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Abstract

Method invocation mechanism is one of the essential features in object-oriented program-

ming languages. This mechanism contributes to data encapsulation and code reuse, but there is a

risk of a run-time type error. In the case of object-oriented databases (OODBs), a run-time error

causes rollback. Therefore, it is desirable to ensure that a given OODB schema is consistent,

i.e., no run-time type error occurs during the execution of queries under any database instance

of the OODB schema.

This paper discusses the computational complexity of the type-consistency problem. As a

model of OODB schemas, we adopt update schemas introduced by Hull et al., which have all

of the basic features of OODBs such as class hierarchy, inheritance, complex objects, and so

on. For several subclasses of update schemas, the complexity of the type-consistency problem

is presented. Importantly, it turns out that non-flatness of the class hierarchy, recursion in the

queries, and update operations in the queries each make the problem difficult.
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1. Introduction

Among many features of object-oriented programming languages (OOPLs), method invo-

cation (or message passing) mechanism is an essential one. It is based on method name over-

loading and late binding by method inheritance along the class hierarchy. For a method name

m, different classes may have different definitions (codes, implementations) ofm. Whenm is

applied to an objecto, one of the definitions ofm is selected depending on the class to whicho

belongs, and is bound tom in run-time (late binding or dynamic binding). This mechanism is

important for data encapsulation and code reuse, but there is a risk of a run-time type error. For

example, when a methodm is invoked, the definition ofm to be bound may not be uniquely

determined. Particularly with queries in object-oriented databases (OODBs), a run-time error

causes rollback, i.e., all the modification up to the error must be cancelled.

In this paper, we discuss the computational complexity of the type-consistency problem for

queries in OODBs. A database schemaS is said to beconsistent if no type error occurs during

the execution of any method under any database instance, i.e.,

1. for every method invocationm, the definition ofm to be bound is uniquely determined

through the class hierarchy with inheritance; and

2. no attribute-value update violates any type declaration given byS.

In order to check type-consistency, it is usually necessary to perform type inference, i.e., to

examine whether for each classc and program constructx such as a variable in method imple-

mentation bodies, the value ofx can be an object of classc or not. It is quite advantageous

for a given database schema to be consistent. First, since it is ensured at compile-time that no

type error occurs under any database instance, run-time type check can be omitted. Another

advantage is an application to method-based authorization checking [5], [7], [16].

As a model of OODB schemas, we adoptupdate schemas introduced by [11]. Update

schemas have all of the basic features of OODBs, such as class hierarchy, inheritance, complex

objects, and so on. Method implementations are based on a procedural OOPL model. There-

fore, updating database instances is simply modeled as assignment of objects or basic values to

attributes of objects. In [11], it is shown that the type-consistency problem for update schemas
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is undecidable. In [16], a subclass of update schemas, callednon-branching update schemas, is

introduced. It is shown that consistency for a given non-branching update schema is solvable in

polynomial time provided that all the database instances are acyclic.

The aim of this paper is to investigate the computational complexity of the type-consistency

problem for several subclasses of OODB schemas. We focus on the following three factors and

show that each of them creates difficulty in the problem (see also Fig. 1):

1. Non-flatness of the class hierarchy (Section 3.1). Define theheight of the class hierarchy

as the maximum length of a path in the hierarchy. If the height is zero, then all classes are

completely separated and there is no superclass-subclass relation at all. For such a “flat”

database schema, consistency is solvable in polynomial time. However, consistency for

a non-flat schema is undecidable even if it isretrieval (i.e., no method definition in the

schema contains any update operation) and the height of the class hierarchy is bounded

by one.

2. Recursion (Section 3.2). Consistency for a recursion-free schema is coNEXPTIME-

complete, while consistency for a schema with recursion is undecidable even if it ister-

minating (i.e., the execution of every method terminates under every database instance)

and the height of the class hierarchy is bounded by one.

3. Update operations (Section 3.3). As stated above, consistency for a terminating (re-

sp. recursion-free) schema with update operations is undecidable (resp. coNEXPTIME-

complete), even if the height of the class hierarchy is bounded by one. On the other hand,

consistency for a terminating retrieval schema is solvable in polynomial time. Thus, up-

date operations make the consistency problem difficult when the schema satisfies the ter-

mination property.

The model adopted in this paper requires the following three conditions. First, schemas

should be monadic (i.e., every method in a schema should have arity one). Even if the arity

is not bounded, consistency is expected to be still decidable for a flat schema, a recursion-free

schema, and a terminating retrieval schema respectively. That is, in our conjecture, arity does
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Fig. 1 Complexity of the Type-Consistency Problem.

not affect the decidability of consistency as long as we consider only the subclasses of schemas

stated above. Secondly, there should be no program constructs such as conditional branch and

while statement. However, using update operations, if-then statements can be simulated (see

Example 3). Thirdly, the class hierarchy should be a forest (i.e., multiple inheritance is exclud-

ed). However, the results in this paper remain valid if an appropriate mechanism for multiple

inheritance is incorporated into the model. That is, the third condition is merely for simplicity.

There has been much research on the type-consistency problem for OOPLs. As a pioneer

work, Abiteboul et al. [2], [3] introduced method schemas and studied the complexity of the

type-consistency problem for a number of subclasses. In method schemas, each method is al-

lowed to have more than one argument. However, method schemas cannot represent updates of

database instance since their method implementations are based on a functional OOPL model.

The followings are some of the main results and open problems of [2]:

1. Consistency is undecidable for a general method schema;

2. It is open for a method schema with methods of arity two;
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3. It is coNP-complete for a recursion-free method schema provided that the arity of each

method is bounded by a constant; and

4. It is solvable in polynomial time for a monadic method schema.

Retrieval schemas of ours are a proper subclass of general method schemas and a proper super-

class of monadic method schemas. Moreover, retrieval schemas are incomparable to method

schemas with methods of arity two, and their intersection is not empty. In this paper, we provide

a proof of undecidability for a retrieval schema which belongs to the intersection. That is, the

open problem 2 above is shown to be undecidable. In [17], an optimal incremental algorithm for

the consistency checking of a recursion-free method schema is presented. In [1], the complex-

ity of type-consistency (and also the expressive power) for both update and method schemas is

summarized.

As already stated, type inference is closely related to type-consistency. In [14], a type in-

ference algorithm for a procedural OOPL is proposed. For each expression e of a program, a

type variable [[e]] that denotes the type of e is introduced, and a sufficient condition for type-

consistency can be examined by computing the least solution of the equations that denote the

relations among these type variables (also see [13] and [15]).

Our OOPL model is untyped in the sense that each variable has no type declaration. In

contrast, type-consistency for typed OOPLs have been discussed in several articles [4], [6],

[8]. Since the language is typed in these articles, it can be assumed that we know in advance

the class to which the returned objects should belong for every method implementation body.

Then the consistency problem is simply to determine whether each method satisfies conditions

such as covariance and contravariance. Therefore, for typed OOPLs, behavioral analysis of

each method implementation body is unnecessary. Type systems for OOPLs have also been

extensively studied [9], [10]. For example, in [10], an elegant type system is proposed that

relaxes contravariance restriction. However, computational complexity of the type-consistency

problem has scarcely been studied in these articles.

The remainder of the paper is organized as follows. In Section 2, we define database

schemas and their instances, and show some examples. In Section 3, we show the computational
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complexity of the type-consistency problem for the subclasses of database schemas mentioned

above. Lastly, in Section 4, we summarize the paper.

2. Database Schemas

2.1 Syntax

Definition 1: A database schema is a 6-tuple S = (C;�;Attr;Ad;Meth; Impl) where:

1. C is a finite set of class names.

2. � is a partial order on C representing a class hierarchy. If c0 � c, then we say that c0 is a

subclass of c and c is a superclass of c0. For simplicity, we assume that the class hierarchy

is a forest on C, that is, for all c1; c2; c 2 C , either c1 � c2 or c2 � c1 whenever c � c1

and c � c2.

3. Attr is a finite set of attribute names.

4. Ad : C�Attr! C is a partial function representing attribute declarations. By Ad(c; a) =

c0, we mean that the value of attribute a of an object of c must be an object of c0 or its

subclass.

