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Test Generation for Acyclic Sequential Circuits with Hold Registers

Tomoo Inoue, Chiiho Sano, Takahiro Mihara, and Hideo Fujiwara

Abstract. We present a method of test generation for
acyclic sequential circuits with hold registers. A complete
(100% fault efficiency) test sequence for an acyclic sequen-
tial circuit can be obtained by applying a combinational test
generator to all the maximal time-expansion models (TEMs)
of the circuit. We propose a class of acyclic sequential cir-
cuits for which the number of maximal TEMs is one, i.e, the
maximum TEM exists. For a circuit in the class, test gener-
ation can be performed by using only the maximum TEM.
The proposed class of sequential circuits with the maximum
TEM properly includes several known classes of acyclic se-
quential circuits such as balanced structures and acyclic se-
quential circuits without hold registers for which test gen-
eration can be also performed by using a combinational test
generator. Therefore, in general, the hardware overhead for
partial scan based on the proposed structure is smaller than
that based on balanced or acyclic sequential structure with-
out hold registers.
Keywords. Acyclic sequential circuits, combinational
test generation, hold registers, maximum time-expansion
model, partial scan.

1 Introduction

Test generation for sequential circuits is generally con-
sidered to be a hard problem. For such sequential circuits,
design for testability (DFT) is an important approach to re-
ducing the test generation cost [1, 2]. On the other hand, for
combinational circuits, efficient test generation algorithms
were proposed, and hence we can obtain a complete (100%
fault efficiency) test set even if the circuit size is large.
Therefore, it is significant to apply DFT to a sequential cir-
cuit so that the resultant circuit can be test-generated using
only a combinational test generator.

Full scan design referring to chaining all of memory el-
ements or flip-flops (FFs) into a shift register is such a tra-
ditional DFT technique. In the full scan design, the portion
of the circuit excluding the scan path, which is called the
kernel, is a combinational circuit, and consequently a com-
binational test generator can be used. However, the full scan
design requires large overhead. Although partial scan de-
sign which makes a subset of FFs scannable can avoid such
a penalty, the kernel circuit is still sequential one [3, 4], and

hence it requires the use of sequential test generators in gen-
eral.

In order to obtain complete test sequences for sequen-
tial circuits efficiently with low hardware overhead, several
classes of sequential circuits for which test generation can
be performed by using only a combinational test generator
were identified [5]–[11]. In [11], we presented a method of
test generation for acyclic sequential circuits using a time-
expansion model (TEM). One can obtain a complete test set
for a given acyclic sequential circuit by applying combina-
tional test generation to the TEM of the given circuit, pro-
vided that the combinational test generator can deal with
multiple faults. Thus, for any sequential circuit, by select-
ing a sufficient set of scan FFs so that the resultant kernel is
acyclic, a complete test sequence for the sequential circuit
can be generated by using a combinational test generator
in spite of partial scan. In [11], however, a hold register
which is a collection of FFs with a hold mode is regarded as
a self-loop, and consequently it is always chosen as a scan
register.

In this paper, we propose a new TEM (time-expansion
model) for acyclic sequential circuits with hold registers.
Even if an acyclic sequential circuit has hold registers, test
generation for the circuit can be performed by applying
combinational test generation to the new TEM. Hence, hold
registers are not necessarily chosen as scan registers, and
consequently the hardware overhead is smaller compared
with that of the partial scan design in which kernels have no
hold register [11].

For an acyclic sequential circuit, a TEM is obtained from
a sequence of load/hold controls. Since there exist many
sequences of load/hold controls, many TEMs are obtained
from an acyclic sequential circuit. Hence, in order to obtain
a complete test sequence for an acyclic sequential circuit,
we may have to perform test generation for all TEMs of the
circuit. However, that may not be acceptable. Therefore, in
order to reduce the number of TEMs required for the test
generation, we introduce a cover relation among TEMs for
an acyclic sequential circuit, and show that test generation
for all maximal (on the relation) TEMs is necessary and suf-
ficient to obtain a complete test sequence. Furthermore, we
present a class of acyclic sequential circuits for which the
number of maximal TEMs is just one, i.e., the maximum
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TEM exists. For a circuit in the class, a test sequence for any
testable fault can be generated by using only the maximum
TEM of the circuit, and therefore a complete test sequence
for the circuit can be obtained efficiently.

