
A su�cient condition for the termination of the

procedure for solving an order-sorted uni�cation

problem

Toshinori Takai, Yuichi Kaji and Hiroyuki Seki

ftoshin-t,kaji,sekig@is.aist-nara.ac.jp

Graduate School of Information Science,

Nara Institute of Science and Technology,
8916-5, Takayama, Ikoma, Nara, 630-0101, Japan

Abstract

The authors have proposed a procedure for solving an order-sorted uni�cation problem

in an equational theory which is de�ned by a con
uent TRS. The procedure requires an

instance of the problem to satisfy that the TRS is right-linear and the goal terms are linear

and share no variables. If a given instance of the problem satis�es these conditions and the

procedure halts, then it answers correctly. In this paper, we propose a su�cient condition

to terminate the procedure. The uni�cation procedure constructs tree automata to solve

the problem. The proposed condition guarantees the number of the states of the tree

automata to be �nite and provides a decidable subclass of the order-sorted uni�cation

problems.

1 Introduction

Uni�cation problems are signi�cant in theoretical computer science, especially, in automated

deduction and term rewriting systems [1]. The uni�cation problem is a problem to decide

whether or not given two �rst-order terms (goal terms) can coincide by some substitution. If

the goal terms coincide, then we say they are uni�able. If the semantics of terms is de�ned by a

(con
uent) TRS, then the problem is extended to the problem to decide whether goal terms can

coincide by a substitution and rewriting. In this case the problem is generally undecidable. For

example, consider two terms s = f(x; a) and t = g(b; y) and a TRS R = ff(x; a) ! g(x; a)g
where a is a constant, f; g are function symbols, and x; y are variables. If we ignore TRS R,

then two terms s; t are not uni�able. On the other hand, if we take account of TRS R, then

by substitution fx 7! b; y 7! ag the goal terms become f(b; a) and g(b; a), and the former term

f(b; a) can be rewritten to the latter term. Hence, s and t are uni�able under TRS R.

One of the most known and useful classi�cations of terms is order-sorted structure, which

can handle partially de�ned functions and subtypes [7]. An order-sorted term has a sort. For

example, if we would like to represent the set of integers by two function symbols 0 (zero) and

f (successor function) and explicitly distinguish odd numbers and even numbers, then we can

de�ne the sort of 0 is EVEN, the sort of f(0) is EVEN, . . . in the order-sorted framework.

However, some di�cult problems occur when we consider order-sorted term rewriting systems

or order-sorted uni�cation problems [9, 10].

1

In our previous paper [8] we have proposed a procedure for solving an order-sorted uni-

�cation problem with a con
uent TRS by using tree automata. The procedure requires an

instance of the problem (goal terms and a TRS) to satisfy the following conditions [8]:

1. The TRS is right-linear.

2. The goal terms share no variables.

3. The goal terms are linear.

Under these conditions, the order-sorted uni�cation procedure proposed in [8] is valid (answers

correctly) if it halts. However, the procedure does not always halt when an instance of the

problem is not uni�able. For the unsorted case, we proposed a su�cient condition to terminate

the uni�cation procedure in [5]. In this report, using a similar technique in [5] we provide a

su�cient condition to terminate the order-sorted procedure proposed in [8].

The organization of the rest of this report is as follows. In Section 2, we brie
y present

the de�nitions of term rewriting system, order-sorted signature, tree automaton and related

concepts. Next, we de�ne the order-sorted uni�cation problem in Section 3. In Section 4, we

present a uni�cation procedure to solve the problem. In Section 5, we propose a su�cient

condition to terminate the uni�cation procedure.

2 Preliminaries

2.1 TRSs and order-sorted signatures

We assume the readers are familiar with TRSs and the related de�nitions.

Let F be a �nite set of function symbols and X be a countable set of variables. The arity

of f 2 F (the number of arguments which f takes) is denoted by a(f) and the set of �rst-order

terms, de�ned in the usual way, is denoted by T (F ;X) or TF . A �rst-order term is also called

an F -term. The set of variables occurring in t is denoted by Var(t). A term t is ground if

Var(t) = ;. A term is linear if no variable occurs more than once in the term. The set of ground

F-terms is denoted by G(F) or GF . Two terms s and t share a variable x if x 2 Var(s)\Var(t).
A substitution is a mapping from X to TF and written as fx1 7! t1; . . . ; xn 7! tng where ti

with 1 � i � n is a term which substitutes for variable xi. An application of a substitution is

written in the post�x notation; t� is the term obtained from term t by applying a substitution

� to t. For terms t and t
0, if there exists a substitution � such that t = t

0
�, then t is an instance

of t0. An order-sorted signature � is a 5-tuple (S;D;F ;X ;P) where

� S is a �nite set of sort symbols.

� D is a �nite set of subsort declarations S v S
0 with S; S

0 2 S. It is required that the

re
exive and transitive closure of v (denoted by v as well) is a partial order on S. If

S v S
0, then S is smaller than S

0. If neither S v S
0 nor S 0 v S holds, then S and S

0

are incomparable.

� F is a �nite set of function symbols.

� X is a set of variables which can be decomposed into pairwise disjoint countable sets XS
with S 2 S. A variable x 2 X is sometimes denoted by xS or x:S if x 2 XS.

� P is a �nite set of function declarations f :S1�� � ��Sn ! S with S1; . . . ; Sn; S 2 S, and
n = a(f).

2

The set T�;S of �-terms (or well-sorted terms) of sort S 2 S is recursively de�ned as follows:

(i) xS 2 T�;S.

(ii) c 2 T�;S with a(c) = 0, if c:S 2 P .

(iii) f(t1; . . . ; tn) 2 T�;S, if a(f) = n, f :S1 � � � � � Sn ! S 2 P and ti 2 T�;Si
for 1 � i � n.

(iv) t 2 T�;S, if t 2 T�;S0 and S
0 v S.

The set of all �-terms are denoted by T�(F ;X) or T� and the set of all the ground �-terms

are denoted by G�(F) or G�. F -terms that are not well-sorted are called ill-sorted . By the

de�nition of �-terms, if t 2 T�;S0 , then t 2 T�;S for any sort S such that S0 v S. De�ne

Sort�(t) = fS 2 S j t 2 T�;Sg. A signature � is called regular if, for every �-term t, Sort�(t)
has a unique smallest sort (with respect to v). If S is the smallest among Sort�(t), then we

say that the sort of t is S, or t has sort S. In the following, it is assumed that the signature � is

regular. It can be easily shown that any order-sorted signature can be converted into a regular

signature by introducing subsidiary sorts [3]. A substitution � is called a �-substitution (or

well-sorted substitution) if the sort of x� is equal to or smaller than the sort of x. For a term

t, a term t� with �-substitution � is called a �-instance of t.

