
Evaluating the application of software metrics to

data flow diagrams and class diagrams in

usability laboratory experiments

(CADPRO Pilot #1)

Andy Brooks

Louise Scott

Shingo Takada

Nara Institute of Science and Technology

Information Science Technical Report

NAIST-IS-TR98010

This report has also been issued as a technical report by the CSIRO/Macquarie
University Joint Research Centre for Advanced Systems Engineering

(Technical Report # R.R. 98/14)

1

Evaluating the application of software metrics to
data flow diagrams and class diagrams in usability

laboratory experiments (CADPRO Pilot #1)

ANDY BROOKS Department of Computer Science, University of Strathclyde, Glasgow
G1 1XH, Scotland, UK (andy@cs.strath.ac.uk)

LOUISE SCOTT Joint Research Centre for Advanced Systems Engineering (JRCASE), School
of MPCE, Macquarie University, Sydney, NSW 2109, Australia
(louise@mpce.mq.edu.au)

SHINGO TAKADA Graduate School of Information Science, Nara Institute of Science and
Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara-ken, 630-0101, Japan
(michigan@is.aist-nara.ac.jp)

Abstract

This paper reports an evaluation of a number of metrics proposed to measure user productivity and
product quality in a usability laboratory setting. The examined metrics were found to be unsuitable
indicators of productivity and quality in the context of the experimental study. Many insights
were obtained, however, into what will be required to make future experimentation successful. A
series of recommendations are made.

1. Introduction

Methodological constraints are often embodied in computerised tools to help guide activities like analysis
and design. For example, a data flow diagramming tool may automatically prevent direct links between
data stores and a class diagramming tool may automatically prevent cyclical inheritance relationships.
Too much enforced guidance, however, can hinder rather than help the software engineer during
creative problem solving. Earlier survey work [1,2] suggested that perceptions of high degrees of
constraint in computerised tools coupled with unfavourable attitudes toward such constraint were
associated with low user satisfaction and resistant behaviour. Subsequently, Day et al [3] have
developed a research model linking individual differences, task characteristics, and constraint
characteristics to attitudes toward and belief about constraints. The research model ultimately links these
constructs to user productivity and product quality. Day et al in [3] outline the CADPRO (Constraints
And the Decision PROcess) project which seeks to confirm such effects in a controlled experimental
setting. The ultimate goal of the project is to specify how best to configure constraint environments in
commercial CASE tools. The original plan in the CADPRO project [3] was to have professional software
developers undertake analysis/design tasks in 50 minute sessions in a usability laboratory using a CASE
tool generated by CASEMaker, a meta-CASE tool [11]. CASEMaker is sufficiently flexible to allow
configuration of the methodological constraint environment. Productivity and quality metrics were to be
applied to artifacts created under different configurations of the constraint environment, thus allowing a
test of the research model. A principle concern was: Would 50 minutes be enough time to allow subjects
to produce artifacts that metrics could be meaningfully applied to? The purpose of this paper, therefore, is
to report an experimental evaluation of a number of metrics proposed to measure the final outcomes (user
productivity and product quality) in the CADPRO project [4,5] i.e. to report on the first pilot study.

The evaluation involved subjects undertaking analysis/design tasks under conditions similar to those
intended in the planned usability laboratory experiments. Various metrics were then applied to the
artifacts produced to see if the values obtained genuinely measured productivity and quality. This
evaluation of the suitability of the metrics was necessarily judgmental. Comprehensive metric validation
requires not only access to intrinsic quality factors (such as counts of the errors in software that result in
operational failures) but also that the proposed metrics and quality factors be shown to be statistically
associated [6].

2

Some of the metrics were found to be directly unsuitable in the context of this experimental study because
they lacked detailed rationale as to how they should calculated for the artifacts produced. Other metrics
could not be meaningfully calculated because the artifacts produced were small and lacked the detail
necessary for how they should be calculated. Yet other metrics were applicable only to artifacts produced
later in the software life cycle.

Those metrics that could be calculated were found to be unsuitable indicators of user productivity and
product quality in the context of this experimental study. Variation in the values obtained for these
metrics was caused by investigators making different assumptions about what was needed to solve the
problem. This was largely as a result of poorly specified problem boundaries brought about by using short
problem descriptions. To a lesser extent, variation was also caused by the different experience levels of
the investigators with a particular modelling technique or tool.

The exercise of producing analysis/design artifacts under conditions similar to those intended for
CADPRO usability laboratory experimentation did, however, produce many insights into what will be
required to make future experimentation successful. A number of recommendations are given. In
particular, one or more additional pilot studies should be carried out to iterate problem descriptions and
examine profiles of product delivery and constraint activations against time.

2. Method

2.1 Introduction
This first pilot study involved subjects undertaking analysis/design tasks under conditions similar to those
intended for the CADPRO usability laboratory experimentation. Subjects worked alone, problem
descriptions were no more than half a page, there was a time limit of 50 minutes, and subjects did not use
pen and paper to help them solve the problems. Various decisions had to be made concerning choice of
subjects and tasks. The tools to be used had also to be decided upon as CASEMaker was still under
development. No attempt at this stage was made to reproduce the facilities offered by an actual usability
laboratory: no video or other protocols were recorded.