2 Time-Expansion Model for Acyclic Se-
quential Circuits

2.1 Circuit Model

In this paper, we consider synchronous sequential cir-
cuits. A sequential circuit consists of combinational logic
blocks connected with each other directly or through reg-
isters. A register is a collection of D-type flip-flops (FFs)
driven by the same clock signal. The clock signals of all
registers are assumed to be directly controlled by primary
inputs, and no clock signal feeds data input of either a com-
binational logic block or a register.

A combinational logic block (or logic block, for short) in
a sequential circuit is a region of connected combinational
logic, excluding registers. A logic block may include pri-
mary inputs and primary outputs.

Some registers may have a load enable control signals. A
register with an explicit load enable control signal is called
H-register. An H-register has two modes of operation: a
HOLD mode (in which it retains its value across consec-
utive clock cycles) and a LOAD mode (in which it reads
from the data input when a clock signal is applied). A regis-
ter without a load enable control signal is called L-register,
which always operates in the load mode during every clock
cycle. The control signal for each H-register is assumed to
be directly controlled by a primary input independent of that
for the others.

An input-pattern for a sequential circuit consists of a data
input-pattern and a control input-pattern, which are a col-
lection of signals applied to combinational logics and that
of signals applied to H-registers, respectively.

Under this constraint, the topology of a sequential circuit
can be modeled by a topology graph defined as follows.

Definition 1 (Topology graph): A topology graph is a di-
rected graph G � �V�A�r�, where a vertex v � V denotes a
logic block and an arc �u�v� � A denotes a connection from
u to v and each arc has a label r : A � Z� (non-negative
integers) � �h�. When two logic blocks u�v are connected
directly or through one or more L-registers, the label r�u�v�
denotes the number of L-registers (i.e., r�u�v��Z�). When
two logic blocks u�v are connected through one H-register
1, the label r�u�v� � h. �

1Even if there exist two H-registers or both of L and H-registers be-
tween two logic blocks, the topology graph can also represent such se-
quential circuits by supposing existence of a combinational logic block
consisting only of lines or buffers between the two logic blocks.
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Figure 1. Acyclic sequential circuit S.
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Figure 2. Topology graph of S: G.

Example 1: Consider a sequential circuit S illustrated in
Fig. 1. In this figure, 1�2� � � � �7 are logic blocks, b�c� � � � � i
are L-registers, and a and j, which are highlighted, are H-
registers. The topology graph G of this circuit S is shown in
Fig. 2. �

2.2 Time-Expansion Model (TEM)

Test generation for an acyclic sequential circuit can be
performed by applying a combinational test generator to a
time-expansion model of the circuit.

Definition 2 (Time-expansion graph (TEG)): Let S be an
acyclic sequential circuit and let G � �V�A�r� be the topol-
ogy graph of S. Let E � �VE �AE � t� l� be a directed graph,
where VE is a set of vertices, AE is a set of arcs, t is a map-
ping from VE to a set of integers, and l is a mapping from VE

to the set of vertices V in G. If graph E satisfies the follow-
ing five conditions, graph E is said to be a time-expansion
graph (TEG) of G.

C1(Logic preservation) The mapping l is a surjective, i.e.,

�v �V��u �VE s.t. v � l�u�.

C2(Input preservation) Let u be a vertex in E . For any
direct predecessor v �� pre�l�u��� of u in G, there ex-
ists a vertex u� in E such that l�u�� � v and u� � pre�u�.
Here, pre�v� denotes the set of direct predecessors of
v.

C3(Time consistency) For any arc �u�v� �� AE�, there ex-
ists an arc �l�u�� l�v�� such that r�l�u�� l�v�� � t�v��
t�u� or r�l�u�� l�v�� � h.

C4(Time uniqueness) For any vertices u�v �� VE�, if
t�u� � t�v� and if l�u� � l�v�, then the vertices u and v
are identical, i.e., u � v.
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Figure 3. TEG of G: E1.
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Figure 4. TEG of G: E2.
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Figure 5. TEG of G: E3.

C5(Hold consistency) For any pair of arcs �u1�v1�� �u2�v2�
�� AE� such that �l�u1�� l�v1�� � �l�u2�� l�v2�� and
r�l�u1�� l�v1�� � r�l�u2�� l�v2�� � h, if t�u1� � t�u2�,
then t�u1�� t�v2�.

�

Example 2: Fig. 3, Fig. 4 and Fig. 5 show TEGs of topol-
ogy graph G. In these figures, the number denoted in a ver-
tex u is the label l�u�, and the number located at the top of
each column denotes the value of the labels t�u� of the ver-
tices u in the column. �

Note that as shown in the above example, the TEG for a
topology graph is not unique in general.