An occurrence in a term t is de�ned as a sequence of positive integers as usual, and the set of

all the occurrences in the term t is denoted byOcc(t). The empty sequence is denoted as �. The
size of a term t is de�ned to be the cardinality ofOcc(t). If an occurrence o1 is a pre�x of o2, that
is, if o2 is written as o2 = o1 �o3 for some o3, then we write o1 � o2. If o1 � o2 and o1 6= o2, then

we write o1 � o2. Two occurrences o1 and o2 are disjoint if neither o1 � o2 nor o2 � o1. The

subterm of t at an occurrence o is denoted by t=o. Especially, t=� = t. If t=o = f(t1; . . . ; tn),

then f is called the function symbol at o (in t). If a term t is obtained from a term t
0 by

replacing subterms of t0 at occurrences o1; . . . ; om (oi 2 Occ(t
0); oi and oj are disjoint if i 6= j)

with terms t1; . . . ; tm, respectively, then we write t = t
0[oi ti j 1 � i � m].

A �-rewrite rule is an ordered pair of �-terms, written as l ! r where l and r are �-terms

such that Var(r) � Var(l), l is not a variable and the sort of r is equal to or less than the

sort of l. In some literatures, the last condition on the sorts of l and r is called sort-decreasing

property, and is not included in the de�nition of �-rewrite rules. However, the authors consider

that this condition is essential in de�ning a rewrite relation by �-rewrite rules and hence we

include this condition in the de�nition. A �-term rewriting system (�-TRS) is a �nite set of

�-rewrite rules. For �-terms t, t0 and a �-TRS R, we write t!R t
0 if t0 can be obtained from

t by one application of a �-rewrite rule in R, that is, there exist an occurrence o 2 Occ(t),
a �-substitution � and a �-rewrite rule l ! r 2 R such that t=o = l� and t

0 = t[o r�].

De�ne !�
R
to be the re
exive and transitive closure of !R. If t !

�
R
t
0, then we say that t0 is

an R-instance of t. If a �-TRS R is understood from the context, then the subscript R of!R

is omitted. A �-TRS R is said to be con
uent if, for �-terms t1; t2 and u such that u !�
R
t1

and u!�
R
t2, there is a �-term v such that t1 !

�
R
v and t2 !

�
R
v.

2.2 Tree automata

A tree automaton [4] is a natural extension of a usual string automaton such that the input

is extended to a tree. A tree automaton is de�ned by a 4-tuple (F ;Q;Q�nal ;�) where F is a

�nite set of function symbols, Q is a �nite set of states, Q�nal � Q is a set of �nal states, and

� is a �nite set of transition rules. Di�erent from string automata, no initial state is de�ned

explicitly. There are two types of transition rules: (1) an "-rule q0 * q where q; q0 2 Q and (2)

an ordinary rule f(q1; . . . ; qn) * q where f 2 F , a(f) = n, and q1; . . . ; qn; q 2 Q. Especially, a
tree automaton may have rules of the form c * q with c 2 F , a(c) = 0 and q 2 Q. Consider

3

the set of terms G(F [Q) where a(q) = 0 for q 2 Q. Terms in G(F [Q) are called Q-terms .

A Q-substitution is a mapping from X to Q. By applying a Q-substitution to a �-term, we

have a Q-term. A move of a tree automaton can be regarded as a `rewriting' by considering

transition rules in � as rewrite rules on G(F [Q). For Q-terms t and t
0, we write t ` t

0 if

and only if t !� t
0. The re
ective and transitive closure of ` is denoted by `�. For a tree

automaton M and t 2 G(F), if t `� qf for some �nal state qf 2 Q�nal , then we say t is accepted

by M .

The set of terms accepted byM is denoted by L(M). A set T of terms is called a regular tree

language if there is a tree automaton M such that T = L(M). Regular tree languages inherit

some useful properties of regular (string) languages. For example, the emptiness problem of

the languages is decidable, and the class of regular tree languages is closed under intersection.

These properties play an important role in the proposed procedure.

3 Order-sorted uni�cation problem

In this section, we de�ne an order-sorted uni�cation problem which is considered in this paper.

For a con
uent �-TRS R, two �-terms t1 and t2 are R-uni�able if there exist a �-

substitution � and a �-term v such that t1� !
�
R
v and t2� !

�
R
v. Remark that if Var(t1) \

Var(t2) = ;, then t1 and t2 are R-uni�able if and only if there exists a �-term which is an R-

instance of t1 and t2. An order-sorted R-uni�cation problem (uni�cation problem for short) is

the decision problem which is, given an order-sorted signature �, a �-TRS R and two �-terms

t1 and t2, to decide whether t1 and t2 are R-uni�able or not. �-terms t1 and t2 are called goal

terms. (�; t1; t2; R) is called an instance of the uni�cation problem. In this paper, we discuss

this simple yes-no version of the uni�cation problem.

For a term t, the set of all ground instances of t is denoted by I(t). For a set of ground

terms L and a TRS R, let R
�(L) = ft j t0 !�

R
t; t

0 2 Lg. A term in R
�(L) is called an

R-descendant of L. Consider the sets of ground R-instances of goal terms t1 and t2, which

can be expressed as R�(I(t1)) and R
�(I(t2)), respectively. We can use these sets to solve the

uni�cation problem e�ectively. The following lemma is proved in [5].

Lemma 3.1 If goal terms t1 and t2 satisfy Var(t1) \ Var(t2) = ; and a TRS R is con
uent,

then t1 and t2 are R-uni�able if and only if R�(I(t1)) \ R
�(I(t2)) 6= ;.2

It is undecidable whether R�(I(t1))\R
�(I(t2)) 6= ; or not, even if goal terms do not share any

variable and a given TRS is con
uent. However, for a class of instances such that R�(I(t1))
and R

�(I(t2)) are both regular tree languages, the problem is decidable since the class of

regular tree languages is closed under intersection and the emptiness is decidable for regular

tree languages. In the next section, we provide a su�cient condition under which R
�(I(t1))

and R
�(I(t2)) are regular, and present a procedure to construct tree automata which accept

R
�(I(t1)) and R

�(I(t2)) under the su�cient condition.

