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An Optimality Testing Algorithm for a Decoded Codeword of
Binary Block Codes

Tang Yuansheng *

Abstract— For the iterative soft-decision decoding algo-
rithms, a testing condition on the optimality of a decoded
codeword based on h candidate codewords is proposed by
Kasami et.al. recently. The greater the number h of the
candidate codewords, the stronger the testing condition.
The computational complexity and the effectiveness of the
testing condition of the cases h < 3 have been investigated
by Kasami et.al. In this paper we propose an algorithm to
compute the testing condition of the case h = 4, the com-
putational complexity of this algorithm is also discussed.

Keywords—Binary block code, maximum likelihood de-
coding, iterative soft-decision decoding, optimality testing.

1 Introduction

To reduce the decoding complexity of soft-decision de-
coding binary linear block codes, many iterative soft-
decision decoding algorithms were proposed, such as
those proposed in [1]-[7]. In most of this class of al-
gorithms, a simple decoder is employed to generate a
sequence of candidate codewords that will contain the
optimal (or most likely) codeword certainly or with
very high probability. One important problem for this
class of algorithms is to develop the testing conditions
on the optimality of the candidate codewords. When
a new candidate codeword is generated, a testing con-
dition is applied upon it and the decoding iteration
process is terminated as soon as the testing condition
is satisfied, and if the computational complexity of the
testing condition is reasonably smaller than that of the
procedure for generating the next candidate codeword,
it will reduce significantly the decoding delay and the
computational complexity of the decoding algorithms.
A number of testing conditions on the optimality of the
generated canditate codewords have been derived, such
as those proposed by Taipale and Pursley [4], Kaneko
et.al. [5]. Recently, based on h canditate codewords
which are generated previously, Kasami et.al. in [7]-
[10] derived a powerful sufficient testing condition on
the optimality of a canditate codeword which can be
incorporated in any of the iterative soft-decision de-
coding algorithms which are based on the generation
of a sequence of candicate codewords. For greater h,
the testing condition is stronger whereas the computa-
tional complexity is greater. In [7]-[10], for the cases of
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h < 3 of this testing condition, the authors proposed
further some concrete computation methods, for which
the numbers of operations of real numbers (the majori-
ties of the computational complexity) are only of order
N the length of the code, and even the case of h = 2
of this testing condition is also stronger than the one
proposed by Kaneko et.al. [5]. In this paper, we will
show some general results for this testing condition fur-
ther and propose a concrete computation method for
the case of h = 4, for which the number of operations
of real numbers is of order N2.

In Section 2, we will introduce the sufficient testing
condition proposed by Kasami et.al. in [7]-[10], which
is based on h canditate codewords generated previously
and expressed by the minimum of a real-value function
on a set Q of 2"-tuples of nonnegative integers. In Sec-
tion 3, we present some general discussions on the set
@, and show that for computing the minimum for the
case of h = 4 it is enough to consider a subset Qs of @
which can be expressed as a union of at most 9 simpler
subsubsets, the minimums on each of the subsubsets
can be computed easily. Some concrete computation
methods for the minimums on the subsubsets are pro-
posed in Section 4. The computational complexity of
our computation method for the testing condition is
also analyzed in Section 4. Since the number of oper-
ations of real numbers of our computation method is
only of order N2, it is still very effective and provides
a faster termination of the decoding iteration process
than the cases of b < 3 do.