5. Meth is a finite set of method names.

6. Impl : C � Meth ! WFP is a partial function representing method implementations,

where WFP is the set of well-formed programs defined below.

A sentence is an expression which has one of the following forms:

1. y := y0,

2. y := self,

3. y := self:a,

4. y := m(y0),

5. self:a := y0,

6. return(y0),

where y, y0 are variables, a is an attribute name, m is a method name, and self is a reserved

word that denotes the object on which a method is invoked (or, to which a message is sent). A
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�

�

s11 : y := self:a;

s12 : self:a0 := y;

s13 : y0 := m(y);

s14 : return(y0):

�

�

�

�

s21 : y0 := self:a;

s22 : self:a0 := y0;

s23 : y0 := m(y);

s24 : return(y0):

�

�

�

�

s31 : y := self:a;

s32 : self:a0 := y;

s33 : return(y);

s34 : y0 := m(y):

�

�

(a) (b) (c)

Fig. 2 Example of Programs.

sentence of type 5 is called an update operation. The intuitive meaning of each sentence seems

to be obvious and the formal semantics will be presented in Section 2.2.

A program is a finite sequence of sentences. We say that a program s1; s2; � � � ; sn is well-

formed when the following two conditions hold:

� No undefined variable is referred to. That is, for each si (1 � i � n), if si is one of y := y0,

y := m(y0), self:a := y0, and return(y0), then there exists a sentence sj (j < i) that must be

one of y0 := y00, y0 := self, y0 := self:a0, and y0 := m0(y00), where y00 is a variable, a0 is an

attribute name, and m0 is a method name.

� Only the last sentence sn must have the form return(y0) for some variable y0. Thus the

other sentences s1, s2,. . . , sn�1 must be one of types 1 to 5. 2

Example 1: Consider the three programs in Fig. 2. Program (a) is well-formed while (b) is

not, since sentence s23 refers to variable y but no value is assigned to y in any of the preceding

sentences s21 and s22. Neither is program (c) since the last sentence s34 is not in the form of

return(y0). 2

We often omit temporary variables for readability. For example, we write “y := m(self:a)”

instead of “y0 := self:a; y := m(y0),” where y0 is a temporary variable.

7



Definition 2: The description size of S, denoted kSk, is defined as follows:

kSk = jCj + jAttrj + jMethj

+ (the number of attribute declarations given by Ad)

+ (the total number of sentences given by Impl);

where jXj is the cardinality of a set X . 2

2.2 Semantics

The inherited implementation of method m at class c, denoted Impl�(c;m), is defined as

Impl(c0;m) such that c0 is the smallest superclass of c (with respect to the partial order �) at

which an implementation of m exists, that is, if Impl(c00;m) is defined and c � c00, then it

must hold that c0 � c00. If such an implementation does not exist, then Impl�(c;m) is undefined.

Similarly, the inherited attribute declaration of attribute a at class c, denoted Ad�(c; a), is defined

as Ad(c0; a) such that c0 is the smallest superclass of c at which an attribute declaration of a exists.

If such an attribute declaration does not exist, then Ad�(c; a) is undefined.

A database instance of S is a pair I = (�; �), where:

1. To each class c 2 C , � assigns a disjoint, finite set �(c) of objects (or object identifiers).

Each o 2 �(c) is called an object of class c. Let OS;I = [c2C�(c). Let cl(o) denote the

class c such that o 2 �(c).

2. To each object o 2 �(c) and each attribute a 2 Attr such that Ad�(c; a) is defined, �

assigns an object, denoted �(o; a), that is the value of attribute a (or simply a-value) of

o. If Ad�(c; a) = c0, then �(o; a) must belong to �(c00) for some c00 (c00 � c0). Hereafter,

�(o; a) is often denoted by o:a.

The operational semantics of S is originally defined through a method execution tree [11].

In this paper, we present a more straightforward definition, in which the execution of a method

is defined by rewriting rules on configurations of an interpreter for method implementations.

Definition 3: A configuration is one of the expressions

h�; oi; active(�; o;m; i; �); CF � await(o;m; i; �);

8



where � is an assignment representing attribute values, o is an object, m is a method name, i is

a positive integer, � is an assignment of objects to the variables appearing in Impl, and CF is a

configuration. An initial configuration has the form active(�; o;m; 1; �?), where Impl�(cl(o);m)

is defined and �? is an assignment undefined everywhere. 2

Before presenting the formal semantics of configurations, we give an informal explanation

here. active(�; o;m; i; �) means that the interpreter is about to execute the i-th sentence of

Impl�(cl(o);m), where self in Impl�(cl(o);m) is interpreted as o, the current variable assignment

is given by �, and the current database instance is given by �. CF � await(o;m; i; �) represents

that another method has been invoked at the i-th sentence of Impl�(cl(o);m). h�; oi is the pair

of the resulting database instance and the returned value after an execution of a method.

Definition 4: Let s(c;m; i) denote the i-th sentence of Impl�(c;m). Let f [(a1; . . . ; an)=b] denote

the function f 0 that is equal to f except that f 0(a1; . . . ; an) = b. The one-step execution relation

! on configurations is defined by the rewriting rules shown in Fig. 3. Note that the execution is

deterministic, that is, for every configuration CF, there is at most one CF0 such that CF! CF0.

2

Definition 5: Let o 2 OS;I. A partial execution of method m for object o under instance I =

(�; �) is a (possibly infinite but non-empty) sequence EX = hCF0;CF1; . . .i of configurations

such that CF0 is the initial configuration active(�; o;m; 1; �?) and CFi ! CFi+1 for all i.

A partial execution EX is said to be terminating if EX = hCF0; . . . ;CFni is a finite sequence

and there is no CFn+1 such that CFn ! CFn+1. If on the other hand EX is an infinite sequence,

then EX is said to be nonterminating. Furthermore, EX is said to be complete if it is either

terminating or nonterminating. 2

Definition 6: A terminating execution EX = hCF0; . . . ;CFni is successful if CFn = h�0; o0i for

some �0 and o0, and aborted otherwise. 2

Aborted executions are caused by two types of sentences “y := m0(y0)” and “self:a := y0.”

By the rewriting rule (R4), an execution is aborted if method m0 is undefined for the class of the

9



(R1) If s(cl(o);m; i) = “y := y0,”

active(�; o;m; i; �) ! active(�; o;m; i + 1; �[y=�(y0)]).

(R2) If s(cl(o);m; i) = “y := self,”

active(�; o;m; i; �) ! active(�; o;m; i + 1; �[y=o]).

(R3) If s(cl(o);m; i) = “y := self:a,”

active(�; o;m; i; �) ! active(�; o;m; i + 1; �[y=�(o; a)]).

(R4) If s(cl(o);m; i) = “y := m0(y0)” and Impl�(cl(�(y0));m0) is defined,

active(�; o;m; i; �) ! active(�; �(y0); m0; 1; �?) � await(o;m; i; �).

(R5) If s(cl(o);m; i) = “self:a := y0” and cl(�(y0)) � Ad�(cl(o); a),

active(�; o;m; i; �) ! active(�[(o; a)=�(y0)]; o;m; i + 1; �).

(R6) If s(cl(o);m; i) = “ return(y0),”

active(�; o;m; i; �) ! h�; �(y0)i.

(R7) If s(cl(o);m; i) = “y := m0(y0),”

h�; o0i � await(o;m; i; �) ! active(�; o;m; i + 1; �[y=o0]).

Fig. 3 One-Step Execution Relation.
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Class employee

boss; supervisor : employee

�

�
�

�

Class manager

boss; supervisor : director

�

�
�

�

Class director

secretary : employee

�

�

Fig. 4 Definition of Ad1.

�

�

(director; get secretary) :

1 : return(self:secretary):

�

�
�

�

(employee; query1) :

1 : y := get secretary(self:supervisor);

2 : return(y):

�

�

Fig. 5 Definition of Impl1.

object assigned to y0. By (R5), an execution is aborted if the class of the object assigned to y0

violates the attribute declaration given by Ad. Both cases are viewed as type errors. Now we

are ready to define the notions of consistency and termination.