2.2 Subjects
It was decided that the authors themselves would be the subjects for this first pilot. It was felt important to
get as much personal insight as possible and there was no better way than to have the investigators
themselves tackle the tasks within the proposed 50-minute time limit. How subjects’ experience levels
with a methodology or tool impacted on the artifacts produced will become apparent later. Having the
investigators as subjects inevitably means it is not possible to discount bias: during task selection (see
next section), subjects were exposed to the problem descriptions prior to the 50-minute work period
allocated. Only the reader can judge whether the lessons learnt from this experimental study were
unduly compromised.

2.3 Tasks
A set of candidate analysis/design tasks was considered. The problems were typical of those used in
systems analysis and design classes given in the tertiary education sector and were supplied by one of the
authors (Dr A Brooks) and by Dr D Day, both of whom are experienced in delivering such classes.
Some of the problem descriptions were regarded to be too lengthy for a 50 minute work period i.e. had
they been used, a considerable proportion of available time would have been spent simply reading the
problem description. Some of the problem descriptions were viewed as overly specific i.e. had they
been used, subjects would have essentially been capturing the solution presented rather than solving a
problem. Another consideration was how interesting the problem descriptions were: we were concerned
about using problem descriptions that professionals might simply find boring. Two problem descriptions
were eventually chosen: their descriptions are reproduced in Appendix A. It was decided to perform
data-flow diagram (DFD) modelling for the Mail Order System and class modelling for the MAPLEX
system. All three investigators attempted these problems and produced corresponding DFD models and

3

class models. These models are shown in Appendix B. This work was all undertaken on the same day
at the same location (JRCASE). The investigators tackled the problems at available machines within this
research laboratory. The Mail Order System problem was tackled first followed by a break to make
notes before tackling the MAPLEX problem. The investigators started work on the problems at the
same time.

2.4 Tools
As stated earlier, CASEMaker was still under development, so other tools had to be considered. CASE
tools that were currently available at JRCASE were chosen for the simple reason that they were familiar
to two of the investigators and were known to be immediately operable. Furthermore, it was decided that,
for each problem, different tools were to be used to help provide an understanding of the impact of tool
issues (e.g. human-computer interface issues) on later experimentation. The Toolkit for Conceptual
Modelling 1(TCM Version 1.1.0, Unix, May 1996) was used for DFD modelling and class modelling.
A demonstration version of the MetaEdit2 CASE tool (PC, 1993) was used for DFD modelling. Paradigm
Plus 3(Unix, Version 3.5, 1996) was used for class modelling.

2.5 Self-reporting of experiences
At the conclusion of each 50-minute work period, the investigators met to relate and make notes of their
experiences. On the day following the experiment, further discussion took place to clarify the notes made.

2.6 Metric calculation
Also on the day following the experiment, the investigators met to discuss the proposed metrics. Where
metrics were calculated, the investigators analysed the artifacts created to determine if the metrics
genuinely reflected user productivity and product quality.

3. Discussion of artifacts produced and self-reports.

Small artifacts

All three investigators recognised that the artifacts they had produced were small (no more than 10
bubbles or classes).

Incomplete artifacts

All three investigators recognised that both their DFD models and class models were incomplete, more so
for the DFD models than the class models. Investigator L also knew that the DFD model was
inconsistent (especially with respect to levelling), but didn't have time to fix the inconsistencies.

All three investigators believed their class models to be more complete, certainly with respect to class
identification. The investigators, however, believed much more could be produced if there was a strong
requirement to specify class relationships and message passing between classes.

Iteration

Investigator L was not unhappy with the way the DFD model was developing. Investigator S was unsure
about the way the DFD model was developing but this may have been due to lack of experience with the
methodology. Investigator A had made the decision to start over on the DFD model and had just begun to

1 http://www.cs.vu.nl/~tcm/tcm.html
2 http://www.jsp.fi/metacase
3 http://www.platinum.com/products/appdev/pplus_ps.htm

4

draw a context diagram when a halt was called at 50 minutes. Investigator A specifically regarded his
first attempt as a first cut that needed to be iterated. (This investigator also believed that the lack of
support for levelling in the version of TCM used contributed to the need to iterate the first attempt.) So a
time limit of 50 minutes did not allow the natural process of iteration to improve the solution.

The need to iterate further with the class models was not explicitly expressed by any of the investigators.

Assumptions

Both the Mail Order System and MAPLEX problem descriptions were incomplete in the sense that the
investigators were required to make a variety of assumptions about what they should and should not do.
The assumptions that arose from this study are detailed in Appendix C. It is likely further examination
will yield additional assumptions requiring consideration.

It is very difficult to specify problem boundaries with short written descriptions. For DFD modelling, one
solution might be to actually provide the context diagram. For both problems, it may be worth
considering a maintenance activity so that the context is fully specified and assumptions are kept to a
minimum.

