does not occur in any TEG of
G. On the other hand, the latter case (2) means a sufficient
condition for existence of H-registers for which control sig-
nals are ‘adjustable’ to make a maximum TEG while Con-
dition C5in Def. 2 for arc ay, issatisfied. That is, eveniif the
control input sequence for al the H-registers on apath pis
determined prior to that on the other g, some H-register to
satisfy Condition C5 still remainsfor . Notethat in neither
case, i.e, in the case when H(p) "H(q) = ¢, the control
input sequence for any H-register on a path does not affect
that for the others to satisfy Condition C5.

Example 9: Consider a sequential circuit S, shown in
Fig. 10. In this figure, a,b,d and i are H-registers, and
the others are L-registers. For example, let us focus on
an H-register a. There exist four paths to be considered
for aa p1 = (2,d,4,1,6), po = (2,b,3,64,1,6), ps =
(2,b,3,9,5,h,6) and ps = (2,b,3,i,6). Then, H(p1) =
{d},H(p2) = {b},H(ps) = {b} and H(ps) = {b,i}. For
p1 and pz, H(p1) NH(p2) = ¢, thisisin neither case. For
p2 and p3, H(p2) = H(ps) = {b} and d(p2) =d(ps), i.e

case(1). For pz and ps, H(p2) C H(pa), i.e., case(2). Simi-
larly, all the other pairs of pathsin thiscircuit S also satisfy
the condition CPA, and hence S is path-adjustable. Note
that a sequential circuit S (Fig. 1) is not path-adjustable.
As a result, we can obtain the maximum TEM for S as
shownin Fig. 11. The control input sequence obtained from
the TEM (by procedure ts) is Iy (a) = (L,L,L,H,X,X,X),
I (b) = (X,X,L,H,L,X,X), Ix(d) = (X,L,H,H,H,X,X),
I (h) = (X, X, X, X, X,L,X). O

From the above discussion, we have the following con-
jecture.

Conjecture2: A path-adjustable sequential circuit is max-
testable. m|

Figure 12. Sequential circuit Ss.

We believe that this conjecture also holds as a theorem,
though the proof has not obtained yet.

3.3 DFT Based on Path-Adjustable Structure

From Conjecture 2, we can see that for any sequentia
circuit, by selecting a sufficient set of scan registers so that
the resulting kernel is path-adjustable, a complete test se-
guence for the circuit can be obtained by using a combi-
national test generator for only the maximum TEM of the
kernel (provided that the test generator can deal with mul-
tiple faults). On the other hand, from Def. 8, we have the
following corollary.

Corollary 3. All thefollowing sequential circuits are path-
adjustable.

(1) balanced structures[5].
(2) internally-balanced structures|[7].
(3) acyclic sequentia circuits without H-registers.

O

Therefore, for a sequentia circuit, the hardware over-
head of the partial scan based on path-adjustable structure
is smaller than that based on the structures mentioned in
Corollary 3.

Example 10: Consider asequential circuit S3 showninFig.
12. Inthisfigure, a,b,d and i are H-registers, and the others
are L-registers. In the partial scan design based on path-
adjustable structure, the minimum number of scan registers
is two, e.g., by scanning L-registers j and k, the resulting
kernel becomes path-adjustable. Note that there is an al-
ternative DFT solution: if one L-register j is scanned and



another L-register k is replaced with an H-register, then the
resultant circuit is also path-adjustable.

On the other hand, in the partial scan design based on
balanced structure, the minimum number of scan registers
isfive, e.g., the set of registersto be scannedis {b, c,e, f,k}.
When the kernel is made an acyclic structure without H-
registers, the minimum number of scan registersisalso five,
egd. {a,b,d,h,i}. |

Therefore, it is seen that we can obtain complete test se-
guences for sequential circuits with low hardware overhead
based on max-testable structure.

4 Conclusions and Future Works

In this paper, we presented a method of test generation
for acyclic sequential circuits with hold registers. A com-
pletetest set for an acyclic sequential circuit can be obtained
by applying a combinational test generator to al the maxi-
mal time-expansion models (TEMs) of thecircuit. Asaclass
of max-testable sequential circuits, referring to acyclic se-
quentia circuits for which the number of maximal TEMs
is one, i.e, the maximum TEM exists, we introduced path-
adjustable structure. The class of path-adjustable sequential
circuits properly includes several known classes of acyclic
sequentia circuits such as balanced structures and acyclic
sequentia circuits without hold registersfor which test gen-
eration can be aso performed by using a combinational
test generator. Therefore, the hardware overhead for partial
scan based on our path-adjustable structure is substantially
smaller than that based on balanced or acyclic sequential
structure without hold registers.

