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Abstract

Recent measurements of packet/cell streams in multimedia communication networks have re-

vealed that they have the self-similar property and are of di�erent character istics from tradi-

tional tra�c streams. Therefore, a number of studies of modeling the self-similar tra�c have

been performed. In this paper, we �rst give some de�nitions of self-similarity. Then, we pro-

pose a �tting method for the self-similar tra�c in terms of Markov-modulated Poisson process

(MMPP). We construct an MMPP as the superposition of two-state MMPPs and �t it so as to

match the variance function over several time-scales. Numerical examples show that the variance

function of the self-similar process can be well represented by that of four-state MMPP. We also

examine the queueing behavior of the resulting MMPP/D/1 queueing systems. We compare the

results with the simulation for the queueing systems with the self-similar process as an input.

1 Introduction

Recently a number of high-quality, high-resolution measurements of multimedia tra�c in high-

speed networks such as packet streams in local area networks (LAN), cell streams from variable

bit rate (VBR) video streams in ATM networks, etc., have been carried out and analyzed. They

have shown that the tra�c from those networks appears to be self-similar. The self-similar

tra�c is characterized by that the correlation never vanishes in a large time-scale. Its tra�c

looks the same regardless of time-scales over a long range interval. This fractal behavior makes

the tra�c very bursty. These properties of the self-similar tra�c are quite di�erent from those

of traditional tra�c models such as Poisson process, Markovian arrival process (MAP), etc.

The above observation has initiated studies of new models such as chaotic maps [4], fractional

Brownian motion (FBM) [5] and ARIMA [6]. They can describe the self-similar behavior in a

relatively simple manner. However, queueing theoretical techniques developed in the past are

hardly applicable for these models.

On the other hand, a number of models based on traditional tra�c models have been pro-

posed. One approach is to emulate self-similarity over a certain range of time-scales with �nite
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state Markovian models. [1] propose a model based on Markov-modulated Poisson process

(MMPP) as a superposition of two state Markov processes. In [12], a Markov chain emulat-

ing self-similarity which is quite easy to manipulate and depends on only two parameters has

been analyzed. Another approach is to model self-similarity through superposition of in�nite

Markovian sources. In [10], they have constructed a self-similar process from an in�nity of on-o�

sources with Pareto service demands.

In this paper, we �rst give some de�nitions of self-similarity which are equivalent to those

in [2]. Then, using them, we propose a �tting method for self-similar tra�c in terms of MMPP.

Our �tting method is based on the model by Anderson et al. [1], where tra�c is modeled by

the superposition of several two state MMPPs. In [1], the parameters of MMPP are determined

so as to match the autocorrelation function which is approximately evaluated. In our method,

however, the parameters are determined so as to match the variance of the measured tra�c

which is exactly evaluated.

The paper is organized as follows. In section 2, we summarize some important characteristics

of MMPP. In section 3, we overview the concept of self-similarity and give some de�nitions. In

section 4, we explain the idea of superposing two-state MMPPs to model self-similar tra�c. In

section 5, a �tting procedure of MMPP is given. In section 6, we consider the condition on the

preliminarily required parameters for the �tting. In section 7, a number of numerical results

are shown in order to verify the usefulness of our �tting method. Finally, some conclusions are

drawn in the last section.

2 MMPP

In this section, we summarize some main characteristics of MMPP. MMPP is a doubly stochastic

Poisson process. In the case of m-state MMPP, its arrival rate is determined by the state

of a continuous-time Markov chain with in�nitesimal generator Q and Poisson arrival rates

�i (1 � i � m). That is, the arrival rate is �i when the Markov chain is in state i. Matrix �

which describes Poisson arrival rates is called the arrival rate matrix. In the two-state case, Q

and � are given by

Q =

"
��1 �1

�2 ��2

#
; � =

"
�1 0

0 �2

#
:

In the following, we derive the mean and the variance of the number of arrivals in MMPP.