The time limit also had an effect on how one investigator decided on the problem boundaries. Aware of
the time constraint, investigator S assumed a couple of sentences in the Mail Order System problem
description could be ignored.

Solution characteristics of the DFD models

Investigator L worked around the lack of specific notation to handle physical material flow in TCM by
simply writing "(product)" on relevant flows.

Investigator A, realising that levelling was not directly supported in the tool used, attempted to draw a
complete diagram, but became dissatisfied with the solution developing. Attempts at drawing a context
diagram were cut short because the time limit of 50 minutes was reached. This investigator had also
chosen to distinguish between magazine subscribers and non-subscribers believing that these two sets of
customers would be treated differently. But this distinction was to be removed when an attempt was made
to draw a context diagram. Investigator L worked around the lack of support for levelling but found it
difficult and time-consuming.

Solutions for investigators S and A had no mention of the role of the regional offices in the final diagram.
Investigator A said this role had caused confusion. If these offices were external entities then direct flows
between these external entities to the external entities representing customers are prohibited by the norms
of the methodology. Investigator A had also misinterpreted the problem description believing that only
information flowed to the regional offices and not the products. Shortly before the 50-minute time limit
was reached, investigator A had decided to make the regional offices a process.

Investigator S had a regional office (and Customer as externals) part way through. Due to difficulties
with levelling the model he decided to make just a one level diagram. He deleted the Regional Office
external entity then forgot about it until investigator A mentioned it in the subsequent discussion.
Problems with misinterpretations and forgetfulness do usually get dealt with in the daily routine: that they
were determinants of behaviour here suggests that it may be inappropriate to measure user productivity
and product quality over such a short space of time.

Solution characteristics of the class models

Through lack of experience with notation, investigator A had used incorrect notation to specify the
aggregation relation. This investigator had also failed to specify the (1:1?) relationship between features
and labels.

5

Investigator S had outlined separate classes for low-level label details (colour, number, etc). This is
indicative of a boundary problem. Everything in object-oriented analysis and design can be made a class,
but to what extent should the designer be concerned about lower level details for which there are likely to
be existing classes/class libraries is an open question. This investigator had a loop of class relationships
and it was agreed that such loops required careful examination: loops may imply redundancy and poor
quality of solution.

Despite investigator S being more conscious of inheritance relationships (due to the possibility of using
depth of inheritance as a metric) he couldn't find any suitable relationships in the MAPLEX case to model
with inheritance. Investigator L had two inheritance relationships (depth 1) and investigator A had one
inheritance relationship (depth 1).

Unlike the other investigators, Investigator L had provided visibility information for class attributes and
methods. Paradigm Plus had provided default visibilities on creation and Investigator L had made some
edits to make some public methods private.

The investigators differed on their approach to dealing with the "optimisation level". There is a strong
encapsulation argument for associating the level with the map, but what if the level is never examined
after the processed map is saved? Being unable to decide, Investigator S deliberately chose to
compromise and stored the level information in two places. Such redundancy could be considered as an
indicator of poor quality of solution, a solution with unresolved issues.

All investigators had an unspecified user interface class to deal with input/output to the user i.e. they had
all assumed that developing a model of the GUI was not part of the exercise.

Investigator L did not feel she could adequately capture the system using a class diagram only and drew a
state diagram for the map class as well.

The role of constraints

There was general agreement that constraints had played less of a part in doing the class modelling
exercise. It was speculated that given the iterative, prototyping philosophy underlying object-oriented
software development, a highly constrained environment would be extremely artificial and inappropriate
for such an exercise.

The lack of explicit levelling support (in effect, an interface constraint) was the strongest influence on
behaviour and quality of DFD models built using TCM.

The role of the human-computer interface

Interface problems impinged on the investigators’ work. Appendix D lists the interface problems
encountered. Retrospectively, use should have been made of the most modern versions of
MetaEdit/TCM/ Paradigm Plus or equivalents. It has at least been demonstrated that interface neutrality is
extremely important if behavioural analysis is to be relatively uncomplicated.

4. Evaluation of Metrics

Productivity and quality metrics for the CADPRO project were proposed in [4] and [5]. In this section
they are reviewed for their applicability to the artifacts produced in this pilot study and where possible,
metric values are calculated and reasons sought for any variations.

4.1 Productivity Metrics

6

Two metrics were selected as productivity metrics in [5]: McCabe Cyclomatic Complexity and a simple
count of nodes and edges. It is unclear why McCabe’s metric was selected as a productivity metric as it is
usually considered simply as an indicator of the amount of testing required.

McCabe Cyclomatic Complexity

The investigators decided it was not possible to make any meaningful calculations for this metric: they
would have had to make a series of unsubstantiated assumptions to perform any calculation. For example:
How should edges be counted when there are multiple edges between the same nodes - as one edge or as
many? Do external entities count as nodes? Do data-stores count as nodes? A closed loop in a control
graph signifies two independent paths: should a diagrammatic loop brought about by read/write flows to a
data-store really be considered a loop? It is difficult to reconcile the concept of direction in cyclomatic
complexity with DFD models.