2 The testing condition of optimality

Let u; denote the j-th component of a tuple u. Let
V¥ denote the set of all binary N-tuples. Suppose a
binary block code C C V¥ is used for error control
over the AWGN channel use BPSK signaling. Assume
7 is a received N-tuple at the output of a matched filter
in the receiver, and let z be the binary hard-decision
N-tuple obtained from » by

1, forr; >0,
zZ; = 0,

for v, < 0 j=1,2,...,N. (1)

|r;| indicates the reliability of z; for each j.
For a tuple ue V¥, let

Dy(u) 2 {itu; #£2;, 1<i< N}, (2)
Do(u) = {1,2,..., N}\Dy (u), (3)



and call L(u) = > iepy(u) ITs| the correlation dis-
crepancy of u. Then the maximum likelihood decod-
ing (MLD) can be stated in terms of the correlation dis-
crepancy as follows: The decoder decodes the received
tuple r into a (the optimal) codeword Copt € C which
satisfies

Lleopt) = min L(c) 4)

Let h and di,ds,...,dn be positive integers, and
u', u?, ..., u” be h reference tuples in V¥ (candidate
codewords in C generated already). Write

Ca(u) 2 {ceC: dg(u',c) < d;},

where dg(u’, ¢) is the Hamming distance between u*

and c. Let cpqq be a (the best) codeword in R 2
Uk Cy, (uf) which satisfies

Licpest) = IcneiEL(c)' (5)

We assume that c},o44 has been generated in the iter-
ative process of decoding, our goal is to consider the
testing of the optimality of c})o4i- We denote the set

h

ﬂ{u e VYV dy(u',u) > d; +1}

=1
by lef,dzwqdh(ul, u?, ..., uh), it is a superset of C\R.

Let B" denote the set of all sequences of length

h over B = {0,1}. For a € B", let a; denote the
i-th bit of @, (—1)® denote the sequence in B" with
(—1)%¢ as its i-th bit, & denote the sequence in B"
with a; = 1 — «;, and write
R

K A
() e (), 10 £ el (©)

=1

e

Do

Clearly, for any two distinct sequences « and o' in B?,
Do N Dy = O(the empty set). (7)
For ue V¥ and a € B", let
n(u) = [D1(u)|, qo(u) = [Dr(u)NDal,  (8)
then we have that
0 < 4, (8) < ey [Do(w) N Dal = 7 = galus). (9)
Hence, for any u€ V¥, with respect to (7) we have
dg(u,u’) —n(u?)
= [Do(w) 0 D1 ()] + [D1(w) 0 Do(u’)] — [Dr(w)]
= |Do(u) N (Vaepr,a;=1Da)|
+|D1(u) N (Ugenr a;=0Da)| = | UaeBr,a;=1 Dal

- >

a€EB" o;=1

(Mo = ga(u))

= Y (-1)%gu(u), i=12,... h (10)

Fori:=1,2,...,h, we write
§; 2 d; + 1 — n(ud). (11)

Let Q@ denote the set of all the 2"-tuples ¢ over
nonnegative integers which satisfy

0<gq, <ng, ac B (12)
Y g (-6, i=1,2...h (13)
aEeB
For each N-tuple w in V¥, (u',u?, cooul),
by (10) we see that the 2"-tuple (g, (u) : a € B")

belongs to Q. On the other hand, we see easily that for
each 2"-tuple g with (12), there is at least one N-tuple
win V¥ such that g, (u) = q, for all « € B*, and ue
Vi g a, (uh 0, ul) if g satisfies (13) further.

Without loss of the generality, we assume further
that the components of the received tuple r are ordered
in the increasing order

| < ral < ... < Jrwl- (14)

For subset X C {1,2,..., N} and integer j < |X],
let XU) denote the set of j smallest integers in X if
j > 1, the empty set @ if ; < 0, respectively. For
convenience, we write also X (9) 2 {+o0} for j > | X|,

and |74 o0 = +o00. For any 2"-tuple q over nonnegative
integers, let

yAN YAN
D(q) S Upen DI, (@)= Y Jril. (15)
ieD(q)

We see that L'(q) = +oo if g, > n, holds for some
a € B". We write

VAN .
LIVi . (w02, u?)] S min L(g). - (16)

About the optimality of cp g, we have the following
suflicient testing condition([7]-[10]).

Lemma 1 ¢, is the optimal codeword copy if

L(cpest) S LIVE 4 g (uhu?, u™). (17)

In [7]-[10], for the cases of h < 3 some effective
methods for computing L[dey,dz,...,dh (ul,u?, ... uh)]
were proposed, the numbers of operations of real num-
bers (the majorities of the computational complexity)
of these computation methods are of order N. In this
paper, we mainly consider the case of h = 4.