4 A procedure for solving the uni�cation problem

In this section, we present the order-sorted R-uni�cation procedure appeared in [5, 8]. For

detailed explanation of the procedure, see [5, 8].

The procedure takes goal terms t1; t2 and a TRS R as inputs and consecutively constructs

pairs of tree automata which accept R�(I(t1)) and R
�(I(t2)) in the limit. We de�ne packed

-terms and use them as states of tree automata.

4

f

g
g

S1 S2

S1 f

S1 S2

Figure 1: A packed
-term hf(g(S1); hS1; g(S2); f(S1; S2)i)i.

De�nition 4.1 Let � = (S;D;F ;X ;P) be a signature. For a term t 2 T�, let t
 be obtained

from t by replacing each variable xS(S 2 S) with S. t
 is called an
-term. We de�ne two

sets BF ;
 and PF ;
 as the smallest sets which satis�es the following conditions.

� For a
-term t, t 2 BF ;
.

� For m � 1 and ti 2 BF ;
 (1 � i � m), ht1; . . . ; tmi 2 PF ;
.

� For f 2 F and ti 2 PF ;
 (1 � i � a(f)), f(t1; . . . ; ta(f)) 2 BF ;
.

An element of PF ;
 is called a packed
-term (or packed term). Similarly, an element of BF ;

is called a basic packed (
-)term. As de�ned below, a packed
-term is a �nite representation

of an in�nite set of
-terms. For the readability, a packed term hti is abbreviated as t. 2

For example, let F be ff; gg and
 be fS1; S2g. We can easily verify that f(g(S1); S2),

hf(g(S1); S2); g(hS1; S2; g(S1)i)i, and g(hf(S1; S2); g(hg(S1); g(S2)i)i) belong to PF ;
.

De�nition 4.2 The extension of a (basic) packed term q, denoted E(q), is the set of
-terms

de�ned as follows.

� If q = t is an
-term, then E(q) = ftg.

� If q = hq1; . . . ; qni, then E(q) =
S
n

i=1E(qi).

� If q = f(q1; . . . ; qn) with f 2 F and a(f) = n, then

E(q) = ff(t1; . . . ; tn) j ti 2 E(qi) for 1 � i � ng:

2

Thus the extensions of the above packed terms are respectively ff(g(S1); S2)g, ff(g(S1); S2);
g(S1); g(S2); g(g(S1))g, and fg(f(S1; S2)), g(g(g(S1))), g(g(g(S2)))g.

The uni�cation procedure requires an instance (�; t1; t2; R) of the problem to satisfy the

following Condition 4.1. The reason why the procedure presupposes Condition 4.1 has been

mentioned in [5, 8].

Condition 4.1 �-TRS R is con
uent and right-linear. Goal terms t1 and t2 are linear and

Var(t1) \ Var(t2) = ;. 2

If a given instance of the uni�cation problem satis�es Condition 4.1, then the procedure cor-

rectly answers whether the goal terms can be uni�ed or not if the procedure halts. In the next

section, we investigate a su�cient condition to terminate the procedure. For a tree automaton

M = (F ;Q;Q�nal ;�) and qf 2 Q�nal , we let M(qf) = (F ;Q; fqf g;�).

5

Procedure 4.1 [UNIFICATION]

Input: an order-sorted signature �, goal terms t1 and t2 and a TRS R which satisfy

Condition 4.1.

Output: \uni�able" or \not uni�able".

Step 1. Let k := 0. This k is used as a loop counter of the procedure.

Step 2. Construct a basic tree automaton M0 = (F ;Q0;Q�nal ;�0) by executing BASIS(t)

for the goal terms t 2 ft1; t2g (see Procedure 4.2).

Step 3. Let Qk+1 := Qk, �k+1 := �k and let Mk = (F ;Qk;Q�nal ;�). If t ` t
0 (resp. t `� t0)

in Mk, then we write t `k t
0 (resp. t `�

k
t
0).

Step 4. Let l ! r be a rewrite rule in R and assume that l has m(� 0) variables x1; . . . ; xm
of sorts S1; . . . ; Sm, respectively, and variable xi has
i occurrences p

j

i
2 Occ(l) (1 � j �
i)

in l. If there are states q and q
j

i
(1 � i � m; 1 � j �
i) in Qk such that

l[p
j

i
 q

j

i
j 1 � i � m; 1 � j �
i] `

�
k
q (4:1)

and

L(Mk(q
1
i
)) \ � � � \ L(Mk(q

i

i
)) \ L(Mk(hSii)) 6= ; (4:2)

for 1 � i � m, then add

qi =
[

1�j�
i

q
j

i
[fSig (1 � i � m) (4:3)

to Qk+1 as new states, let � = fxi 7! qig be a Qk+1-substitution, and do the following (a)

and (b).

(a) Add the transition rule hr�i* q to �k+1 where hr�i is a new state. If a move of the

tree automaton is caused by this rule, then the move is called a rewriting move of degree

k + 1.

(b) Execute ADDTRANS(hr�i) (see Procedure 4.3). In ADDTRANS, new states

hr�=oi 62 Qk(o 2 Occ(r)) are introduced.

Simultaneously execute this Step 4 for every rewrite rule and every tuple of states that satisfy

conditions (4.1) and (4.2).

Step 5. Continue the loop until �k+1 = �k. If �k+1 6= �k, then k := k + 1 and go to Step 3.

Step 6. For each q 2 Qk, let M�(q) := Mk(q), and output \uni�able" if L(M�(ht1
i)) \
L(M�(ht2
i)) 6= ;, and \not uni�able" otherwise.

2

Procedures BASIS and ADDTRANS used in Procedure 4.1 are de�ned as follows.

Procedure 4.2 [BASIS]

Input: an order-sorted signature � = (S;D;F ;X ;P) and goal terms t1; t2 which satisfy

Condition 4.1.

Output: a tree automaton M0 such that I(t) = M0(ht
i) for each goal term t.

Step 1. For each sort S 2 S, de�ne hSi as a state.

6

Step 2. For each subsort declaration S v S
0, de�ne hSi and hS 0i as states and also de�ne

hSi* hS 0i as a transition rule.

Step 3. For each function declaration f :S1� � � ��Sn ! S, let hf(S1; . . . ; Sn)i be a new state

and f(hS1i; . . . ; hSni) * hf(S1; . . . ; Sn)i and hf(S1; . . . ; Sn)i * hSi be new transition rules.