Although we consider the case of two-state MMPP, the results presented below also apply to

the general case. Let Nt be the number of arrivals in (0; t] and Jt be the state of the Markov

chain at time t. We consider a matrix P (n; t) whose (i; j)-th element is de�ned as

Pij(n; t) = PrfNt = n; Jt = jjN0 = 0; J0 = ig; 1 � i; j � 2:
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The matrices P (n; t) satisfy the following forward Chapman-Kolmogorov equations8<
:

d

dt
P (n; t) = P (n; t)(Q� �) + P (n� 1; t)�; n � 1; t � 0;

P (0; 0) = I:

(1)

Multiplying (1) by z
n and summing over n = 0; 1; . . ., we obtain8<
:

d

dt
P
�(z; t) = P

�(z; t)(Q� �) + zP
�(z; t)�;

P
�(z; 0) = I;

(2)

where P �(z; t) is the generating function of P (n; t). Solving (2) for P �(z; t), we obtain

P
�(z; t) = expf[Q+ (z � 1)�]tg:

For the time-stationary MMPP, the mean of Nt is given by

E(Nt) = �

@P
�(z; t)

@z

����
z=1

e

= ��et

=
�2�1 + �1�2

�1 + �2
t;

where e = (1; 1) and � is the steady state vector of the Markov chain such that

�Q = 0; �e = 1:

The variance of Nt is given by

Var(Nt) = �

@
2
P
�(z; t)

@z2

�����
z=1

e+ E(Nt)� fE(Nt)g
2
: (3)

To evaluate the �rst term of (3) we use the following equation

@
2
P
�(z; t)

@z2

�����
z=1

= L
�1

"
@
2 ~P (z; s)

@z2

�����
z=1

#
;

where ~P (z; s) is the Laplace transform of P �(z; t) and L�1 denotes the inverse Laplace transform.

~P (z; s) is given by

~P (z; s) = [sI �Q� (z � 1)�]�1:

The second derivative of ~P (z; s) at z = 1 is given by

@
2 ~P (z; s)

@z2

�����
z=1

= 2[sI �Q]�1f�[sI �Q]�1g2:

Since �[sI � Q] = s�, we have �=s = �[sI � Q]�1. Similarly, since [sI � Q]e = se, we have

e=s = [sI �Q]�1e. Using these, we obtain

�

@
2 ~P (z; s)

@z2

�����
z=1

e =
2

s2
��(sI �Q)�1�e

=
2

�1 + �2

�
A1

s+ �1 + �2
+
A2

s3
+
A3

s2
+
A4

s

�
; (4)
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where

A1 =
�1�2(�1 � �2)

2

(�1 + �2)3
;

A2 =
(�1�2 + �2�1)

2

�1 + �2
;

A3 = (�1 + �2)A1;

A4 = �A1:

Inverting (4) yields

�

@
2
P
�(z; t)

@z2

�����
z=1

e =
2

�1 + �2

�
A1e

�(�1+�2)t +
A2

2
t
2 +A3t+ A4

�
:

Thus, we obtain

Var(Nt) =
�2�1 + �1�2

�1 + �2
t+ 2A1t�

2A1

�1 + �2
(1� e

�(�1+�2)t): (5)

3 Self-similarity

In this section, we overview the concept of self-similarity of the stochastic process. First, we

summarize Cox's de�nitions of self-similarity [2] and then, we show the equivalent de�nitions to

those of Cox.

3.1 Cox's De�nitions of Self-similarity

We consider a second-order stationary process X = fXt : t = 1; 2; :::g with the variance �2 and

the autocorrelation function r(k), where r(k) is given as

r(k) =
Cov(Xt;Xt+k)

Var(Xt)
:

In the context of the packet tra�c, Xt corresponds to the number of packets that arrive during

the t-th time slot. We also consider a new sequence of X
(m)
t which is obtained by averaging the

original sequence in non-overlapping blocks. That is,

X
(m)
t =

1

m

mX
i=1

X(t�1)m+i; t = 1; 2; . . . :

The new sequence is also a second-order stationary process with the autocorrelation function

r
(m)(k).