Definition 7: S is consistent if every terminating execution is successful under every instance

of S, and S is terminating if every complete execution is terminating under every instance of S.

2

Example 2: Consider a database schema S1 = (C1;�1;Attr1;Ad1;Meth1; Impl1), where

� C1 = fdirector;manager; employeeg and director �1 manager �1 employee;

� Attr1 = fboss; supervisor; secretaryg and Ad1 is shown in Fig. 4; and

� Meth1 = fget secretary; query1g and Impl1 is shown in Fig. 5.

Fig. 6 illustrates a database instance I1 = (�1; �1) of S1, where Bob, Sara,. . . are ob-

jects and Bob ! Sara means �1(Bob; boss) = �1(Bob; supervisor) = Sara. Consider

the execution of query1 for Bob. Since �1(Bob; supervisor) = Sara 2 �1(manager) and

Impl�1(manager; get secretary) is undefined, the execution is aborted. Also it is easily checked

that S1 is terminating.

Let S01 = (C1;�1;Attr1;Ad1;Meth01; Impl01), where Meth01 = fcalc supervisor; get secretary;

query2g and Impl01 is shown in Fig. 7. I1 is also an instance of S01. The execution of
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Bob

Alice

Sara

employee manager director

John

: boss, supervisor
: secretary

Fig. 6 A Database Instance I1.

�

�

(employee; calc supervisor) :

1 : y := calc supervisor(self:boss);

2 : return(y):

�

��

�

(director; calc supervisor) :

1 : return(self):

�

�

�

�

(director; get secretary) :

1 : return(self:secretary):

�

��

�

(employee; query2) :

1 : self:supervisor := calc supervisor(self);

2 : y := get secretary(self:supervisor);

3 : return(y):

�

�

Fig. 7 Definition of Impl01.

calc supervisor for Bob is successful and the last configuration is h�1; Johni, i.e., the returned

value of the execution is John. On the other hand, the execution of calc supervisor for Alice is

nonterminating. It can be shown that calc supervisor returns an object of class director when it

terminates. Next, consider the execution of query2 for Bob. When control reaches the second

sentence of (employee; query2) in Fig. 7, Bob:supervisor has been set to John 2 �1(director).

Therefore the execution is successful. Consequently, it can be proved that S01 is consistent. 2

Example 3: Consider a database schema S2 = (C2;�2;Attr2;Ad2;Meth2; Impl2), where

� C2 = fc; ct; cfg such that ct �2 c and cf �2 c (i.e., c is a superclass of both ct and cf, see

Fig. 8(a)); and
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c

fctc

(a)

�

�

Class ct

a1; a2; a
0; a00 : c

af : cf

�

�

(b)

�

�

(ct; nor[a1; a2]) :

1 : self:a0 := self;

2 : y := nor0(self:a1);

3 : y := nor0(self:a2);

4 : return(self:a0):

�

�

�

�

(ct; nor0) :

1 : self:a0 := self:af;

2 : return(self):

�

��

�

(c; nor0) :

1 : return(self):

�

��

�

(ct; if then[a1; m]) :

1 : self:a00 := nor[a1; a1](self);

2 : self:a00 := nor[a00; a00](self);

3 : y := if then0[m](self:a00);

4 : return(y):

�

�

�

�

(ct; if then0[m]) :

1 : y := m(self);

2 : return(y):

�

��

�

(c; if then0[m]) :

1 : return(self):

�

�

(c)

Fig. 8 Definition of S2.

� Ad2 is shown in Fig. 8(b).

We adopt the following Boolean-value representation: Let o be an object of class ct. Each

attribute a 2 fa1; a2; a
0; a00; afg of o represents true if o:a = o, and false otherwise. Note that

o:af always represents false because of the declaration Ad2(ct; af) = cf.

Then, we define two methods nor[a1; a2] and if then[a1;m] as shown in Fig. 8(c). Method

nor[a1; a2] calculates NOR of o:a1 and o:a2, and returns o if the result is true and o:af other-

wise. Since every Boolean operator can be represented by NORs, we can construct a method

which calculates a given Boolean formula using nor[a1; a2]. On the other hand, if then[a1; m]

simulates if-then statements: m is invoked on o if and only if o:a1 = o. By the first two lines of

(ct; if then[a1;m]), o:a00 is “normalized” so that o:a00 = o:af (and hence cl(o:a00) 6= ct) whenever

o:a1 represents false. 2
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2.3 Subclasses of the Database Schemas

In the last part of this section, we provide some notions to define subclasses of the database

schemas.

Definition 8: The height of � is the maximum integer n such that there exist distinct c0,

c1,. . . ,cn 2 C satisfying c0 � c1 � � � � � cn. 2

If the height of � is zero, then the class hierarchy is flat. That is, all classes are completely

separated and there is no superclass-subclass relation at all. We often say that S is flat if � is

flat.

Definition 9: Ad is covariant if c1 � c2 implies Ad�(c1; a) � Ad�(c2; a) for all c1; c2 2 C and

a 2 Attr such that both Ad�(c1; a) and Ad�(c2; a) are defined. 2

Usually, covariance is defined as a property of method signatures. For example, in [2], a schema

is said to be covariant if for each built-in method m (assumed to be monadic for simplicity) and

for each pair (m : c1 ! c01), (m : c2 ! c02) of signatures of m, we have that c01 � c02 whenever

c1 � c2. In our model, an attribute a can be regarded as a built-in method ma such that the

signatures of ma are given by Ad and the interpretation of ma is given by a database instance.

There are many situations in which it is natural to assume the covariance. For example,

technical paper � literature and Ad�(technical paper; author) � Ad�(literature; author), the

latter of which means that the authors of technical-papers are a subclass of those of general

literatures.

Definition 10: Impl is retrieval if it includes no update operation (i.e., sentence in the form of

“self:a := y” ). We often say that S is retrieval if Impl is retrieval. 2

Definition 11: The method dependency graph G = (V;E) of Impl is defined as follows [2]:

� V = Meth; and

� An edge from m to m0 is in E if and only if there is a class c such that m appears in

Impl(c;m0).
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If the method dependency graph of Impl is acyclic, then Impl is recursion-free. We often say that

S is recursion-free if Impl is recursion-free. Note that S is terminating whenever it is recursion-

free. 2

3. Complexity of the Type-Consistency Problem

3.1 Non-Flatness of the Class Hierarchy

In this section, we show how non-flatness of the class hierarchy affects the complexity of the

type-consistency problem. First, the following theorem claims that consistency for a flat schema

is solvable in polynomial time.

Theorem 1: Let S = (C;�;Attr;Ad;Meth; Impl) be a database schema. If S is flat, then con-

sistency for S is solvable in polynomial time.

Proof : Define an instance Ĩ = (�̃; �̃) of S as follows:

� �̃(c) = focg for each c 2 C; and

� �̃(oc; a) = oc0 if Ad�(c; a) = c0.

Note that �̃ is never altered during any execution even if S is not retrieval, since � is flat and

each class has exactly one object.

First, we show that there is an aborted execution under Ĩ if and only if S is inconsistent.

The “only if” part is obvious. Conversely, let I (= (�; �)) be an arbitrary instance of S and

h : OS;I ! OS;Ĩ be a homomorphism such that h(o) = oc for each o 2 �(c). It can be shown that

for every (partial) execution EX under I, h(EX) is a (partial) execution under Ĩ by induction on

the length of EX. Then, it can be easily proved that h(EX) is aborted whenever EX is aborted.

To check whether there is an aborted execution under Ĩ, compute the last configuration of

the execution of each m for each o 2 OS;Ĩ, not the entire execution, since computing the entire

executions takes exponential time in general. We use a table T , where T (oc; m; i) represents

the last configuration of the partial execution from the first sentence up to the i-th sentence in

Impl�(c;m). Define T (oc;m; 0) as active(�̃; oc;m; 1; �?). If s(c;m; i) is not y := m0(y0), com-

pute T (oc;m; i+ 1) from T (oc;m; i) through the corresponding rewriting rule in Fig. 3. Suppose
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that s(c;m; i+ 1) = “y := m0(y0).” Also suppose that T (oc;m; i) = active(�̃; oc;m; i; �) for some

�. If Impl�(cl(�(y0));m0) is undefined, then the execution of m for oc is aborted. Otherwise,

there are the following three cases. Let n be the number of sentences in Impl�(cl(�(y0));m0).