Definition 3 (Time-expansion model (TEM)): Let S be an
acyclic sequential circuit, let G � �V�A�r� be the topology
graph of S, and let E � �VE �AE � t� l� be a TEG of G. The
combinational circuit CE�S� obtained by the following pro-
cedure is said to be the time-expansion model (TEM) of S
based on E .

(1) For each vertex u � VE , let logic block l�u� �� V � be
the logic block corresponding to u.

x10

x2

2

2

1

5

6

7

4

3
1

x11

z1

z2

Figure 6. TEM of S based on E1: CE1�S�.

(2) For each arc �u�v� � AE , connect the output of u to the
input of v with a bus in the same way as �l�u�� l�v�� ��
A�. Note that the connection corresponding to �u�v�
has no register even if the connection corresponding to
�l�u�� l�v�� has a register (i.e., r�l�u�� l�v�� 	� 0).

(3) Steps (1) and (2), if it is not reachable to any input of
other logic blocks, then it is removed.

�

Example 3: Fig. 6 shows the TEM of sequential circuit S
(Fig. 1) based on TEG E1 (Fig. 3). In this figure, a high-
lighted part in a logic block represents a portion of the lines
and gates removed by Step (3) in Def. 3. �

2.3 Test Generation with TEM

Here we consider the relationship between input/output
sequences of an acyclic sequential circuit and input/output
patterns of its TEM. Let S be an acyclic sequential circuit,
and let G � �V�A�r� be the topology graph of S. Let E �
�VE �AE � t� l� be a TEG of G, let CE�S� be the TEM of S
based on E , and let tmin be the minimum of labels t in CE�S�.
An input pattern for CE�S� can be transformed into an input
sequence for circuit S by the following procedure τS.

Definition 4 (Transformation procedure τS):

(1) Control input sequence IH . Let IH�v��v� t� denote an
input value which is applied to an H-register �v��v� ��
A� at time t. For each arc �u��u� � AE such that
r�l�u��� l�u�� � h, let

IH�l�u
��� l�u�� t� tmin�

�

�
L (LOAD mode) �t � t�u���
H (HOLD mode) �t�u���1
 t 
 t�u��1�

Let the values IH�v��v� t� which are not defined by the
above equation be X (don’t care).

(2) Data input sequence IS. For each logic block u�VE in
CE�S�, let

IS�l�u�� t�u�� tmin� � IC�u��
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Table 1. Input and output sequences for S ob-
tained by transformation procedure τS.

Time 0 1 2 3

x1 I10 I11 X X
Data Input

x2 X I2 X X

Reg. a L H X X
Control Input

Reg. j X X L X

z1 X X X O1
Output

z2 X X X O2

where IS�v� t� denotes an input-pattern applied to logic
block v in S at time t, and IC�u� denotes an input-
pattern applied to logic block u in CE�S�.

�

Note that in the above procedure, a control input se-
quence is obtained only from a TEG E independent of an
input-pattern for TEM CE�S�.

Lemma 1: Let IC be an arbitrary input-pattern for TEM
CE�S�, and let IS and IH be a data input sequence and a con-
trol input sequence obtained by τS, respectively. The output
pattern OC�u� obtained from a logic block u � VE by ap-
plying input pattern IC to CE�S� is equal to the output pat-
tern OS�l�u�� t�u�� tmin� obtained from the corresponding
logic block l�u� at time t�u�� tmin by applying data input
sequence IS with control input sequence IH .
(Proof.) See appendix. �

Example 4: Consider a TEM CE1�S� (Fig. 6) of a sequen-
tial circuit S shown in Fig. 1. Suppose an input-pattern
IC � �x10�x11�x2� � �I10� I11� I2� applied to CE1�S� and the
corresponding output-pattern is OC � �z1�z2� � �O1�O2�.
According to the labels t in TEG E1 (Fig. 3), the patterns IC
and OC are transformed into the sequences shown in Table
1 by procedure τS. Here, X denotes a don’t-care value. �

Note that the length of the sequence obtained from
a pattern for TEM CE�S� by procedure τS becomes
maxu�VE�t�u���minu�VE�t�u���1.

