
A Formal Approach to Detecting Security

Flaws in Object-Oriented Database Schemas

Toshiyuki MORITA Yasunori ISHIHARA Minoru ITO

ftoshi-m, ishihara, itog@is.aist-nara.ac.jp

Graduate School of Information Science,

Nara Institute of Science and Technology

8916-5, Takayama, Ikoma, Nara, 630-0101 Japan

Abstract Detecting security
aws is important in order to keep the database secure. A

security
aw in object-oriented databases means that a user can infer the result of an unpermit-

ted method only from permitted methods. Although a database management system enforces

access control by an authorization, security
aws can occur under the authorization. The main

aim of this paper is to discuss the detection problem of security
aws for database schemas.

This problem is to decide whether or not, when a schema S, an authorization A, and a term

� to be veri�ed are given, there exists a database instance of S such that a security
aw on

� exists with respect to A. This paper shows that the problem is undecidable and proposes a

decidable su�cient condition for a given schema to have no security
aw. Furthermore, this

paper shows that the su�cient condition is also a necessary one if the given schema is monadic

(i.e., every method is unary), and evaluates the time complexity to decide the condition.

Keywords: object-oriented database, authorization, security
aw, term rewriting system

1 Introduction

In recent years, various authorization models for object-oriented databases (OODBs) have

been proposed and studied (e.g., [4],[5],[7]). Among of them, the method-based authorization

model [7],[15] is one of the most elegant models since it is in harmony with the concept that \an

object can be accessed only via its methods" in the object-oriented paradigm. In the model,

the authorization A for a user u is represented as a set of (m; (c1; c2; . . . ; cn)), which means that

u can invoke method m on any tuple (o1; o2; . . . ; on) of objects such that oi is an object of class

ci for each i (1 � i � n).

1

This paper adopts the method-based authorization model and assumes the following

database management policies. Let (m; (c1; c2; . . . ; cn)) be in the authorization for a user u.

1. When u invokes m(o1; o2; . . . ; on), where oi is an object of ci (1 � i � n), and the method

execution successfully terminates, the object identi�er of the resultant object is open (i.e.,

unclassi�ed) to u.

2. If m is a primitive method (i.e., m is a base method; see Sect. 2.1), then the type

declaration of m at (c1; c2; . . . ; cn) is open to u. If m is not primitive (i.e., m is a user

method; see Sect. 2.1), then its external speci�cation is open to u.

Detecting security
aws is important in order to keep the database secure. Intuitively, a security

aw means that u can infer the result of an unpermitted method only from permitted methods

under the authorization for u. Although a database management system enforces access control

by an authorization, security
aws can occur under the authorization. The following example

shows a security
aw.

Example 1: Let m, m1, m2 be unary methods, c a class, and o an object of class c.

Suppose that the authorization A for a user u is f(m1; c); (m2; c)g, and the implementa-

tion bodies of m1 and m2, which u knows by Policy 2, are m1(x) = m(m(m(x))) and

m2(x) = m(m(m(m(m(x))))), respectively. Also, suppose that m1(o) = o and m2(o) = o,

which u knows by Policy 1. Then, u can infer that m(o) = o although m is not contained in

A. 2

More formally, for a given database schema S, an authorization A for a user u under S, and

a term � to be veri�ed (to be kept secret from u), the detection problem of security
aws for

database schemas is to decide whether or not there exists a database instance I of S such that

u can infer the value of � under S, I , and A.

The main aim of this paper is to discuss the above-mentioned detection problem. We adopt

method schemas proposed by [1],[2] as a formal model of OODB schemas since they support

such basic features of OODBs as method overloading, dynamic binding, and complex objects.

The semantics is simply de�ned based on term rewriting. In this formalization, an important

point is that the above detection problem is also de�ned based on term rewriting. First, we

show that the problem is undecidable and propose a decidable su�cient condition for a given

method schema to have no security
aw. Next, we show that the su�cient condition is also a

necessary one if the given schema is monadic (i.e., every method is unary). Lastly, we propose

an algorithm to decide the su�cient condition. We then evaluate the time complexity of the

algorithm, and show that, for a monadic method schema, the algorithm decides in polynomial

time of the size of the schema whether a security
aw exists or not.

2

Various models of security
aws have been discussed (e.g., [3],[8]{[10],[16],[17]). Generally,

user's attack is modeled by precise inference or imprecise inference. Precise inference means

that a user can infer only the exact value of the result of an unpermitted method. Example 1

illustrates precise inference. Ref. [16] discusses precise inference for OODBs. On the other

hand, imprecise inference means that a user can infer several candidates of the result of an

unpermitted method. Ref. [9] discusses imprecise inference for relational databases, and [10]

does for OODBs. This paper focuses on precise inference for OODBs.

In [16], security
aws are classi�ed into inferability and controllability. Roughly speaking,

inferability means that a user can infer the returned value of a method invocation, and control-

lability means that a user can control (alter arbitrarily) the attribute-value of an object in a

database instance. Since our query language does not support update operations for database

instances, only inferability is considered as security
aws in this paper. However, since our

query language supports recursion while the one in [16] does not, detecting inferability in our

formalization is not obvious. Ref. [16] also proposes, for a given database schema S and an

authorization A, a sound algorithm for deciding whether security
aws exist under a database

instance I of S. However, [16] does not evaluate the complexity of the algorithm.

2 Method Schemas

2.1 Syntax

We introduce some notations before de�ning the syntax of method schemas. Let F be a family

of disjoint �nite sets F0; F1; F2; . . ., where Fn (n = 0; 1; 2; . . .) is a set of function symbols of arity

n. For a countable set X of variables, let TF (X) denote the set of all terms freely generated by

F and X. For a term t 2 TF (X) and variables xi (1 � i � n) in X, let t[t1=x1; t2=x2; . . . ; tn=xn]

denote the term obtained by replacing every xi in t with a term ti (1 � i � n). For example,

f(x1; g(x1; x2))[a=x1; b=x2] = f(a; g(a; b)). For a term t, we de�ne the set of occurrences OC(t)

as the smallest set of sequences of positive integers which satis�es the following (1) and (2):

(1) " 2 OC(t), where " is the empty sequence.

(2) If r 2 OC(ti), then i�r 2 OC(f(t1; t2; . . . ; tn)) (1 � i � n). (The center dot (`�') represents

the concatenation of sequences.)

The replacement in t of t0 at r, denoted t[r t0], is de�ned as follows:

� t[" t0] = t0;

� f(t1; t2; . . . ; tn)[i � r t0] = f(t1; . . . ; ti[r t0]; . . . ; tn) (1 � i � n).

3

For example, f(f(x; g(x)); g(x))[1 � 2 a] = f(f(x; a); g(x)) and f(f(x; g(x)); g(x))[2 a] =

f(f(x; g(x)); a).