1. If we have already obtained T (�(y0);m0; n), then compute T (oc;m; i + 1) through (R7).

2. Suppose that T (�(y0);m0; n) has not been obtained yet.

(a) If we have already tried to compute T (�(y0);m0; 1), then give up computing

T (�(y0);m0; n) (and thus T (oc;m; i + 1)), since this execution is nonterminating.

(b) Otherwise, try to compute T (�(y0);m0; 1),. . . , T (�(y0); m0; n).

In summary, for all c and m such that Impl�(c;m) is defined, compute T (oc;m; i) in a depth-first

manner. Since each T (oc;m; i) is computed at most once, this algorithm terminates in a linear

time of the size of T . And T has a linear size of the total number of sentences given by Impl

since flatness implies Impl = Impl�. 2

On the other hand, the following theorem says that consistency for a non-flat schema is

undecidable even if it is retrieval and the height of the class hierarchy is bounded by one.

Theorem 2: Let S = (C;�;Attr;Ad;Meth; Impl) be a non-flat database schema. Consistency

for S is undecidable, even if S is retrieval, the height of � is one, and Ad is covariant. 2

This theorem is proved by showing a reduction from the Post’s Correspondence Problem

(PCP) to the consistency problem for a database schema which satisfies the assumption in the

theorem. Let hw; ui (w = hw1; . . . ; wni, u = hu1; . . . ; uni) be an instance of PCP over alphabet

Σ = f0; 1g. We construct a database schema Sw;u such that

� Sw;u is retrieval;

� the height of � of Sw;u is one;

� Ad of Sw;u is covariant; and

� Sw;u is inconsistent if and only if hw; ui has a solution.
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The idea for Sw;u to satisfy the last condition is as follows. Let post be a method in Sw;u, which

plays the principal role in the reduction. Each pair of a database instance I and an object o1 2 OS;I

is regarded as a candidate for a solution of hw; ui. If (I; o1) is actually a solution of hw; ui, then

the execution of post for o1 under I is aborted. Otherwise, the execution of post for o1 under I is

nonterminating (therefore no type error occurs during the execution). By ensuring that no type

error occurs during the execution of any method except post, we can conclude that Sw;u satisfies

the last condition.

Now we show the construction of Sw;u. Suppose that

w1 = w1;1w1;2 � � �w1;d1; . . . ; wn = wn;1wn;2 � � �wn;dn
;

u1 = u1;1u1;2 � � �u1;e1; . . . ; un = un;1un;2 � � �un;en ;

where all of the wi;j ’s and ui;j ’s are in Σ. Figs. 9 and 10 show the definition of � and Ad of

Sw;u, respectively. Class ci (1 � i � n) represents the i-th pair hwi; uii, and class c00 (resp. c01)

represents symbol 0 (resp. 1). Note that the height of� is one and Ad is covariant. Next, define

methods post, mw, is0, is1, and isc0 as Figs. 11–14 (also define method mu similarly to mw).

The underlined part (e.g., the second line of (ci;mw)) is a macro notation, and all of them can

be expanded when hw; ui is reduced to Sw;u. Note that Sw;u is retrieval (i.e., there is no sentence

in the form of self:a := y). Moreover,

� each method except post and test has its definition at every class;

� method post is not invoked by another method; and

� method test, which appears at the fifth line of (ci; post), has no definition at any class, and

can be invoked only by post.

Thus, a type error occurs if and only if the control reaches the fifth line of (ci; post) during the

execution of post. Therefore, in order to prove the correctness of the reduction, it suffices to

show that hw; ui has a solution if and only if there is an instance I such that the control reaches

the fifth line of (ci; post) during the execution of post for some o1 2 OS;I under I.

Let I = (�; �) and o1 2 �(c1) [ � � � [ �(cn). In what follows, we explain the behavior of

the execution of post for o1 under I. First, assume that I is in the following form (F1) (see also

Fig. 15):
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c

0′cnc2c1c c1′

c′

Fig. 9 � of Sw;u.

�

�

Class ci (1 � i � n)

a! : c

�

�

�

�

Class c

a) : c0

�

�

�

�

Class c00, c01

a) : c0

�

�

Fig. 10 Ad of Sw;u.

�

�

(ci; post) (1 � i � n) :

1 : y := mw(self);

2 : y := isc0(y);

3 : y := mu(self);

4 : y := isc0(y);

5 : y := test(self);

6 : return(self):

�

�

Fig. 11 Definition of Method post.

(F1) � oi:a! = oi+1 2 �(c1) [ � � � [ �(cn) (1 � i � k � 1),

� ok:a! = ok+1 2 �(c),

� ok+1:a) = o01 2 �(c00) [ �(c01) and o0
j
:a) = o0

j+1 2 �(c00) [ �(c01) (1 � j � l � 1),

� ol:a) = o0
l+1 2 �(c0).

In I, sequence o1 � � � ok represents a candidate for a solution of hw; ui, and sequence o0
l
� � � o01

represents a word over Σ. Let woi
and uoi denote the words represented by oi (i.e., woi

= wi0 and

uoi = ui0 if oi 2 �(ci0)), and xj denote the symbol represented by o0
j

(i.e., xj = 0 if o0
j
2 �(c00),

and xj = 1 if o0
j
2 �(c01)). The following two lemmas claim that the execution of the first two
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�

�

(ci;mw) (1 � i � n) :

1 : y := mw(self:a!);

2 : if wi;di
is 0

then y := is0(y);

else y := is1(y);
...

di + 1 : if wi;1 is 0

then y := is0(y);

else y := is1(y);

di + 2 : return(y):

�

�

�

�

(c;mw) :

1 : return(self:a)):

�

��

�

(c0;mw) :

1 : return(self):

�

�

Fig. 12 Definition of Method mw.

�

�

(c00; is0) :

1 : return(self:a)):

�

�

�

�

(c01; is1) :

1 : return(self:a)):

�

��

�

(c0; is0) :

1 : loop forever:

�

�

�

�

(c0; is1) :

1 : loop forever:

�

��

�

(c; is0) :

1 : return(self):

�

�

�

�

(c; is1) :

1 : return(self):

�

�

Fig. 13 Definition of Methods is0 and is1.

�

�

(c00; isc0) :

1 : loop forever:

�

�

�

�

(c01; isc0) :

1 : loop forever:

�

��

�

(c0; isc0) :

1 : return(self):

�

�

�

�

(c; isc0) :

1 : return(self):

�

�

Fig. 14 Definition of Method isc0.
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c′

1o′

ok+1

o1 o2 ok

o′2o′lo′+1l

c

⇒a: attribute: attribute a→

: an object of class cc

ci 1 i n(  )  ≤    ≤  : an object of class

′cj j(  )  =  0, 1: an object of class

Fig. 15 A Database Instance of Sw;u.

lines of (cl(o1); post) terminates if and only if wo1 � � �wok
= xl � � � x1.

Lemma 1: Suppose that I is in the form of (F1). If there is l0 (l0 � l) such that wo1 � � �wok
=

xl0 � � �x1, then the execution of mw for o1 terminates and returns o0
l0+1. Otherwise, the execution

of mw for o1 does not terminate.

Proof : The lemma is proved by induction on k. Without loss of generality, o1 is assumed to be

an object of class c1.

[Basis] Suppose that k = 1. By the first line of (c1;mw), method mw is recursively invoked on

o1:a!, which is an object of class c since k = 1. By (c; mw), this invocation results in o01, and

it is assigned to y at the first line of (c1;mw). Suppose that w1;d1 = 0. By the second line of

(c1;mw), method is0 is invoked on o01. From the definition of is0, the execution of is0 for o01

terminates and returns o01:a) (= o02) if o01 2 �(c00), and does not terminate if o01 2 �(c0) [ �(c01).