Let IS and IH be a data input sequence and a control in-
put sequence for acyclic sequential circuit S such that the
sequences determine the output pattern OS�v� t� of a logic
block v �� V � in S at time t, respectively. Here, a pattern
that does not affect OS�v� t� in the input sequences IS and IH
is considered as don’t-care. Input sequences IS and IH for
S can be transformed into a TEG E and an input-pattern IC
for the TEM CE�S� by the following procedure τC.

Definition 5 (Transformation procedure τC):

(1) TEG E . Create a TEG E � �VE �AE � t� l� in which there

exists a vertex u � VE that satisfies the following con-
ditions.
(1) l�u� � v� t�u� � t, and
(2) For the control input value IH�v1�v2� t �� applied to
an H-register �v1�v2� (r�v1�v2� � h) at time t �,
if IH�v1�v2� t �� � L, then there exists a vertex u1 �
Pre�u� such that l�u1� � v1� t�u1� � t �,
if IH�v1�v2� t �� � H, then there exists an arc �u1�u2� ��
AE� such that u1�u2 � Pre�u�� t�u1� � t �� t�u2� � t �.
Here, Pre�u� denotes the set of all predecessors of u.

(2) Input-pattern IC. For every input pattern IS�v�� t �� ap-
plied to each logic block v� at time t �, if IS�v�� t �� affects
output OS�v� t�, then for the logic block u� that satisfies
u� � l�1�v�� and t�u�� � t �, let IC�u�� � IS�v�� t ��.

�

Lemma 2: Let v ��V � be an arbitrary logic block in acyclic
sequential circuit S, and let IS and IH be a data input se-
quence and a control input sequence that are required to set
the output of v to a pattern OS�v� t� at time t, respectively.
Let E and IC be a TEM and an input-pattern obtained from
IS and IH by procedure τC, respectively. Let u �� VE� be
the logic block that corresponds to v by the first step (1) in
procedure τC. The output pattern OC�u� obtained from the
logic block u by applying the input pattern IC to TEM CE�S�
is equal to the output pattern OS�v� t�.
(Proof.) See Appendix. �

Note that as shown in the above procedure τC, a TEG (or
TEM) is obtained from a control input sequence applied to
H-registers in a sequential circuit, independent of data input
sequences.

Next, let us consider the relationship between faults in
an acyclic sequential circuit and those in its TEMs. Here we
consider single stuck-at faults only in logic blocks as those
in an original sequential circuit. The stuck-at faults on lines
between logic blocks and in registers can be considered to
be equivalent to those on input/output lines of logic blocks.

Definition 6 (Fault in TEM): Let S be an acyclic sequen-
tial circuit. Let G � �V�A�r� be the topology graph of S, let
E � �VE �AE � t� l� be a TEG of G, and let CE�S� be the TEM
of S based on E . Let F be the set of faults in S, and let FE be
the set of faults in CE�S�. Suppose a fault f � F in a logic
block u in circuit S. Let fe � FE be the fault correspond-
ing to fault f . Fault fe is a multiple fault that consists of
all the faults existing on the same line in every logic block
u � l�1�v�. That is, if the number of logic blocks u such
that l�u� � v is just one, then the fault fe is a single fault,
otherwise, fe is a multiple fault. �

Theorem 1: Let S be an acyclic sequential circuit, and let
F be the set of faults in S. Let G � �V�A�r� be the topology
graph of S.
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(1) A fault f � F is testable (or irredundant) in S if and
only if there exists a TEG E of G such that the fault
fe �� FE� corresponding to f is testable in the TEM
CE�S� based on E .

(2) A test pattern for a fault fe �� FE� obtained using a
TEM CE�S� can be transformed into a test sequence
for the fault f �� F� corresponding to fault fe.

(Proof.) See Appendix. �

From this theorem, we can see that test generation for an
acyclic sequential circuit can be performed by using several
different TEMs. Furthermore, since TEMs are fully com-
binational, a combinational test generator can be used for
the test generation provided that the test generator can deal
with multiple faults. However, from Theorem 1, we can
also have the following corollary.

Corollary 1: Let S be an acyclic sequential circuit. Let
F be a set of faults in S. A fault f � F is untestable (or
redundant) in S if and only if the fault corresponding to fe
is untestable in any TEM for S. �

Hence, in order to obtain a complete test sequence (i.e.,
to identify all testable faults) for a sequential circuit, we
may have to perform test generation for all TEMs of the
circuit. However, that is practically prohibitive. Therefore,
in order to reduce the number of TEMs required for the test
generation, we introduce cover relation of TEMs, and con-
sider the TEMs used for complete test sets.