If §; < 0 for i = 1,2,...,h, then the all zero 2"-
tuple ¢ = 0 belongs to @, and L[Vd{dz’m,dh(ul,uz,

..,u™)] = 0, this also means the hard-decision tuple
z belongs to the set V¥, (ul,u?,...,u"). Below
1,62,---,0h

we suppose that §; > 0 for at least one index .



3 General discussion on the set ()

Let Q* denote the set of all the 2"-tuples ¢ over

For any g€ Q, write SPq =
A

{a e B": q, > 1} and A(q) = Y cpn 9a(—1)%. For

any two tuples v, 7' over integers with the same length,

we write v < v if 7; < 7} for all indices 7. Let 'y denote

the set of h-tuples v over nonnegative integers for which

v; = 0 holds for at least one index i. If subset = C B"
and h-tuple v € 'y satisfy

(D% Ly, (D" +(-1)% £+ (18)
for all sequences «, &’ € Z, then we call = m(vy)-set.
About the sufficient testing condition shown in
Lemma 1, we have
Lemma 2 Let Qy be the set of the 2" -tuples q in Q
for which A(q)—6 € Ty and SPq are m(A(q)—6)-sets,
where § is the tuple with components §; defined by (11).
Then we have
r
Jmin ()=

Proof: One hand, since Qs C Q, we have
min L'(q) > LIV 4 4 (uh,u?, .. u™). (20)
Ve vz

nonnegative integers.

L[ley,dz,...,dh(uliuzi" . 7uh)]' (19)

On the other hand, let g€ Q be a 2"-tuple satisfying
L'(q)= LIV 4 4 W' v’ uM)], (21)

and assume further that ZaeBh q,, achieves minimum
among the 2"-tuples of this kind. We see easily that
SPgq must be an m(A(q) — 6)-set and furthermore
A(q) — 6 € Ty, i.e. g€ Q. Hence, we have also

q%lg}w L ( ) < L[lef,dz,...,dh (ul, uz, . 7uh)]a (22)
and thus (19) is valid. AN

The main goal of this section is to show for the case
of h = 4 that Qj; is a union of at most 9 simpler sub-
sets, for each subset Q' there exists an index subset 2
with at least 27! elements such that the 23 compo-
nents q; with ¢ € = of any 2*-tuple q in Q' are zero,
the computation of mingeg L'(q) is considered in the
next section.

Clearly, if Z is an m(7y)-set, then = is an m(0)-set
and the all one sequence 11---1 does not belong to =
and there is no a € B" such that {a,@} C E, and
thus |Z| < 2°71. If m(y)-set = satisfies |Z| = 2771,
i.e. either « € Zora € E for any a € B, we call =
M (v)-set. Clearly, if Z is an M (7)-set, then = is an
M (0)-set too.
Lemma 3 If h =
following 12 sets

Cgé{OZEB4ZOlg:0},
DiS{aeB*: Y, a; <1},
Egé{a EB4:Z§¢eaj:2,ag:0}
U{a e B*: 3 a; <1}, £=1,2,34.

4, then all the M(0)-sets are the

Proof: Assume Z € {Cy, Dy, E¢}7_,. Since for any
two sequences a, o’ € Z there is at least one 7 such that
a; = o =0, wesee (—1)* £ 0and (—1)”‘—|—(—1)°‘I £ 0.
Hence E is an m(0)-set. Furthermore from |Z| = 8 =
2*~1 we know = is an M (0)-set.