Step 4. For each goal term t, execute ADDTRANS(ht
i) shown below.

2

Procedure 4.3 [ADDTRANS] This procedure takes a packed
-term � as an input. If

the input � has been already introduced as a state, then the procedure de�nes no transitions.

If � has not yet been a state, then the procedure �rst makes � a new state and also de�nes

transition rules as follows. It is required that if � = ht1; . . . ; tni, then each htii has been

introduced as a state.

Case 1. If � = hci with c a constant in F , then, de�ne c * hci as a transition rule.

Case 2. If � = hf(�1; . . . ; �n)i with f 2 F and a(f) = n, de�ne f(�1; . . . ; �n) * � as a

transition rule and execute ADDTRANS(�i) for 1 � i � n.

Case 3. If � = ht1; . . . ; tni, then do the following (i) and (ii).

(i) For each transition rule of the form �
0
* ti (�

0 2 Qk; 1 � i � n), de�ne a new "-

rule �
00
* � and execute ADDTRANS(� 00) where �

00 is the packed term de�ned as

�
00 = �

0 [� n htii.

(ii) If there exist a function symbol f and states �ij with 1 � i � n; 1 � j � a(f) such that

f(�i1; . . . ; �ia(f)) * htii for 1 � i � n, then de�ne a new rule f (�1; . . . ; �a(f)) * � and

execute ADDTRANS(�j) for 1 � j � a(f) where �j = �1j [� � � [�nj .

2

Example 4.1 [8] Let �, R and G be an instance of the uni�cation problem where

� = fS1 v S0; a:S0; c: S1; f :S0 � S0 ! S0; g:S0 ! S1g;

R = ff(xS1; xS1)! g(xS1); g(xS1)! xS1g and

G = ff(c; g(yS0)); cg:

The tree automata M0 is constructed as follows. Q0 = f hS0i; hS1i; hai; hci; hf(S0; S0)i;
hg(S0)i; hf(c; g(S0))i g and the transition rules are:

hS1i * hS0i;

a * hai;

hai * hS0i;

c * hci;

hci * hS1i;

f (hS0i; hS0i) * hf(S0; S0)i;

hf(S0; S0)i * hS0i;

g(hS0i) * hg(S0)i;

hg(S0)i * hS1i;

f(hci; hg(S0)i) * hf(c; g(S0))i:

7

Remark that

L(M0(hf(c; g(S0)i)) = ff(c; g(t)) j t has sort S0g and

L(M0(hci)) = fcg

are the sets of ground �-instances of goal terms f(c; g(yS0)) and c, respectively.

Next, assume Procedure 4.1 deals with rewrite rule g(xS1)! xS1 in Step 4. The following

accepting sequence of moves

g(hci) `0 g(hS1i) `0 g(hS0i) `0 hg(S0)i

is possible so that a new transition rule hci* hg(S0)i is added.
The case of rule f(xS1 ; xS1) ! g(xS1) is more complicated. The following accepting se-

quence of moves

f(hci; hg(S0)i) `1 hf(c; g(S0))i

is possible and

c 2 L(M1(hci)) \ L(M1(hg(S0)i)) \ L(M1(hS1i))

holds. Note that c 2 L(M1(hg(S0)i)) since we add hci * hg(S0)i to �1. By Step 4, new

transition rules are added to �1 in order to make the following sequence possible:

g(hc; g(S0); S1i) `
�
2 hf(c; g(S0))i

where hc; g(S0); S1i is a new state such that

L(M1(hc; g(S0); S1i)) = L(M1(hci)) \ L(M1(hg(S0)i)) \ L(M1(hS1i)):

Remark that c 2 L(M1(hc; g(S0); S1i)). Again consider rule g(xS1) ! xS1, then the following

sequence

g(hc; g(S0); S0i) `2 hf(c; g(S0))i

is possible so that the new transition rule

hc; g(S0); S0i* hf(c; g(S0))i

is added.

Consider L(M3(hf(c; g(S0))i)). The sequence

c `�3 hc; g(S0); S0i `3 hf(c; g(S0))i

is possible and hence c 2 L(M3(hf(c; g(S0))i)) \ L(M3(hci)). That is, the goal terms in G are

uni�able. 2

The correctness of Procedure 4.1 has been proved in [5, 8]. The next theorem plays a key role

in the correctness proof.

Theorem 4.1 [5, 8] For goal terms t1; t2 and a TRS R which satisfy Condition 4.1, there

exists an integer k such that L(Mk(ht1
i)) = R
�(I(t1)) and L(Mk(ht2
i)) = R

�(I(t2)) if

Procedure 4.1 halts.2

8

o’ o’

o o

s t

Figure 2: The path from the root to occurrence o

l1

l1

l1

l1

2r

2r
2r

2r

(i) (ii) (iii) (iv)

proper sticking-out relation sticking-out relation

Figure 3: Rewrite rules and sticking-out relations.

5 A su�cient condition to terminate the procedure

In this section, we provide a su�cient condition which guarantees the termination of Proce-

dure 4.1. The idea behind the su�cient condition is essentially the same as in [5]. However,

the procedure in this paper allows a TRS to have an arbitrary right-linear rewrite rule while

the procedure in [5] allows only simple right-linear rewrite rules [6].

We need some auxiliary de�nitions to describe the su�cient condition (Condition 5.1).

De�nition 5.1 A term t sticks out of a term s if there is a variable occurrence o of s such

that, for every occurrence o
0 with � � o

0 � o, the function symbol of s at o0 is the same as

the function symbol of t at o0 and t=o is not a ground term. When we want to emphasize the

occurrence o, we say t sticks out of s at occurrence o. If t=o is not a variable, then we say that

t properly sticks out of s (at o). If t (properly) sticks out of s, then we say that s is (properly)

short of t.

Example 5.1 Let t1 = f(g(x); g(y)); t2 = f(g(x); c) and t3 = f(g(g(x)); c). The term t2 sticks

out of t1 at the occurrence 1 � 1 since the function symbols of t1 at the occurrences � and 1 are

the same as those of t2. Similarly, t3 properly sticks out of t1 at 1 � 1. 2

De�nition 5.2 For a TRS R, de�ne the directed graph GR whose edges have weights. A

vertex of GR is a rewrite rule in R. The edges of GR and their weights are de�ned as follows.