The McCabe Cyclomatic Complexity metric has similar difficulties when applied to class models.

To apply graph complexity measures, a more detailed rationale is required.

Count of nodes and edges

This metric involves counting all the nodes and edges in the artifacts produced and is a naive measure of
productivity. For the class model, the metric was extended to include counts of attributes and methods.
Two investigators did the counting and there was no disagreement between them. The results are as
follows:

Investigator DFD model Class model (excluding
attributes and methods)

Class model (including
attributes and methods)

L 48 19 41
S 16 22 43
A 39 12 56

There is a measure of variation in the results that could be exploited. There were, however, a variety of
explanations involved as follows:

1. Investigator S had the lowest score on the DFD model. This was considered due to combination of a
lack of experience with DFD modelling and problems becoming familiar with the MetaEdit user
interface.

2. Investigator L had the highest score on the DFD model. This was due to having to repeat many nodes
to work around the lack of explicit tool support for levelling.

3. Investigator S had the highest score on class modelling (excluding attributes and methods). This was
due to the inclusion of several classes at a low-level of detail. Investigator S had effectively
assumed that these were required.

4. Investigator A had the highest score on class modelling (including attributes and methods). This was
due to assumptions concerning the storing and retrieval of maps, which resulted in many more
attributes and methods being specified.

Does the metric tell us which investigator was the most productive? The answer is no. On the DFD
model, investigator L created more nodes and edges, but this did not mean that a more finished artifact
had been produced. On the class model (including attributes and methods), investigator A had created the
most, but it is simply not possible to say that the resultant artifact is more complete, because additional
effort was undertaken as a result of assumptions being made about what was required. Also notice how
investigator A jumps from being the least to the most ‘productive’ on the class model when attributes and
methods are counted in.

The investigators agreed that such simple counting of elements must always be accompanied by a careful
examination of the artifact produced if meaningful interpretations are to be made. Simple counting

7

metrics unassociated with intrinsic quality factors have little or no direct interpretative power. But they
should not be entirely dismissed. Product delivery measures profiled against time and constraint
activations can help determine how software engineers went about problem solving and the effects of
constraint activations on their behaviour. For example, software engineers who greatly preferred to try
things out and iterate toward a solution may delete as much as they create: so the delivery profile may
have the shape of a jagged sawtooth as the number of nodes and edges rises and falls with each iteration.

4.2 Quality Metrics

Several metrics were proposed as quality metrics in [4]. Information flow and system complexity
metrics were proposed based on the notions of fan-in and fan-out. Design modularity metrics were
proposed based on the notions of coupling, cohesion, and span of control. These design modularity
metrics were not calculated for solutions to the Mail Order System as they should be applied to structure
charts and not data-flow diagrams. A data structure complexity metric was also proposed but the lack of
data structure detail in the artifacts created also precluded any consideration of this metric. In addition,
over twenty object-oriented metrics were listed in the appendix to [4]. Many of these object-oriented
metrics were unsuitable as the artifacts produced did not have the necessary detail for their calculation.
Also, we were aware of only one object-oriented metric whose utility was supported by empirical studies
(depth of inheritance). Focussing on metrics that seemed the most promising, the investigators
reviewed: fan-in/fan-out, inheritance-depth, cohesion and coupling, and number of loops in a class
diagram.

Fan- in/Fan- out

Fan-in for a structure chart is the number of lines entering a component and is equivalent to the number of
other components that call that component. A high fan-in suggests coupling is high. A high fan-out
suggests that the complexity of the calling component is high [9]. Informational fan-in and fan-out can
be likewise considered.

An impediment in applying these metrics to the DFD models produced was how to count flows and
composite flows in the absence of data dictionary information. The investigators judged that the DFD
models were simply not detailed enough to apply these metrics.

The class models were likewise not big or detailed enough. Inheritance hierarchies that were produced
were minimal and message passing was far from complete. The investigators decided not to calculate
values for these metrics.

Inheritance depth (O-O only)

Survey data has revealed that many object-oriented practitioners believe that difficulties in understanding
object-oriented software occur when inheritance hierarchies are too deep [7]. Laboratory data has
indicated that performance can deteriorate when maintainers are asked to extend from a depth of 5 levels
if it is not obvious which class should be specialised from and if tracing through the hierarchies is
required for a sound comprehension [8]. Ease of maintenance is a recognised quality indicator: a simple
quality metric, therefore, is the maximum depth of any inheritance tree. The investigators, however, used
very little inheritance. The results of the calculation of these metrics are as follows:

Investigator Number of times
inheritance used

Maximum depth
of inheritance

A 1 1
L 2 1
S 0 0

8

Does the depth metric tell us which investigator produced the best solution? The answer is no. The depth
metric is clearly inappropriate for such small artifacts: the maximum depth of inheritance used is well
below levels at which maintenance difficulties are known to occur and there is not enough variation.