Now we go on to the de�nition of method schemas. Let C be a �nite set of class names (or

simply classes) andM a family of disjoint �nite setsM0;M1;M2; . . ., whereMn (n = 0; 1; 2; . . .)

is a set of method names of arity n. Each Mn is partitioned intoMb;n and Mu;n: Each mb 2 Mb

(=
S
n�0Mb;n) (resp. mu 2 Mu (=

S
n�0Mu;n)) is called a base method name (resp. user method

name). Furthermore, each m 2M (=Mb [Mu) is simply called a method name. We say that

M is a method signature.

De�nition 1: A base method de�nition of mb at (c1; c2; . . . ; cn) is an expression

(mb; (c1; c2; . . . ; cn ! c));

where mb 2Mb;n, and c, c1,. . . , cn 2 C. 2

Let oi be an object of class ci (1 � i � n) (see Defs. 3 and 5 for formal de�nitions). Informally,

the above base method de�nition declares that the application of mb to o1, o2,. . . , on results in

an object of c or its subclass.

De�nition 2: A user method de�nition of mu at (c1; c2; . . . ; cn) is an expression

(mu; (c1; c2; . . . ; cn); t);

where mu 2Mu;n, c1, c2,. . . , cn 2 C, and t 2 TM (fx1; x2; . . . ; xng). 2

Let oi be an object of ci (1 � i � n). The above user method de�nition states that the appli-

cation of mu to o1, o2,. . . , on results in term rewriting starting from t[o1=x1; o2=x2; . . . ; on=xn].

The formal de�nition is presented in Sect. 2.3.

De�nition 3: A method schema, which is originally introduced by Abiteboul et al. [1],[2], is a

5-tuple (C;�;M;�b;�u) as follows:

1. C is a �nite set of class names.

2. � is a partial order representing a class hierarchy. When c0 � c, we say that c0 is a

subclass of c and c is a superclass of c0.

3. M is a method signature.

4. �b is a set of base method de�nitions.

5. �u is a set of user method de�nitions.

4

� C = fmanager ; employee; person; secretaryg

� manager � employee � person; secretary � employee

� M = fboss;partner; clerk; leader; leader of customerg

� �b = f(boss; (employee ! manager));

(partner; (person ! employee));

(clerk; (manager ! secretary));

(leader; (employee; employee ! manager))g

� �u = f(leader of customer; (person); leader(boss(partner(x));partner(x)))g

Fig. 1: Method schema S1.

H
HH

�
��

�
��

H
HH

(employee; employee)

(manager; employee) (employee;manager)

(manager;manager)

Fig. 2: Class hierarchy and method de�nitions.

For each possible combination c1, c2,. . . , cn 2 C and m 2 Mn, there must exist at most one

method de�nition of m at (c1; c2; . . . ; cn). A method schema with only unary methods is called

monadic. 2

Example 2: Consider a method schema S1 which represents relationships on personnel and

customers. Fig. 1 shows the method schema. For example, a user method leader of customer

is supposed to return the leader of the group to which the partner of a customer x and his/her

boss belong. 2

2.2 Method Inheritance

Method de�nitions are inherited along the class hierarchy. For example, suppose that method

de�nitions of m are given at (manager; employee) and (employee; employee) (see Fig. 2),

where class manager is a subclass of employee. Intuitively, the inherited method de�nition

of m at (manager;manager) should be the de�nition at (manager; employee), not the one at

(employee; employee), since (manager; employee) is smaller than (employee; employee) with

respect to �. In the following, we formally de�ne the inheritance of a method de�nition.

5

De�nition 4: Let S = (C;�;M;�b;�u) be a method schema, mb 2 Mb;n, and c1, c2,. . . ,

cn 2 C. Suppose that (mb; (c
0
1; c

0
2; . . . ; c

0
n
! c0)) 2 �b is the base method de�nition of mb at

the \componentwise smallest" (c01; c
0
2; . . . ; c

0
n
) above (c1; c2; . . . ; cn) in the sense that whenever

(mb; (c
00
1; c

00
2 ; . . . ; c

00
n
! c00)) 2 �b and ci � c00

i
(1 � i � n), it is the case that c0

i
� c00

i
(1 � i � n).

We write Res(mb; (c1; c2; . . . ; cn)) = (c01; c
0
2; . . . ; c

0
n
! c0), which is called the resolution of mb at

(c1; c2; . . . ; cn). We often write Res(mb; (c1; c2; . . . ; cn)) = c0 when (c01; c
0
2; . . . ; c

0
n
) is irrelevant. If

such a unique base method de�nition does not exist, then the resolution of mb at (c1; c2; . . . ; cn)

is unde�ned , and we write Res(mb; (c1; c2; . . . ; cn)) = ?.

Similarly, for mu 2 Mu;n and c1; c2; . . . ; cn 2 C, if (mu; (c
0
1; c

0
2; . . . ; c

0
n
); t) is the user method

de�nition of mu at the \componentwise smallest" (c01; c
0
2; . . . ; c

0
n
) above (c1; c2; . . . ; cn), then we

de�ne the resolution of mu at (c1; c2; . . . ; cn) as Res(mu; (c1; c2; . . . ; cn)) = ((c01; c
0
2; . . . ; c

0
n
); t), or

simply, t. If such (mu; (c
0
1; c

0
2; . . . ; c

0
n
); t) does not exist, then Res(mu; (c1; c2; . . . ; cn)) = ?. 2

In Fig. 2, Res(m; (manager;manager)) is the method de�nition of m at (manager; employee).

However, if the method de�nition of m also exists at (employee;manager), then

Res(m; (manager;manager)) = ?, since (manager; employee) and (employee;manager) are

incomparable with respect to �.

2.3 Semantics

The semantics of a method schema, which is introduced by Abiteboul et al. [1],[2], is de�ned

as follows. To each class name, a set of objects is assigned. Also, to each base method name

mb, a mapping over appropriate sets of objects is assigned as its interpretation. The semantics

of a user method is de�ned by the interpretation of base methods and term rewriting [6]. For

a set V , let V m denote the Cartesian product V � V � � � � � V| {z }
m

.

De�nition 5: An interpretation, also called a database instance, of a method schema S =

(C;�;M;�b;�u) is a pair I = (�; �) as follows:

1. To each c 2 C, � assigns a �nite disjoint set, denoted �(c). Each o 2 �(c) is called an

object of c. Let OS;I =
S
c2C �(c).

2. For each mb 2 Mb;n, �(mb) is a partial mapping from On

S;I
to OS;I which satis�es the

following 2.1 and 2.2. Let c1, c2,. . . , cn, c, c
0 2 C.

2.1 If Res(mb; (c1; c2; . . . ; cn)) = c0, then �(mb) j�(c1)��(c2)������(cn) is a total mapping toS
c�c0 �(c), where `j' denotes that the domain of � is restricted to �(c1) � �(c2) �

� � � � �(cn). That is, if oi belongs to �(ci) (1 � i � n), then �(mb)(o1; o2; . . . ; on) is

de�ned and must belong to �(c) for some c � c0.