Consider any pair of rules l1 ! r1 and l2 ! r2 (two rules can be the same).

(i) If r2 properly sticks out of a subterm of l1 (Fig. 3(i)), then GR has an edge from l2 ! r2

to l1 ! r1 with weight 1.

9

p
1

p
2

00

1

(a) (b)

p
1

p
2

1

1

Figure 4: Examples of sticking-out graphs.

(ii) If a subterm of r2 properly sticks out of l1 (Fig. 3(ii)), then GR has an edge from l2 ! r2

to l1 ! r1 with weight 1.

(iii) If r2 is short of a subterm of l1 (Fig. 3(iii)), then GR has an edge from l2 ! r2 to l1 ! r1

with weight 0.

(iv) If a subterm of r2 is short of l1 (Fig. 3(iv)), then GR has an edge from l2 ! r2 to l1 ! r1

with weight 0.

The graph GR is called the sticking-out graph of R.2

By using a sticking-out graph, a su�cient condition to terminate Procedure 4.1 is described

as follows.

Condition 5.1 The sticking-out graph GR of R has no cycle with positive weight where the

weight of a cycle is the sum of the weights of edges that constitute the cycle.2

An intuitive meaning of this condition will appear in the proof of the termination of Proce-

dure 4.1 in the next section (Theorem 6.2).

Example 5.2 Let R be a TRS that has two rewriting rules p1: g(x) ! f (g(x); b) and p2 :

f(x; a) ! f (a; x) where p1 and p2 are the labels of the rules. For simplicity, the left- and the

right-hand sides of pi (i = 1; 2) are referred to as li and ri, respectively.

The sticking-out graph GR has two vertices p1 and p2 and the edges shown in Fig. 4 (a).

For example, the subterm g(x) of r1 is short of l1 and hence p1 has a simple cycle with weight

zero. One the other hand, r1 properly sticks out of l2 at the occurrence 1, and thus there is an

edge from p1 to p2 with weight 1. Procedure 4.1 halts for this rewrite system R since there is

no cycle with positive weight. 2

Example 5.3 Let R be a TRS that has two rewrite rules p1: f(x) ! g(g(x)) and p2: g(x) !
f(f(x)). As in the previous example, the left- and right-hand sides of pi (i = 1; 2) are referred

to as li and ri, respectively. The sticking-out graph for R is shown in Fig. 4 (b). Since r1 and

r2 properly stick out of l2 and l1, respectively, the edges with weight 1 are de�ned from p1 to

p2 and p2 to p1. Remark that there is a cycle with weight 2. Actually, Procedure 4.1 does not

halt for this R. 2

6 Proof of the termination of Procedure 4.1

At �rst, we de�ne the number of layers in a packed term (state). If there exists an upper-bound

of the number of layers in a state, then there exists an upper-bound of the number of states

10

q

r/o

non-ground subterms of
the right-hand side of rules

a ground subterm of
the right-hand side of a rule

or
a term in Q0

Figure 5: The structure in a new state.

(Lemma 6.1). If there exists an upper-bound of the number of states, then Procedure 4.1

halts. Therefore, we will provide a su�cient condition to upper-bound the number of layers in

a state as a su�cient condition to terminate Procedure 4.1. The number of layers in a state

q (denoted layer(q)) is de�ned as follows. Those states which belong to Q0 are de�ned to have

only one layer. That is, layer(q) = 1 (q 2 Q0). If qi de�ned in Step 4 (4.3) is a new state, then

layer(qi) = maxflayer(qj
i
) j 1 � j �
ig. Similarly, the number of layers in a new state which

is introduced in Step 3 of Procedure 4.3 is de�ned as the maximum of the number of layers in

a state which constitutes the new state.

Next, consider the state hr�=oi which is introduced in Step 4 (a) or (b) of Procedure 4.1.

Let j = maxflayer(qi) j for i such that xi occurs in r=og. If r=o is ground, then let j = 0.

When the state hr�=oi is added to Qk+1 in Step 4 (a) or (b) of Procedure 4.1, the number of

layers in hr�=oi is associated as follows.

1. If hr�=oi has not yet belonged to Qk+1, then hr�=oi is de�ned to have j + 1 layers.

2. If hr�=oi has already belonged to Qk+1 and is de�ned to have j + 1 or more layers, then

the number of layers in hr�=oi is decreased to j + 1.

3. If hr�=oi has already belonged to Qk+1 and is de�ned to have j or less layers, then the

number of layers in hr�=oi is not changed.

In general, there are many combinations of layers which constitute hr�=oi. The number of

layers in hr�=oi is de�ned to be the minimum among them. Remark that for any new state

hr�=oi, the number of layers in hr�=oi cannot be smaller than the number of layers in hr�=oo0i
for any o

0 2 Occ(r�=o).
In the case of a non-packed term, it is trivial that, for a given number c, the set ft j

layer(t) � cg is �nite. On the other hand, in the case of a packed term q, for a given c,

fq j layer(q) � cg is not always �nite since there is no upper-bound of n for a packed term

hq1; . . . ; qni. In other words, a packed term in fq j layer(q) � cg does not have an upper-bound

in width besides it has an upper-bound in depth. However, we have the following lemma.

11

rootvariable
occurrence

c

rewriting moves

enter a new layer

umber of layers
in a state

Figure 6: The number of layers in a state varies as the tree automaton moves.

Lemma 6.1 Suppose that for an instance of the uni�cation problem there exists a number c

such that layer(q) � c for any k and q 2 Qk. Then there exists a number c
0 such that the

number of the states in Qk is not greater than c
0 for any k.

Proof. There are four cases when a new state is added in Procedure 4.1.

1. In Step 4 of Procedure 4.1, a state which is de�ned as qi =
S
1�j�
i

q
j

i
[fSig in (4.3) is

added.

2. In Step 4 (a) or (b) of Procedure 4.1, a new state hr�=oi is added. In this case, the

number of layers in a state may increases according to the de�nition of the number of

layers in a state.

3. In Case 3 (i) of Procedure 4.3, a new state � 00 = �
0 [� n htii is added.

4. In Case 3 (ii) of Procedure 4.3, a new state �j = �1j [� � � [�nj is added.

Assume that there exists a number c such that layer(q) � c for any k and q 2 Qk. Then there

exists a number k0 such that case 2 does not take place at any loop counter k00 for k00 � k
0 in

Procedure 4.1. A new state which is added as in case 1, 3, or 4 is a combination of states in

Qk0. Since Qk0 is �nite, the number of combinations of members in Qk0 is also �nite. Hence

the lemma holds. 2

Using this lemma, we can prove the termination of the uni�cation procedure by showing

that there is an upper-bound of the number of layers in a state if a given instance satis�es

Condition 5.1.

