The Type-Consistency Problem for Queries

in Object-Oriented Databases
Yasunori ISHIHARA Shougo SHIMIZU Hiroyuki SEKI Minoru ITO

Graduate School of Information Science
Nara Institute of Science and Technology
8916-5, Takayama, Ikoma, Nara 630-0101 JAPAN

Abstract

Method invocation mechanism is one of the essential features in object-oriented program-
ming languages. This mechanism contributes to data encapsulation and code reuse, butthere is a
risk of a run-time type error. In the case of object-oriented databases (OODBS), a run-time error
causes rollback. Therefore, it is desirable to ensure that a given OODB schema is consistent,
i.e., no run-time type error occurs during the execution of queries under any database instance
of the OODB schema.

This paper discusses the computational complexity of the type-consistency problem. As a
model of OODB schemas, we adopt update schemas introduced by Hull et al., which have all
of the basic features of OODBs such as class hierarchy, inheritance, complex objects, and so
on. For several subclasses of update schemas, the complexity of the type-consistency problem
is presented. Importantly, it turns out that non-flatness of the class hierarchy, recursion in the

gueries, and update operations in the queries each make the problem difficult.

1. Introduction

Among many features of object-oriented programming languages (OOPLSs), method invo-
cation (or message passing) mechanism is an essential one. It is based on method name over-
loading and late binding by method inheritance along the class hierarchy. For a method name
m, different classes may have different definitions (codes, implementations) @fhenm is
applied to an object, one of the definitions o is selected depending on the class to which
belongs, and is bound ta in run-time (late binding or dynamic binding). This mechanism is
important for data encapsulation and code reuse, but there is a risk of a run-time type error. For
example, when a methad is invoked, the definition ofn to be bound may not be uniquely
determined. Particularly with queries in object-oriented databases (OODBS), a run-time error
causes rollback, i.e., all the modification up to the error must be cancelled.

In this paper, we discuss the computational complexity of the type-consistency problem for
gueries in OODBs. A database schefia said to beconsistent if no type error occurs during

the execution of any method under any database instance, i.e.,

1. for every method invocatiom, the definition ofm to be bound is uniquely determined

through the class hierarchy with inheritance; and
2. no attribute-value update violates any type declaration giveh by

In order to check type-consistency, it is usually necessary to perform type inference, i.e., to
examine whether for each clasand program construatsuch as a variable in method imple-
mentation bodies, the value ofcan be an object of clagsor not. It is quite advantageous

for a given database schema to be consistent. First, since it is ensured at compile-time that no
type error occurs under any database instance, run-time type check can be omitted. Another
advantage is an application to method-based authorization checking [5], [7], [16].

As a model of OODB schemas, we adamdate schemas introduced by [11]. Update
schemas have all of the basic features of OODBS, such as class hierarchy, inheritance, complex
objects, and so on. Method implementations are based on a procedural OOPL model. There-
fore, updating database instances is simply modeled as assignment of objects or basic values to

attributes of objects. In [11], it is shown that the type-consistency problem for update schemas

2

is undecidable. In [16], a subclass of update schemas, aaitetlranching update schemas, is
introduced. Itis shown that consistency for a given non-branching update schema is solvable in
polynomial time provided that all the database instances are acyclic.

The aim of this paper is to investigate the computational complexity of the type-consistency
problem for several subclasses of OODB schemas. We focus on the following three factors and

show that each of them creates difficulty in the problem (see also Fig. 1):

1. Non-flatness of the class hierarchy (Section 3.1). Define thieeight of the class hierarchy
as the maximum length of a path in the hierarchy. If the height is zero, then all classes are
completely separated and there is no superclass-subclass relation at all. For such a “flat”
database schema, consistency is solvable in polynomial time. However, consistency for
a non-flat schema is undecidable even if itefrieval (i.e., no method definition in the
schema contains any update operation) and the height of the class hierarchy is bounded

by one.

2. Recursion (Section 3.2). Consistency for a recursion-free schema is coNEXPTIME-
complete, while consistency for a schema with recursion is undecidable eventdrit is
minating (i.e., the execution of every method terminates under every database instance)

and the height of the class hierarchy is bounded by one.

3. Update operations (Section 3.3). As stated above, consistency for a terminating (re-
sp. recursion-free) schema with update operations is undecidable (resp. cONEXPTIME-
complete), even if the height of the class hierarchy is bounded by one. On the other hand,
consistency for a terminating retrieval schema is solvable in polynomial time. Thus, up-
date operations make the consistency problem difficult when the schema satisfies the ter-

mination property.

The model adopted in this paper requires the following three conditions. First, schemas
should be monadic (i.e., every method in a schema should have arity one). Even if the arity
is not bounded, consistency is expected to be still decidable for a flat schema, a recursion-free

schema, and a terminating retrieval schema respectively. That is, in our conjecture, arity does

the height of the class </

hierarchy is at most 1 undecidable

results of this paper:
|:| : solvable in polynomial time
29 : coNEXPTIME-complete
@: undecidable

Fig.1 Complexity of the Type-Consistency Problem.

not affect the decidability of consistency aslong as we consider only the subclasses of schemas
stated above. Secondly, there should be no program constructs such as conditional branch and
while statement. However, using update operations, if-then statements can be simulated (see
Example 3). Thirdly, the class hierarchy should be aforest (i.e., multiple inheritance is exclud-
ed). However, the results in this paper remain valid if an appropriate mechanism for multiple
inheritance isincorporated into the model. That is, the third condition is merely for simplicity.
There has been much research on the type-consistency problem for OOPLs. As a pioneer
work, Abiteboul et a. [2], [3] introduced method schemas and studied the complexity of the
type-consistency problem for a number of subclasses. In method schemas, each method is al-
lowed to have more than one argument. However, method schemas cannot represent updates of
database instance since their method implementations are based on a functional OOPL model.

The followings are some of the main results and open problems of [2]:
1. Consistency is undecidable for a general method schema;

2. Itisopen for amethod schema with methods of arity two;

3. It is coNP-complete for a recursion-free method schema provided that the arity of each

method is bounded by a constant; and
4. Itissolvablein polynomial time for a monadic method schema

Retrieval schemas of ours are a proper subclass of general method schemas and a proper super-
class of monadic method schemas. Moreover, retrieval schemas are incomparable to method
schemas with methods of arity two, and their intersection is not empty. Inthispaper, we provide
a proof of undecidability for aretrieval schema which belongs to the intersection. That is, the
open problem 2 aboveis shown to be undecidable. In[17], an optimal incremental algorithm for
the consistency checking of a recursion-free method schemaiis presented. In [1], the complex-
ity of type-consistency (and also the expressive power) for both update and method schemasis
summarized.

As dready stated, type inference is closely related to type-consistency. In [14], atypein-
ference algorithm for a procedural OOPL is proposed. For each expression e of a program, a
type variable [[e]] that denotes the type of e is introduced, and a sufficient condition for type-
consistency can be examined by computing the least solution of the equations that denote the
relations among these type variables (also see [13] and [15]).

Our OOPL model is untyped in the sense that each variable has no type declaration. In
contrast, type-consistency for typed OOPLs have been discussed in severa articles [4], [6],
[8]. Since the language is typed in these articles, it can be assumed that we know in advance
the class to which the returned objects should belong for every method implementation body.
Then the consistency problem is simply to determine whether each method satisfies conditions
such as covariance and contravariance. Therefore, for typed OOPLS, behaviora anaysis of
each method implementation body is unnecessary. Type systems for OOPLs have also been
extensively studied [9], [10]. For example, in [10], an elegant type system is proposed that
relaxes contravariance restriction. However, computational complexity of the type-consistency
problem has scarcely been studied in these articles.

The remainder of the paper is organized as follows. In Section 2, we define database

schemas and their instances, and show some examples. 1n Section 3, we show the computational

complexity of the type-consistency problem for the subclasses of database schemas mentioned

above. Lastly, in Section 4, we summarize the paper.