6

2.2 If Res(mb; (c1; c2; . . . ; cn)) = ?, then �(mb) is unde�ned everywhere in �(c1)��(c2)�

� � � � �(cn). 2

Example 3: Let I1 = (�; �) be an interpretation of S1 in Example 2, where

�(manager) = fGreen; Blackg;

�(employee) = fSilverg;

�(person) = fWhiteg;

�(secretary) = fBrowng;

and

�(partner)(White) = Silver;

�(boss)(Silver) = Green;

�(leader)(Green; Silver) = Black;

�(clerk)(Green) = Brown;

�(clerk)(Black) = Brown:

For example, Green is an object of manager , Brown is an object of secretary, and the application

of clerk to Green results in Brown. 2

In what follows, we often write a tuple of classes and objects as ~c and ~o, respectively. When

we write ~v, we implicitly assume that the i-th component of ~v is vi, i.e., ~v = (v1; v2; . . . ; vn).

We also write �(c1)� �(c2)� � � � � �(cn) as �(~c) and t[o1=x1; o2=x2 . . . ; on=xn] as t[~o=~x].

A term t 2 TM(OS;I) is called an instantiated term. That is, an instantiated term consists

of method names in M and objects in OS;I .

The reduction relation!
S;I

on the instantiated terms, based on the leftmost innermost reduc-

tion strategy, is de�ned as follows.

De�nition 6: For an instantiated term t 2 TM (OS;I), let r be the leftmost innermost occur-

rence such that the subterm of t at r is m(~o) for some m 2 M and ~o 2 �(~c).

1. If m 2Mb and Res(m;~c) 6=?, then t!
S;I

t[r �(m)(~o)].

2. If m 2Mu and Res(m;~c) = t0, then t!
S;I

t[r t0[~o=~x]]. 2

Note that, by Def. 6, for any instantiated term t, there exists at most one term t0 such that

t!
S;I

t0.

Let
�
!
S;I

be the re
exive and transitive closure of !
S;I

. If t
�
!
S;I

t0 and there exists no t00 such

that t0 !
S;I

t00, then t0 is called the normal form of t, and we write t # = t0. If t # 2 OS;I , then

the execution of t is successful, and if t # 62 OS;I because of nonexistence of the resolution, then

the execution of t is aborted. In both cases (i.e., if t # exists), the execution of t is terminating.

On the other hand, if t # does not exist, then the execution of t is nonterminating. We simply

write ! (resp.
�
!) instead of !

S;I

(resp.
�
!
S;I

) if S and I are understood from the context.

7

3 Security Flaws

3.1 Authorization

Various authorization models have been proposed for OODBs (e.g., [4],[5],[7],[12]). In this

paper, however, discussing authorization models is not our main purpose, and therefore we

adopt the following general and simple authorization model.

De�nition 7: Let S = (C;�;M;�b;�u) be a method schema. An authorization A for a user u

under S is a �nite set of (m;~c), where m 2Mn and ~c 2 Cn. Intuitively, (m;~c) 2 A means that

u is permitted to invoke method m on any tuple ~o of objects such that ~o 2 �(~c). We simply

write (m; c) instead of (m; (c)) for unary methods. 2

In many articles (e.g., [4],[12],[15]), an authorization is modeled by a base authorization

and a set of inference rules. An example of an inference rule is \if u is permitted to invoke m

on objects of c, then u is also permitted to invoke m on objects of the subclasses of c." By

this rule, a base authorization f(m; c)g is expanded into f(m; c); (m; c1); (m; c2)g if c1 � c and

c2 � c. In this paper, we assume that a given authorization has already been expanded.

Example 4: Let A1 be an authorization for a user u under S1 in Example 2 as follows:

A1 = f a1 : (boss;manager);

a2 : (boss; employee);

a3 : (partner; person);

a4 : (clerk;manager);

a5 : (leader of customer; person)g:

Consider the interpretation I1 in Example 3. Executing boss(Silver) by u is permit-

ted since Silver 2 �(employee) and (boss; employee) 2 A1. On the other hand,

leader(Green;Silver) is prohibited since Green 2 �(manager), Silver 2 �(employee), but

(leader; (manager ; employee)) 62 A1. 2

3.2 Formal De�nition of User's Inference

Let S = (C;�;M;�b;�u) be a method schema and A the authorization for a user u. In this

paper, we are interested in deciding whether or not for a given term � 2 TM (C), there exists

an interpretation I = (�; �) such that u can infer � [~o=~c] # = o for some ~o 2 �(~c) and o 2 OS;I .

In this section, we de�ne the information which u can obtain under a given interpretation

I = (�; �). First, we consider the information on the existence of objects. Let ~O denote the

set of objects such that o 2 ~O i� u knows that o exists in OS;I . Formally, ~O is de�ned as the

smallest set satisfying the following (�1) and (�2):

8

�(c) = fo1; o2; o3g

�:

-

�
�
�	 @

@
@I

o2 o3

o1

m;m
0

m;m
0

m;m
0

Fig. 3: An example of interpretation.

x m(x) # m0(x) # m1(x) #

o1 o2 o2 o3

o2 o3 o3 o1

o3 o1 o1 o2

Fig. 4: An example of method executions.

(�1) ~O contains a �xed set ~O0. For each o 2 ~O0, the existence of o in OS;I is regarded as a

priori knowledge of u.

(�2) Suppose that ~o 2 ~On, ~o 2 �(~c), and (m;~c) 2 A. Also, suppose that there exists o 2 OS;I

such that m(~o) # = o. Then, ~O contains o.

By (�1), we assume that u has partial knowledge on I in advance. (�2) is derived from Policy

1 in Sect. 1, i.e., u can obtain the result of m(~o). Secondly, we consider the information on

classes.

(�3) For each object o 2 ~O, u knows the class c such that o 2 �(c). Thus, u knows that a class

c exists in C i� there exists o 2 ~O such that o 2 �(c).

(�4) User u knows whether c � c0 holds or not i� u knows the existence of both c and c0.

By (�3), we mean that for a given object o, u can obtain the class to which o belongs. By (�4), we

mean that for c and c0 whose existence u knows, u can obtain the (possible) superclass-subclass

relationship between c and c0. Lastly, we consider the information on equalities of terms which

u can obtain directly from the database. Let m 2Mn, ~o 2 O
n

S;I
, and t 2 TM (fx1; x2; . . . ; xng).

(�5) User u knows that m(~o) # = o holds i� it is the case that ~o 2 ~On, ~o 2 �(~c), (m;~c) 2 A,

o 2 OS;I , and m(~o) # = o.

(�6) User u knows that Res(m;~c) = t holds i� it is the case that (m;~c) 2 A and Res(m;~c) = t.

9

(�5) is derived from Policy 1 in Sect. 1. (�6) corresponds to Policy 2 in Sect. 1, i.e., u can

obtain the type declaration of m at ~c (if m is a base method) and the external speci�cation of

m at ~c (if m is a user method).