We �rst observe how the number of layers in a state increases as the tree automaton moves

as (4.1). For a term s, consider the path from a variable occurrence of s to the root of s, and

observe how the number of layers in a state varies as the head of the tree automaton goes up

the path (Fig. 6). When the tree automaton moves its head, a move de�ned by ADDTRANS

is used. Thereby, the number of layers in the attached state is not changed, or increased by

one if the head enters a new layer. On the other hand, when the tree automaton makes a

rewriting move, the number of layers in the attached state does not increase.

For the later discussion, it is worthwhile to introduce some new notions concerning the

behavior of a tree automaton. Let s be an input term and � be a sequence of moves of the

tree automaton for s. An occurrence o of s is called an "-move occurrence in � if an "-move

takes place at o, that is, if the sequence � contains a move I1 ` I2 such that I1=o = q1 and

I2=o = q2 where q1 and q2 are states of the tree automaton. An occurrence o1 2 Occ(s) is

12

c

variable
occurrence

c

variable
occurrence

c

variable
occurrence

c

variable
occurrence

rootroot

(i) (ii) (iii) (iv)

Figure 7: Four cases in which the number of layers in an associated state was c.

the �rst "-move occurrence with respect to a variable occurrence o2 if o1 � o2, o1 is an "-move

occurrence and there is no "-move occurrence o0 such that o1 � o
0 � o2.

Consider the sequence of moves (4.1) of a tree automaton in Step 4 of Procedure 4.1, and

assume that the number of layers in state q
j

i
is c. In this case, a newly introduced state in

Step 4 of Procedure 4.1 may have c + 1 layers. There are four di�erent cases in which this

situation occurs.

Case I: The head does not enter a new layer before the �rst rewriting move (Fig. 7(i)).

Case II: The head does not enter a new layer and there is no rewriting move (Fig. 7(ii)).

Case III: The head enters a new layer before the �rst rewriting move (Fig. 7(iii)).

Case IV: The head enters a new layer and there is no rewriting move (Fig. 7(iv)).

If the tree automaton Mk behaves as Case I or Case II and if c was the maximum number

of layers in a state in Qk, then the newly introduced state will have larger number of layers

than any other states which have belonged to Qk. In other words, if the tree automaton

behaves as Case I or Case II, then the maximum number of layers in a state possibly increases.

Condition 5.1 is to prohibit that the number of layers in�nitively increases. To show that, we

associate each state in Qk with a nonnegative integer called the rank which is de�ned based

on the sticking-out graph GR. Then it is shown that an
-term with rank j has at most j +1

layers. First we associate each rule in R with an integer which is also called the rank as follows.

Step 1. The rank of every rule is initialized to one.

Step 2. For every rewrite rule v in R (i.e. vertex of GR), the rank of v is changed to be the

maximum of f the rank of v0+w(v0; v) j v0 is a vertex of GR from which there is an edge

to v with weight w(v0; v)g.

Step 3. Repeat Step 2 until the rank of any rule is not changed.

In Example 5.2, the rule p1 has rank 1 and the rule p2 has rank 2. If R satis�es Condition 5.1,

then it can be easily shown that each rule in R is associated with a unique rank which is not

greater than the number of rules in R. A state is said to have rank j if it is introduced in

Step 4 of Procedure 4.1 by using a rewrite rule with rank j. Those states that have belonged

to Q0 is de�ned to have rank zero.

Consider that a state hti is introduced in Step 4(a) of Procedure 4.1 by using a rewrite rule

l ! r with rank j and a substitution �. In the following Theorem 6.2, we show that every

state in the co-domain of � has j or less layers. This implies that there are j + 1 or less layers

in hti.

13

l

q
1

r’

(p)1
1

x1

(o)1

j+1
layers

ρ

r’ρ

properly sticks out of r’ l/o1
’

’

Figure 8: The number of layers and the sticking-out relation (Case I).

Theorem 6.2 Let l ! r and � = fxi 7! qi j for i such that xi occurs in rg be respectively

a rewrite rule and a Qk-substitution that are used in Step 4 of Procedure 4.1. If the rank of

l! r is j, then every qi (1 � i � m) in the co-domain of � has j or less layers.

Proof. The theorem is shown by induction on the value of loop variable k of Procedure 4.1.

When k = 0, every state belongs to Q0 and hence it has only one layer, thus the theorem

holds. Assume that the theorem holds for k � n � 1, and consider the case that k = n. The

inductive part is shown by contradiction. Assume that the co-domain of � contains a state

which has j + 1 layers. Without loss of generality, let q1 be a state with j + 1 layers. As we

have observed in this section, there are four di�erent cases under which this situation occurs.

Assume that the number of layers in the state varies as Case I. In this case the number of

layers in the associated state is j+1 or more and is not changed before the number of layers is

decreased by the �rst rewriting move. The overview of the discussion in this case is as follows:

We �rst show that there is a rewrite rule l0 ! r
0 which corresponds to the �rst rewriting move,

and also show that the rank of the rewrite rule is j or more. By using the property that there

is no rewriting move before the �rst rewriting move, r0 is shown to properly stick out of a

subterm of l, which implies that the rank of l ! r must be de�ned to be j + 1 or more by (i)

of the de�nition of the sticking-out graph, a contradiction. See also Fig. 8.

Let o1 be the �rst "-move occurrence and let q be the state just before the �rst rewriting

move. Since the number of layers in the state is j + 1 or more before the �rst rewriting move,

q has j + 1 or more layers. It cannot happen that q has belonged to Q0 since it implies that

q has only one layer. Thereby there are rewrite rule, say l
0 ! r

0 and Qk-substitution �
0 which

were used to introduce q in Step 4, and then, q can be written as hr0�0i. Furthermore, the rank
of the rule l0 ! r

0 must be j or more, otherwise hr0�0i cannot have j + 1 or more layers by the

inductive hypothesis. In the following, we show that r0 properly sticks out of l=o1.