3 Sequential Circuits with Maximum TEM

3.1 Cover Relation of TEMs

Here we consider the relation between TEMs (or TEGs)
obtained for an acyclic sequential circuit. Let S be an
acyclic sequential circuit. Let G � �V�A�r� be the topol-
ogy graph of S, and let E1 � �V1�A1� t1� l1� and E2 �
�V2�A2� t2� l2� be arbitrary TEGs of G. Let CE1�S� and
CE2�S� be the TEMs based on E1 and E2 of S, respectively.

Definition 7 (Cover relation): TEG E1 is said to cover
TEG E2 if, for any vertex v2 �V2, there exists a vertex v1 �
V1 which satisfies the following two conditions.

(1) l�v1� � l�v2�.

(2) Let V �

1 � Pre�v1� and let V �

2 � Pre�v2�, where Pre�v�
denotes the set of all predecessors of v. There exists a
mapping m : V �

1 �V �

2 which satisfies the following two
conditions.

(2.1) l1�v1� � l2�m�v1��.

(2.2) For any vertex v�2 �V �

2,

�v�1 � m�1�v�2� �L2�v
�

2�� L1�v
�

1���
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Figure 7. TEM of S based on E3: CE3�S�.
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Figure 8. Mapping m from V3 in E3 to V1 in E1.

where Li�v�� � �v � V v � li�u��u � suc�v�� � V �

i �.
Here, suc�v� denotes the set of direct successors of
v. That is, Li�v�� denotes the set of logic blocks in V
corresponding to those which are reachable from logic
block v� in TEG Vi.

�

When a TEG E1 covers a TEG E2, we denote that E1 �
E2. Further, it is also said that TEM CE1�S� covers TEM
CE2�S� (CE1�S��CE2�S�).

Example 5: Consider two TEMs CE1�S� (Fig. 3) and
CE3�S� (Fig. 5) for the topology graph G (Fig. 2) of a se-
quential circuit S (Fig. 1). Suppose a mapping m as shown
in Fig. 8. In this figure, a highlighted arrow from a vertex
v3 �V3 to a vertex v1 �V1 denotes m�v3� � v1. For simplic-
ity, unique correspondences such that the number of vertices
v1 �V1 whose labels l�v1� are the same vertex (in V of G) is
just one are omitted. Since this mapping m which satisfies
all the conditions in Def. 7, TEG E3 covers TEG E1. Note
that E1 	� E3. �

The mapping m in the above definition represents the
relationship between logic blocks corresponding to a logic
block v �� G� in a TEG E1 and those corresponding to the
same one v in a TEG E2. When E1 covers E2, since the re-
lation m is mapping from V1 to V2, multiple vertices in V1

may correspond to one vertex inV2. For example, there exist
three and two vertices that are labeled with 1 in E3 and E1,
respectively, and two of them in E3 correspond to one ver-
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tex in E1. Here, let u denote one of the two vertices, which
is connected vertices labeled with two 2’s, and let v denote
the other vertex connected the vertex labeled with 6 in E3.
Further, let v1 denote the vertex corresponding to u�v in E1

by mapping m. By Condition C4 in Def. 2 (the definition of
TEGs), in a TEG, for two different vertices u�v whose labels
are the same, i.e., l�u� � l�v�, the labels t�u� and t�v� must
be different (e.g., t3�u� � 1� t3�v� � 0). While vertex v1 is
reachable to a vertex labeled with 7 via two paths �1�2�3�7�
and �1�6�7� in E1, vertex u is reachable to the corresponding
vertex labeled with 7 via a path �1�2�3�7� and the other ver-
tex v can reach the vertex 7 via a path �1�6�7�. This means
that the number of logic blocks that affect a particular logic
block in CE3�S� (a covering TEM) is equal to or larger than
that in CE1�S� (a covered TEM). In other words, for any
output-pattern O�v�1� obtained by applying an input-pattern
I1 to CE1�S�, the same output-pattern O�v�1� can be obtained
from the corresponding logic block v�3 in CE3�S� by apply-
ing the input-pattern I3 that is obtained from I1 according to
mapping m as follows.

Example 6: Suppose an output-pattern �z1�z2� � �O1�O2�
for an input-pattern �x10�x11�x2� � �Ia� Ib� Ic� in CE1�S� (Fig.
6). The same output-pattern �z1�z2� � �O1�O2� can be
obtained by applying �x10�x11�x12�x2� � �Ia� Ia� Ib� Ic� to
CE3�S� (Fig. 7). �

As shown in the above example, if a TEM C1 covers an-
other TEM C2, C1 can ‘simulate’ C2� On the other hand, by
definition Def. 6, for any fault in an acyclic sequential cir-
cuit, the corresponding fault is defined in either TEM of C1

and C2. Thus, we can form the following conjecture.