As future works, several issues are remaining.

e The condition in the definition of path-adjustable
structure is a sufficient one for existence of the max-
imum TEM for acyclic sequential circuit. We believe
that there exists a lager class of max-testable sequen-
tial circuits, and hence the hardware overhead of DFT
for complete test sequences can be reduced further.

e We are now investigating an algorithm for finding an
optimal partial scan / hold register insertion based on
max-testable structure with minimum hardware over-
head.

e The length of test sequences obtained from test gen-
eration using TEMs depends on the structure of the
TEMs. Hence, optimal TEMs which minimize the
length of resulting test sequences should be found.
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Appendix

Proof of Lemma 1. Let u' (€ pre(u)) be alogic block con-
nected to an input of logic block u. By Condition C1, in S, there
exist logic blocks I (u),l(u") corresponding to u,u’ respectively,
and by Condition C2, the logic block U’ is connected to the in-
put of logic block u. By procedure ts, an input pattern Ic(u') for
U’ is transformed into the input pattern Iy (I (U'),t(u’) — tyin) for
I(U) at time t(U) — tmin. From Condition C4, we can say that
the number of patterns to be applied to 1(U') at time t(u") — tmin
isjust one. If the two logic blocks I (u) and | (u") are connected
directly or through one or more L-registers, the effect of apply-
ing Is((u'),t(U) — tmin) reaches|(u) after r(I(u'),l(u)) clock cy-
cles. Since r(I(u'),l(u)) denotes the number of L-registers be-
tween |(u') and I (u), by Condition C3, we can say that (t(u') —
tmin) +r(1(U),1(u)) = t(u) —tmin. Or else, i.e, if the two logic
blocks are connected though an H-register, the output-pattern ob-
tained from logic block | (u') by applying Is(I(U'),t(U) —tyin) a



t(U') — tmin is loaded into the H-register (I(u'),1(u)). By Condi-
tion C5, the contents of the register is not update by other LOAD
signals, and kept until t(u) —tmin by the control input sequence .

O

Proof of Lemma 2. Let u € Vg be the logic block that is cre-
ated in Cg(S) by step (1) in procedure tc. Let V' (€ pre(v)) bea
logic block connected to an input of logic block v. By Condition
C2, thelogic block U’ (€ 171(V/)) corresponding to V/ is connected
to an input of u. By step (2) in procedure tc, an input-pattern
Is(V,t") applied to V' at timet’ istransformed into the input-pattern
Ic(up) for up. If two logic blocks v and V' are connected di-
rectly or through one or more L-registers, the timet’ when input-
pattern Is(V,t') is applied to obtain output-pattern Os(v,t) from
logic block v at t must bet —r(V,v). Note that r(V,v) denotes
the number of L-registers between v/ and v. By Condition C3,
t(u) =t(v)—r(v,v)=t—r(V,v). If twologic blocksvand v are
connected through an H-register, the output-pattern of logic block
V' isloaded into the H-register (V,v) att’ by acontrol input value
In(V,vt') =L. By step (1) in procedure tc, according to the con-
trol input value Iy (V,v,t") = L, the corresponding vertex u’ which
islabeled t(u') = t’. From Conditions C4 and C5 and step (1) in
procedure tc, we can say that the number of logic blocks U’ such
thatt(u) =t' vVI(U') =V isjust onein Cg(S). O

Proof of Theorem 1. Let E bea TEG of G, and Let Cg(S) be
the TEM based on E. Let f beafaultin S, and let fe be the fault
corresponding to f in Cg(S). Let S’ be a faulty circuit with f of
S Let Cée(S) be afaulty circuit with fe of Cg(S). By Def. 6, fault
fe is a multiple fault that consists of faults in every logic block
I=1(v) corresponding to alogic block v (€ V) in which exists fault
f. Hence, the structure of Cée (S) isthe same as that of Cg(SF) for
S' based on TEG E.

Therefore, by Lemma 2, for atest sequence Ts for afault f in
S, there exists a TEM E that corresponding to the control input
sequence in Ts, and there exists atest pattern obtained from Ts by
procedure 1c can detect the fault fe corresponding to f. Further,
by Lemma 1, a test pattern tc for a fault fe in the TEM Cg(S)
based on aTEG E can be transformed into a test sequence that can
detect f corresponding to fe in Shy procedure ts. a