Let �2 denote the central second di�erence operator de�ned by that for any function f(x),

�
2(f(x)) = ff(x+ 1)� f(x)g � ff(x)� f(x� 1)g:

Then, de�nitions of self-similar process are given by the following:
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De�nition 3.1 X is called exactly second-order self-similar with the Hurst parameter H =

1� �=2 if

r(k) =
1

2
�
2(k2��): (6)

De�nition 3.2 X is called asymptotically second-order self-similar with the Hurst parameter

H = 1� �=2 if

r
(m)(k)!

1

2
�
2(k2��); as m!1: (7)

Note that (6) implies that for all m = 1; 2; . . .,

r
(m)(k) = r(k): (8)

We show this in the next subsection. We are interested in the range 0:5 < H < 1 because

the process has the long-range dependence in this range. In the case that H = 0:5, X is a

second-order pure noise with Var(X(m)) = Var(X)=m.

3.2 Equivalent De�nitions of Self-Similarity

In this subsection, we give equivalent de�nitions to De�nition 3.1 and 3.2. For the case of exactly

second-order self-similarity, what we discuss in the following is shown in [14].

Theorem 3.1 X satis�es (6) if and only if for all m = 1; 2; . . .,

Var(X(m)) = �
2
m
��
: (9)

Before we prove the theorem, note that Var(Xt) and Cov(Xt;Xt+k) have the following relations.

Var(X(m)) =
�
2

m
+

2

m2

mX
k=1

(m� k)Cov(Xt;Xt+k); (10)

Cov(Xt;Xt+k) =
1

2
�
2(k2Var(X(k))): (11)

Proof of Theorem 3.1. If X satis�es (6), then from (10),

Var(X(m)) =
�
2

m
+

2�2

m2

mX
k=1

(m� h)r(k)

=
�
2

m
+

2�2

m2

m�1X
s=1

sX
k=1

r(k)

=
�
2

m

(
1 +

1

m

m�1X
s=1

sX
k=1

�
2(k2��)

)

=
�
2

m

"
1 +

1

m

m�1X
s=1

sX
k=1

n
(k + 1)2�� � k

2��
o
�
n
k
2�� � (k � 1)2��

o#

5



=
�
2

m

(
1 +

1

m

m�1X
s=1

(s+ 1)2�� � 1� s
2��

)

=
�
2

m

�
1 +

1

m

�
m

2�� � (m� 1)� 1
��

= �
2
m
��
:

Conversely, assume that X satis�es (9), then from (11),

r(k) =
1

2

�
2(k2Var(X(k)))

�2

=
1

2

�
2(k2�2k��)

�2

=
1

2
�
2(k2��):

Hence the theorem follows. 2

Here we show that (6), or equivalently (9) implies (8).

Theorem 3.2 If X satis�es (6), for all m = 1; 2; . . .,

r
(m)(k) = r(k):

Proof. Assume that X satis�es (6). Now, we consider the averaged process X 0 = X
(m).

Applying (11) to X 0 yields

Cov(X 0

t;X
0

t+k) =
1

2
�
2(k2Var(X 0(k))): (12)

Note that

X
0(k) = X

(km)
:

Then, from (12),

Cov(X
(m)
t ;X

(m)

t+k ) =
1

2
�
2(k2Var(X(km))): (13)

Dividing by Var(X(m)), we obtain

r
(m)(k) =

1

2

�
2(k2Var(X(km)))

Var(X(m))

=
1

2

�
2(k2�2(km)��)

�2m��

=
1

2
�
2(k2��)

= r(k): 2

Let L(x) denote the slowly varying function at in�nity, i.e. for any n > 0,

lim
x!1

L(nx)

L(x)
= 1:

Then, we have the following theorem about the asymptotically self-similar process.
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Theorem 3.3 X satis�es (7) if and only if for

Var(X(m)) � L(m)m��
; as m!1; (14)

where a(x) � b(x) means

lim
x!1

a(x)

b(x)
= 1:

Proof. Let X be the process with autocorrelation function r(k) satisfying (14). We consider

the averaged process X 0 = X
(m). In a similar way to derive (13), from (10),

Var(X(hm)) =
Var(X(m))

h
+

2

h2

hX
k=1

(h� k)Cov(X
(m)
t ;X

(m)

t+k ): (15)

Dividing (15) by Var(X(m)) yields

Var(X(hm))