Now suppose = is an M (0)-set. If there is an i
such that a;, = 0 for all @ € Eor o =0, o) = 1,
1 # 19 for some o’ € B, then = = C;,. Now we assume
a?) = 1 for four sequences a'® € =, i = 1,2,3,4, and
2;21 a; < 2for all a € Z. Let @ denote the set of the
sequences o € = with Ej‘:l a; = 2. By |E| = 8, we
know |®| > 3. We assume, without loss of the general-
ity, that {1100,1010} C ®. Clearly, any other element
in ® must belong to {0110, 1001}. Thus by 0110 = 1001
we know E € {F,, D1 }. AN

For h-tuple v € Ty and sequence a € B, let ¢(v)
denote the set of indices ¢ with v; < 1 and write the
elements of {(v) as ¢y, ¢a,...,% in the increasing order,

let Py (a) £ Oy Oy o
A
,P(PY) = (7’&'1571'2, e

C B", let P,[E] = {Py(a) : a € E}. Clearly, = is
an m(y)-set if and only if P,[Z] is an m(P(7))-set.

N yaN
@iy P*(7) = YirYir -+ %, and

, iy )- For h-tuple v € Ty and sub-

set =

Lemma 4 Assume = C B and v € T.

1. If E is an m(y)-set, then Z must be a subset of some
M ()-set.

2. If E is an M(0)-set, then = is an M(v)-set if and
only if

P (v) € Py[=], (23)
E={aeB": P, (a) € P, [Z]} (24)

Proof: 1. Assume Z is an m(y)-set. Firstly, we con-
sider the case of v = 0. If m(0)-set = is not an M(0)-
set, we conclude, for any 8 € B* with {8,8} N = = 0,
that either ZU {8} or ZU{B} is m(0)-set. Assume the
contrary for some 8 € B" with {3,3} N Z = 0 neither
ZU{B} nor ZU{B} is m(0)-set. Then there must exist
two sequences «, o' € Z and integers £,£' € B with
£+ ¢ > 1 such that

(-1)7 +¢(-1)* (-1)% + ¢ (-1

<0,
Clearly, we have £(—1)* 4 ¢'(—1)*" < 0 and it contra-
dicts that = is an m(0)-set. Hence = must be a subset
of some M (0)-set.

Secondly, we consider the case of P(y) = v, ie.
v < 1lfori = 1,2,...,h. Since Z is an m(y)-set,
from —(—1)7" (M <y and (=1)7" (M £ ~ we know ZU
{P*(v)} is an m(0)-set. Hence, there is an m(0)-set =’
such that ZU {P*(y)} C E'. Furthermore, for any pair
of sequences o, a' € Z', since (—1)* + (—1)0‘/ £ 0, we
know there is at least one index ¢ such that a; = o, = 0,
and thus (—1)® + (—1)*" £ 5. On the other hand, for
any sequence 8 € Z', by (—1)?+(—=1)7"(M £ 0 we know
there is at least one index j such that 3; = v; = 0,
and thus (—1)# £ 4. Hence Z is an M(vy)-set which
contains Z=.

1)* <o.



Now we consider the case of P(«) # 4. Since P,[Z]
is an m(P(7))-set, there is an M (P(7))-set, denote E/,,
which contains P,[Z]. Then the set

{a€ B": P (a) €EL}

is an M (y)-set which contains E.

2. One hand, assume = is an M(y)-set, and write
o = |{(v)]- From

T

[1]

cZ ={aeB":P,(a) e P,E]},
we see 271 = |E| < 2"=9|P,[E]|, i.e. |P,[E]] > 2071
Since P, [E] is an m(P(7))-set, we have |P,[Z]| < 2771
Hence |P,[E]| = 2°71, and then P,[E] is an M (P(v))-
set and Z = =’ i.e. (24) holds. Moreover, according to
(—1)P* (M < P(v), we know P~(v) ¢ P,[Z], and then
P*(vy) € Py[E], i.e. (23) holds.

On the other hand, assume E is an M (0)-set and
satisfy (23) and (24). From (24) we see P,[Z] is an
M (0)-set, i.e. for any two sequence 3,3 € P,[Z] we
have (—1)% + (—1)'5' £ 0, hence there exists at least
one index 7 in () such that 8; = 8, = 0 and thus by
(23) we know

(=P £ P(v), (-1)° +(-1)% £ P(v).