Conjecture 1: Let S be an acyclic sequential circuit. Let
C1 and C2 be TEMs of S. Let F1 and F2 be the set of faults
in C1 and C2, respectively (Def. 6). If TEM C1 covers TEM
C2, the following holds: If a fault f2 �� F2� in C2 is testable,
fault f1 �� F1� in C1 corresponding to f2 is also testable. �

We believe that this conjecture holds as a theorem,
though the proof has not obtained yet.

For any pair of TEGs E1 and E2 for an acyclic sequential
circuit S, if E1 � E2 and E2 	� E1, E1 is said to cover E2

properly, and it is denoted by E1 � E2. For a TEG E , if
there exists no TEG E � such that E � � E , TEG E is called
maximal. Then, we can obtain the following corollary.

Corollary 2: A fault f is testable in an sequential circuit
S if and only if there exists a maximal TEM in which fm
corresponding to f is testable. �

This implies that test generation for all the maximal
TEMs of an acyclic sequential circuit is necessary and suf-
ficient to obtain a complete test sequence for all testable
faults in the circuit.

1

2

3

4
2

1

5
6

7

1

1

2 30 4

1

5

Figure 9. Example of inconsistent graph.

3.2 Class of Max-Testable Structure

In the above discussion, we showed that test generation
for all the maximal TEMs of an acyclic sequential circuit is
necessary and sufficient to obtain a complete test sequence
for the circuit. In general, however, there exist several max-
imal TEMs for an acyclic sequential circuit.

Example 7: Consider TEMs for a sequential circuit S
shown in Fig. 1. As shown in Figs. 3, 4 and 5, several TEMs
for S can be constructed. As mentioned previously, E3�E1,
but E2 	� E3 and E3 	� E2. Further, there is no TEM which
covers either E2 or E3 properly. As a result, all the maximal
TEMs for S are E2 and E3. �

If the number of maximal TEMs is one, i.e., there ex-
ists the maximum TEM for a sequential circuit, a complete
test set for the circuit can be generated only by perform-
ing combinational test generation for the maximum TEM.
If a sequential circuit has the maximum TEM, the sequen-
tial circuit is called max-testable.

Example 8: Consider sequential circuit S (Fig. 1) again.
Suppose a directed graph as shown in Fig. 9. We can make
a mapping m described in Def. 7 from the vertex set in this
graph to that in either of maximal TEGs E2 and E3. This
graph, however, is not a TEG for S because it does not sat-
isfy Condition C5 in Def. 2, i.e., there exists no control input
sequence corresponding to the graph: an H-register a can-
not load a value at time 2 while holding a value loaded at
time 0 to be used at time 4. �

As shown in the above example, the condition C5 in Def.
2 is for more than one arcs that correspond to a certain H-
register in an acyclic sequential circuit. Such arc duplica-
tion for an H-register is possible in a TEG when there ex-
ist more than one paths from the H-register to an primary
output in the circuit. Hence, here we consider a class of
max-testable sequential circuits as follows.

Definition 8 (Path-adjustable structure): Let S be an
acyclic sequential circuit. Let G � �V�A�r� be the topol-
ogy graph of S. Let P�u�v� denote a set of paths from u to v
(u�v �V �. If G satisfies the following condition, sequential
circuit S is said to be path-adjustable.
(CPA) Let V � ��V � be a set of vertices which are reachable
from some arc ah�� A� such that r�ah� � h (H-register). Let
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Figure 10. Sequential circuit S2.

u�v be any pair of vertices in V �. For any pair of paths p�q�
P�u�v�,

(1) if H�p� � H�q�, then d�p� � d�q�, else

(2) if H�p� 	� H�q�, then
H�p��H�q� 	� φ� H�p��H�q��H�p�� H�q�.