Var(X(m))
=

Var(X(m))

h
+

2

h2

hX
k=1

(h� k)Cov(X
(m)
t ;X

(m)

t+k ):

Letting m!1, we have

lim
m!1

Var(X(hm))

Var(X(m))
= lim

m!1

1

h
+

2

h2

h�1X
s=1

sX
k=1

r
(m)(k)

=
1

h

(
1 +

1

h

h�1X
s=1

sX
k=1

�
2(k2��)

)

= h
��
: (16)

Hence, as m!1,

Var(X(hm)) � Var(X(m))h�� :

Let m0 = hm. Then ,as m!1, we obtain

V ar(X(m0)) � L(m0)m0��
;

where

L(m0) =

�
m
0

h

��
Var(X(m

0

h
));

and

lim
m0!1

L(nm0)

L(m0)
= lim

m0!1

�
nm0

h

��
Var(X(nm

0

h
))�

m0

h

��
Var(X(m

0

h
))

= lim
m0!1

n
�Var(X

(nm
0

h
))

Var(X(m
0

h
))

= n
�
n
�� (From(16))

= 1:
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This proves necessity. For the converse, suppose that X satis�es (14). Then, from (11), we

obtain

lim
m!1

r
(m)(k) =

1

2
lim

m!1

�
2(k2Var(X

(km)
t ))

Var(Xm)

=
1

2
lim

m!1

�
2(k2L(km)(km)��)

L(m)m��

=
1

2
�
2(k2��) lim

m!1

L(km)

L(m)

=
1

2
�
2(k2��):

This proves su�ciency. 2

From Theorem 3.1, and Theorem 3.3, we can de�ne the self-similar process with the variance

of the averaged process.

De�nition 3.3 X is called exactly second-order self-similar with the Hurst parameter H =

1� �=2 if

Var(X(m)) = �
2
m
��
:

De�nition 3.4 X is called asymptotically second-order self-similar with the Hurst parameter

H = 1� �=2 if

Var(X(m)) � L(m)m��
; as m!1:

In our �tting method, we consider the self-similarity under De�nition 3.3. we use self-similarity

of (9).

4 Superposition Technique of MMPPs

We use a continuous-time MMPP for modeling the self-similar tra�c. We construct MMPP

with apparently self-similar behavior over several time-scales by superposing several MMPPs.

First, consider two-state MMPPs with di�erent time-scales. That is, the mean sojourn time of

each process is in accordance with the di�erent time-scale. Let us superpose them to make a

new MMPP. When we see this process in a large time-scale, it looks like an ordinary two-state

MMPP. If we look in a smaller time-scale, we �nd that each state is composed of a smaller

MMPP. If we look in a still smaller time-scale, we �nd that each state of a smaller MMPP is

again composed of a still smaller MMPP. This can be repeated only a �nite number of times.

Therefore the MMPP is not self-similar from the de�nitions in the previous section, because

it looks constant when time-scale is larger than the time constant in itself. However it can

emulate self-similarity over several time-scales. It is impossible to measure a given tra�c during

an in�nite amount of time. It also has been observed that LAN tra�c loses self-similarity in
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the order of days[3]. Thus, it is practically su�cient to use the process which has self-similarity

over only several time-scales to model the real tra�c.

Now we assume that the number of states of every underlying MMPP is two. So the MMPP

obtained by the above method is also described by the superposition of several interrupted Pois-

son processes (IPP) and one Poisson process. We assume that the MMPP under consideration

consists of d(> 1) IPPs and a Poisson process. We also assume that two modulating parameters

of each IPP are equal. Then we can describe ith IPP as follows:

Qi =

"
��i �i

�i ��i

#
; �i =

"
�i 0

0 0

#
; (1 � i � d):

Hence the superposition can be described as follows:

Q = Q1

L
Q2

L
� � �
L

Qd;

� = �1

L
�2

L
� � �
L

�d

L
�p;

where
L

means the Kronecker's sum and �p is the arrival rate of the Poisson process to be

superposed. The whole arrival rate of the process � is given by

� = �p +
dX

i=1

�i

2
: (17)

In the next section, we consider how to determine the parameters of these IPPs and the Poisson

process.