Our goal is to model what the user can infer as a congruence closure of a �nite set of ground

equalities, which has many good properties. To achieve this, we suppose that the following two

conditions hold:

1. The user does not know what OS;I is.

2. The user does not know what C is.

In many cases, these conditions are satis�ed by just hiding OS;I and C from the user. Then,

what can the user infer under the conditions?

First of all, we suppose that the user can use at least four kinds of inference rules: re
exivity,

symmetry, transitivity, and substitutivity. The four inference rules yield equalities from equali-

ties and their contrapositions yield inequalities from inequalities. However, Condition 1 implies

that inequalities are useless to infer o such that � [~o=~c] # = o, as in the following example.

Example 5: Consider the following schema:

C = fcg;

M = fm;m0;m1g;

�b = f(m; (c! c)); (m0; (c! c))g;

�u= f(m1; (c);m
0(m(x))g:

Also, consider the interpretation I = (�; �) shown in Fig. 3. In the �gure, the arrow labeled

by m from o1 to o2 shows that �(m)(o1) = o2. Fig. 4 shows the results of all the method

executions. Suppose that ~O = fo1; o2; o3g.

Assume that (m; c) and (m1; c) are in the authorization for a user u. Then, u can obtain

an equality m0(o2) # = o3 in the following way:

(i) m(o1) # = o2 by (�5);

(ii) m1(o1) # = o3 by (�5);

(iii) Res(m1; c) = m0(m(x)) by (�6);

(iv) o1 2 �(c) by (�3);

(v) m1(o1) # = m0(m(o1)) # by (iii) and (iv);

(vi) m0(m(o1)) # = o3 by (ii), (v) and transitivity;

(vii) m0(o2) # = o3 by (i), (vi) and substitutivity:

On the other hand, assume that (m0; c) and (m1; c) are in the authorization. Then, u can

obtain that m0(o1) # = o2 and m0(o3) # = o1 by (�5) as well as the above (vi). Therefore, u can

obtain inequalities m(o1) # 6= o1 and m(o1) # 6= o3 by the contraposition of substitutivity.

10

In what follows, we examine e�ects on users' inference by Condition 1. For this authoriza-

tion, if u knows that OS;I = fo1; o2; o3g, then u can obtain m(o1) # = o2. On the other hand,

if u does not know what OS;I is, then u cannot infer m(o1) # = o2 since u cannot neglect the

case that there exists another object o 6= o2 such that m(o1) # = o. 2

If the user knows what OS;I is, then a disjunction of equalities would be inferred from a con-

junction of inequalities. However, by Condition 1, inequalities are useless to infer o such that

� [~o=~c] # = o, and hence we have only to consider equalities. Thus, what the user can infer is

modeled as the congruence closure of the equalities which the user can obtain directly from the

database by (�5) and (�6).

Equalities obtained by (�6) are not ground (i.e., include variables). However, together with

Condition 2, they are equivalent to a �nite set of ground equalities.

Example 6: Consider the following schema:

C = fc; c0g;

M = fm;m0;m1g;

�b = f(m; (c0 ! c0)); (m0; (c0 ! c0))g;

�u= f(m1; (c
0);m0(x))g;

and c � c0. Also, consider the following authorization for a user u:

f(m1; c); (m1; c
0)g

and an interpretation such that

o 2 �(c0):

Suppose that u knows that C = fc; c0g and c � c0. Then, u can obtain that m(o) # 2 �(c) [

�(c0) if m(o) # 2 OS;I . Moreover, since Res(m1; c) = Res(m1; c
0) = m0(x), u can infer that

m1(m(o)) # = m0(m(o)) # if both m1(m(o)) # and m0(m(o)) # are in OS;I . Note that, in this

inference, u does not need to know which class m(o) # belongs to.

On the other hand, if Condition 2 is satis�ed, then u cannot conclude that m1(m(o)) # =

m0(m(o)) # without exactly inferring the class to which m(o) # belongs since u cannot neglect

the case that m(o) # 2 �(c00) for some c00 other than c and c0 such that Res(m1; c
00) 6= m0(x). By

(�3), to know the class to which m(o) # belongs is to infer the exact value of m(o) #. Thus, the

equalities obtained by (�6) can be applied only to terms t such that t # is known. This means

that the equalities obtained by (�6) can be regarded as ground. More precisely, Res(m;~c) = t

is regarded as fm(~o) # = t[~o=~x] #j~o 2 ~On and ~o 2 �(~c)g. 2

Thus, we can model what the user can infer as a congruence closure of a �nite set of ground

equalities induced by (�5) and (�6). Moreover, the congruence closure is identical to
�
)
A;I

de�ned

below because of the correctness of Knuth-Bendix completion [13].

11

De�nition 8: Consider the minimum set PI of rewriting rules .
A;I

on TM(OS;I) satisfying the

following three conditions:

(1) If (m;~c) 2 A, m 2 Mn, ~o 2 ~On, ~o 2 �(~c), and m(~o)
�
! o 2 OS;I , then m(~o) .

A;I

o 2 PI .

(2) If (mu;~c) 2 A, mu 2 Mu;n, ~o 2 ~On, ~o 2 �(~c), mu(~o)
�
! o 2 OS;I , and Res(mu; ~c) = t 2

TM (f~xg), then t[~o=~x] .
A;I

o 2 PI .

(3) If t00 is a proper subterm of t at r00 (t; t00 2 TM (OS;I)) and t .
A;I

o, t00 .
A;I

o00 2 PI (o; o00 2

OS;I), then t[r00 o00] .
A;I

o 2 PI .

Then, de�ne)
A;I

as the one-step reduction relation by .
A;I

. That is, t)
A;I

t0 i� there exists a

subterm t00 of t at r00 such that t00 .
A;I

o00 2 PI and t0 = t[r00 o00]. Let
�
)
A;I

denote the re
exive

and transitive closure of)
A;I

. Note that the existence of t .
A;I

o 2 PI implies t
�
! o. 2

3.3 The Detection Problem

De�nition 9: The detection problem of security
aws for database schemas is to decide

whether or not, for given S, A, and � 2 TM (C), there exist an interpretation I = (�; �)

and ~O such that � [~o=~c]
�
)
A;I

o for some ~o 2 �(~c) and o 2 OS;I . 2

This problem is undecidable for general method schemas. However, it is decidable in poly-

nomial time for monadic method schemas as will be stated in the next section.

Theorem 1: The detection problem of security
aws for method schemas with methods of

arity two is undecidable.

Sketch of Proof: Ref. [11] shows that the type-consistency problem for method schemas with

methods of arity two is undecidable by reducing the Post's Correspondence Problem (PCP) to

the problem. In the reduction, each interpretation I is regarded as a candidate for a solution

to a PCP. If I is actually a solution, then execution of a term, say m(o), is aborted under

I. Otherwise, m(o) is nonterminating. By slightly modifying the reduction in [11], we can

construct a schema as follows:

� If I is a solution, then the execution of a term, say m0(o), is successful under I .

� Otherwise, m0(o) is nonterminating under I.