Then P,[Z] is an M (P(y))-set, and furthermore = is
an M (v)-set. AN

Assume h = 4 and 1 < £ < 4. Let A denote the
set of 4-tuples A > § over integers with all even or
odd components. Clearly, A(g) € A for all the 2*-
tuples ¢ in Q. Let Q(C¢) denote the set of the 2%-
tuples g€ @ which satisfy SPqg C C; and A(q), =
8s. Let Q(Dy) denote the set of the 2*-tuples g€ Q
which satisfy SPg C D, and A(q); = p(Dy); for j €
{1,2,3,4}\{¢}, where p(D,) is the unique 4-tuple in A
which satisfies P*(p(D¢) — 6) € Dy. Let Q(FE¢) denote
the set of the 2%-tuples g€ @Q which satisfy SPq C Ey
and A(q) = p(Ey), where p(Ey) is the unique 4-tuple
in A which satisfies P*(p(E,) — 8) € E,.

For h = 4, the following theorem says that the set
Qs defined in Lemma 2 is just the union of the sets

Q(E) of all the M(0)-sets =.
Theorem 1 If h = 4, then we have

Qu = J(Q(C) U QD) U Q(EL)). (25)
=1

Proof: On hand, assume q is an arbitrary tuple of
Qu. Since SPq is an m(A(q) — 6)-set, by Lemma 4 we
see that there is an M(A(q) — 6)-set Z with SPq C 2
such that (23) and (24) hold for y = A(q) — 6.

If = = C, for some ¢, then by (24) and the definition
of Cy we know that { must belong to the index set
C(A(q) — 6) and thus by (23) we have A(q), — 6, = 0.
Hence ¢ belongs to Q(Cy).

If = = D, for some ¢, then by (24) and the definition
of D, we know that {1,2,3,4}\{¢} must be subset of
C(A(g) — 6). Hence from (23) and A(g) € A and the
uniqueness of p(D,) we know A(q); = p(D,); for j €
{1,2,3,4}\{¢}, and thus g belongs to Q(D,).

If = = E; for some £, then by (24) and the defi-
nition of E, we know that {(A(q) — é) = {1,2,3,4},
ie. A(g); —6; € B for j = 1,2,3,4. Hence by (23)
and A(g) € A and the uniqueness of p(E;) we know
A(q) = p(E;) and we see g belongs to Q(E;).

One the other hand, assume g€ Q(Z) for some
M (0)-set Z. By the definitions of Q(E) and =, we see
easily that (23) and (24) hold for = and v = A(g) — 6.
Thus by Lemma 4 we know = is an M(A(q) — §)-set,
and sequencely SPq is an m(A(q) — 6)-set. By the def-
inition of Q(E) we have also A(g) — 6 € I'g. Hence ¢
belongs to Q. AN

The following lemma shows some properties for the
2*-tuples ¢ in the sets Q(Z) for each M (0)-set =.

Lemma 5 Assume q is a tuple in Q(E) for some

M(0)-set = and let X\ = A(q). Then

1. If 2 = Cy, then 6y > 6; for j # L, and Ay = by and
max{—ég, (S]} S A] S 6g fOTj S {1, 2, 3, 4}\{[}

2. If 2 = Dy, then max{p(Ds)e, max;+¢{|p(De);|}} <
YizeP(De)j, Aj = p(De)j for j € {1,2,3,4}\{¢} and
max{— 2., p(De)j, p(De)e} < Ae < 325y p(De);.

3. IfE = By, then 1 p(Be); > 0 and p(Ee)e +

minj¢g{p(Ez)j} 2 0 and A = p(Eg).