What is of possible interest, however, is whether or not there should be inheritance, and whether the
correct balance is achieved between superclass and subclass. The investigators who had included
inheritance disagreed with one another on the appropriateness of the use of inheritance in the other’s
solution; and the extent of abstraction in the superclass to facilitate other subclass possibilities that may
be needed in future. A rationale could possibly be established for a specific problem for deciding if use
of inheritance was appropriate and if the extent of abstraction was appropriate.

Cohesion and coupling (O-O only)

High cohesion and low coupling should suggest adaptability of software [9]. If a change is needed then it
is likely to impact on only one module. On the other hand, if modules perform a variety of tasks, and
considerable inter-module communication is required, then the likelihood is that even quite a small
change will require a considerable effort by maintenance personnel to understand and work with many
modules.

Metrics for cohesion and coupling have been proposed by Chidamber and Kemerer [10], but detailed
information, not present in the artifacts produced, is required for their computation. Thus, as a
measure of cohesion, we chose to count the maximum number of methods in any one class, the rationale
being that an object with too many methods may be trying to do too much and lack cohesion as a result.
As a measure of coupling, we chose to count the maximum number of inter-class relations between any
two classes, the rationale being that the greater the number of relations the greater would be inter-object
communication. The results are:

Investigator Maximum number
of methods

Maximum number
of inter-class relations

A 8 1
L 5 3
S 3 3

There is a measure of variation in the results that could be exploited. Do the metrics measure cohesion
and coupling? The answer is no. Investigator A had the highest score for cohesion but this was due to
assumptions concerning the storing and retrieval of maps, which resulted in a few more methods being
specified in a controller object. Investigator A had the low score for inter-class relations because of lack
of modelling experience in this area.

The investigators agreed that these metrics really needed to be applied to larger, more complete, artifacts,
if they were to make any sense. Other concerns include (a) Should get/set methods for each attribute be
counted? Investigator A had included some of these methods, but should such standard access methods
be part of user productivity and product quality measures for creative problem solving work? (b) The
solutions were incomplete and hence, the values are underestimates.

(Note that according to Briand et al [12], very few object-oriented cohesion metrics have been empirically
validated and that where such validations exist, they are sometimes seriously flawed.)

Number of loops in a class diagram (O-O only)

When reviewing the class models produced, the investigators agreed it was worth considering a count of
the number of loops present in the class diagrams. There was variation present that could be exploited and
loops in class diagrams may indicate a lack of quality. The results are:

Investigator Number of loops
in class diagram

9

A 0
L 0
S 3

The solution by investigator S was the only solution to register non-zero for this measure. On inspection,
two of the loops were formed simply from mutual "uses" relationships and were not judged to be
indicators of quality or productivity. These two loops had simply arisen because the investigator had
chosen to insert more detail in one part of the class model. Investigator L suggested that the other loop
could reflect the quality of the solution as it may imply redundancy of relationships. It was agreed that
this should be explored further. Does the metric measure quality? Perhaps.

5. Summary and Recommendations

Some of the metrics were found to be directly unsuitable in the context of this experimental study because
they lacked detailed rationale as to how they should calculated for the artifacts produced. Other metrics
could not be meaningfully calculated because the artifacts produced were small and lacked the detail
necessary for how they should be calculated. Yet other metrics were applicable only to artifacts produced
later in the software life cycle.

Those metrics that could be calculated were found to be unsuitable indicators of user productivity and
product quality in the context of this experimental study. Variation in the values obtained for these
metrics was caused by investigators making different assumptions about what was needed to solve the
problem. This was largely as a result of poorly specified problem boundaries brought about by using short
problem descriptions. To a lesser extent, variation was also caused by the different experience levels of
the investigators with a particular modelling technique or tool.

The lack of explicit support of levelling in TCM was another explanation for unsatisfactory DFD
models. User-interface concerns also impinged more on the work of the investigators than one might
have expected.

The exercise of producing analysis/design artifacts under conditions similar to those intended for
CADPRO usability laboratory experimentation did, however, produce many insights into what will be
required to make future experimentation successful. The investigators make the following
recommendations for consideration in further CADPRO experimentation:

Recommendation 1
Given the inapplicability of the productivity and quality metrics that had been proposed for use in the
CADPRO project, an “ideal” solution for comparison could be used to determine quality of the solutions
produced by subjects. Explicit checklists of good and bad solution characteristics could be drawn up. This
effectively means defining task-specific metrics and reflects the way solutions are assessed under
university examination conditions. Checklist development may benefit from trialing the problems with
large numbers of students in a laboratory setting. An alternative approach would be to have a panel of
experts rank the solutions and to have the experts elucidate their ranking criteria.

Recommendation 2
The time allowed to produce solutions should be extended to allow for iteration, a better chance of
completeness, and for larger artifacts to be produced. It is suggested that at least 2 hours be allowed.
This could be further extended if subjects were allowed to take natural comfort breaks. It will be
important, however, to check that subjects neither get tired or bored with such prolonged sessions.
Subjects could be allowed a full morning or afternoon though mornings are possibly the preferred option
so that subjects don’t carryover concerns from their morning activities. An extended period will allow
problem statements to be larger than the anticipated half page: larger problem statements will be needed

10

to avoid problems with assumptions. With more complete artefacts, the rejected metrics may become
applicable.