Here d�p� denotes the number of arcs a �� A� such that
r�a��Z� (L-register) in a path p, and H�p� denotes the set
of arcs a such that r�a� � h (H-register) in a path p. �

In the above condition CPA, the former case (1) means
that arc duplication for arc ah does not occur in any TEG of
G. On the other hand, the latter case (2) means a sufficient
condition for existence of H-registers for which control sig-
nals are ‘adjustable’ to make a maximum TEG while Con-
dition C5 in Def. 2 for arc ah is satisfied. That is, even if the
control input sequence for all the H-registers on a path p is
determined prior to that on the other q, some H-register to
satisfy Condition C5 still remains for q. Note that in neither
case, i.e., in the case when H�p��H�q� � φ, the control
input sequence for any H-register on a path does not affect
that for the others to satisfy Condition C5.

Example 9: Consider a sequential circuit S2 shown in
Fig. 10. In this figure, a�b�d and i are H-registers, and
the others are L-registers. For example, let us focus on
an H-register a. There exist four paths to be considered
for a: p1 � �2�d�4� f �6�, p2 � �2�b�3�e�4� f �6�, p3 �
�2�b�3�g�5�h�6� and p4 � �2�b�3� i�6�. Then, H�p1� �
�d��H�p2� � �b��H�p3� � �b� and H�p4� � �b� i�. For
p1 and p2, H�p1��H�p2� � φ, this is in neither case. For
p2 and p3, H�p2� � H�p3� � �b� and d�p2� � d�p3�, i.e.,
case (1). For p2 and p4, H�p2��H�p4�, i.e., case (2). Simi-
larly, all the other pairs of paths in this circuit S2 also satisfy
the condition CPA, and hence S2 is path-adjustable. Note
that a sequential circuit S (Fig. 1) is not path-adjustable.
As a result, we can obtain the maximum TEM for S2 as
shown in Fig. 11. The control input sequence obtained from
the TEM (by procedure τS) is IH�a� � �L�L�L�H�X �X �X�,
IH�b� � �X �X �L�H�L�X �X�, IH�d� � �X �L�H�H�H�X �X�,
IH�h� � �X �X �X �X �X �L�X�. �

From the above discussion, we have the following con-
jecture.

Conjecture 2: A path-adjustable sequential circuit is max-
testable. �
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Figure 11. Maximum TEM for S2.
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Figure 12. Sequential circuit S3.

We believe that this conjecture also holds as a theorem,
though the proof has not obtained yet.

3.3 DFT Based on Path-Adjustable Structure

From Conjecture 2, we can see that for any sequential
circuit, by selecting a sufficient set of scan registers so that
the resulting kernel is path-adjustable, a complete test se-
quence for the circuit can be obtained by using a combi-
national test generator for only the maximum TEM of the
kernel (provided that the test generator can deal with mul-
tiple faults). On the other hand, from Def. 8, we have the
following corollary.

Corollary 3: All the following sequential circuits are path-
adjustable.

(1) balanced structures [5].

(2) internally-balanced structures [7].

(3) acyclic sequential circuits without H-registers.

�

Therefore, for a sequential circuit, the hardware over-
head of the partial scan based on path-adjustable structure
is smaller than that based on the structures mentioned in
Corollary 3.

Example 10: Consider a sequential circuit S3 shown in Fig.
12. In this figure, a�b�d and i are H-registers, and the others
are L-registers. In the partial scan design based on path-
adjustable structure, the minimum number of scan registers
is two, e.g., by scanning L-registers j and k, the resulting
kernel becomes path-adjustable. Note that there is an al-
ternative DFT solution: if one L-register j is scanned and
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another L-register k is replaced with an H-register, then the
resultant circuit is also path-adjustable.

On the other hand, in the partial scan design based on
balanced structure, the minimum number of scan registers
is five, e.g., the set of registers to be scanned is �b�c�e� f �k�.
When the kernel is made an acyclic structure without H-
registers, the minimum number of scan registers is also five,
e.g., �a�b�d�h� i�. �

Therefore, it is seen that we can obtain complete test se-
quences for sequential circuits with low hardware overhead
based on max-testable structure.

4 Conclusions and Future Works

In this paper, we presented a method of test generation
for acyclic sequential circuits with hold registers. A com-
plete test set for an acyclic sequential circuit can be obtained
by applying a combinational test generator to all the maxi-
mal time-expansion models (TEMs) of the circuit. As a class
of max-testable sequential circuits, referring to acyclic se-
quential circuits for which the number of maximal TEMs
is one, i.e, the maximum TEM exists, we introduced path-
adjustable structure. The class of path-adjustable sequential
circuits properly includes several known classes of acyclic
sequential circuits such as balanced structures and acyclic
sequential circuits without hold registers for which test gen-
eration can be also performed by using a combinational
test generator. Therefore, the hardware overhead for partial
scan based on our path-adjustable structure is substantially
smaller than that based on balanced or acyclic sequential
structure without hold registers.