Let c be the class to which o belongs. Also, let A = f(m0; c)g and � = m0(c). Then, we have

that the PCP has a solution i� there exist I = (�; �) and ~O such that � [o=c]
�
)
A;I

o0 for some o

and o0. 2

12

4 Security Analysis

4.1 A Su�cient Condition

In this section we propose a decidable su�cient condition for a given schema to have no security

aw. The main idea is to approximate .
A;I

using classes. To do this, we use a mapping Z :

TM(C)! 2C which has the following property:

Z(t) � fcj there exists an interpretation such that t[~o=~c]
�
! o; ~o 2 �(~c); o 2 �(c)g:

Intuitively, Z(t) contains all the classes c such that the result of successful execution of t[~o=~c]

is an object o for some ~o 2 �(~c) and o 2 �(c). The smaller Z(t) is, the better approximation

we have. In the following, we de�ne rewriting rules .
A;S

on TM (C) which approximate .
A;I

.

De�nition 10: Consider the minimum set PS of rewriting rules .
A;S

on TM(C) satisfying the

following three conditions:

(1) If (m;~c) 2 A and c 2 Z(m(~c)), then m(~c) .
A;S

c 2 PS.

(2) If (mu; ~c) 2 A, mu 2 Mu;n, Res(mu;~c) = t 2 TM(f~xg), and c 2 Z(t[~c=~x]), then t[~c=~x] .
A;S

c 2 PS.

(3) If t00 is a proper subterm of t at r00 (t; t00 2 TM (C)) and t .
A;S

c, t00 .
A;S

c00 2 PS (c; c00 2 C),

then t[r00 c00] .
A;S

c0 2 PS for each c0 2 Z(t[r00 c00]).

Then, de�ne)
A;S

as the one-step reduction relation by .
A;S

. Let
�
)
A;S

denote the re
exive and

transitive closure of)
A;S

. 2

The following lemma states the relationship between rewriting rules .
A;I

and .
A;S

.

Lemma 1: If there exists an interpretation I = (�; �) such that t[~o=~x] .
A;I

o 2 PI for some

~o 2 �(~c) and o 2 �(c), then t[~c=~x] .
A;S

c 2 PS.

Proof: We use induction on the number of the repetition of a procedure which computes the

least �xed point satisfying the three conditions in Def. 8.

Basis: We consider the following two cases:

1. The case that m(~o) .
A;I

o is obtained from Def. 8 (1): It holds that (m;~c) 2 A, ~o 2 �(~c),

and m(~o)
�
! o. From the property of Z, there exists a class c such that c 2 Z(m(~c)) and

o 2 �(c). From Def. 10 (1), we have m(~c) .
A;S

c since (m;~c) 2 A and c 2 Z(m(~c)).

13

2. The case that Res(mu;~c)[~o=~x] .
A;I

o is obtained from Def. 8 (2): In the same way of the

above 1, it holds that (mu;~c) 2 A, Res(mu;~c) = t, and c 2 Z(t[~o=~x]). From Def. 10 (2),

we have t[~c=~x] .
A;S

c.

Induction: Suppose that t00[~o00= ~x00] is a proper subterm of t[~o=~x] at r00 and that t[~o=~x] .
A;I

o and

t00[~o00= ~x00] .
A;I

o00 have been obtained. Let t0[~o0=~x0] = t[~o=~x][r00 o00] (~o0 2 �(~c0)), and suppose

that t0[~o0=~x0] .
A;I

o is obtained from Def. 8 (3). By the inductive hypothesis, it holds that

t[~c=~x] .
A;S

c 2 PS; ~o 2 �(~c); o 2 �(c);

t00[~c00= ~x00] .
A;S

c00 2 PS; ~o00 2 �(~c00); o00 2 �(c00):

Since t0[~o0=~x0] = t[~o=~x][r00 o00], we have t0[~c0=~x0] = t[~c=~x][r00 c00]. Since t0[~o0=~x0] .
A;I

o 2 PI

implies t0[~o0=~x0]
�
! o, it holds that c 2 Z(t0[~c0=~x0]). From the above inductive hypothesis and

Def. 10 (3), we have t0[~c0=~x0] .
A;S

c 2 PS. 2

The following lemma states the relationship between reduction relations
�
)
A;I

and
�
)
A;S

.

Lemma 2: If t[~o=~x]
�
)
A;I

t0[~o0=~x0] for some ~o 2 �(~c) and ~o0 2 �(~c0), then t[~c=~x]
�
)
A;S

t0[~c0=~x0].

Proof: Consider the i-th step ti�1[~oi�1=~xi�1])
A;I

ti[~oi=~xi] of the reduction t[~o=~x]
�
)
A;I

t0[~o0=~x0]. By

Lemma 1, it is easily shown that ti�1[~ci�1=~xi�1])
A;S

ti[~ci=~xi], where ~oi�1 2 �(~ci�1) and ~oi 2 �(~ci).

Since this reduction holds at an arbitrary step, the lemma holds. 2

By Lemma 2, we immediately have the following theorem.

Theorem 2: Let S be a method schema and � [~c=~x] a term to be veri�ed. If there exists no

class c such that � [~c=~x]
�
)
A;S

c, then S has no security
aw, i.e., there exist no interpretation I

and ~O such that � [~o=~x]
�
)
A;I

o for any ~o 2 �(~c) and o 2 OS;I . 2

4.2 Monadic Case

In this section we show that the su�cient condition in Theorem 2 is also a necessary one if a

given method schema is monadic and Z satis�es that for each t 2 TM (C),

Z(t) = fc0j there exists an interpretation such that t[o=c]
�
! o0; o 2 �(c); o0 2 �(c0)g: (1)

De�nition 11: Let N be a positive integer. De�ne a syntactic interpretation IS = (�I
S

; �I
S

)

of S as follows:

14

1. For each c 2 C, �I
S
(c) = fc � �j� 2 C� and the length of c � � is at most Ng, where C�

denotes the Kleene closure of C.

2. For each mb 2 Mb, de�ne �I
S

(mb) as follows:

2.1 If the resolution of mb at c0 is (mb; (. . .! c0)), then �I
S
(mb)(c0) = c0, and for w � 1,

�I
S
(mb)(c0 � c1 � c2 � � � � � cw) =

(
c1 � c2 � � � � � cw if c1 � c0,

c0 � c2 � � � � � cw otherwise.

2.2 If the resolution of mb at c0 does not exist, then �I
S

(mb)(c0 � c1 � c2 � � � � � cw) (w � 0)

is unde�ned. 2

Hereafter we consider a syntactic interpretation with su�ciently large N . If Z satis�es

Eq. (1), then it also satis�es the following Lemmas 3 through 5.

Lemma 3: Let t 2 TM (fxg), and suppose that c0 2 Z(t[c=x]). There exists � 2 C� such that

1. the �rst symbol of � � c0 is c, and

2. for each � 2 C� such that � � c0 �� is an object of IS (i.e., the length of � � c0 �� is at most

N),

t[� � c0 � �=x]
�
! c0 � �:

We call � a reduction string of (t[c=x]; c0).