2. Database Schemas
21 Syntax
Definition 1. A database schemaisa6-tuple S = (C, <, Attr, Ad, Meth, Impl) where:

1. C isafinite set of class names.

2. < isapartia order on C representing aclass hierarchy. If ¢ < ¢, thenwe say that ¢’ isa
subclassof ¢ and cisasuperclassof ¢. For ssimplicity, we assume that the class hierarchy
isaforest on C, that is, for all ¢y, ¢, ¢ € C, either ¢; < ¢ or ¢, < ¢; Whenever ¢ < ¢;

and ¢ < co.
3. Attr isafinite set of attribute names.

4. Ad: C x Attr — C isapartial function representing attribute declarations. By Ad(c, a) =
¢, we mean that the value of attribute a of an object of ¢ must be an object of ¢’ or its

subclass.
5. Methisafinite set of method names.

6. Impl : C x Meth — WFP is a partial function representing method implementations,
where WFP isthe set of well-formed programs defined below.

A sentence is an expression which has one of the following forms:

1 y:=v, 4. y :=m(y'),
2. y = self, 5. self.a ;= v/,
3. y :=self.a, 6. return(y’),

where y, 3/ are variables, a is an attribute name, m is a method name, and self is a reserved

word that denotes the object on which a method is invoked (or, to which a message is sent). A

6

s1 .y =self.a; so1 .y = self.a; s31 . y:.=self.a;

s1p . self.d :==y; sy . self.d’ :==y; s self.d’ ==y;

s13: v =m(y); sz vy = my); s33 . return(y);

s14 . return(y’). so4 . return(y’). s Yy =m(y).
@ (b) (©)

Fig. 2 Example of Programs.

sentence of type 5 is called an update operation. The intuitive meaning of each sentence seems
to be obvious and the formal semantics will be presented in Section 2.2.
A programis a finite sequence of sentences. We say that a program sq; so; - - -; s, 1S well-

formed when the following two conditions hold:

¢ Noundefined variableisreferredto. Thatis, foreachs; (1 < i < n),if s;isoneof y := ¢/,
y = m(y'), self.a := ¢/, and return(y’), then there existsasentence s; (j < ¢) that must be
oneof v =4,y =self, ¢y = self.d’, and ' := m/(v"), where y” isavariable, a' isan

attribute name, and m’ is a method name.

e Only the last sentence s, must have the form return(y') for some variable y'. Thus the

other sentences s1, s,..., $,_1 Must be one of types1to 5. O

Example 1. Consider the three programs in Fig. 2. Program (a) is well-formed while (b) is
not, since sentence s3 refersto variable y but no value is assigned to y in any of the preceding
sentences s»; and s». Neither is program (c) since the last sentence s34 is not in the form of

return(y’). O

We often omit temporary variables for readability. For example, we write “y := m(self.a)”

instead of “y' := self.a; v := m(y’),” wherey' isatemporary variable.

Definition 2: The description size of S, denoted ||S||, is defined as follows:

ISl = |C| +|Attr| + [Meth|
+ (the number of attribute declarations given by Ad)

+ (the total number of sentences given by Impl),

where | X | is the cardinality of aset X. 0

2.2 Semantics

The inherited implementation of method m at class ¢, denoted Impl*(c, m), is defined as
Impl(c’, m) such that ¢’ is the smallest superclass of ¢ (with respect to the partial order <) at
which an implementation of m exists, that is, if Impl(¢”, m) is defined and ¢ < ¢’, then it
must hold that ¢’ < ¢”. If such an implementation does not exist, then Impl* (¢, m) is undefined.
Similarly, theinherited attribute declaration of attributea at classc, denoted Ad*(c, a), isdefined
asAd(c, a) suchthat ¢’ isthe smallest superclass of ¢ at which an attribute declaration of a exists.
If such an attribute declaration does not exist, then Ad*(c, a) is undefined.

A database instance of Sisapair | = (v, i), where:

1. Toeachclassc € C, v assignsadigoint, finite set v(c) of objects (or object identifiers).
Each o € v(c) is called an object of classc. Let Os; = U.ccv(c). Let cl(o) denote the

classc suchthat o € v(c).

2. To each object o € v(c) and each attribute a € Attr such that Ad*(c, a) is defined, u
assigns an object, denoted (o, a), that is the value of attribute a (or simply a-value) of
o. If Ad*(c,a) = ¢, then u(o, a) must belong to v(c”) for some ¢’ (¢’ < ¢'). Heresfter,

(o, a) is often denoted by o.a.

The operational semantics of Sis originally defined through a method execution tree [11].
In this paper, we present a more straightforward definition, in which the execution of a method

is defined by rewriting rules on configurations of an interpreter for method implementations.
Definition 3: A configuration is one of the expressions

(u,0), active{u,o,m,i,0), CFoawait(o,m,i,o0),

8

where p IS an assignment representing attribute values, o is an object, m isamethod name, i is
apositive integer, ¢ is an assignment of objects to the variables appearing in Impl, and CF isa
configuration. Aninitial configuration hastheform active(u, o, m, 1, o |), where Impl*(cl(o0), m)

isdefined and ¢, isan assignment undefined everywhere. |

Before presenting the formal semantics of configurations, we give an informal explanation
here. active(u, 0, m,7,0) means that the interpreter is about to execute the i-th sentence of
Impl*(cl(0), m), where self in Impl*(cl (o), m) isinterpreted as o, the current variabl e assignment
isgiven by ¢, and the current database instance is given by . CF o await(o, m, i, o) represents
that another method has been invoked at the i-th sentence of Impl*(cl(0), m). (p, o) isthe pair

of the resulting database instance and the returned value after an execution of a method.

Definition 4: Let s(c, m,) denotethe:-th sentenceof Impl*(c, m). Let f[(ay, ..., a,)/b] denote
the function f’ that isequal to f except that f'(aq, ..., a,) = b. The one-step execution relation
— on configurations is defined by the rewriting rules shown in Fig. 3. Note that the executionis
deterministic, that is, for every configuration CF, there is at most one CF’ such that CF — CF'.

O

Definition 5: Let o € Os,. A partial execution of method m for object o under instance | =
(v, p) is a(possibly infinite but non-empty) sequence EX = (CF, CF,...) of configurations
such that CF, istheinitial configuration active(u, o, m, 1,0 ,) and CF; — CF;,, for al «.

A partial execution EX is said to beterminating if EX = (CF,, ..., CF,) isafinite sequence
and thereisno CF,,;; such that CF,, — CF,.4;. If on the other hand EX is an infinite sequence,
then EX is said to be nonterminating. Furthermore, EX is said to be complete if it is either

terminating or nonterminating. |

Definition 6: A terminating execution EX = (CF,, ..., CF,) is successful if CF,, = (y/, o') for

some ' and o', and aborted otherwise. O

Aborted executions are caused by two types of sentences “y := m/(y’)” and “self.a := y'.”

By the rewriting rule (R4), an execution is aborted if method m' is undefined for the class of the

(R1)

(R2)

(R3)

(R4)

(RS)

(RE)

(R7)

If s(cl(0), m,4) ="y ==y,
active(u, o, m, i, 0) — active(u, o, m, i + 1, o[y /o (y")]).
If 5(cl(0), m, i) = “y := self,”
active(u, o, m, i, 0) — active(u, o, m,i+ 1, oy/0]).
If s(cl(0), m,4) = “y := self.a,”
active(u, o, m, i, o) — active(u, o, m, i + 1, oy / u(o, a)]).
If s(cl(0),m,) ="y := m/(y')" and Impl*(cl (o (y")), m’) is defined,
active(u, o, m, i, o) — active(u, o (y'), m’, 1, 0|) o await(o, m, , o).
If s(cl(0), m,7) = “self.a :=y'" and cl(a(y")) < Ad*(cl(0), a),
active(y, o, m, i, o) — active(u[(o, a) /o (y')], 0,m, i + 1,).
If s(cl(0), m, 1) = “return(y’),”
active(p, 0,m,i,0) — (u, o (y/)).
If s(cl(0),m,1) ="y = m/(¥),”

(u,0") o await(o, m, 1, 0) — active(u, 0, m,i +1,o[y/0]).