Since a similar property holds when w1;d1 = 1, we can conclude that the execution of the second

line of (c1;mw) terminates and o02 is assigned to y if and only if w1;d1 = x1. And by induction on

d1, we obtain that the execution of mw for o1 terminates and returns o0
d1+1 if wo1 = xd1 � � �x1 and

d1 � l, and does not terminate otherwise.
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[Inductive Step] Suppose that k > 1. By the first line of (c1;mw), method mw is recursively

invoked on o1:a! (= o2). From the inductive hypothesis, the execution of mw for o2 terminates

and returns o0
l00+1 if wo2 � � �wok

= xl00 � � �x1 and l00 � l, and does not terminate otherwise. In and

after the second line of (c1;mw), it is checked that wo1 = xl00+d1 � � �xl00+1 and l00 + d1 � l. Thus,

the lemma holds when k > 1. 2

Lemma 2: Suppose that I is in the form of (F1). The execution of isc0 for o0
l0+1 terminates if and

only if o0
l0+1 = o0

l+1 (i.e., l0 = l).

Proof : Obvious from the definition of isc0. 2

Thus, the third line of (cl(o1); post) is executed if and only if wo1 � � �wok
= xl � � �x1. And the

similar lemmas hold for the third and fourth lines of (cl(o1); post). Therefore, the control reaches

the fifth line of (cl(o1); post) if and only if wo1 � � �wok
= uo1 � � �uok = xl � � �x1.

Next, suppose that I is not in the form of (F1). Then, I must be in one of the forms (F2) and

(F3):

(F2) The “a!-chain” forms a cycle. That is, there is o 2 �(c1) [ � � � [ �(cn) such that

o1:a! . . . a! = o and o:a! . . . a! = o.

(F3) The “a!-chain” does not form a cycle but the “a)-chain” forms a cycle. That is, there

are o 2 �(c) and o0 2 �(c00) [ �(c01) such that o1:a! . . . a! = o, o:a) . . . a) = o0, and

o0:a) . . . a) = o0.

In the case of (F2), the recursive call of mw at the first line of (ci;mw) does not terminate. In

the case of (F3), the execution of is0 or is1 in (ci;mw), or isc0 in (cl(o1); post) does not termi-

nate. Therefore, if I is not in the form of (F1), then the control does not reach the fifth line of

(cl(o1); post).

Suppose that hw; ui has a solution. Then, there is an instance I in the form of (F1) such

that wo1 � � �wok
= uo1 � � � uok = xl � � �x1. During the execution of post for o1 under I, the control

reaches the fifth line of (cl(o1); post). Conversely, suppose that there is an instance I such that the

control reaches the fifth line of (cl(o1); post) during the execution of post for o1 under I. Then,
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I must be in the form of (F1) and satisfy that wo1 � � �wok
= uo1 � � �uok = xl � � �x1. Obviously,

o1,. . . , ok represent the solution of hw; ui. This concludes the proof of Thoerem 2.

As stated in Section 1, method schemas [2], [3] are based on a functional OOPL model.

Since Sw;u is retrieval, it can be translated into a method schema. For example,

Impl(ci; post) = test(isc0(mw(self)); isc0(mu(self)));

Impl(ci;mw) = isXi;1(� � � isXi;di
(mw(ma!

(self))) � � �);

where isXi;j is either is0 or is1 according to wi;j , and ma!
is a method which returns the a!-

value of the argument object. It is easily verified that Sw;u can be translated into a method schema

with methods of arity two. Thus, we have the following result which was open in [2]:

Corollary 1: Consistency for a method schema with methods of arity two is undecidable. 2

3.2 Recursion

Intuitively, recursion makes the length of the execution unbounded. In this section, we show

that the complexity of the type-consistency problem is affected by this unboundedness.

Theorem 3: Let S = (C;�;Attr;Ad;Meth; Impl) be a database schema with recursion. Consis-

tency for S is undecidable, even if S is terminating, the height of � is one, and Ad is covariant.

2

To prove Theorem 3, for a given input string x of a fixed deterministic Turing machine M ,

we construct a schema SM;x satisfying the following conditions:

� SM;x is terminating;

� the height of � of SM;x is one;

� Ad of SM;x is covariant; and

� SM;x is inconsistent if and only if M accepts x.

First of all, we define a Turing machine and an instantaneous description.
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Definition 12: A deterministic Turing machine M is a triple (Q;Σ; �), where

� Q is a finite set of states. Q contains two special states: the initial state q0 and the accepting

state qyes;

� Σ is a finite set of symbols. Σ contains two special symbols: the blank symbol B and the

first symbol >. The first symbol is always placed at the leftmost cell of the tape;

� � is a function which maps (Q� fqyesg)� Σ to Q � Σ� f ;!;�g. We assume that if

�(q; >) = (q0; ; d), then  = > and d = !. Therefore, the tape head never falls off the

left end of the tape.

An instantaneous description (ID) I of M is a finite sequence hq1; 1i,. . . , hqk; ki, where qi 2

Q [ f?g and i 2 Σ. It is required that 1 = >, and exactly one qi is in Q (i denotes the head

position). The i-th pair hqi; ii of an ID I is denoted by I[i]. The transition relation j
M

over

the set of IDs is defined as usual. 2

We only describe the outline of the reduction (see Appendix A for a complete proof). First,

in order to ensure that the execution of each recursively-defined methodm is terminating, we use

an attribute, say aws, which “marks” an object. Suppose that an object o is visited by a recursive

invocation of m. If o:aws represents true (see Example 3), then m sets o:aws false and continue

the execution. Otherwise, m returns from the invocation. Consequently, o:aws represents true

only if o has not been visited. Since the set OSM;x;I of objects is finite, it can be shown that

SM;x is terminating. Moreover, by setting o:aws true when m returns, other recursively-defined

methods can reuse aws. See Lemma 3 in Appendix A for a formal description of this technique.

Let TM be a method in SM;x, which plays the principal role in the reduction. TM simulatesM

on x as follows. Each database instance I of SM;x is considered as a working space to compute

the IDs ofM on x. TM simulatesM on x exactly r steps, where r � 0 is a constant dependent on

I. If the ID after r-step transitions contains the accepting state qyes, then TM causes a type error.

Otherwise, the execution of TM is successful. By ensuring that no type error occurs during the

execution of any method except TM, the following property holds: If M accepts x, then there is

an instance I such that both the number of steps r and the size of the working space determined
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c

fctc tc′

Fig. 16 � of SM;x.

by I are large enough to find an aborted execution of TM under I (i.e., SM;x is inconsistent).

Otherwise, there is no aborted execution of TM under any instance (i.e., SM;x is consistent).

Define � and Ad of SM;x as shown in Figs. 16 and 17, respectively. In Fig. 17, ~a denotes

a tuple (a1; . . . ; aK) of attributes, where K = dlog((jQj + 1)jΣj)e (i.e., the number of bits to

represent an element of an ID). Ad(ct;~a) = c means that Ad(ct; ai) = c for each i (1 � i � K).

An element of an ID is stored in ~a as the binary encoded form stated in Example 3. Attributes

~a0 and ~a00 are used for storing intermediate results during the computation of an ID. Attribute

acont is used for determining r, i.e., the number of steps to be simulated. Attributes ayes and a0yes

are used for checking whether M is in the accepting state or not after the simulation. Note that

the height of � is one and Ad is covariant. Next, define method TM as shown in Fig. 18. All

the methods except test is defined at every class. Method test is defined only at class cf . Since

we can define all the methods so that no update operation causes a type error (see the method

definitions presented in Appendix A), a type error occurs if and only if the control reaches the

fifth line of (ct;TM) and test is about to be invoked on an object of class c, ct, or c0t.