Recommendation 3
If subjects are given an extended time, their completion times should be noted. It would not make sense
to hold subjects back for possibly quite lengthy periods of time if they feel they have done all that they
can in terms of solving the problem given them. Data concerning product quality and the amount of
product delivered should be trended with the completion time data to explore for any trade-offs.
Quality/time may prove to be a useful productivity metric. There should be at least two product delivery
measures to include the case of counting deleted units. It simply may not be possible, however, to
determine sensible productivity measurements over only a few hours of work.

Recommendation 4
Subjects could be asked to perform a maintenance task instead of solving a problem from scratch.
Providing a context should help to minimise the number of assumptions subjects may feel they have to
make and the expectation would be for subjects to complete the maintenance task. In DFD modelling, the
provision of a context diagram would quickly and clearly convey the problem boundary to subjects.

Recommendation 5
Problem statements could be reverse-engineered from sample solutions. Such an approach could help to
alleviate problems with assumptions etc.

Recommendation 6
Problem statements could be carefully re-worded to minimise the need for users to make assumptions.
For example, all three investigators assumed they did need not to develop classes for a graphical-user
interface for the MAPLEX problem. The problem statement could state “do not create user-interface
classes”. Such an approach may require repeated re-wording and trialing. It is necessary to perform an
iteration of this approach to determine to what extent the assumption problem persists.

Recommendation 7
As the main goal of the CADPRO project is to measure the effect that constraints have on productivity
and quality, problems could be specified to ensure that subjects will trigger the constraints present in the
tool. A rationale is needed to decide on the constraint environments of interest. For example, it may be
of interest to observe subject behaviour when they are forced to revise the current solution either when a
DFD model has reached a set limit for the number of processes or when a class diagram has reached a set
limit for depth of inheritance.

Recommendation 8
There is a need to establish a rationale concerning the number of diagram types subjects work with.
Analysis will be complicated if DFD modelling incorporates both DFD and entity-relationship diagrams
or if class modelling incorporates both inheritance and state transition diagrams. Should subjects be
concerned about the details of data dictionary entries? Should subjects try and be as complete as possible
in modelling inter-class relationships such as aggregation and message passing? These issues need to be
resolved. What may be natural for the subjects to do is not obvious without greater insights into
industrial/everyday practice.

Recommendation 9
The tools subjects work with must have good user interfaces. If existing tools are used, the latest
versions must be employed. If custom tools are used, their interfaces must be extensively prototyped to as
near to walk-up-and-use quality as possible. Appendix D lists user interface problems encountered by the
investigators.

Recommendation 10
In future data analysis, product delivery measures should be profiled against time and constraint
activations to determine how subjects went about problem solving and the effects of constraint activations
on subject behaviour. It is recommended that, if possible, such an analysis should take place on the next
pilot study and that video records are made.

11

6. Conclusions
 The metrics examined were not found to be suitable indicators of user productivity and product quality
for the proposed usability laboratory experiments. To reduce unwanted variability in future
experimentation, problem descriptions should be more detailed, more time should be allowed, user-
interfaces should be of a high quality, and users should be experienced with the modelling technique and
tool. Quality can be assessed by specific checklists or by a panel of experts. In future data analysis,
product delivery measures should be profiled against time and constraint activations.

Acknowledgments

This work was supported by: an ARC Large Grant to UNSW (CAESAR, Centre of Advanced Empirical
Software Research), an ARC Small Grant to Macquarie University (JRCASE), a DEETYA TIL Grant to
Macquarie University in conjunction with UNSW (JRCASE and CAESAR), JRCASE Centre funding,
CAESAR Centre funding, the Nara Institute of Science and Technology, Macquarie University, and the
University of Strathclyde.

Thanks to Professor R. Jeffery for comments on a draft of this paper. Thanks to Dr D. Day for providing
candidate problem descriptions and useful discussions.