Fig. 3 One-Step Execution Relation.

10

Class employee

boss, supervisor : employee .
> SUP Py (director, get_secretary) :

Class manager 1: return(self.secretary).

boss, supervisor : director
(employee, queryl) :

Class director 1: vy := get_secretary(self.supervisor);
secretary : employee 2: return(y).
Fig. 4 Déefinition of Ad;. Fig. 5 Définition of Impl,.

object assigned to v/'. By (R5), an execution is aborted if the class of the object assigned to ¢’
violates the attribute declaration given by Ad. Both cases are viewed as type errors. Now we

are ready to define the notions of consistency and termination.

Definition 7: Sis consistent if every terminating execution is successful under every instance
of S, and Sisterminating if every complete execution is terminating under every instance of S.

|

Example 2: Consider adatabase schema S, = (C1, <, Attry, Ad;, Methy, Impl,), where
e (C; = {director, manager, employee} and director <; manager <; employee;
e Attr; = {boss, supervisor, secretary} and Ad; isshown in Fig. 4; and
e Meth; = {get secretary, queryl} and Impl, isshownin Fig. 5.

Fig. 6 illustrates a database instance |, = (vq, 1) Of S;, where Bob, Sara,... are ob-
jects and Bob — Sara means pi(Bob,boss) = pi(Bob, supervisor) = Sara. Consider
the execution of queryl for Bob. Since u1(Bob, supervisor) = Sara € wvi(manager) and
Impl7(manager, get_secretary) is undefined, the execution is aborted. Also it iseasily checked
that S; isterminating.

Let S, = (C4, <1, Attry, Ad;, Meth’, Impl’), where Meth; = {calc_supervisor, get_secretary,

query2} and Impl} is shown in Fig. 7. [, is aso an instance of S|. The execution of

11

employee manager director

— : boss, supervisor
—» secretary

Fig. 6 A Database Instancel ;.

(director, get_secretary) :

(employee, calc_supervisor) :
1: return(self.secretary).

1: y :=calc_supervisor(self.boss);

2: return(y). (employee, query2) :

1: self.supervisor := calc_supervisor(self);

(director, calc_supervisor) :
2: 1y := get_secretary(self.supervisor);

1: return(self).

3: return(y).

Fig. 7 Definition of Impl}.

calc_supervisor for Bob is successful and the last configuration is (x4, John), i.e., the returned
value of the execution is John. On the other hand, the execution of calc_supervisor for Alice is
nonterminating. It can be shown that calc_supervisor returns an object of class director when it
terminates. Next, consider the execution of query2 for Bob. When control reaches the second
sentence of (employee, query2) in Fig. 7, Bob.supervisor has been set to John € vy (director).

Therefore the execution is successful. Consequently, it can be proved that S; is consistent. O

Example 3: Consider adatabase schema S, = (C,, <,, Attr,, Ad,, Meth,, Impl,), where

o Cy ={c,c, ¢} suchthat ¢ <; cand ¢ <, ¢ (i.e., c isasuperclass of both ¢; and ¢, see

Fig. 8(a)); and

12

(ct, norfas, az]) : (ct,nor’) :
1: self.d :=self; 1: self.a' :=self.as;
/C\\ 2: y:=nor(self.a); 2: return(self).
& & 3: y:=nor(self.ay); (e, nor) -
!/
@ 4: return(self.a’). 1: return(self).
Class ¢ (ct, ifthen[ay, m]) : (ct, ifthen’[m]) :
agazd.d ¢ ¢ 1: self.a” :=nor[a1,ai](self); 1: y:=m(self)
? b Y "
as s 2: self.a” :=nor[a",a"](self); 2: return(y).
. — / -
(0) 3: y:=if_then'[m](self.a”); (c. if then'[m]) :
4: retun(y). 1: return(self).
(©

Fig. 8 Définition of S,.
e Ad;isshowninFig. 8(b).

We adopt the following Boolean-value representation: Let o be an object of class ¢;. Each
atribute a € {ai, az,a',a", a;} of o represents true if o.a = o, and false otherwise. Note that
o.as dways represents false because of the declaration Ad,(ct, as) = ¢.

Then, we define two methods nor[a4, ay] and if_then[a,, m] as shown in Fig. 8(c). Method
nor[ay, a,] calculates NOR of o.a; and o.a,, and returns o if the result is true and o.a;s other-
wise. Since every Boolean operator can be represented by NORs, we can construct a method
which calculates a given Boolean formula using nor[as, a,]. On the other hand, if then[a, m]
simulates if-then statements. m isinvoked on o if and only if 0.a; = o. By thefirst two lines of
(ct, if then[aq, m]), o.a” is“normalized” so that o.a” = o.as (and hence cl(o.a”) # ¢;) whenever

o.ay represents false. O

13

2.3 Subclasses of the Database Schemas
In thelast part of this section, we provide some notions to define subclasses of the database

schemas.

Definition 8. The height of < is the maximum integer n such that there exist distinct co,

Clye o Cq € Csalisfyingcg < ¢g < -+ < . a

If the height of < is zero, then the class hierarchy is flat. That is, all classes are completely
separated and there is no superclass-subclass relation at all. We often say that Sisflat if < is
flat.

Definition 9: Ad is covariant if ¢c; < ¢, implies Ad*(cy, a) < Ad*(cy, a) for al ¢q,c, € C and
a € Attr such that both Ad*(c1, a) and Ad*(c,, a) are defined. O

Usually, covariance is defined as aproperty of method signatures. For example, in[2], aschema
issaid to be covariant if for each built-in method m (assumed to be monadic for ssmplicity) and
for each pair (m : ¢; —), (m : ¢, — &) of signatures of m, we have that ¢ < ¢, whenever
c1 < ¢p. Inour model, an attribute a can be regarded as a built-in method m, such that the
signatures of m, are given by Ad and the interpretation of m, is given by a database instance.
There are many situations in which it is natural to assume the covariance. For example,
technical_paper < literature and Ad*(technical_paper, author) < Ad*(literature, author), the
latter of which means that the authors of technical-papers are a subclass of those of general

literatures.

Definition 10: Impl isretrieval if it includes no update operation (i.e., sentence in the form of

“self.a 1= y”). We often say that Sisretrieval if Impl isretrieval. O

Definition 11: The method dependency graph G = (V, E) of Impl is defined as follows [2]:
e VV = Meth; and

e An edge from m to m’ isin E if and only if there is a class ¢ such that m appears in

Impl(c, m').

14

If the method dependency graph of Impl isacyclic, then Impl isrecursion-free. We often say that
Sisrecursion-freeif Impl isrecursion-free. Notethat Sis terminating whenever it is recursion-

free. O

3. Complexity of the Type-Consistency Problem
3.1 Non-Flatness of the Class Hierar chy

In this section, we show how non-flatness of the class hierarchy affectsthe complexity of the
type-consistency problem. First, thefollowing theorem claimsthat consistency for aflat schema

is solvablein polynomial time.

Theorem 1: Let S = (C, <, Attr, Ad, Meth, Impl) be a database schema. If Sisflat, then con-

sistency for Sissolvablein polynomial time.

Proof: Defineaninstancel = (7, i) of Sasfollows:
o (c) ={o.} foreachc € C;and
o ji(o., a) = o if Ad*(c,a) = .

Note that 11 is never altered during any execution even if Sis not retrieval, since < isflat and
each class has exactly one object.

First, we show that there is an aborted execution under 1 if and only if S is inconsistent.
The “only if” part is obvious. Conversely, let | (= (v, 1)) be an arbitrary instance of S and
h: Os; — Ogj be ahomomorphism such that (o) = o. for each o € v(c). It can be shown that
for every (partial) execution EX under I, A(EX) isa (partial) execution under 1 by induction on
the length of EX. Then, it can be easily proved that h(EX) is aborted whenever EX is aborted.