In what follows, we explain the behavior of TM. Let I = (�; �) be a database instance of

SM;x and o1 2 �(ct). Suppose that TM is invoked on o1. Then get ws is executed for o1 by the

first line of (ct;TM). This obtains objects o2,. . . , ok+1 satisfying oi:a) = oi+1 (1 � i � k) by

following attribute a) of each oi, where k is a constant dependent on I and satisfies k � 1. The

objects o2,. . . , ok+1 will be used as a working space to simulate M . Since attribute a) is defined

only at class ct, the class of o2,. . . , ok must be ct. By a technical reason, we want ok+1 to be an

object of class c0t. To achieve this, if the a)-chain from o1 (1) ends up with an object of class cf

or c, or (2) forms a cycle, then get ws changes the value of ok:a) to an object of class c0t (see

Fig. 19). Lemma 5 in Appendix A provides a formal description of the behavior of get ws.
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�

�

Class ct

a) : c

~a;~a0;~a00 : c

acont : c

ayes; a
0
yes : c

af : cf

aws; a
0
ws : c

�

�

�

�

Class c0t

a0yes : c

af : cf

�

��

�

Class c

a0t : c0t

�

�

Fig. 17 Ad of SM;x.

�

�

(ct;TM) :

1 : y := get ws(self);

2 : y := initws(self);

3 : y := step(self);

4 : y := accept(self);

5 : y := test(y);

6 : return(self):

�

�

Fig. 18 Definition of Method TM.

Let I0 be the initial ID of M on x, and n be the length of I0. By executing initws for o1

at the second line of (ct;TM), each I0[i] (1 � i � k) is stored in oi:~a, where oi:~a denotes the

tuple (oi:a1; . . . ; oi:aK). Therefore, if k < n, then elements I0[k + 1],. . . , I0[n] are abandoned.

Conversely, if n < k, then h?; Bi is stored in on+1:~a,. . . , ok:~a (Actually, this is done by get ws;

see the definitions of get ws and initws presented in Appendix A). Lemma 6 in Appendix A

provides a formal description of the behavior of initws.

Method step simulates r-step transitions ofM . Let Ij denote the j-th ID ofM on x (counting

from zero). Suppose that the first k � j elements of Ij are stored in oj+1:~a,. . . , ok:~a. More

precisely, Ij[i] (1 � i � k � j) is stored in oj+i:~a. Note that the initial ID I0 satisfies this
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: attribute at′

⇒a: attribute onget_wsbefore invoking o1

⇒a: attribute onget_wsafter invoking o1

o1 o2 ok(1)

tc cftctc tc

tc′

o3

ok+1

o1 o2 ok

tc tc tc

(2) o3

ok+1 tc′

tc

Fig. 19 A Database Instance after Invoking Method get ws on o1.

condition. Consider a database instance shown in Fig. 20(a). Let us compute the next ID Ij+1.

Note that Ij+1[i] can be computed from Ij[i � 1], Ij[i], and Ij[i + 1]. Therefore, if these three

adjacent elements are stored in one object, we can compute Ij+1[i] using nor[�; �] stated in

Example 3. To do this, for every object o in the a)-chain, we copy the element of the ID stored

in o to o:a) and o:a):a) as shown in Fig. 20(b). (It seems impossible to copy the data in

o:a) to o, although we do not know its formal proof.) Method copy[a1; a2] defined in Fig. 21

copies the Boolean-value represented by o:a1 to o:a):a2 when it is invoked on o. Thus we can

obtain the next ID, and the place where the ID is stored is “shifted to right” (see Fig. 20(c),

where �(q; 1) = (q0; 0;!)). Next, we explain attribute acont. This attribute indicates whether

the simulation should be continued or not. Let o be the object in which the first element of the

current ID is stored. If o:acont represents true, then the simulation of M is continued. Otherwise,

the simulation stops. For example, in the case of Fig. 20(c), the simulation stops after two steps

(Fig. 20(d)). See Lemmas 7 and 8 in Appendix A for a formal description of the behavior of

step.
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( ) : attribute acont whose value is true (false)

+8jo+7jo+6jo+5jo+4jo+3jo+2jo+1jo

jI  = 

+1jI  = 

 = +3jI

oj+9

Fig. 20 Working Space to Simulate M .

Method accept checks whether qyes is in the last ID by using nor[�; �] and copy[�; �]. It

returns ok+1 2 �(c0t) if qyes is in the last ID, and ok+1:af 2 �(cf) otherwise. See Lemma 9 in

Appendix A for a formal description of the behavior of accept.

Method test is invoked on the returned value of accept. Since test is defined only at class

cf , this invocation causes a type error if and only if qyes is in the last ID.

Suppose that M accepts x. Then, M halts after finite steps. Therefore, there is a database

instance I such that both k and r are large enough to cause a type error under I. Conversely,

suppose that M does not accept x. Since qyes never appears in the a)-chain, invocation of test

causes no type error. Thus, Theorem 3 has been proved.
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�

�

(ct; copy[a1; a2]) :

1 : y := set f[a2](self:a));

2 : y := if then[a1; set t[a2]](self);

3 : return(self):

�

��

�

(ct; set f[a2]) :

1 : self:a2 := self:af;

2 : return(self):

�

��

�

(c; set f[a2]) :

1 : return(self):

�

�

�

�

(ct; set t[a2]) :

1 : y := set t0[a2](self:a));

2 : return(self):

�

��

�

(ct; set t0[a2]) :

1 : self:a2 := self;

2 : return(self):

�

��

�

(c; set t0[a2]) :

1 : return(self):

�

�

Fig. 21 Definition of Method copy[a1; a2].

In contrast to the above result, consistency for a recursion-free schema with update opera-

tions is coNEXPTIME-complete.

Theorem 4: Let S = (C;�;Attr;Ad;Meth; Impl) be a recursion-free schema with update oper-

ations. Then, consistency for S is in coNEXPTIME.

Proof : Since S is recursion-free, the length of any execution under any instance of S is bounded

byN jMethj, whereN is the maximum number of sentences of a method in Impl. Therefore, to find

inconsistency for S, nondeterministically guess an instance of size at most N jMethj � kSkkSk =

2kSk log kSk which causes a type error. That is, consistency for S is in coNEXPTIME. 2

Theorem 5: Let S = (C;�;Attr;Ad;Meth; Impl) be a recursion-free schema with update op-

erations. Consistency for S is coNEXPTIME-hard, even if the height of � is one and Ad is

covariant.

Sketch of Proof : Let M be a fixed 2p(n)-time bounded nondeterministic Turing machine for a

polynomial p, and let x be an input string for M with length n. We construct, in polynomial

time p0(n) of n, a recursion-free schema that is inconsistent if and only if M accepts x.

The idea of simulating M on x is similar to Theorem 3. However, two problems still remain.

First, we have to simulate a nondeterministic transition of M . To do this, we introduce new
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attributes for each object in the a)-chain. The j-th nondeterministic choice chj is represented

by the new attributes of object o in which the first element of the (j � 1)-th ID Ij�1 is stored.

Then we can compute Ij[i] from Ij�1[i� 1], Ij�1[i], Ij�1[i + 1], and chj.

The other problem is how to simulate 2p(n) steps of M with a recursion-free schema contain-

ing at most p0(n) methods. To solve this problem, we use methods step
i

(0 � i � p(n)) defined

as follows:
�

�

(ct; step
i
) (1 � i � p(n)) :

y := step
i�1(self);

y := step
i�1(y);

return(y):

�

�

�

�

(ct; step0) :

Simulate one-step transition of M ;

return(self:a)):

�

�

It is easily verified that if step
p(n) is invoked on an object o in the a)-chain, then step0 is se-

quentially invoked on the first 2p(n) objects in the a)-chain from o. A method which simulates

one-step transition is defined in the same way since it has to access 2p(n)+1 objects in the working

space. Thus, 2p(n) steps of M are simulated by executing step
p(n). The other recursively-defined

methods (such as get ws and accept) in the proof of Theorem 3 are also implemented in the

same manner. 2

3.3 Update Operations

The following theorem can be obtained from Theorem 2 of [16]:

Theorem 6: Let S = (C;�;Attr;Ad;Meth; Impl) be a schema that is terminating. If S is re-

trieval, then consistency for S is solvable in polynomial time. 2

By Theorems 3 and 6, we can conclude that update operations make the type-consistency prob-

lem difficult if a given schema is terminating.

4. Conclusions

We have discussed the complexity of the type-consistency problem for some subclasses of

OODB schemas. Moreover, by comparing the results, we have shown how the complexity is

affected by non-flatness of the class hierarchy, recursion, and update operations.
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When we classify OODB schemas in view of non-flatness, recursion, and update operations,

the type-consistency problem is undecidable or intractable for most of practical OODB schemas.