References

[1] D. Day. User responses to constraints in computerised design tools: An extended abstract. Software
Engineering Notes, 21 (5):47-50, September 1996.
[2] D. Day. User Responses to Constraints in Computerized Design Tools. PhD thesis, School of
Information Studies, Syracuse University, 1995. UMI Order Number 95-44905.
[3] D.Day, M. Ahuja, and L. Scott. Constraints in design engineering: a report of research in progress. In
8th Australian Conference on Information Systems, pages 509-516, 1997.
[4] M. Parchkova and D. Day. Selection of Software Quality Metrics for Limited Products in Usability
Laboratory Observation. CAESAR Technical Report 98/1, School of Information Systems, University of
New South Wales, 1998.
[5] R. McDonald and D. Day. Productivity in the Context of Constraints: Selecting Metrics for CASE
Use. CAESAR Technical Report 98/6, School of Information Systems, University of New South Wales,
1998.
[6] N. F. Schneidewind. Methodology for validating software metrics. In J. J. Marciniak, editor,
ENCYCLOPEDIA OF SOFTWARE ENGINEERING, volume 1, pages 666-676. John Wiley & Sons,
Inc., 1994.
[7] J. Daly, J. Miller, A. Brooks, M. Roper, and M. Wood. A survey of experiences amongst object-
oriented practitioners. In Proceedings of the IEEE Second Asia-pacific Software Engineering Conference ,
pages 137-146, 1996.
[8] J. Daly, A. Brooks, J. Miller, M. Roper, and M. Wood. Evaluating inheritance depth on the
maintainability of object-oriented software. Empirical Software Engineering, 1:109-132, 1996.
[9] I. Sommerville. Software Engineering. Addison-Wesley Publishing Company, fourth edition, pages
600-603, 1992.
[10] S.R. Chidamber and C.F.Kemerer. A Metric Suite for Object-Oriented Design. IEEE Transactions on
Software Engineering, 20(6):476-493, 1994.
[11] Scott, L. Hypernode model support for software design methodology modelling. JRCASE Technical
Report 97/2, School of MPCE, Macquarie University, 1997.
[12] Lionel C. Briand, John W. Daly, and Jurgen Wust. A Unified Framework for Cohesion Measurement
in Object-Oriented Systems. Empirical Software Engineering, 3:65-117, 1998.

12

APPENDIX A

Problem Descriptions

Mail Order System

A mail order company advertises products in magazines. Most orders are initiated by magazine
subscribers who fill in and send coupons to the mail order company. The company takes orders over the
phone, answer inquiries about products, and handles payments and cancellations of orders. Products that
have been ordered are sent either directly to the customer or to the regional offices of the company, which
then handle the required distribution. The mail order company has three basic data files that retain
customer mailing information, product inventory information, and billing information based upon invoice
number. During next few years, the company expects to become a multimillion-dollar operation.
Recognizing the need to computerize much of the mail order business, the company has begun the
process by calling in a systems analyst. You are that analyst.

Draw a complete set of logical DFDs for the above system.

MAPLEX (The Computer Bulletin MARCH 1998)

Maplex is an automatic system to put names on maps. Although it has only been on sale since 1996, it
had already been bought and used by seven of the world's major map makers. Then it was taken over by
Environmental Systems Research Institute, the major US geographic information systems firm. Putting
text onto a map is an extremely complex task. Each name must be placed so that it belongs to the feature
it is meant to label - but it must not obscure anything else. If it takes 30 seconds to position each label by
hand, the 20,000 labels on a typical large map will take almost 170 hours, half of the total production time.
Maplex can place 1,000 labels in five minutes. The effort of Chris Jones and his team in developing
Maplex has been split between realising these speeds and making it easy to use. Initially it generates
possible label locations for the different kinds of labels needed on the map. The program then detects
overlaps, and resolves any resulting conflicts to produce an optimal set of label positions. Starting from
an initial overall trial solution for the whole map, a multiphase optimisation process moves towards the
final optimum. The user chooses one of three levels of optimisation the lowest will produce a map in two
minutes, the highest level might take 15 minutes. Map publishers need to balance information, legibility
and artistic effect. A flexible user interface gives cartographers a comprehensive range of options. They
have complete control over every aspect of the label to be placed on the map - font, size, colour,
background and so on. With these options a firm can establish a unique house style to be applied to every
map in a publication.

13

APPENDIX B

Solutions (diagrams)

 Investigator L's class diagram for MAPLEX system

Investigator L's state diagram for MAPLEX system

14

Customers

Regional Office

0.1

Process Orders

orders, enquiries, cancellations, payments
products

products

Investigator L's context diagram for the Mail Order System

1.8

Initiate Transaction

1.9

Process Transaction

1.10

Bill Transaction

type of transaction,
customer info,

order info

order info, customer info

Customer

Order,enquiry, cancellation, payment

Regional Office

Order, bill
Order, bill

Investigator L's level 1 DFD diagram for the Mail Order System

15

1.1.1

Determine type of transaction

Customer

type of transaction, customer number, product number

1.2.1

Get Customer Details

Transaction number, transaction type,
customer number, product number

Transaciton Records

Investigator L's level 1.1 DFD diagram for the Mail Order System

1.2.1

Process Transaction

1.1.3

Get ProductInfo

Transaction type, Transaction number,
customer info, product info

1.3.1

Get Billing Info

Response, transaction number,
customer info, product info

Investigator L's level 1.2 DFD diagram or the Mail Order System

16

Investigator L's level 1.3 DFD for the Mail Order System

1.2.1

Process Transaction

1.3.1

Get Billing Info

Billing Info

Transaction number, customer info,
product info

Billing info, invoice number

response, transaction number,
customer info, product info

Customer

Regional Office

Invoice (and product)