5 Fitting Procedure

In this section we describe the process of determining the parameters of MMPPs. Their values

are obtained so as to to match the variance over several time-scales. Parameters which we have

to determine are �i, �i(1 � i � d), and �p.

First, as preliminary we de�ne the notations used in the procedure and describe some as-

sumptions. Let Ntji be the number of arrivals in the i-th IPP during the tth time slot and Ntjp

be the number of arrivals in the Poisson process, and let N
(m)

tji
and N

(m)

tjp
be respectively the

averaged processes of Ntji and Ntjp. We assume that

Var(X
(m)
t ) = Var(

dX
i=1

N
(m)

tji
+N

(m)

tjp
):

Using (5), we obtain the variance of the i-th IPP as

Var(N
(m)

tji
) =

�i

2m
+

(
1

4m�i
�

1

8m2�
2
i

(1� e
�2m�i)

)
�
2
i :

The corresponding variance of the Poisson process is �p=m. Because the variance of a process

which is a superposition of independent subprocesses equals the sum of individual variances, the
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variance of the whole process is given by

Var(X
(m)
t ) =

�p

m
+

dX
i=1

Var(N
(m)

tji
)

=
�

m
+

1

4

dX
i=1

(
1

m�i
�

1

2m2�
2
i

(1� e
�2m�i)

)
�
2
i

�
�

m
+

1

4

dX
i=1

�i�
2
i : (18)

where we used (17). Using (9) and (18), we match the variance at d di�erent points mi (1 � i �

d). Suppose time-scales over which we want the process to express self-similarity of the original

process is mmin � m � mmax, then mi is de�ned by

mi = mmina
i�1 (1 � i � d);

where

a =

�
mmin

mmax

� 1

d�1

; d > 1: (19)

We investigate the property of �i. Let x = m�i, then we have

�i =
1

x
�

1

2x2

�
1� e

�2x
�
� f(x):

It is easily seen that for x > 0,

1� 2x < e
�2x

< 1� 2x+ 2x2: (20)

Using (20), we obtain

0 < f(x) < 1:

That is, for all i,

0 < �i < 1: (21)

From (18) and (21), we obtain

�

m
< Var(X

(m)
t ) <

�

m
+

1

4

dX
i=1

�
2
i

=
�

m
+

dX
i=1

�
�

2

�2

�
�

m
+

 
dX

i=1

�

2

!2

�
�

m
+ �

2
; (from (17))

i.e.,
�

m
< Var(X

(m)
t ) <

�

m
+ �

2
: (22)
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We must choose such mi that (22) is satis�ed at any mi. This condition comes from that we

use a simple IPP as a sub-process. Practically, this condition never matter when m is large, but

sometimes Var(X
(m)
t ) is too small when m is small. Therefore, we should be careful to choose

m1, which is enough large that Var(X
(m1)
t ) is larger than �=mmin.

Furthermore, we assume the following relation of �i and mi

mi�i = const (1 � i � d):

That is, �i can be described as

�i =
m1

mi

�1 (1 � i � d): (23)

This assumption comes from the intuitive understanding that a self-similar process looks the

same in any time-scale. By this assumption, we can reduce the number of the parameters to be

determined. That is, if we determine �1, we can obtain the values of �i (2 � i � d) by using

(23). Furthermore, we can obtain �p from (17) if we determine �i. Now the parameters we need

to �nd are only �1 and �i.

In the following, we describe the procedure of determining these parameters.

Procedure of Parameter Fitting

Step 1. Determine �i as the function of �i. From (9) and (18), we have

�
2

2
66664
m
��
1

m
��
2
...

m
��
d

3
77775 = �

2
66664
m
�1
1

m
�1
2
...

m
�1
d

3
77775+B

2
66664
�
2
1

�
2
2
...

�
2
d

3
77775 ; (24)

where B is the d� d matrix whose (i; j) element is

Bij =
1

4mi�j
�

1

8m2
i �

2
j

(1� e
�2mi�j ): (25)

Solving this, we determine �i as the function of �i.