Therefore, as future works, it is desirable to find another subclass of OODB schemas which is

practical and for which consistency is tractable. For example, consistency is expected to be de-

cidable for acyclic database schemas [12], which are considered as an object-oriented extension

of nested relational database schemas. It is also important to develop an incremental algorithm

for type-consistency checking.

References

1. S. Abiteboul, R. Hull and V. Vianu, “Foundations of Databases,” Addison-Wesley, 1995.

2. S. Abiteboul, P. Kanellakis, S. Ramaswamy and E. Waller, Method schemas, J. Comput.

System Sci. 51, No. 3 (1995), 433–455.

3. S. Abiteboul, P. Kanellaskis and E. Waller, Method Schemas, in “Proc. 9th ACM Sympo-

sium on Principles of Database Systems,” pp. 16–27, 1990.

4. R. Agrawal, L. DeMichiel and B. Lindsay, Static type checking of multi-methods, in “Proc.

6th Conf. on Object-Oriented Programming Systems, Languages, and Applications,” pp.

113–128, 1991.

5. R. Ahad, J. Davis, S. Gower, P. Lyngbaek, A. Marynowski and E. Onuegbe, Supporting

access control in an object-oriented database language, in “Proc. 3rd International Conf. on

Extending Database Technology,” LNCS 580, pp. 184–200, Springer-Verlag, 1992.

6. E. Amiel, M.-J. Bellosta, E. Dujardin and E. Simon, “Type-safe relaxing of schema con-

sistency rules for flexible modelling in OODBMS,” The VLDB Journal 5, No. 2 (1996),

133–150.

7. E. Bertino, Data hiding and security in object-oriented databases, in “Proc. 8th IEEE Inter-

national Conf. on Data Engineering,” pp. 338–247, 1992.

30



8. C. Chambers and G. T. Leavens, Typechecking and modules for multimethods, ACM Trans.

on Programming Languages and Systems 17, No. 6 (1995), 805–843.

9. J. Eifrig, S. Smith, V. Trifonov and A. Zwarico, Application of OOP type theory: state,

decidability, integration, in “Proc. 9th Conf. on Object-Oriented Programming Systems,

Languages, and Applications,” pp. 16–30, 1994.

10. G. Ghelli, A static type system for message passing, in “Proc. 6th Conf. on Object-Oriented

Programming Systems, Languages, and Applications,” pp. 129–145, 1991.

11. R. Hull, K. Tanaka and M. Yoshikawa, Behavior analysis of object-oriented databases:

method structure, execution trees, and reachability, in “Proc. 3rd International Conf. on

Foundations of Data Organization and Algorithms,” pp. 372–388, 1989.

12. Y. Ishihara, H. Seki and M. Ito, Type-consistency problems for queries in object-oriented

databases, in “Proc. 6th International Conf. on Database Theory,” LNCS 1186, pp. 364–378,

Springer-Verlag, 1997.

13. N. Oxh�j, J. Palsberg and M. I. Schwartzbach, Making type inference practical, in “Proc.

European Conf. on Object-Oriented Programming,” LNCS 615, pp. 329–349, Springer-

Verlag, 1992.

14. J. Palsberg and M. I. Schwartzbach, Object-oriented type inference, in “Proc. 6th Conf. on

Object-Oriented Programming Systems, Languages, and Applications,” pp. 146–161, 1991.

15. J. Palsberg and M. I. Schwartzbach, “Object-Oriented Type Systems,” John Wiley & Sons,

1994.

16. H. Seki, Y. Ishihara and M. Ito, Authorization analysis of queries in object-oriented databas-

es, in “Proc. 4th International Conf. on Deductive and Object-Oriented Databases,” LNCS

1013, pp. 521–538, Springer-Verlag, 1995.

17. E. Waller, Schema updates and consistency, in “Proc. 2nd International Conf. on Deductive

and Object-Oriented Databases,” LNCS 566, pp. 167–188, Springer-Verlag, 1991.

31



�

�

(cf ; test) :

1 : return(self):

�

�

Fig. 22 Definition of Method test.

�

�

(ct; get ws) :

1 : self:aws := true;

2 : y := get ws0(self);

3 : return(self):

�

��

�

(c; get ws) :

1 : return(self):

�

��

�

(c; get ws0) :

1 : return(self:a0t):

�

��

�

(c; get ws00) :

1 : return(self):

�

�

�

�

(ct; get ws0) :

1 : y := self if self:aws = true

and y := self:a0t otherwise;

2 : y0 := if then[aws; get ws00](self);

3 : return(y):

�

��

�

(ct; get ws00) :

1 : self:aws := false;

2 : y := get ws0(self:a));

3 : self:a) := y;

4 : self:aws := true;

5 : self:a0ws := true;

6 : set self:~a to h?; Bi;

7 : return(self):

�

�

Fig. 23 Definition of Method get ws.

Appendix A: Complete Proof of Theorem 3

Let M be a Turing machine and x = x1 � � �xn an input string for M . We abbreviate self:a :=

self and self:a := self:af to self:a := true and self:a := false, respectively. Methods test, get ws,

initws, step, accept are defined as shown in Figs. 22–26, respectively.

First, we show that SM;x is terminating.

Lemma 3: Let I = (�; �) be an arbitrary database instance of SM;x, and o1 be an arbitrary object

in OSM;x;I. The execution of get ws for o1 is terminating under I.
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�

�

(ct; initws) :

1 : set self:~a to hq0; >i;

2 : y := initws1(self:a));

3 : return(self):

�

�

�

�

(c; initws) :

1 : return(self):

�

�

�

�

(ct; initws1) :

1 : set self:~a to h?; x1i;

2 : y := initws2(self:a));

3 : return(self):

�

�

�

�

(c; initws1) :

1 : return(self):

�

�

...
...

�

�

(ct; initwsn) :

1 : set self:~a to h?; xni;

2 : return(self):

�

�

�

�

(c; initwsn) :

1 : return(self):

�

�

Fig. 24 Definition of Method initws.

Proof : If o1 2 �(c0t)[�(cf)[�(c), then the execution is terminating since (c; get ws) is executed

for o1. Thus in the following we consider the remaining case such that o1 2 �(ct). First of all, by

the first line of (ct; get ws), o1:aws is set to true. Then, get ws0 is invoked on o1. By the second

line of (ct; get ws0), get ws00 is invoked on o1 since o1:aws is true. By (ct; get ws00), get ws00 sets

o1:aws false and recursively invokes get ws0 on o1:a).

Consider the case that get ws0 is recursively invoked on an object o. There are three cases

to be considered:

(1) If o 2 �(c0t) [ �(cf) [ �(c), then the recursive invocation of get ws0 terminates since

(c; get ws0) is executed for o.

(2) If o 2 �(ct) and o:aws is false, then no more recursive invocation occurs from the definition

of (ct; get ws0).

(3) If o 2 �(ct) and o:aws is true, then get ws00 is invoked on o by the second line of

(ct; get ws0). Method get ws00 sets o:aws false and recursively invokes get ws0 on o:a).
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�

�

(ct; step) :

1 : y := if then[acont; step0](self);

2 : return(self):

�

��

�

(ct; step0) :

1 : y := if then[aws; step00](self);

2 : return(self):

�

�

�

�

(ct; step00) :

1 : self:aws := false;

2 : y := delta(self);

3 : y := step(self:a));

4 : self:aws := true;

5 : return(self):

�

�

�

�

(c; step) :

1 : return(self):

�

��

�

(c; step0) :

1 : return(self):

�

��

�

(c; step00) :

1 : return(self):

�

�

�

�

(ct; delta) :

1 : y := if then[a0ws; delta0](self);

2 : return(self):

�

��

�

(c; delta) :

1 : return(self):

�

��

�

(c; delta0) :

1 : return(self):

�

�

�

�

(ct; delta0) :

1 : self:a0ws := false;

2 : y := copy[~a;~a0](self);

3 : y := copy[~a0;~a00](self);

4 : Compute hq; i from ~a, ~a0, ~a00

and assign the result to ~a;

5 : y := delta(self:a));

6 : self:a0ws := true;

7 : return(self):

�

�

Fig. 25 Definition of Methods step and delta.