To check whether there is an aborted execution under T, compute the last configuration of
the execution of each m for each o € Ogj, not the entire execution, since computing the entire
executions takes exponential time in general. We use a table T', where T'(o., m, 7) represents
the last configuration of the partial execution from the first sentence up to the :-th sentence in
Impl*(c, m). Define T'(o., m, 0) as active(t, 0., m, 1,0). If s(c,m,7) isnoty := m'(y'), com-

puteT (0., m, 7+ 1) fromT(o., m, 7) through the corresponding rewriting rulein Fig. 3. Suppose

15

that s(c,m,i+1) ="y := m/(y’).” Also supposethat T'(o., m, i) = active(ji, o., m, i, o) for some
o. If Impl*(cl(e(y')), m) is undefined, then the execution of m for o, is aborted. Otherwise,

there are the following three cases. Let n be the number of sentencesin Impl*(cl(a(v')), m').
1. If we have already obtained 7'(¢(y'), m', n), then compute 7'(o., m, ¢ + 1) through (R7).
2. Supposethat T'(o(y'), m', n) has not been obtained yet.

(@ If we have aready tried to compute T'(o(y’), m’, 1), then give up computing
T(o(y'), m',n) (and thus T'(o., m, 7 + 1)), since this execution is nonterminating.
(b) Otherwise, try to compute T'(o(y'), m’, 1),..., T(o(y'), m', n).
In summary, for al ¢ and m such that Impl*(c, m) is defined, compute 7'(o., m, z) in adepth-first
manner. Since each T'(o., m, ¢) is computed at most once, this algorithm terminates in a linear

time of the size of T'. And T has a linear size of the total number of sentences given by Impl

since flatness implies Impl = Impl*. O

On the other hand, the following theorem says that consistency for a non-flat schema is

undecidable even if it isretrieval and the height of the class hierarchy is bounded by one.

Theorem 2. Let S = (C, <, Attr, Ad, Meth, Impl) be a non-flat database schema. Consistency

for Sisundecidable, evenif Sisretrieval, the height of < isone, and Ad is covariant. O

This theorem is proved by showing a reduction from the Post’s Correspondence Problem
(PCP) to the consistency problem for a database schema which satisfies the assumption in the
theorem. Let (w,u) (w = (w1, ..., w,), u = (us,...,u,)) be an instance of PCP over alphabet

2 = {0, 1}. We construct a database schema S, ,, such that
o S, isretrieval;
e theheight of < of S, , isone;
e Adof S, , iscovariant; and

e S, ., isinconsistent if and only if (w,«) has asolution.

16

Theideafor S, , to satisfy the last condition is asfollows. Let post beamethod in S, ,,, which
playstheprincipal roleinthereduction. Each pair of adatabaseinstancel and anobjecto; € Os;
isregarded as a candidate for a solution of (w,). If (1, 0;) isactualy asolution of {w, u), then
the execution of post for o, under | isaborted. Otherwise, the execution of post for o, under | is
nonterminating (therefore no type error occurs during the execution). By ensuring that no type
error occurs during the execution of any method except post, we can concludethat S,, ,, satisfies
the last condition.
Now we show the construction of S,, ,,. Suppose that

w1 = W1aW12° - W14, ceey Wy = WpiWp2- " Wnd,,

UL = ULIUL2° " Ul e ceey Up = Up1Up2° " Upe,,
where al of the w; ;’sand u, ;’sarein Z. Figs. 9 and 10 show the definition of < and Ad of
Sy, respectively. Class¢; (1 < ¢ < n) represents the i-th pair (w;, u;), and class ¢ (resp. ¢})
represents symbol O (resp. 1). Note that the height of < isoneand Ad is covariant. Next, define
methods post, m,,, is0, is1, and isc’ as Figs. 11-14 (also define method m,, similarly to m,,).
The underlined part (e.g., the second line of (¢;, m,,)) isamacro notation, and all of them can
be expanded when (w, u) isreducedto S, ,,. Notethat S,, , isretrieval (i.e., thereis no sentence

in theform of self.a := y). Moreover,

¢ each method except post and test has its definition at every class,
e method post is not invoked by another method; and

¢ method test, which appears at the fifth line of (c;, post), has no definition at any class, and

can be invoked only by post.

Thus, atype error occurs if and only if the control reaches the fifth line of (c;, post) during the
execution of post. Therefore, in order to prove the correctness of the reduction, it suffices to
show that (w, ») has asolution if and only if thereis an instance | such that the control reaches
the fifth line of (c;, post) during the execution of post for some o; € Og; under I.

Letl = (v,p) and o; € v(cy) U --- U v(c,). Inwhat follows, we explain the behavior of
the execution of post for o, under I. First, assumethat | isin the following form (F1) (see also
Fig. 15):

17

N /\

C1 C2 o 00 C

Fig.9 <ofS,,.
Class¢; (1<i<n) Classc Class cp, ¢)
a_, . c a- . ¢ a- . ¢

Fig.10 Adof S, ..

(ci,post) (1 < i <n):

1= my, (self);

isc’(y);

my(self);

isc’(y);
test(self);

Y
)
Y.
£)
Y

return(self).

o o1 A W N PP

Fig. 11 Definition of Method post.

(F1)

0;.0_, =041 €Ev(c))U---Uvr(c,) (1 <1<k -1,

® 0p.a_, = 041 € v(c),

® op1.a- =07 € v(cp) Uv(ey) and of.az = oy € v(cp) Un(cy) (1< <1 -1),

® op.a- = oy, € v().
In |, sequence o; - - - 0}, represents a candidate for a solution of (w,), and sequence o - - - 0}
representsaword over X. Let w,, and u,, denote the words represented by o; (i.e., w,, = w; and

up, = uy if 0; € v(cy)), and z; denote the symbol represented by o, (i.e,, z; = 0if o} € v(cp),

and z; = 1if o} € v(c})). The following two lemmas claim that the execution of the first two

18

(Ciamw) (1 <1< n) : (Camw) :

1: y:=my(self.a_); 1: return(self.a=).
2. |if Wi d; isO (c, m) .
then y :=is0(y);

1: return(self).

elsey = isl(y);

d;+1: if w; 1 isO
theny :=is0(y);
elsey = isl(y);

d; +2: return(y).

Fig. 12 Definition of Method m.,,.

(cp,is0) : (c},is1) :

1: return(self.a=). 1: return(self.a=).
(d,is0) : (d,is1) :
1: loop forever. 1: loop forever.
(c,is0) : (c,isl) :
1: return(self). 1: return(self).

Fig. 13 Definition of Methodsis0 and is1.

(cp,isc’) : (c},isc’):
1: loop forever. 1: loop forever.
(c',isc’) : (c,isc’) :
1: return(self). 1: return(self).

Fig. 14 Definition of Method isc'.

19

01 0 Ok

Ok+1
O+ O 0, 01
—> dtribute a, — : attribute ap
@ : an object of class ¢

Q:anobjectofclassci (1<i<n)
‘: anobjectof class ¢ (j = 0, 1)

Fig. 15 A Database Instance of S, ,,.

lines of (cl(o1), post) terminatesif and only if w,, - - - w,, = x;--- x;.

Lemma 1: Suppose that | isin the form of (F1). If thereis!’ (I' < I) such that w,, - - - w,, =

xp - - - x1, then the execution of m,, for o, terminates and returns o;,,,. Otherwise, the execution

of m,, for o, does not terminate.

Proof: The lemmais proved by induction on k. Without loss of generality, o, is assumed to be
an object of classc;.

[Basis] Supposethat k£ = 1. By thefirst line of (¢q, m,,), method m,, isrecursively invoked on
o1.a_,, which is an object of class ¢ since k = 1. By (¢, m,,), thisinvocation results in o/, and
it is assigned to y at the first line of (c1, m,,). Suppose that w,4, = 0. By the second line of
(c1, my), method isO is invoked on o}. From the definition of is0, the execution of isO for o}
terminates and returns oj.a_. (= 05) if o} € v(cp), and does not terminate if o] € v(c) U v(c}).
Since asimilar property holdswhen wy 4, = 1, we can conclude that the execution of the second
lineof (¢1, m,,) terminatesand o), isassigned to y if and only if w 4, = 1. And by induction on
d1, we obtain that the execution of m,, for o; terminates and returns o}, ,, if w,, = z4, - - - z; and

d; < 1, and does not terminate otherwise.