Consider the moves of the tree automaton from the occurrence p11 to o1. Since o1 is the �rst

"-move occurrence, all moves under o1 are de�ned by ADDTRANS. By the construction of

transition rules in ADDTRANS, it follows that the function symbol of l at the occurrence

o1�o
0 is the same as the function symbol of r0 at o0 for every o0 such that o1�o

0 � p
1
1. Furthermore,

it can be easily shown that when the head visits the occurrence o1 � o
0(o1 � o

0 � p
1
1) of l, the

state hr0�0=o0i is attached to that head. Thereby, at the variable occurrence p
1
1, stater

0
�
0
=o

0

was attached where o0 is such that o1 � o
0 = p

1
1, and this is the state q1. Intuitively saying, the

head goes up l along the path from p
1
1 to o1 by changing the state from hq

0i to hf(. . . ; g0; . . .)i
where f is the scanned symbol. Since the top layer of hr0�0i is r0, this implies that r0 properly

14

sticks out of l=o1. We have observed that the rank of l0 ! r
0 is j or more, and thus the rank

of l ! r must be de�ned to be j + 1 or more by (i) of the de�nition of the sticking-out graph,

a contradiction.

For other Cases II through IV, we can derive a contradiction in a similar way. Thereby, it

cannot happen that q1 has j + 1 or more layers and the induction completes. 2

Theorem 6.2 shows that if R satis�es Condition 5.1, then Procedure 4.1 halts.

Corollary 6.3 Procedure 4.1 halts for instances of the order-sorted uni�cation problem which

satisfy Condition 5.1 in addition to Condition 4.1.

Proof. By Theorem 6.2, if a given instance of the problem satis�es Condition 5.1, then

every state in Qk has n + 1 or less layers where n is the number of rewrite rules in R. Using

Lemma 6.1 with the �niteness of the number of layers in a state, we can say that there is an

integer k1 such that Q0 � � � � � Qk1
= Qk1+1 = � � �. Once the set of states has been �xed,

then Procedure 4.1 only adds "-transitions �k with k � k1 which saturates at last and hence

the procedure halts under the condition. 2

The above corollary provides a su�cient condition for the order-sorted uni�cation problem

to be decidable.

Corollary 6.4 A class of order-sorted uni�cation problems which satisfy Condition 4.1 and

Condition 5.1 is decidable.

Proof. If a given instance of the order-sorted uni�cation problem satis�es Condition 4.1 and

Condition 5.1, then Procedure 4.1 halts for the instance by Corollary 6.3 and answers correctly

by Theorem 4.1. 2

7 Conclusion

In this paper, we have proposed a su�cient condition for order-sorted uni�cation problems

to be decidable. We have proved that for a given instance of the uni�cation problems which

satis�es the condition the presented uni�cation procedure halts and answers correctly.

The presented Procedure 4.1 returns yes/no answer only. However, the authors conjecture

that if we analyze the tree automata constructed by Procedure 4.1 carefully, we can obtain

uni�ers of the goal terms also. Another direction of the future work is to extend tree automata

to more powerful computational models such as in [2]. This will relax conditions on the

instances (Conditions 4.1 and Condition 5.1) and make the procedure applicable to a larger

class of TRS.

References

[1] Baader, F., Siekmann, J.H.: \Uni�cation Theory," Handbook of Logic in Arti�cial In-

telligence and Logic Programming, Vol. 2, Deduction Methodologies, pp. 41{125, Oxford

University Press, 1994.

[2] Bogaert, B., Tison, S.: \Equality and Disequality Constraints on Direct Subterms in Tree

Automata," Proc. of the Ninth Annual Symposium on Theoretical Aspect of Computer

Science, LNCS 577, pp. 161{171, 1992.

15

[3] Comon, H.: \Equational Formulas in Order-Sorted Algebras," Proc. of the Fourth Intl.

Conf. on RTA, LNCS 443, pp. 674{688, 1990.

[4] G�ecseq, F., Steinby, M.: Tree Automata, Akad�emiai Kiad�o, 1984.

[5] Kaji, Y., Fujiwara, T., Kasami, T.: \Solving a uni�cation problem under constrained

substitutions using tree automata," J. of Symbolic Computation, 23, 1, pp. 79{117, 1997.

[6] Ohta, Y., Oyamaguchi, M., Toyama, Y.: \On the Church-Rosser Property of Simple-Right-

Linear TRS's," Transactions of IEICE, D-I, Vol. J78-D-I, No. 3 , pp. 263{268, 1995 (in

Japanese).

[7] Smolka, G., Nutt, W., Goguen, J.A., and Meseguer, J.: \Order-sorted equational com-

putation," Resolution of equations in algebraic structure, Vol. 2, pp. 297{367, Academic

Press, 1989.

[8] Takai, T., Kaji, Y., Tanaka, T., Seki, H.: \A Procedure for Solving an Order-Sorted

Uni�cation Problem | extension for left nonlinear system," Technical Report of IEICE ,

COMP98-44, 1998.

[9] Werner, A.: \A Semantic Approach to Order-Sorted Rewriting," LNCS 690, pp. 47{61,

1993.

[10] With, L.: \Completeness and Con
uence of Order-Sorted Term Rewriting," Proc. of 3rd

CTRS, LNCS 656, pp. 393{407, 1992.

APPENDIX: Proof of Theorem 6.2

We have observed in Section 6 that the number of layers in a state cannot varies as in Case I.

In this appendix, we see that similar discussions hold for other cases and the theorem holds.

Case II

In this case, the initial state of the tree automaton has j + 1 or layers, and the number of

layers is not changed at all. That is, the last state which associated at the root occurrence has

the same number of layers in the initial state. The overview of the discussion in this case is as

follows: We �rst show that there is a rewrite rule l0 ! r
0 such that the last state is written as

an instance of a subterm of r0, and also show that the rank of the rewrite rule is j or more. By

using property that there is no rewriting move, the subterm of r0 is shown to properly stick

out of l, which implies that the rank of l ! r must be de�ned to be j+1 or more by (ii) of the

de�nition of the sticking-out graph, a contradiction. If one replaces r0 and o1 in Fig. 8 with

r
0
=o2 and the root occurrence �, respectively, then the �gure sketches the following discussion.

Let q be the last state which is used in the sequence (4.1) of Step 4 of Procedure 4.1 at the

root occurrence of l. Since the number of layers in the last state is j + 1 or more, q has j + 1

or more layers. It cannot happen that q has belonged to Q0 since it implies that q has only

one layer. Thereby there are rewrite rule, say l
0 ! r

0 and an occurrence o2 such that q can

be written as hr0�0=o2i where �
0 is Qk-substitution which is introduced when l

0 ! r
0 is used

at Step 4 of Procedure 4.1. Furthermore, the rank of the rule l0 ! r
0 must be j or more and

r
0
=o2 is a non-ground subterm of r0 with size more than one, otherwise hr0�0=o2i cannot have

j+1 or more layers by the inductive hypothesis. In the following, we show that r0=o2 properly

sticks out of l.