Thus, every time get ws0 is recursively invoked, the number of objects o such that o:aws

is true decreases. Since OSM;x;I is finite, one of the conditions (1) and (2) above holds

eventually.

Therefore, the execution of get ws on o1 is terminating. 2

Similarly, it can be proved that the execution of every recursively-defined method (such as

step, delta, accept, etc.) in SM;x is terminating. Thus we have the following lemma:

Lemma 4: SM;x is terminating. 2

In what follows, we show that TM simulates M on x correctly. Hereafter, we mean o:a = o

by o:a = true.
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�

�

(ct; accept) :

1 : self:a0yes := false;

2 : y := accept0(self) :

3 : return(y):

�

��

�

(ct; accept0) :

1 : y := if then[aws; accept00](self);

2 : return(y):

�

�

�

�

(ct; accept00) :

1 : self:aws := false;

2 : self:ayes := true if qyes is stored in self:~a;

and self:ayes := false otherwise;

3 : Calculate self:ayes _ self:a0yes and

assign the result to self:ayes;

4 : y := copy[ayes; a
0
yes](self);

5 : y := accept0(self:a));

6 : return(y):

�

�
�

�

(c; accept) :

1 : return(self):

�

�

�

�

(c0t; accept0) :

1 : return(self:a0yes):

�

�

�

�

(c; accept0) :

1 : return(self):

�

�

�

�

(c; accept00) :

1 : return(self):

�

�

Fig. 26 Definition of Method accept.

Lemma 5: Let I = (�; �) be an arbitrary database instance of SM;x, and o1 2 �(ct) be an arbitrary

object. After the execution of get ws for o1 under I, there exists a positive integer k which

satisfies the following condition (C1):

(C1-1) o1 2 �(ct), oi:a) = oi+1 2 �(ct) (1 � i � k � 1), and ok:a) = ok+1 2 �(c0t);

(C1-2) oi:aws = oi:a
0
ws = true (1 � i � k);

(C1-3) oi:~a (1 � i � k) represents h?; Bi.

Proof : Suppose that get ws0 is invoked k times by the second line of (ct; get ws00) during the

complete execution of get ws for o1. In what follows, we show that k satisfies condition (C1).

First, we prove that k � 1. By the second line of (ct; get ws), get ws0 is invoked on o1.

Since o1:aws is true by the first line of (ct; get ws), get ws00 is invoked on o1 by the second line of

(ct; get ws0). Then, by the second line of (ct; get ws00), get ws0 is invoked on o1:a) = o2. Thus

k � 1.

Next, we prove (C1-1). Consider the i-th invocation (1 � i < k) of get ws0 from the second

line of (ct; get ws00). Let oi+1 be the self object of the invocation. Note that oi+1 2 �(ct) and
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oi+1:aws is true since i < k (see the condition (3) in the proof of Lemma 3). By the first and third

lines of (ct; get ws0), the returned value of this invocation is oi+1. Therefore, by the second and

third lines of (ct; get ws00), it holds that oi:a) = oi+1 2 �(ct). Next, consider the k-th invocation

of get ws0, and let o be the self object of the invocation. In this case, one of the conditions (1)

and (2) in the proof of Lemma 3 holds. If (1) holds, then o:a0t is returned as the returned value

of this invocation since (c; get ws0) is executed for o (see also Fig. 19(1)). If (2) holds, then o:a0t

is returned by the first and third lines of (ct; get ws0) (see also Fig. 19(2)). Thus, in either case,

o:a0t 2 �(c0t) is returned and assigned to ok:a) by the third line of (ct; get ws00). By letting ok+1

be o:a0t, condition (C1-1) is satisfied.

Conditions (C1-2) and (C1-3) hold by the fourth, fifth, and sixth lines of (ct; get ws00). 2

The following lemma holds evidently from the definition of method initws (see Fig. 24).

Lemma 6: Suppose that I = (�; �) satisfies condition (C1) for some k (k � 1). Then, after the

execution of initws for o1 under I, the following condition (C2) holds:

(C2-1) The same as (C1-1);

(C2-2) The same as (C1-2);

(C2-3) For each i (1 � i � k), oi:~a represents the i-th element I0[i] of the initial ID of M

on x. 2

The following lemma, which states the behavior of method delta (see Fig. 25), is also easily

obtained from the explanation in Section 3.2. Intuitively, it states that delta computes a one-step

transition of M correctly.

Lemma 7: Suppose that I = (�; �) satisfies the following condition (C3) for some k (k � 1):

(C3-1) The same as (C2-1);

(C3-2) oi:a
0
ws = true (1 � i � k);

(C3-3) There exists j (0 � j � k � 1) such that for each i (1 � i � k � j), oj+i:~a

represents Ij[i].
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Then, after the execution of delta for oj+1 under I, the following condition (C30) holds:

(C30-1) The same as (C3-1);

(C30-2) The same as (C3-2);

(C30-3) For each i (1 � i � k � (j + 1)), o(j+1)+i:~a represents Ij+1[i]. 2

Lemma 8: Suppose that I = (�; �) satisfies condition (C2) for some k (k � 1). Then, after the

execution of step for o1 under I, the following condition (C4) holds:

(C4-1) The same as (C2-1);

(C4-2) The same as (C2-2);

(C4-3) Let r be the largest index such that for each l (1 � l � r), ol:acont is true, i.e.,

r = max(f0g [ fj j
V

j

l=1(ol:acont = ol)g). Then, for each i (1 � i � k � r), or+i:~a

represents Ir[i].

Proof : From the definition of methods step and delta, the value of oi:a) (1 � i � k) is never

altered. Thus, (C4-1) holds by the assumption (C2-1).

Next, we show that (C4-3) is satisfied. By (C2-2), oi:aws is true for each i (1 � i � k).

Therefore, by the definitions of (ct; step), (ct; step0), and (ct; step00), it is easily verified that delta

is sequentially invoked on o1,. . . , or during the execution of step for o1. Moreover, we claim

that:

� (C2) implies (C3) since (C2-3) is obtained by letting j = 0 in (C3-3); and

� (C30) implies (C3) since (C3-3) is obtained by replacing j + 1 in (C30-3) by j.

Since step can alter oi:~a and oi:a
0
ws only by invoking delta, Lemma 7 can be applied r times.

Consequently, after the execution of step for o1 under I, or+i:~a represents Ir[i] for each i (1 �

i � k � r). That is, (C4-3) holds.

Lastly, (C4-2) is satisfied because of (C30-2) and the fourth line of (ct; step00). 2
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Lemma 9: Suppose that I = (�; �) satisfies condition (C4) for some k (k � 1). Then, the

returned value of the execution of accept for o1 under I is ok+1 if there is some object oi (1 �

i � k) such that oi:~a contains the accepting state qyes, and ok+1:af otherwise.

Proof : By the first line of (ct; accept), o1:a
0
yes is set to false (i.e., o1:af). Then, accept0 is invoked

on o1. Since o1:aws is true by (C4-2), accept00 is invoked on o1. Inductively, consider the execu-

tion of accept00 for oj (1 � j � k). By the second line of (ct; accept00), oj :ayes is set to true (i.e.,

oj) if oj :~a contains qyes, and false (i.e., oj:af) otherwise. By the third and fourth lines, oj+1:a
0
yes is

set to oj:ayes_ oj :a
0
yes. Therefore, by the inductive hypothesis, oj+1:a

0
yes is set to true (i.e., oj+1) if

there is some object oi (1 � i � j) such that oi:~a contains qyes, and oj+1:a
0
yes is set to false (i.e.,

oj+1:af) otherwise.

Lastly, since ok+1 2 �(c0t) by condition (C4-1), (c0t; accept0) is executed for ok+1. Therefore,

the returned value of the execution of accept for o1 is ok+1:a
0
yes. Thus, the lemma holds. 2

By Lemmas 5–9 and the explanation in Section 3.2, the following lemma holds.

Lemma 10: SM;x is inconsistent if and only if M accepts x. 2

Theorem 3 is obtained by Lemmas 4 and 10.
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