20

[Inductive Step] Suppose that £ > 1. By thefirst line of (c1, m,,), method m,, is recursively
invoked on o;.a_, (= 0,). From the inductive hypothesis, the execution of m,, for o, terminates
and returns o}, ,, if w,, - - - w,, = - -~z and!” <1, and does not terminate otherwise. In and
after the second line of (c1, m,,), it ischecked that w,, = &g, -+ - g @Nd " + dy < 1. Thus,

the lemmaholdswhen & > 1. O

Lemma 2: Supposethat | isintheform of (F1). The execution of isc’ for o)., terminatesif and

only if oj,, = 01,4 (i.e, ' =1).

Proof: Obvious from the definition of isc’. O

Thus, the third line of (cl(o1), post) is executed if and only if w,, - - - w,, = x;---z1. And the

1A
similar lemmashold for thethird and fourth lines of (cl(o,), post). Therefore, the control reaches

the fifth line of (cl(o1), post) if and only if w,, -« w,, =y, -+ - =gz 2.

k 1 Uo

k

Next, supposethat | isnot in the form of (F1). Then, | must be in one of the forms (F2) and
(F3):

(F2) The “a_,-chain” forms a cycle. That is, thereiso € wv(c;) U --- U v(c,) such that

01.a_, ...a_, =oando.a_, ...a_ = o.

(F3) The “a_.-chain” does not form a cycle but the “a_ -chain” forms a cycle. That is, there
areo € v(c)and o € v(cp) Uw(ch) suchthat oj.a_,...a_, = 0, 0.a- ...a- = 0o, and

odas...ax =0,

In the case of (F2), the recursive call of m,, at the first line of (¢;, m,,) does not terminate. In
the case of (F3), the execution of isO or isl in (c;, m,,), or isc’ in (cl(o1), post) does not termi-
nate. Therefore, if | isnot in the form of (F1), then the control does not reach the fifth line of
(cl(oy), post).

Suppose that (w, «) has a solution. Then, there is an instance | in the form of (F1) such
that w,, - - - w,, = Uy, + ** U, = ;- -+ x1. DUring the execution of post for o, under I, the control
reachesthefifthlineof (cl(o1), post). Conversely, supposethat thereisaninstancel such that the

control reaches the fifth line of (cl(o01), post) during the execution of post for o, under I. Then,

21

| must be in the form of (F1) and satisfy that w,, - - - w,, = 4o, =+ %o, = ;- x1. Obviously,
01,. . ., o represent the solution of (w, u). This concludes the proof of Thoerem 2.
As stated in Section 1, method schemas [2], [3] are based on a functional OOPL model.

Since S, ,, isretrieval, it can be trandated into a method schema. For example,

Impl(c;, post) = test(isc’(m,,(self)), isc’(m,(self))),

Impl (Ci7 mw) iSXZ'71(‘ .- isxi,di (mw(ma_* (Self))) o ')7

where isX; ; is either isO or is1 according to w; j, and m,_, is a method which returnsthe a_. -
value of theargument object. Itiseasily verifiedthat S,, ,, can betranslated into amethod schema

with methods of arity two. Thus, we have the following result which was openin [2]:

Corollary 1. Consistency for a method schema with methods of arity two is undecidable. O

3.2 Recursion
Intuitively, recursion makesthe length of the execution unbounded. In this section, we show

that the complexity of the type-consistency problem is affected by this unboundedness.

Theorem 3: Let S=(C, <, Attr, Ad, Meth, Impl) be a database schema with recursion. Consis-
tency for Sisundecidable, even if Sisterminating, the height of < isone, and Ad is covariant.

a

To prove Theorem 3, for agiven input string = of afixed deterministic Turing machine M,

we construct aschemaS,, ., satisfying the following conditions:
e S, isterminating;
¢ theheight of < of Sy, , isone;
e Adof Sy, iscovariant; and
e Sy isinconsistent if and only if A accepts x.

First of all, we define a Turing machine and an instantaneous description.

22

Definition 12: A deterministic Turing machine M isatriple (Q, Z, 6), where

e () isafiniteset of states.) containstwo special states: theinitial state qo and the accepting
State gyes;

e 2 isafinite set of symbols. Z contains two special symbols: the blank symbol B and the
first symbol >. Thefirst symbol is always placed at the leftmost cell of the tape;

e ¢ isafunction which maps (Q — {gyes}) x Zt0Q x X x {—, —, —}. Weassume that if
8(g,) = (¢',7,d), then vy = > and d = —. Therefore, the tape head never falls off the
left end of the tape.

An instantaneous description (ID) I of M is afinite sequence (q1,71),- - -, (qk, T&), Where g; €
QU{L}and~y; € Z. Itisrequired that y; = >, and exactly one ¢; isin @ (¢ denotes the head
position). The i-th pair (g;,y;) of an 1D I is denoted by I[:]. The transition relation |-~ over
the set of IDsis defined as usual. O

We only describe the outline of the reduction (see Appendix A for a complete proof). First,
in order to ensurethat the execution of each recursively-defined method m isterminating, we use
an attribute, say as, Which “marks’ an object. Suppose that an object o isvisited by arecursive
invocation of m. If o.ays represents true (see Example 3), then m sets o.a,,s fal'se and continue
the execution. Otherwise, m returns from the invocation. Consequently, o.a,s represents true
only if o has not been visited. Since the set Os,, .| of objects is finite, it can be shown that
Su . isterminating. Moreover, by setting o.aws true when m returns, other recursively-defined
methods can reuse a,s. See Lemma 3 in Appendix A for aformal description of this technique.

Let TM beamethodin S, ., which playsthe principal rolein thereduction. TM simulates M
on z asfollows. Each database instance | of S, is considered as a working space to compute
thelDsof M onxz. TM simulates M on x exactly r steps, wherer > Oisaconstant dependent on
|. If the ID after r-step transitions contains the accepting state gyes, then TM causes atype error.
Otherwise, the execution of TM is successful. By ensuring that no type error occurs during the
execution of any method except TM, the following property holds. If M accepts z, then thereis

an instance | such that both the number of stepsr and the size of the working space determined

23

ZZaN

G G

Fig. 16 < of Sy ,.

by | are large enough to find an aborted execution of TM under | (i.e., Sy, IS inconsistent).
Otherwise, there is no aborted execution of TM under any instance (i.e., Sy, IS consistent).

Define < and Ad of S, as shown in Figs. 16 and 17, respectively. In Fig. 17, @ denotes
atuple (ag,...,ax) of atributes, where K = [log((|Q| + 1)|Z|)] (i.e., the number of bits to
represent an element of an ID). Ad(c, @) = ¢ meansthat Ad(ct, a;) = cforeach: (1 < i < K).
An element of an ID is stored in @ as the binary encoded form stated in Example 3. Attributes
a and @" are used for storing intermediate results during the computation of an ID. Attribute
acont 1S Used for determining r, i.e., the number of stepsto be simulated. Attributes ayes and a;&s
are used for checking whether M isin the accepting state or not after the simulation. Note that
the height of < isone and Ad is covariant. Next, define method TM as shown in Fig. 18. All
the methods except test is defined at every class. Method test is defined only at class ¢;. Since
we can define all the methods so that no update operation causes a type error (see the method
definitions presented in Appendix A), atype error occursif and only if the control reaches the
fifth line of (c;, TM) and test is about to be invoked on an object of class ¢, ¢, or .