Step 2. Determine the values of �1. Here we consider the integral of the di�erence between the

log-scales variance curve of the process given by (18) and that of the self-similar process

given by (9) over de�ned time-scales. We determine the value of �1 so as to minimize that

integral.

Step 3. Determine the values of �i from (24).

In step 1, it is necessary that B is non-singular. It is di�cult to prove the non-singularity

of B for any positive integer of d, however, we can show that if a is su�ciently large, B is

non-singular for any �1. We discuss the non-singularity of the matrix B in the next section. We

can solve this problem by choosing such a.
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When we minimize the integral in step 2, we must be careful to keep the values of �i and

�p larger than zero. We consider the minimum at the log-scale because we can treat smaller

time-scales more carefully.

At the end of this section, we show the parameters preliminarily required for our �tting

procedure in Table 1.

Table 1: Preliminarily required parameters for the �tting

parameter meaning

� Arrival rate of the whole process

mmin, mmax Minimum and maximum of time-scales

over which self-similarity is taken into

consideration

�
2 Variance

H Hurst parameter

d Number of IPPs

6 Su�cient Condition for Existence of B�1

In this section, we consider the su�cient condition under which the matrix B is invertible. We

use the following lemma ([13] 2.3.2. Perturbation Lemma).

Lemma 6.1 Let A and C denote n�n matrices with real elements. Suppose that A is invertible

with


A�1

 � �, where k�k is an arbitrary matrix norm. If kA� Ck � � and �� < 1, then C

is invertible, and 


C�1



 � �

1� ��
:

Let c = m1�1, then the (i; j)-th element of B becomes

Bij =
1

4

�
1

cai�j
�

1

2c2a2(i�j)
(1� e

�2cai�j )

�
:

We de�ne


k =
1

4

(
a
k

c
�
a
2k

2c2
(1� e

�2ca�k)

)
:

Then we have

B =

0
BBBB@


0 
1 � � � 
n�1


�1 
0 � � � 
n�2

...
...

. . .
...


�n+1 
�n+2 � � � 
0

1
CCCCA :

This type of the matrix is called Toeplitz [7]. Note that we obtain the following inequality in a

similar way to (21)

0 < 
k <
1

4
: (26)

12



We de�ne the n� n matrix A as

A =

0
BBBB@


0 
1 � � � 
n�1

0 
0 � � � 
n�2

...
. . .

. . .
...

0 0 � � � 
0

1
CCCCA :

Then, A�B is given by

A�B = �

0
BBBBB@

0 � � � 0 0


�1
. . . 0 0

...
. . .

. . .
...


�n+1 � � � 
�1 0

1
CCCCCA :

For the matrix norm, we consider the l1-norm. The l1-norm of A is de�ned by

kAk1 = max
1�j�n

nX
i=1

jaijj;

where aij is the (i; j)-th element of A. We obtain kA�Bk1 as

kA�Bk1 =
�1X

k=�n+1

j
kj

=
�1X

k=�n+1

1

4

(
a
k

c
�
a
2k

2c2

�
1� e

�2ca�k
�)

<

�1X
k=�n+1

1

4c
a
k

<
1

4c(a� 1)
:

Note that a > 1 from (19).

Next, we consider


A�1



1
. We de�ne the submatrix of A as

Ak =

0
BBBB@


0 
1 � � � 
k�1

0 
0 � � � 
k�2

...
. . .

. . .
...

0 0 � � � 
0

1
CCCCA :

Since Ak is an upper triangular matrix, A�1k must be in the form as

A
�1
k =

0
BBBB@

�0 �1 � � � �k�1

0 �0 � � � �k�2

...
. . .

. . .
...

0 0 � � � �0

1
CCCCA :

Because AkA
�1
k = I where I is the identity matrix, we have

�0 =
1


0
;

13



and


0�k�1 + 
1�k�2 + � � �+ 
k�1�0 = 0; k � 2:

Now we state the following lemma.

Lemma 6.2 For all k � 1,

j�kj <
1

4
20

�
1 +

1

4
0

�k�1
: (27)

Proof. We prove the lemma by induction.