Invoice

17

magazine
subscribers

customer_mailing_information

product_inventory_information

billing_information

other
magazine
readers

1
process

order

2
process
inquiry

3
handle

payment

4
cancel
order

cancel_order

cancel_order

what_is_up

what_is_up

coupon_order

coupon_order

phone_order

phone_order

delete_invoice

amend_inventory

delete_non_subscriber

invoice

invoice

customer_address

bill_copy_info

payment

payment

details_if_not_subscriber

bill_info

inventory_info

inquiry_answer

inquiry_answer

Investigator A's DFD diagram for the Mail Order System

Investigator’s A’s late attempt at drawing a context diagram for the Mail Order System

18

list_of_maps

get_map
add_map
delete_map

mapstore

font
size
colour
background
etc.

get
set

user_style_options

work_map
finished-map
optimisation_level
user_choices

get_user_info
get_map
get_lables
do_trial_solution
detect_overlaps
resolve_conflicts
save_map
display_map

controller

user_interface

list_of_labels
map_id

get_lable
add_label
delete_label

label_store

type
text
user_style_choices
map_location

get
set

label

map_id
list_of_features

get_feature
add_feature
delete_feature

map

feature

list_of_labels
list_obscured_features

get_label
add_label
delete_label

labelled_map

is_a

1..100

is_kept_in

1..1000

is_kept_in

Investigator A's class diagram for the MAPLEX system

19

Investigator S’s DFD diagram for the Mail Order System.

20

optimisationLevel

setOptimisationLevel

Map

font
text
size
color
background
coordinates

detectOverlapWithOtherLabels
checkFeatureCoordinates

Label

label
type
coordinates

Feature

1

1

has

1

1000

container

containee

contain

String

User
optimisationLevel
map
listOfLabels

setOptimisationLevel(level)
detectOverlap(map,optimisationLevel)
addLabel(coordinates)

MaplexSystemsetOptimisationLevel

has

1

1000

hasListOf

x
y

Coordinate

detectOverlap

addLabel

Color

Number

Investigator S's class diagram for the MAPLEX system

21

APPENDIX C

Assumptions

List of encountered assumptions for the Mail Order System

Do you have to delete a non-subscriber's mailing details after a cancellation?
Do you allow for prepayment with cheques, credit cards etc?
Do you have to deal with the process of subscribing to the magazine?
Do you have to model the process of paying for advertisements to be designed and placed in the
magazine?
Do you have to model the Internet and its business use?
Do you have to fully document processes/flow/entities or just simply name them? For example, should
you write a process description?

List of encountered assumptions for the MAPLEX system

Do you have to model the process of feature addition and deletion to maps?
Do you have to model the process of label addition and deletion to the system?
Do you have to model feature details?
Do you have to model the displaying of maps?
Do you simply assume features and labels have a 1:1 cardinality relationship?
(Perhaps a feature can have more than one label?)
To what extent do you have to model the list of labels? (Can you assume they are already in a data-store?)
Do you have to model the storage of raw/processed maps? (Do "raw" maps need to be kept?)
To what extent should class relationships and message passing between classes be specified?
Can other diagram types be used to aid the design work?

22

Appendix D

Interface Problems

List of interface problems encountered for the Mail Order System

In TCM, to directly edit a comment, you are required to use arrow keys and not mouse to select
insertion/deletion point. This is a non-intuitive implementation of editing.
In TCM, no special data-flow symbols to show record deletion.
In TCM, levelling not explicitly supported (but levelled diagrams still achievable). There was no
automated support for numbering processes or checking consistency between levels.
In TCM, data-flows had to be connected at both ends, making simulated diagram levelling awkward.
In TCM, only allowed to work with one diagram at a time, so had to print out diagrams while trying to
simulate levelling.
In TCM, problems with delete button not functioning as it should (had to "cut" instead of delete).
In TCM, no special symbols to signify material flows and stores (workaround by L, stress by A)
In TCM, automatic process numbering goes awry when creating more than one diagram.
In TCM, disappearing label problem during creation when several data-flows already entered and labelled
from the same external entity.
In MetaEdit, no automatic numbering.
In MetaEdit, data-flows had to be connected at both ends.
In MetaEdit, mode approach meant you could easily start creating an unwanted flow or process.
In MetaEdit, the process of drawing data flows was error prone because the action was inconsistent with
previous experience. Initially it was unclear how to create data flows.

List of interface problems encountered for the MAPLEX system

In TCM, often started creating an unwanted class when another action was desired.
In TCM, could not use 1..N for cardinality so guessed a number for N such as 100 or 1,000. (But would
"*" be acceptable to TCM?)
In TCM, with a 4-digit cardinality, user forced to move linked classes apart so that cardinality number is
clearly visible.
In TCM, class relation symbols unclear for novice user.
In TCM, mouse sensitive areas very close together so the activity of specify roles or cardinality on class
relations was prone to selection errors.
In TCM, could not separately move cardinality Role to make diagram clear.
In Paradigm, cardinality had 1:* default, with apparently no way of specifying 1:1 cardinality on class
relations.
In Paradigm, often started creating an unwanted class when another action was desired.