In what follows, we explain the behavior of TM. Let | = (v, 1) be a database instance of
Su. ad o1 € v(c;). Suppose that TM isinvoked on o;. Then get.ws is executed for o, by the
first line of (¢, TM). This obtains objects oy,. .., op+1 SAisfying o;.a—. = 0;41 (1 < 7 < k) by
following attribute a_, of each o;, where k isaconstant dependent on | and satisfiesk > 1. The
objects o,,. .., or+1 Will be used asaworking spaceto simulate M. Since attribute a_. is defined
only at class ¢, the class of o,,. .., o, must be ¢;. By atechnical reason, we want og+; to be an
object of class ¢[. To achievethis, if the a_. -chain from o; (1) ends up with an object of class ¢
or ¢, or (2) forms a cycle, then get_ws changes the value of o,.a—. to an object of class ¢; (see

Fig. 19). Lemmab5 in Appendix A provides aformal description of the behavior of get ws.

24

Class ¢ Class ¢

A= . c a

yes

R A
acont C

! .
ayes, ayes . C
af .Cf

!/ .
s, (I'WS . C

Fig. 17 Adof Sy,

(Ct, TM) .
y = get_.ws(self);
y = initws(self);

y = step(self);

y = test(y);

1

2

3

4: y = accept(self);
5

6: return(self).

Fig. 18 Definition of Method TM.

Let I, be theinitial ID of M on z, and n be the length of I,. By executing initws for o,
at the second line of (¢, TM), each Ip[¢] (1 < 7 < k) is stored in o;.d, where o;.a denotes the
tuple (o;.a4, ..., 0;.ax). Therefore, if & < n, then elements Ig[k + 1],..., Io[n] are abandoned.
Conversely, if n < k, then (L, B) isstored in 0,,+1.4,. .., o.d (Actualy, thisis done by get ws;
see the definitions of get ws and initws presented in Appendix A). Lemma 6 in Appendix A
provides aformal description of the behavior of initws.

Method step simulates r-step transitionsof M. Let I; denotethe j-th 1D of M on« (counting
from zero). Suppose that the first £ — 5 elements of I; are stored in 0j41.d,. .., op.@. More

precisely, I;[z] (1 < ¢ < k — j) isstored in o;4;.d. Note that the initial ID I, satisfies this

25

—: attribute a;
2z cattribute ag beforeinvoking get_ws on o,

— : attribute ag after invoking get_ws on o

Fig. 19 A Database Instance after Invoking Method get_ws on o;.

condition. Consider a database instance shown in Fig. 20(a). Let us compute the next ID 1.
Note that /;.1[7] can be computed from I;[+ — 1], /;[:], and I;[7 + 1]. Therefore, if these three
adjacent elements are stored in one object, we can compute /;.1[¢] using nor[x,] stated in
Example 3. Todo this, for every object o in the a_, -chain, we copy the element of the ID stored
in o to o.a-. and o.a_..a—. as shown in Fig. 20(b). (It seems impossible to copy the data in
o.a_. 10 o, athough we do not know its formal proof.) Method copy[a;, a,] defined in Fig. 21
copies the Boolean-value represented by o.a, t0 0.a—..a, when it isinvoked on o. Thus we can
obtain the next ID, and the place where the ID is stored is “shifted to right” (see Fig. 20(c),
where 6(¢,1) = (4,0, —)). Next, we explain attribute ac. This attribute indicates whether
the ssimulation should be continued or not. Let o be the object in which the first element of the
current ID isstored. If o.aon representstrue, then the ssmulation of M iscontinued. Otherwise,
the simulation stops. For example, in the case of Fig. 20(c), the simulation stops after two steps
(Fig. 20(d)). See Lemmas 7 and 8 in Appendix A for aformal description of the behavior of

step.

26

Oj +2 Oj +3

@

(b)

(©

(d)

Ci) Ci)
J+3_ D:Dl> ”|

(%) : anobjectof class ¢, = : attribute ag
(> (7)) : attribute a,; whose valueistrue (false)

Fig. 20 Working Space to Simulate M.

Method accept checks whether gy isin the last ID by using nor[x, x] and copy[*,]. It
returns o1 € v(cy) if gues isinthelast ID, and og+1.a7 € v(cr) otherwise. See Lemma 9 in
Appendix A for aformal description of the behavior of accept.

Method test is invoked on the returned value of accept. Since test is defined only at class
ct, thisinvocation causes atype error if and only if gyes isinthelast ID.

Suppose that M accepts z. Then, M halts after finite steps. Therefore, there is a database
instance | such that both £ and » are large enough to cause a type error under 1. Conversely,
suppose that A/ does not accept x. Since gyes NEVer appears in the a_.-chain, invocation of test

causes no type error. Thus, Theorem 3 has been proved.

27

(Ct7 COpY[al’ a2]) : (Ct, set,t[az]) :

1: y:=setflaz](self.a=);
1: y:=sett'[as](self.a);

2: y:=ifthen[a1, set t[az]](self);
2 return(self).

3: return(self).

(ct, set t'[ag]) :

1: self.as = self;

(ct, set flag]) :

1: self.as ;= self.as;
2. return(self).
2. return(self).

(c,sett[ay]):
(c,set fla2]) :

1: return(self).
1: return(self).

Fig. 21 Definition of Method copy[as, a5].

In contrast to the above result, consistency for a recursion-free schema with update opera-

tionsis cCONEXPTIME-complete.

Theorem 4: Let S= (C, <, Attr, Ad, Meth, Impl) be a recursion-free schema with update oper-
ations. Then, consistency for Sisin coNEXPTIME.

Proof: Since Sisrecursion-free, the length of any execution under any instance of Sisbounded
by NMehl where IV isthe maximum number of sentences of amethod in Impl. Therefore, tofind
inconsistency for S, nondeterministically guess an instance of size at most N!Meh < ||g||lISI =

2lISl1ea ISl which causes atype error. That is, consistency for Sisin coNEXPTIME. O

Theorem 5: Let S = (C, <, Attr, Ad, Meth, Impl) be a recursion-free schema with update op-
erations. Consistency for S is coNEXPTIME-hard, even if the height of < isone and Ad is

covariant.

Sketch of Proof: Let M be afixed 2¢(™-time bounded nondeterministic Turing machine for a

polynomial p, and let = be an input string for M with length n. We construct, in polynomial

time p'(n) of n, arecursion-free schemathat isinconsistent if and only if M accepts z.
Theideaof smulating M on z issimilar to Theorem 3. However, two problemsstill remain.

First, we have to simulate a nondeterministic transition of M. To do this, we introduce new

28

attributes for each object in the a_.-chain. The j-th nondeterministic choice ch; is represented
by the new attributes of object o in which the first element of the (; — 1)-th ID I;_; is stored.
Then we can compute I;[¢] from I;_1[¢ — 1], I;_4[7], I;_1[¢ + 1], and ch;.

The other problem is how to simulate 2°™ steps of M with arecursion-free schema contain-

ing at most p’(n) methods. To solve this problem, we use methods step, (0 < ¢ < p(n)) defined

asfollows:
(costep) (L<i<pm): || (e stepy):
y = step, ,(self); Simulate one-step transition of M
y = step, ,(v); return(self.a-.).
return(y).

It is easily verified that if step,,, isinvoked on an object o in the a_.-chain, then step, is se-
quentially invoked on the first 2¢™ objects in the a—.-chain from o. A method which simulates
one-step transition is defined in the same way sinceit hasto access 27(*! objectsin theworking
space. Thus, 27 stepsof M are simulated by executing step,,)- Theother recursively-defined
methods (such as get_.ws and accept) in the proof of Theorem 3 are also implemented in the

Same manner. O

3.3 Update Operations
The following theorem can be obtained from Theorem 2 of [16]:

Theorem 6: Let S = (C, <, Attr, Ad, Meth, Impl) be a schema that is terminating. If Sisre-

trieval, then consistency for Sis solvablein polynomial time. a

By Theorems 3 and 6, we can conclude that update operations make the type-consistency prob-

lem difficult if agiven schemais terminating.

4. Conclusions

We have discussed the complexity of the type-consistency problem for some subclasses of
OODB schemas. Moreover, by comparing the results, we have shown how the complexity is

affected by non-flatness of the class hierarchy, recursion, and update operations.