(i) For k = 1, we have

�1 = �

1


20

:

Hence,

j�1j =

1


20

<
1

4
20
:

(ii) Assume that (27) is satis�ed for all k � m. For k = m+ 1,

�m+1 = �
1


0

mX
l=0


m+1�l�l:

Hence,

j�m+1j =
1


0

�����
mX
l=0


m+1�l�l

�����
�

1


0

mX
l=0

j
m+1�l�lj

�
1


0

mX
l=0

j
m+1�lj j�lj

<
1

4
0

mX
l=0

j�lj (from (26))

<
1

4
0

(
1


0
+

mX
l=1

1

4
20

�
1 +

1

4
0

�l�1)

=
1

4
20

�
1 +

1

4
0

�m
:

From (i) and (ii), (27) is satis�ed for all k � 1. 2

We obtain


A�1



1
as 


A�1




1
=

n�1X
k=0

j�kj:
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Using Lemma 6.2, we obtain the following inequality




A�1



1
<

1


0
+

n�1X
k=1

1

4
20

�
1 +

1

4
0

�k�1
=

1


0

�
1 +

1

4
0

�n�1
:

From Lemma 6.1, the su�cient condition for the matrix B to be invertible is given by

1


0

�
1 +

1

4
0

�n�1 1

4c(a� 1)
< 1:

Solving for a, we obtain

a > 1 +
1

4c
0

�
1 +

1

4
0

�n�1
:

We state the following theorem as the result of this section.

Theorem 6.1 If a satis�es the following inequality

a > 1 +
1

4c
0

�
1 +

1

4
0

�n�1
; (28)

then the matrix B is invertible.

Remark. Note that the value of right hand side of (28) depends on c and n, i.e., m1, �1 and

n.

7 Numerical Results

In this section, we present some numerical results obtained from our �tting method. We consider

only the case that the number of IPPs d equals 2, that is, two IPPs are superposed. First, we

show the variance-time curves of the resulting MMPPs. Next, we examine the queueing behavior

of the resulting MMPP comparing with the simulation result for the queueing system with the

self-similar tra�c. For our simulation, simulated self-similar tra�c trace is needed. We generate

the fractional Brownian tra�c (FBT) based on the FBM with the random midpoint displacement

(RMD) algorithm and use it as the self-similar tra�c. We summarize the FBT and the RMD

algorithm and show some numerical examples of the simulation and the resulting MMPP/D/1.

7.1 Variance

In Figures 1-4, we show the variance-time curves of the MMPPs obtained from our �tting

method. Solid lines illustrate the variance of obtained MMPPs and dotted lines correspond to

�
2
m
�� . We set d = 2, m1 = 1, m2 = 104, � = 1:0 and changed values of H and �

2 as follows:

(H;�
2) = (0:6; 1:1); (0:8; 1:5); (0:8; 1:9) and (0:9; 1:5). We can imitate accurately the variance

curve of the self-similar process with the four state MMPP when the value of H is not so large

and the value of �2 is moderate. However, when the Hurst parameter is large, or when �
2 is

near the upper bound or lower bound of (22), the di�erence is quite large. One of the reasons

is that we must keep the values of �i and �p larger than zero when we minimize the di�erence

of variances for the self-similar tra�c and for the resulting MMPP.
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Figure 1: Variance-time curves of MMPP, H = 0:6; �2 = 1:1
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Figure 2: Variance-time curves of MMPP, H = 0:8; �2 = 1:5
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Figure 3: Variance-time curves of MMPP, H = 0:8; �2 = 1:9
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Figure 4: Variance-time curves of MMPP, H = 0:9; �2 = 1:5
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7.2 FBM and RMD algorithm

In the following, we summarize the FBM, FBT and RMD algorithm. The readers are referred

to [11] and [8] for details. The FBM Z(t) is a continuous zero mean Gaussian process. It has

stationary increments and

E[Z(t)2] = jtj2H :

In the case of H = 0:5, Z(t) is the standard Brownian motion. Using FBM, the fractional

Brownian tra�c (FBT) is de�ned as the cumulative arrival process A(t) [11]:

A(t) = �t+
p
��Z(t); �1 < t <1;

where Z(t) is the FBM, � the mean rate, and � the variance coe�cient. The mean and the

variance of the FBT are as follows:

E[A(t)] = �t;

Var[A(t)] = ��jtj2H :

We obtain the following

Var(A(�t)) = �
2HVar(A(t));

which shows A(t) is self-similar.