16

l

q
1

r’

(p)1
1

(o)1

j+1
layers

ρ

r’ρ

’

’

x1

(o)3

j+2
layers

 is short of r’ l/o1

Figure 9: The number of layers and the sticking-out relation (Case III).

In this case, all moves at occurrences between the root and p11 are de�ned byADDTRANS.

Similarly to the Case I, it follows that the function symbol of l at the occurrence is the same

as the function symbol of r0=o2 at o
0 for every o

0 such that o0 � p
1
1. Furthermore, it can be

easily shown that when the head visits occurrence o
0 (o0 � p

1
1) of l, the state hr

0
�
0
=o2 � o

0i is
attached to that head. Thereby, at the variable occurrence p11, q1 = hr

0
�
0
=o2 � p

1
1i was attached.

Intuitively saying, the head goes up l along the path from p
1
1 to the root by changing the state

from hq0i to hf (. . . ; g0; . . .)i where f is the scanned symbol. Since the top layer of hr0�0=o2i is
r
0
=o2, this implies that r

0
=o2 properly sticks out of l. We have observed that the rank of l0 ! r

0

is j or more, and thus the rank of l ! r must be de�ned to be j + 1 or more by (ii) of the

de�nition of the sticking-out graph, a contradiction.

Case III

In this case, the number of layers in the associated state is increased to j + 2 ore more by

entering a new layer, and the number of layers is decreased by the �rst rewriting move. The

overview of the discussion in this case is as follows: We �rst show that there is a rewrite rule

l
0 ! r

0 which corresponds to the �rst rewriting move, and also show that the rank of the

rewrite rule is j + 1 or more. By using the property that the number of layers is increased

before the �rst rewriting move, r0 is shown to be short of l, which implies that the rank of

l ! r must be de�ned to be j + 1 or more by (iii) of the de�nition of the sticking-out graph,

a contradiction. See Fig 9.

Let o1 be the �rst "-move occurrence and let hr
0
�
0i be the state just before the �rst rewriting

move where l
0 ! r

0 and �
0 are the rewrite rule and the Qk-substitution which were used to

introduce hr0�0i at Step 4. Since the number of layers is j+2 or more just before the rewriting

move, hr0�0i has j + 2 or more layers. The rank of the rule l
0 ! r

0 must be j + 1 or more,

otherwise hr0�0i cannot have j+2 or more layers by the inductive hypothesis. In the following,

we show that r0 is short of l=o1.

Consider the moves of the tree automaton from the occurrence p
1
1 to o1. Let o3 be the

occurrence where the number of layers is increased �rst time before the �rst rewriting move.

Since o1 is the �rst "-move occurrence, all moves under o1 are de�ned by ADDTRANS.

Similarly to the previous cases, it follows that the function symbol of l at the occurrence o1 � o
0

17

is the same as the function symbol of r0 at o0 for every o
0 such that o1 � o

0 � o3. Furthermore,

since the number of layers is increased at o3, the head enters the top layer of hr0�0i. This means
that o0 is a variable occurrence of the top layer of hr0�0i. Intuitively saying, the head goes up l

along the path from p
1
1 to o1 by changing the state from hq0i to hf(. . . ; g0; . . .)i where f is the

scanned symbol. When the head reaches o3, the head enters the top layer of hr0�0i. Since the
top layer of hr0�0i is r0, this implies that r0 is short of l=o1. We have observed that the rank of

l
0 ! r

0 is j + 1 or more, and thus the rank of l ! r must be de�ned to be j + 1 or more by

(iii) of the de�nition of the sticking-out graph, a contradiction.

Case IV

In this case, the last state of the tree automaton at the root occurrence has j + 2 or more

layers, and the number of layers has been increased. The overview of the discussion in this

case is as follows: We �rst show that there is a rewrite rule l0 ! r
0 such that the last state at

the root occurrence is written as an instance of a subterm of r0, and also show that the rank

of the rewrite rule is j + 1 or more. By using the property that the number of layers have

been increased, the subterm of r0 is shown to be short of l, which implies that the rank of

l ! r must be de�ned to be j + 1 or more by (iv) of the de�nition of the sticking-out graph,

a contradiction.

Let q be the last state in the sequence (4.1) of Step 4 of Procedure 4.1 at the root occurrence

of l. Since the number of layers in the �nal state is j+2 or more, q has j+2 or more layers. It

cannot happen that q has belonged to Q0 since it implies that q has only one layer. Thereby

there are rewrite rule, say l
0 ! r

0 and an occurrence o2 such that q can be written as hr0�0=o2i
where �0 is Qk-substitution which is introduced when l

0 ! r
0 is used at Step 4 of Procedure 4.1.

Furthermore, the rank of the rule l
0 ! r

0 must be j + 1 or more and r
0
=o2 is a non-ground

subterm of r0 with size more than one, otherwise hr0�0=o2i cannot have j+2 or more layers by

the inductive hypothesis. In the following, we show that r0=o2 is short of l.

In this case, all moves at occurrences between the root and p11 are de�ned byADDTRANS.

Let o3 be the occurrence where the number of layers is increased �rst time. Similarly to the

previous case, it follows that the function symbol of l at the occurrence o0 is the same as the

function symbol of r0=o2 at o
0 for every o

0 such that o0 � o3. Furthermore, since the number of

layers is increased at o3, the head of the tree automaton enters the top layer of hr0�0=o2i when
the head reaches o3. This means that o

0 is a variable occurrence of the top layer of hr0�0=o2i.
Intuitively saying, the head goes up l along the path from p

1
1 to the root by changing the state

from hq0i to hf(. . . ; g0; . . .)i where f is the scanned symbol. When the head reaches o3, the

head enters the top layer of hr0�0=o2i. Since the top layer of hr0�0=o2i is r
0
=o2, this implies that

r
0
=o2 is short of l=o1. We have observed that the rank of l0 ! r

0 is j +1 or more, and thus the

rank of l ! r must be de�ned to be j + 1 or more by (iv) of the de�nition of the sticking-out

graph, a contradiction.

18