29

When we classify OODB schemasin view of non-flatness, recursion, and update operations,
the type-consistency problem is undecidable or intractablefor most of practical OODB schemas.
Therefore, as future works, it is desirable to find another subclass of OODB schemas which is
practical and for which consistency istractable. For example, consistency is expected to be de-
cidablefor acyclic database schemas [12], which are considered as an object-oriented extension
of nested relational database schemas. It is also important to develop an incremental algorithm

for type-consistency checking.

References
1. S. Abiteboul, R. Hull and V. Vianu, “ Foundations of Databases,” Addison-Wesley, 1995.

2. S. Abiteboul, P. Kanellakis, S. Ramaswamy and E. Waller, Method schemas, J. Comput.
System Sci. 51, No. 3 (1995), 433-455.

3. S. Abiteboul, P. Kanellaskis and E. Waller, Method Schemas, in “Proc. 9th ACM Sympo-
sium on Principles of Database Systems,” pp. 16-27, 1990.

4. R. Agrawal, L. DeMichiel and B. Lindsay, Static type checking of multi-methods, in “Proc.
6th Conf. on Object-Oriented Programming Systems, Languages, and Applications,” pp.
113-128, 1991.

5. R. Ahad, J. Davis, S. Gower, P. Lyngbaek, A. Marynowski and E. Onuegbe, Supporting
access control in an object-oriented database language, in “Proc. 3rd International Conf. on

Extending Database Technology,” LNCS 580, pp. 184—-200, Springer-Verlag, 1992.

6. E. Amiel, M.-J. Bellosta, E. Dujardin and E. Simon, “Type-safe relaxing of schema con-
sistency rules for flexible modelling in OODBMS,” The VLDB Journal 5, No. 2 (1996),
133-150.

7. E. Bertino, Data hiding and security in object-oriented databases, in “Proc. 8th IEEE Inter-
national Conf. on Data Engineering,” pp. 338-247, 1992.

30

10.

11.

12.

13.

14.

15.

16.

17.

. C. Chambersand G. T. Leavens, Typechecking and modulesfor multimethods, ACM Trans.
on Programming Languages and Systems 17, No. 6 (1995), 805-843.

J. Eifrig, S. Smith, V. Trifonov and A. Zwarico, Application of OOP type theory: state,
decidability, integration, in “Proc. 9th Conf. on Object-Oriented Programming Systems,
Languages, and Applications,” pp. 16-30, 1994.

G. Ghdlli, A static type system for message passing, in “Proc. 6th Conf. on Object-Oriented
Programming Systems, Languages, and Applications,” pp. 129-145, 1991.

R. Hull, K. Tanaka and M. Yoshikawa, Behavior analysis of object-oriented databases:
method structure, execution trees, and reachability, in “Proc. 3rd International Conf. on

Foundations of Data Organization and Algorithms,” pp. 372388, 1989.

Y. Ishihara, H. Seki and M. Ito, Type-consistency problems for queriesin object-oriented
databases, in“Proc. 6th International Conf. on Database Theory,” LNCS 1186, pp. 364-378,
Springer-Verlag, 1997.

N. Oxhgj, J. Palsberg and M. |. Schwartzbach, Making type inference practical, in “Proc.
European Conf. on Object-Oriented Programming,” LNCS 615, pp. 329-349, Springer-
Verlag, 1992.

J. Palsberg and M. I. Schwartzbach, Object-oriented type inference, in “Proc. 6th Conf. on
Object-Oriented Programming Systems, Languages, and Applications,” pp. 146161, 1991.

J. Palsberg and M. I. Schwartzbach, “ Object-Oriented Type Systems,” John Wiley & Sons,
1994.

H. Seki, Y. Ishiharaand M. Ito, Authorization analysis of queriesin object-oriented databas-
es, in “Proc. 4th International Conf. on Deductive and Object-Oriented Databases,” LNCS
1013, pp. 521-538, Springer-Verlag, 1995.

E. Waller, Schema updates and consistency, in “Proc. 2nd International Conf. on Deductive
and Object-Oriented Databases,” LNCS 566, pp. 167-188, Springer-Verlag, 1991.

31

(cf, test) :

1: return(self).

Fig. 22 Definition of Method test.

(ct, get.ws) : (ct, getws’) :
1: self.ays :=true; 1: y:=selfif self.ays = true
2: y:=getws'(self); and y := self.af otherwise;
3: return(self). 2: o :=ifthen[aws, get.ws"](self);
(c, get.ws) - \ 3: return(y).
1: return(self). (ct, getws”) :
(c, get.ws) : self.ays = false;

— ! .
1: return(self.a}). y i getws (seff.a);

self.a— = y;
(c,getws”):

1: return(self). . .
self.al,s = true;

setself.ato (L, B);

1:

2:

3

4 self.ays := true;
5

6

7

return(self).

Fig. 23 Definition of Method get_ws.

Appendix A: Complete Proof of Theorem 3

Let M beaTuringmachineand z = z, - - - z,, aninput string for M. We abbreviate self.a :=
self and self.a := self.a; to self.a := true and self.a := false, respectively. Methods test, get_ws,
initws, step, accept are defined as shown in Figs. 22-26, respectively.

First, we show that S, .. is terminating.

Lemma3: Letl = (v, 1) bean arbitrary database instance of Sy, ., and o, be an arbitrary object

in Os,, ,1- The execution of get.ws for o; isterminating under I.

32

(ct, initws) : (¢, initws) :

1: setself.ato(qo, >); 1: return(self).

2: y =initwsl(self.a-);

3: return(self).

(ct, initws1) : (¢, initwsl) :
1: setself.dato(Ll,z1); 1: return(self).

2. y:.=initws2(self.a-);

3: return(self).

(ct, initwsn) : (¢, initwsn) :

1: setself.dto(Ll,z,); 1: return(self).

2: return(self).

Fig. 24 Definition of Method initws.

Proof: If o1 € v(c¢)Uv(er) Ur(c), then the execution isterminating since (¢, get ws) is executed
for o1. Thusinthefollowing we consider the remaining case such that o; € v(c). First of al, by
thefirst line of (¢, get_ws), o1.ays iS Set to true. Then, get_ws’ isinvoked on o;. By the second
line of (¢, get.ws’), get.ws” isinvoked on o, Since 01.ays istrue. By (¢, get.ws”), get.ws” sets
o01.ays false and recursively invokes get ws’ on o;.a—. .

Consider the case that get ws' is recursively invoked on an object o. There are three cases

to be considered:

(1) If o € v(d) U v(ca) U v(c), then the recursive invocation of get.ws’ terminates since

(c, get.ws') is executed for o.

(2) If o € v(¢y) and o.ays isfalse, then no morerecursive invocation occursfrom the definition

of (¢, get.ws').

(3) If o € v(e¢) and o.ays is true, then get.ws” is invoked on o by the second line of

(ct, get.ws’). Method get_.ws” sets o.ays false and recursively invokes get.ws’ on o.a_. .

33

(Ct, Step) :

1: vy :=ifthen[acont, Step’](self);

2 return(self).

(Ct) Step,) :

1: y :=ifthen[ays, step”](self);

2: return(self).

(ct, step”) :

1: self.ays = false;
2: 1y :=delta(self);

3: 1y :=step(self.az);
4 self.ays ;= true;
5

return(self).

(c, step) :

1: return(self).

(c, step’) :

1: return(self).

(c, step”) :

1: return(self).

(ct, delta) :

1:
2:

y := if then[ay,s, delta’] (self);

return(self).

Thus, every time get.ws’ is recursively invoked, the number of objects o such that o.ays
is true decreases. Since Os,, _ ; isfinite, one of the conditions (1) and (2) above holds

eventually.

Similarly, it can be proved that the execution of every recursively-defined method (such as

In what follows, we show that TM simulates M on x correctly. Hereafter, we mean o.a = o

by o.a = true.