Proof: Suppose that c0 2 Z(t[c=x]). By Eq. (1), there exists an interpretation I = (�; �) such

that t[o=x]
�
! o0 for some o 2 �(c) and o0 2 �(c0). Consider the i-th step (counting from zero)

ti[oi=x] ! ti+1[oi+1=x] of the reduction t[o=x]
�
! o0, where t0[o0=x] = t[o=x] and tn[on=x] = o0.

Let ci (0 � i � n�1) be the class such that oi 2 �(ci) and mi(oi) the innermost term of ti[oi=x].

De�ne �i (0 � i � n� 1) as follows:

�i =

(
ci if mi 2Mb,

" (empty string) otherwise.

In what follows, we show that � = �0 � � � � � �n�1 satis�es the conditions of this lemma.

It is easily veri�ed that � satis�es condition 1 since

o0 = o 2 �(c), and

if mi 2Mu, then oi+1 = oi by the de�nition of !.

To see that � also satis�es condition 2, consider the execution of t0[� � c
0 ��=x] for an arbitrary

� 2 C�. If m0 2Mb, then �0 = c0, and thus t0[� � c
0 � �=x]! t1[�1 � � � � � �n�1 � c

0 � �=x]. On the

other hand, if m0 2 Mu, then �0 = ", and thus t0[� � c
0 � �=x] ! t1[�1 � � � � � �n�1 � c

0 � �=x]. In

either case,

15

t0[� � c
0 � �=x] = t0[�0 � �1 � � � � � �n�1 � c

0 � �=x]! t1[�1 � � � � � �n�1 � c
0 � �=x]:

By repeating this discussion, we have t[� � c0 � �=x]
�
! c0 � �. 2

Lemma 4: Let t; t0; t00 2 TM(fxg) such that t00 is a subterm of t at r00 and t0 = t[r00 x]. If

both c00 2 Z(t00[c=x]) and c0 2 Z(t0[c00=x]), then c0 2 Z(t[c=x]).

Proof: By Lemma 3, there exist reduction strings �00 of (t00[c=x]; c00) and �0 of (t0[c00=x]; c0), i.e.,

for any �00; �0 2 C�,

t00[�00 � c00 � �00=x]
�
! c00 � �00; the �rst symbol of � 00 � c00 is c;

t0[�0 � c0 � �0=x]
�
! c0 � �0; the �rst symbol of � 0 � c0 is c00:

When we choose �00 so that c00 � �00 = �0 � c0 � �0, we have

t[�00 � � 0 � c0 � �0=x]
�
! c0 � �0:

Since Z satis�es Eq. (1), c0 must be in Z(t[c=x]). 2

Lemma 5: Let t; t0; t00 2 TM (fxg) such that t00 is a subterm of t at r00 and t0 = t[r00 x].

Suppose that c00 2 Z(t00[c=x]) and c0 2 Z(t0[c00=x]). Let �0 be an arbitrary reduction string of

(t0[c00=x]; c0). Then, there exist reduction strings � of (t[c=x]; c0) and � 00 of (t00[c=x]; c00) such that

� = � 00 � �0.

Proof: Let �00 and �0 be arbitrary reduction strings of (t00[c=x]; c00) and (t0[c00=x]; c0), respectively.

By the proof of Lemma 4, � 00 �� 0 is a reduction string of (t[c=x]; c0). This fact implies the lemma.

2

Suppose that ~O = OS;I
S

. We show that t[c=x]
�
)
A;S

t0[c0=x] implies t[o=x]
�
)
A;IS

t0[o0=x] for some

o 2 �(c) and o0 2 �(c0). The next lemma states the relationship between .
A;IS

and .
A;S

.

Lemma 6: Let c; c0 2 C, t 2 TM(fxg), and t0 2 TM(fx0g). If t[c=x] .
A;S

c0 2 PS, then for an

arbitrary reduction string � of (t[c=x]; c0) and for any � 2 C�,

t[� � c0 � �=x] .
A;I

S

c0 � � 2 PIS :

Proof: We use induction on the number of the repetition of a procedure which computes the

least �xed point satisfying the three conditions in Def. 10.

Basis: We consider the following two cases:

1. The case that m(c) .
A;S

c0 is obtained from Def. 10 (1): Let � be an arbitrary reduction

string of (m(c); c0). Since (m; c) 2 A andm(� �c0 ��)
�
! c0 ��, we obtainm(� �c0 ��) .

A;IS

c0 ��

from Def. 8 (1).

16

2. The case that Res(mu; c)[c=x] .
A;S

c0 is obtained from Def. 10 (2): It can be proved

similarly to the above case.

Induction: Suppose that there exist c 2 C and t; t0; t00 2 TM(fxg) such that

t00 is a subterm of t at r00,

t0 = t[r00 x],

t00[c=x] .
A;S

c00 2 PS,

t[c=x] .
A;S

c1 2 PS for some c1,

c0 2 Z(t0[c00=x]).

Also, suppose that t0[c00=x] .
A;S

c0 is obtained from Def. 10 (3). Since t00[c=x] .
A;S

c00 2 PS, it holds

that c00 2 Z(t00[c=x]) by Def. 10. By Lemma 4, it holds that c0 2 Z(t[c=x]). Then, by Def. 10

again, t[c=x] .
A;S

c0 must be in PS. Let �
0 be an arbitrary reduction string of (t0[c00=x]; c0). That

is, the �rst symbol of �0 � c0 is c00 and t0[� 0 � c0 � �0=x]
�
! c0 ��0 for any �0 2 C�. By Lemma 5 and

the inductive hypothesis for t[c=x] .
A;S

c0 and t00[c=x] .
A;S

c00, there exist � and � 00 such that, for

any � and �00,

t[� � c0 � �=x] .
A;I

S

c0 � � 2 PIS , the �rst symbol of � � c0 is c,

t00[� 00 � c00 � �00=x] .
A;I

S

c00 � �00 2 PIS , the �rst symbol of � 00 � c00 is c,

and � = �00�� 0. When we choose � and �00 so that � 0�c0�� = c00��00, it holds that ��c0�� = � 00�c00��00.

By Def. 8 (3),

t[� � c0 � �=x][r00 c00 � �00] .
A;IS

c0 � � 2 PI
S

:

Since t[� � c0 � �=x][r00 c00 � �00] = t0[c00 � �00=x] = t0[� 0 � c0 � �=x], it holds that

t0[�0 � c0 � �=x] .
A;IS

c0 � � 2 PI
S

for any �. 2

Lemma 7: Let c; c0 2 C and t; t0 2 TM(fxg). If t[c=x]
�
)
A;S

t0[c00=x], then there exists a string �

such that the �rst symbol � � c00 is c and for any �00 2 C�,

t[� � c00 � �00=x]
�
)
A;IS

t0[c00 � �00=x]:

Proof: We use induction on the length of the reduction t[c=x]
�
)
A;S

t0[c00=x].