We use the RMD algorithm in order to generate FBT. The RMD algorithm generates FBM

traces approximately. It never requires large amount of time to generate long traces. However,

it must be applied carefully in quantitative studies because the parameters of the generated

traces can di�er from their target values.

The algorithm is summarized as follows. Assume that we want to generate an FBM trace in

the time interval [0; T ]. Roughly speaking, it works recursively; �rst subdivides the interval [0; T ],

then determines the values of the process at the midpoints from the values at the endpoints.

Let us consider the case of determining the values Z( t1+t2
2

) at the midpoint of an interval [t1; t2]

from the values Z(t1) and Z(t2) at the endpoints. In this algorithm, it is assumed that the

midpoint displacement Z( t1+t2
2

)�
Z(t1)+Z(t2)

2
is independent of the increment Z(t2)�Z(t1) over

the whole interval. This assumption is not valid except for the case of H = 0:5, but results in

fast computation at the expense of exactness. The sample sequences of FBT generated by RMD

algorithm are shown in Figure 5 and Figure 6. In those �gures, the vertical axis is time while

the horizontal axis represents the number of arrivals per unit interval.

7.3 Queueing Behavior

In this subsection, we examine the queueing performance of the resulting MMPP/D/1. As the

performance measure, we calculate the mean waiting time. First, we generate a sample sequence

of FBT with the RMD algorithm. Then, we �t MMPPs to this sample sequence. Finally, we

compare the mean waiting time of the resulting MMPPs with simulation results with the sample
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Figure 5: Sample sequence of FBT based on RMD algorithm, H = 0:5; � = 1:0; � = 0:1
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Figure 6: Sample sequence of FBT based on RMD algorithm, H = 0:8; � = 1:0; � = 0:1
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sequence. We consider four di�erent samples (see Table 2). Note that in �tting, we need to

estimate the parameters of FBT again. Table 2 shows estimated parameters of the sample

sequence.

Figures 7 to 10 show the variance-time curves of the resulting MMPPs. From these graphs

we see that the di�erence is very large when m is small. We need to set � small compared with

� when we generate sample sequences of FBT with the RMD algorithm in order to keep Z(t)

positive. On the other hand, the variance of the MMPP is conditioned by (22). Therefore it

is impossible to �t the variance at small m. However, as m gets larger, the variance of the

self-similar process gets smaller so as to satisfy (22) because it decays slowly.

Figures 11 to 14 present the mean waiting time of the MMPP/D/1 and the results of the

simulations with the sample sequences. In Figure 12 and 13, we see that the mean waiting time

of the resulting MMPPs is very close to the simulation results when the load is high while it is

not close when the load is small. However, in Figure 12 and 13 the discrepancy is very large

throughout a global range of the load. These results suggest that our method works enough for

middle values of H but the di�erence becomes large when H is near 0.5 or 1.

Table 2: Estimated parameters of sample sequence

sample1 sample2 sample3 sample4

� 1.0 1.0 1.0 1.0

�
2 0.18 0.19 0.18 0.19

H 0.59 0.68 0.78 0.86

mmin 5� 104 150 50 50

mmax 105 104 104 104

8 Conclusions

In this paper, we �rst gave some de�nitions of self-similarity. We then introduced a �tting

method for the self-similar tra�c in terms of MMPP. We constructed an MMPP as the su-

perposition of two-state MMPPs and �t it so as to match the variance function over several

time-scales. Numerical results have shown that the variance function of the self-similar pro-

cess can be well represented by that of four-state MMPP when the Hurst parameter is not so

large and the variance is moderate. We also examined the queueing behavior of the resulting

MMPP/D/1 queueing systems. The comparison of the mean waiting time of the MMPP/D/1

queues with the simulation results has shown that our method is accurate for large load when

the value of the Hurst parameter is in the middle range.
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