(c, delta) :

1: return(self).

(c,delta’) :

1: return(self).

(ct, delta’) :

1: self.a),:=false;

2: y:=copy[a,a](self);

3: y:=copy[d,ad"](self);

4: Compute(q,v) froma, d’, @"
and assign the result to a;

5: y:=delta(self.a-);

6: self.a),g = true;

7. return(self).

Fig. 25 Definition of Methods step and delta.

Lemma4: Sy, isterminating.

Therefore, the execution of get_ws on o, isterminating.

step, delta, accept, €tc.) in S, isterminating. Thus we have the following lemma:

(ct, accept”) :

(ct, accept) : 1: self.ays = false;
1: Selfﬂ'y% = false; 2: self.ayes := true if gyes IS Stored in self.a,
2: y = accept(self) : and self.ayes := false otherwise;

L 3: return(y). 3: Cdculateself.ayes V self.ayes and

(ct, accept') : assign the result to self.ayes;

1: y:=ifthen[ays, accept”](self); 4: y = copy[ayes, aye] (self);
2: return(y). 5: y:=accept(self.a);

6: return(y).

(c, accept) : (¢t, accept’) : (c, accept’) : (c, accept”) :

1: return(self). 1: return(self.aye). 1: return(self). 1: return(self).

Fig. 26 Definition of Method accept.

Lemmabs: Letl = (v, 1) beanarbitrary databaseinstanceof Sy, ,, and o1 € v(c;) beanarbitrary
object. After the execution of get ws for o, under |, there exists a positive integer k£ which

satisfies the following condition (C1):
(C1-1) o; € v(cr), 0502 =041 € V() (1 <3 < k —1),and op.a= = 041 € v(c});
(C1-2) o;.aws = 0;.a,c =true (1 <@ < k);
(C1-3) 0;.a (1 <i < k)represents (L, B).

Proof: Suppose that get.ws’ isinvoked & times by the second line of (¢, get-ws") during the
complete execution of get ws for o;. In what follows, we show that k satisfies condition (C1).
First, we prove that £ > 1. By the second line of (¢, get.ws), get.ws’ isinvoked on o;.
Since o;.ays iStrue by thefirst line of (¢, get-ws), get ws” isinvoked on o, by the second line of
(ct, get_ws’). Then, by the second line of (¢, get_.ws”), get.ws’ isinvoked on o;.a_, = 0,. Thus
k> 1.
Next, we prove (C1-1). Consider the:-thinvocation (1 < 7 < k) of get_ws' from the second

line of (¢, get.ws”). Let 0,41 be the self object of the invocation. Note that 0;.; € v(¢) and

35

0;+1-ays IStruesince: < k (seethe condition (3) in the proof of Lemma3). By thefirst and third
lines of (¢, get.ws'), the returned value of thisinvocation is o;+1. Therefore, by the second and
third lines of (¢, get ws”), it holds that o;.a—. = 0,41 € v(c). Next, consider the k-th invocation
of get.ws’, and let o be the self object of the invocation. In this case, one of the conditions (1)
and (2) in the proof of Lemma 3 holds. If (1) holds, then o.q; is returned as the returned value
of thisinvocation since (c, get_ws') isexecuted for o (seealso Fig. 19(1)). If (2) holds, then o.a;
isreturned by the first and third lines of (¢, get.ws’) (see also Fig. 19(2)). Thus, in either case,
o.a; € v(¢) isreturned and assigned to o,.a-. by the third line of (c;, get.ws”). By letting og+1
be o0.a{, condition (C1-1) is satisfied.

Conditions (C1-2) and (C1-3) hold by the fourth, fifth, and sixth lines of (¢;, get ws”). O

The following lemma holds evidently from the definition of method initws (see Fig. 24).

Lemma 6: Supposethat | = (v, u) satisfies condition (C1) for some & (k > 1). Then, after the

execution of initws for o; under |, the following condition (C2) holds:
(C2-1) Thesameas(C1-1);
(C2-2) The same as (C1-2);

(C2-3) Foreachi (1 < i< k),o;.drepresentsthe:-th element Iy[z] of theinitial ID of M

onzx. O

The following lemma, which states the behavior of method delta (see Fig. 25), isalso easily
obtained from the explanation in Section 3.2. Intuitively, it statesthat delta computes a one-step

transition of M correctly.

Lemma 7: Supposethat | = (v, u) satisfies the following condition (C3) for some & (k > 1):
(C3-1) Thesameas (C2-1);
(C3-2) o;.a,s=true (1 <17 < k);

(C3-3) Thereexists j (0 < j < k — 1) suchthat foreachi (1 < i < k — j), 0@

represents I;[z].

36

Then, after the execution of delta for o;.1 under I, the following condition (C3') holds:
(C3-1) Thesameas(C3-1);
(C3-2) Thesameas(C3-2);
(C3-3) Foreachi (1 <i <k — (j+1)), og+y+:-a represents 1;44[1]. ad

Lemma 8: Supposethat | = (v, u) satisfies condition (C2) for some k (k > 1). Then, after the

execution of step for o; under |, the following condition (C4) holds:
(C4-1) Thesameas (C2-1);
(C4-2) The same as (C2-2);

(C4-3) Let r be the largest index such that for each [(1 < [< r), 0j.a¢on IS true, i.e.,
r = max({0} U {j | AlL(or-acom = @)}). Then, foreachi (1 < i < k — r), 0,4:.d@

represents I..[7].

Proof: From the definition of methods step and delta, the value of o;.a—. (1 < ¢ < k) isnever
atered. Thus, (C4-1) holds by the assumption (C2-1).

Next, we show that (C4-3) is satisfied. By (C2-2), o;.ays istruefor each 7 (1 < 7 < k).
Therefore, by the definitions of (c, step), (ct, step’), and (¢, step”), it iseasily verified that delta
is sequentially invoked on o4,.. ., o, during the execution of step for o;. Moreover, we claim

that:
¢ (C2) implies (C3) since (C2-3) isobtained by letting 7 = 0in (C3-3); and
¢ (C3) implies (C3) since (C3-3) isobtained by replacing j + 1in (C3-3) by j.

Since step can dlter o;.@ and o;.a,, only by invoking delta, Lemma 7 can be applied r times.
Consequently, after the execution of step for o, under |, o,.+;.a represents I,.[¢] for each i (1 <
i < k—r). Thatis, (C4-3) holds.

Lastly, (C4-2) is satisfied because of (C3'-2) and the fourth line of (¢, step”). a

37

Lemma9: Supposethat | = (v, u) satisfies condition (C4) for some k£ (K > 1). Then, the
returned value of the execution of accept for o; under | is o+ if there is some object o; (1 <

© < k) such that o;.@ contains the accepting state gyes, and og+1.as otherwise.

Proof: By thefirstline of (ci, accept), o1.ay isset tofalse(i.e, o1.ar). Then, accept’ isinvoked
0N o1. Since o1.ays istrue by (C4-2), accept” isinvoked on o;. Inductively, consider the execu-
tion of accept” for o; (1 < j < k). By the second line of (¢, accept”), 0;.ayes iSSet to true (i.e.,
0;) if 0;.d contains gyes, and false (i.e., o;.ar) otherwise. By the third and fourth lines, o;.1.aye 1S
SEt 10 0;.ayes V 0;.aye. Therefore, by theinductive hypothesis, o;.1.ay iSset totrue (i.e., oj+1) if
there is some object o; (1 < 7 < 7) such that o;.d@ contains gyes, and o]-+1.a’y$ isset tofalse(i.e,
0;+1.a¢) Otherwise.

Lastly, since o+1 € v(¢;) by condition (C4-1), (¢;, accept’) is executed for og+1. Therefore,

the returned value of the execution of accept for o4 is 0k+1.a§,65. Thus, the lemma holds. O

By Lemmas 5-9 and the explanation in Section 3.2, the following lemma holds.
Lemma 10: S, isinconsistent if and only if M accepts . O

Theorem 3 isobtained by Lemmas 4 and 10.

38