Basis: Suppose that t[c=x])
A;S

t0[c00=x]. By Def. 10, there exists a subterm t00 of t at r00 such that

t00[c=x] .
A;S

c00 and t0[c00=x] = t[c=x][r00 c00]. By Lemmas 3 and 6, there exists � 00 such that the

�rst symbol of �00 � c00 is c and for any �00 2 C�, rule t00[� 00 � c00 � �00=x] .
A;IS

c00 � �00 exists in PI
S

.

By Def. 8, it follows that t00[� 00 � c00 � �00=x])
A;I

S

c00 � �00. Hence, t[� 00 � c00 � �00=x])
A;IS

t00[c00 � �00=x].

Induction: Consider the following reduction that t[c=x]
�
)
A;S

ti[ci=x])
A;S

t0[c00=x]. By the inductive

hypothesis, there exists a string �i such that the �rst symbol of �i � ci is c and for any �i 2 C�,

17

t[�i � ci � �i=x]
�
)
A;I

S

ti[ci � �i=x]:

In the same way as the basis case, there exists a string � 0 such that the �rst symbol of �0 � c00

is ci and for any �00 2 C�,

ti[�
0 � c00 � �00=x])

A;I
S

t0[c00 � �00=x]:

We can choose �i so that � 0 � c00 � �00 = ci � �i. Therefore, it follows that

t[�i � �
0 � c00 � �00=x]

�
)
A;IS

t0[c00 � �00=x]:

Clearly, � = �i � �
0 satis�es the condition of the lemma. 2

Theorem 3: Let S be a monadic method schema and � [c=x] a term to be veri�ed. Suppose

that Z satis�es Eq. (1). If there exists a class c0 such that � [c=x]
�
)
A;S

c0, then S has a security

aw, i.e., there exist an interpretation I and ~O such that � [o=x]
�
)
A;I

o0 for some o 2 �(c) and

o0 2 OS;I . 2

4.3 The Algorithm and its Complexity

The algorithm for deciding the su�cient condition stated in Theorem 2 consists of the following

three steps.

(A1) Compute Z from S.

(A2) Compute PS from S, A, and Z.

(A3) Determine whether there exists a class c such that � [~c=~x]
�
)
A;S

c. If such c exists, then

output \a security
aw may exist." Otherwise, output \no security
aw exists."

Using the type-checking algorithm in [14], we can compute Z which is fairly small, and for a

monadic schema, we can compute Z satisfying Eq. (1) in polynomial time of the size of S.

Now, we summarize the time complexity of the algorithm. De�ne the size ktk of a term t as

the number of nodes in the tree representing t. For each (m;~c; t) 2 �u, de�ne the description

length of (m;~c; t) as ktk. De�ne the description length of �u, denoted k�uk, as the sum of ktk

for all (m;~c; t) 2 �u. Also, de�ne the size of S, denoted N , as follows:

N = jCj+ j � j+ jM j+ j�bj+ k�uk;

where jXj denotes the number of elements of a set X. Let k be the maximum arity of all

methods, H the maximum size of all t such that (m;~c; t) 2 �u, and l the size of a given term

to be veri�ed.

18

Before executing (A1), we de�ne a �nite set TA such that t .
A;S

c 2 PS i� t 2 TA and

c 2 Z(t). In what follows, we consider the size of TA. Let h be the height of a tree representing

a term t 2 TM (C). Also, let Xh be a �nite set of subtrees obtained by replacing subterms

of t with classes, where Xh contains both t itself and c such that c 2 Z(t). For example, let

t = m1(m2(c1; c2); c3), which is represented as a tree with height two. If Z(m2(c1; c2)) = fc1; c2g,

Z(m1(c1; c3)) = fc1g, and Z(m1(c2; c3)) = fc2g, then for such t,

X2 = fm1(m2(c1; c2); c3);m1(c1; c3);m1(c2; c3); c1; c2g:

By solving the following recurrence formula(
jX0j � jCj;

jXhj � jXh�1j
k + jCj;

we can obtain(
jXhj = O(jCj

k
h

) if k � 2,

jXhj = O(h � jCj) if k = 1.

Since TA is contained by Xh for all terms t 2 TM (C) such that m 2Mu and t = Res(m;~c)[~c=~x],

jTAj =

(
O(k�uk � jXH j) = O(N � jCj

k
H

) if k � 2,

O(k�uk � jCj) = O(N � jCj) if k = 1.

After all, for k � 1,

jTAj = O(N � jCj
k
H

):

First, we consider (A1). Before computing Z, we de�ne a �nite subset Z0(m(~c)) of C such

that for m 2 Mn and ~c 2 Cn,

Z0(m(~c)) = fcj there exists an interpretation such that m(~o)
�
! o; ~o 2 �(~c); o 2 �(c)g:

The time complexity to compute Z0(m(~c)) for all m 2Mn and ~c 2 Cn is

O(k �N � jCj2k+1); (2)

which is given in [14]. If Z0 is implemented as a 2-3 tree, then the time complexity tZ0 to

retrieve an element from Z0(m(~c)) is

tZ0 = O(log jZ0j) = O(log(jM j � jCj
k)) = O(k � logN):

For t 2 TM (C), we can compute Z(t) as follows. If m(~c) is the innermost term of t, then we

replace m(~c) with c for each c 2 Z0(m(~c)). We repeat this replacement until t is rewritten to a

class. The time complexity to compute Z(t) is

O(tZ0 � jCj
k � ktk) = O(k �H � jCjk � logN):

19

B1 for each (m;~c) in A

B2 add m(~c) to TA

B3 if m 2Mu then

B4 let t be Res(m;~c)[~c=~x]

B5 add t[~c=~x] to TA

B6 repeat

B7 for each t; t0 in TA

B8 if t0 is a subterm of t at r0 then

B9 for each c0 in Z(t0)

B10 add t[r0 c0] to TA

B11 until TA does not change

Fig. 5: Procedure to compute TA.

Therefore, the time complexity to compute Z(t) for all t 2 TA is

O(jTAj � k �H � jCj
k � logN) = O(k �H � jCjk

H+k �N � logN): (3)

If Z is implemented as a 2-3 tree, then the time complexity tZ to retrieve an element from Z(t)

is

tZ = O(log jZj) = O(log jTAj) = O(k
H � logN):

Next, we consider (A2). In the following, we assume that A, Res, and TA are implemented

as 2-3 trees. It is su�cient to compute TA. Fig. 5 shows a procedure to compute TA. Retrieving

an element from A and Res takes ta = O(k �logN) time and tr = O(k �logN) time, respectively.