As future works, several issues are remaining.

� The condition in the definition of path-adjustable
structure is a sufficient one for existence of the max-
imum TEM for acyclic sequential circuit. We believe
that there exists a lager class of max-testable sequen-
tial circuits, and hence the hardware overhead of DFT
for complete test sequences can be reduced further.

� We are now investigating an algorithm for finding an
optimal partial scan / hold register insertion based on
max-testable structure with minimum hardware over-
head.

� The length of test sequences obtained from test gen-
eration using TEMs depends on the structure of the
TEMs. Hence, optimal TEMs which minimize the
length of resulting test sequences should be found.
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Appendix

Proof of Lemma 1. Let u� �� pre�u�� be a logic block con-
nected to an input of logic block u. By Condition C1, in S, there
exist logic blocks l�u�� l�u�� corresponding to u�u� respectively,
and by Condition C2, the logic block u� is connected to the in-
put of logic block u. By procedure τS, an input pattern IC�u�� for
u� is transformed into the input pattern IH�l�u���t�u��� tmin� for
l�u�� at time t�u��� tmin. From Condition C4, we can say that
the number of patterns to be applied to l�u�� at time t�u��� tmin
is just one. If the two logic blocks l�u� and l�u�� are connected
directly or through one or more L-registers, the effect of apply-
ing IS�l�u���t�u��� tmin� reaches l�u� after r�l�u��� l�u�� clock cy-
cles. Since r�l�u��� l�u�� denotes the number of L-registers be-
tween l�u�� and l�u�, by Condition C3, we can say that �t�u���
tmin� � r�l�u��� l�u�� � t�u�� tmin. Or else, i.e., if the two logic
blocks are connected though an H-register, the output-pattern ob-
tained from logic block l�u�� by applying IS�l�u���t�u��� tmin� at
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t�u��� tmin is loaded into the H-register �l�u��� l�u��. By Condi-
tion C5, the contents of the register is not update by other LOAD
signals, and kept until t�u��tmin by the control input sequence IH .

�

Proof of Lemma 2. Let u � VE be the logic block that is cre-
ated in CE�S� by step (1) in procedure τC. Let v� �� pre�v�� be a
logic block connected to an input of logic block v. By Condition
C2, the logic block u� �� l�1�v��� corresponding to v� is connected
to an input of u. By step (2) in procedure τC, an input-pattern
IS�v��t �� applied to v� at time t � is transformed into the input-pattern
IC�up� for up. If two logic blocks v and v� are connected di-
rectly or through one or more L-registers, the time t � when input-
pattern IS�v��t �� is applied to obtain output-pattern OS�v�t� from
logic block v at t must be t � r�v��v�. Note that r�v��v� denotes
the number of L-registers between v� and v. By Condition C3,
t�u�� � t�v�� r�v��v� � t� r�v��v�. If two logic blocks v and v� are
connected through an H-register, the output-pattern of logic block
v� is loaded into the H-register �v��v� at t � by a control input value
IH�v��v�t �� � L. By step (1) in procedure τC, according to the con-
trol input value IH�v��v�t �� � L, the corresponding vertex u� which
is labeled t�u�� � t �. From Conditions C4 and C5 and step (1) in
procedure τC , we can say that the number of logic blocks u� such
that t�u�� � t � � l�u�� � v� is just one in CE�S�. �

Proof of Theorem 1. Let E be a TEG of G, and Let CE�S� be
the TEM based on E. Let f be a fault in S, and let fe be the fault
corresponding to f in CE �S�. Let S f be a faulty circuit with f of
S. Let C fe

E �S� be a faulty circuit with fe of CE �S�. By Def. 6, fault
fe is a multiple fault that consists of faults in every logic block
l�1�v� corresponding to a logic block v ��V � in which exists fault
f . Hence, the structure of C fe

E �S� is the same as that of CE�S f � for
S f based on TEG E.

Therefore, by Lemma 2, for a test sequence TS for a fault f in
S, there exists a TEM E that corresponding to the control input
sequence in TS, and there exists a test pattern obtained from TS by
procedure τC can detect the fault fe corresponding to f . Further,
by Lemma 1, a test pattern tC for a fault fe in the TEM CE�S�
based on a TEG E can be transformed into a test sequence that can
detect f corresponding to fe in S by procedure τS. �
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