Since jTAj = O(N � jCj
k
H

), retrieving an element from TA and inserting an element into TA

takes tA = O(log jTAj) = O(k
H � logN) time. Therefore, executing (B1) through (B5) takes

O(jAj � (ta + tA + log jMuj+ tr + tA)) = O(k
H � jCjk �N � logN)

time, and executing (B6) through (B11) takes

O(jTAj � jTAj � (tA +H2 + tZ + jCj � tA)) = O(jCj
2kH �N2 � (H2 + kH � jCj � logN))

time. The total time of (A2) is

O(jCj2k
H

�N 2 � (H2 + kH � jCj � logN)): (4)

Lastly, we consider (A3). For a given term � 2 TM (C), de�ne a �nite set Di as follows:8<
:
D1 = ftj�)

A;S

tg;

Di = ft
0jt 2 Di�1; t)

A;S

t0g:

20

B12 for each t00 in TA

B13 if t00 is a subterm of t at r00 then

B14 for each c00 in Z(t00)

B15 let t0 be t[r00 c00]

Fig. 6: Procedure to compute t)
A;S

t0.

We �rst compute D1, and then D2; D3; . . . until Dj = Dj+1. It holds that j � l, since ktk > kt0k

for each pair t; t0 such that t .
A;S

t0 2 PS. The size of each Di is at most jXlj. Fig. 6 shows

a procedure to compute t)
A;S

t0 for t; t0 2 TM (C). We assume that it takes constant time to

execute (B15). Executing (B12) through (B15) takes

O(jTAj � (tA + l �H + tZ + jCj)) = O(N � jCjk
H

� (kH � logN + l �H + jCj))

time. Since the procedure in Fig. 6 is executed for each term in Di (1 � i � j), the time

complexity to execute (A3) is

O(j � jXlj �N � jCj
k
H

� (kH � logN + l �H + jCj))

=

8<
: O(l � jCj

k
l+kH �N � (kH � logN + l �H + jCj)) if k � 2,

O(l2 � jCj2 �N � (logN + l �H + jCj)) if k = 1.
(5)

After all, by letting L = maxfl; Hg in Eq. (2) through Eq. (5), the time complexity of the

algorithm is8<
: O(jCj

2kL �N � (N � L2 + (jCj �N + L) � kL � logN + L3 + L � jCj)) if k � 2,

O(jCj2 �N � (N � L2 + jCj �N � logN + L4)) if k = 1.

Moreover, by assuming N � L, the time complexity is8<
: O(jCj

2kL �N2 � (L2 + kL � jCj � logN)) if k � 2,

O(jCj2 �N2 � (L3 + jCj � logN)) if k = 1.

Theorem 4: The su�cient condition stated in Theorem 2 is decidable. 2

Corollary 1: For a monadic method schema, the detection problem of security
aws is solvable

in polynomial time of the size of the schema. 2

5 Conclusions

This paper has discussed the detection problem of security
aws for database schemas, and has

shown that the detection problem for general (i.e., non-monadic) method schemas is undecid-

able. We have proposed a decidable su�cient condition for a given general schema to have no

21

security
aw, and have shown that the su�cient condition is also a necessary one if a schema

is monadic. Also, we have provided an algorithm to decide the su�cient condition, and have

shown that the algorithm runs in polynomial time for a monadic method schema.

As future work, we intend to decrease the complexity to detect a security
aw by making

the algorithm more e�cient. Also, we intend to discuss the detection problem when, in the

discussion of Sect. 3.2, a user knows either what OS;I is or what C is, or the user knows both

of them. Moreover, for a general schema, if Z satis�es that for each t 2 TM(C),

Z(t) = fcj there exists an interpretation such that t[~o=~c]
�
! o; ~o 2 �(~c); o 2 �(c)g;

then whether or not the su�cient condition in Theorem 2 is also a necessary one is open.

Acknowledgment

The authors would like to thank Professor Hiroyuki Seki of Nara Institute of Science and

Technology for his invaluable suggestions and comments.

References

[1] S. Abiteboul, R. Hull, and V. Vianu, \Foundations of databases," pp.563{571, Addison-Wesley Publishing

Company, 1995.

[2] S. Abiteboul, P. Kanellakis, S. Ramaswamy, and E. Waller, \Method schemas," J. Computer and System

Sci., vol.51, no.3, pp.433{455, 1995.

[3] L.J. Binns, \Implementation considerations for inference detection: intended vs. actual classi�cation,"

Database Security, VII(A-47): Status and Prospects, Elsevier Science Publishers, pp.139{156, 1994.

[4] E. Bertino and H. Weigand, \An approach to authorization modeling in object-oriented database systems,"

Data and Knowledge Engineering, vol.12, no.1, pp.1{29, 1994.

[5] H.H. Br�uggemann, \Object-oriented authorization," Advances in Database Systems { Implementations

and Applications, CISM 347, Springer-Verlag, pp.139{160, 1994.

[6] N. Dershowitz and J. Jouannaud, \Rewrite systems," in Handbook of Theoretical Computer Science, ed.

J. Leeuwen, vol.B, chap.6, pp.243{320, The MIT Press, 1990.

[7] E.B. Fernandez, M.M. Larrondo-Petrie, and E. Gudes, \A method-based authorization model for object-

oriented databases," Proc. OOPSLA-93 Conf. Workshop on Security for Object-Oriented Systems, pp.135{

150, 1993.

[8] T.D. Garvey and T.F. Lunt, \Cover stories for database security," Database Security, V: Status and

Prospects, Elsevier Science Publishers, pp.363{380, 1992.

[9] J. Hale, J. Threet, and S. Shenoi, \A practical formalism for imprecise inference control," Database Security,

VIII(A-60): Status and Prospects, Elsevier Science Publishers, pp.139{156, 1994.

22

[10] T.H. Hinke, H.S. Delugach, and R. Wolf, \A framework for inference-directed data mining," Database

Security, X: Status and Prospects, Chapman & Hall, pp.229{239, 1996.

[11] Y. Ishihara, S. Shimizu, H. Seki, and M. Ito, \The type-consistency problem for queries in object-oriented

databases," NAIST Technical Report 98004, http://isw3.aist-nara.ac.jp/IS/TechReport2/report/98004.ps,

Apr. 1998.

[12] T. Morita, Y. Ishihara, H. Seki, and M. Ito, \An authorization model for object-oriented databases and

its e�cient access control," IEICE Transactions on Information and Systems (to appear).

[13] D.A. Plaisted, \Equational reasoning and term rewriting systems," in Handbook of Logic in Arti�cial

Intelligence and Logic Programming, vol.1, pp.273{364, Oxford Science Publications, 1993.

[14] H. Seki, Y. Ishihara, and H. Dodo, \Testing type consistency of method schemas," IEICE Transactions on

Information and Systems, vol.E81-D, no.3, March 1998.

[15] H. Seki, Y. Ishihara, and M. Ito, \Authorization analysis of queries in object-oriented databases," Proc.

4th Int'l Conf. on Deductive and Object-Oriented Databases, LNCS 1013, pp.521{538, 1995.

[16] K. Tajima, \Static detection of security
aws in object-oriented databases," Proc. 15th ACM PODS,

pp.341{352, 1996.

[17] B. Thuraisingham, \The use of conceptual structures for handling the inference problem," Database Secu-

rity, V: Status and Prospects, Elsevier Science Publishers, pp.333{362, 1992.

23