Proof: 1. Assume E = C, i.e. g€ Q(C;). By the
definition of Q(C), we have A(q), = 8,. Thus &, =
Ae = ZaGC{ 4, 2 ZaEC( q,o‘(_l)aj = )‘] 2 6] and
Aj > — EaECl g, =6 forje€ {17 25354}\{£}‘

2. Assume E = Dy, i.e. g€ Q(D;). By the defini-
tion of Q(Dy), we have X\; = p(Dy); for j € {1,2,3,4}
\{¢}. Since Zﬁ%(—l)o‘j > 1 for all « € Dy, we see
E]‘#P(DZ)J‘ = Ej;ée Aj = Ej;ée YacD, g,(-1)% >
YaeD, 9o 2 max§:1{|)\j|}. Clearly, we also have
e 2 p(De)e.

3. Assume = = Ey, i.e. g€ Q(E,). By the defini-
tion of Q(E,), we have A\; = p(E,); for j = 1,2,3,4.
Since for all & € E; we have 2?:1(_1)% > 0 and
(=1)* + minj,{(-1)*} > 0, we see Ej‘:l Aj >0
and Ay + Ininj;ég{kj} > 0. AN

In general, for some M (0)-sets = the sets Q(Z)
are empty and should be excluded from further con-
sideration. Let X denote the set of M(0)-sets = with
Q(E) # 0. Without loss of generality, hereafter we
suppose

61 > 63 > 63 > 54, 61 > 0. (26)

The following Lemma 6 and Theorem 2 show that
the Qs is a union of at most 9 subsets Q(E), and as
the simplest case, is equal to Q(C1) if 62 +63+1 <0
and 2?21 p(El)i < 0. These results will reduce in some
extent the complexity of our computation methods for



the sufficient testing condition which are proposed in
next section.

Lemma 6 (i). U}_,Q(C,) C Q(C4).

(ii). If p(D1)1 > Y, p(D1);, then Dy ¢ X.

(i), If 63+ 64+ 1 < 0, then {E3, B4, D2} NR = 0.
(il’). If($2 + (54 +1< 0, then {Eg,Dg} NN = @

(v). If 63+ 63 +1 <0, then Dy & R.

(vi). If 61 +64 +1 < 0 or Z‘;:l p(E1); < 0, then
B ¢X

Proof: Assume g€ Q(E) for some M (0)-set =.

(i). If 2 = Cy, wesee by = A(q)e = Y e o >
Yacz 4o(—1)** = A(q)1 > 61. Hence by é6; > &
we see A(q); = 61 and a3 = 0 for all @ € SPyq, i.e.
g€ Q(Ch).

(ii). If = = Dy, then by Lemma 5 we see p(Dq); <

4
Ej:Z p(Dl)]

(ii). If 2 = F;3 or Ey, then by Lemma 5 we see
p(E3)s 4+ p(E3)s > 0 or p(Ey)s + p(E4)s > 0. Since
az+ay <1lforalla € E3UE,, wesee (p(Ey)s —b63)+
(p(E4)4 - 64) S 1. Hence 53 + 64 +1 Z 0.

If & = D,, then by Lemma 5 we see p(D3)4
lp(D2)1] < Xjsp p(D2)j, ie. p(D2)s + p(D2)s 2
We can also see (p(D2)s — 83) + (p(D2)a — 64) <
Thus53—|—54—|—120

(iv). If E = E,, then by Lemma 5 we see p(E3)s +
p(E2)a > 0. We can also see (p(E2)2 — 62) + (p(E2)s —
64) < 1. Hence 6+ 64+ 1 > 0.

If © = D3, then by Lemma 5 we see p(D;)
lp(Ds)1| < 3055 (Ds)j, ice. p(Ds)2 + p(Ds)a
We can also see (p(D3)s — 62) + (p(D3)s — 64)
ThHS($2+64+120

(v). If 2 = Dy, then by Lemma 5 we see p(Dy); =
[p(Da)1] < 32524 p(Da)j; ie. p(Da)2+p(Ds)s 2 0. Wi
can also see (p(D4)2 — 62) + (p(D4)s — 63) < 1. Thus
b +63+1>0.

(vi), If = = Ej, then by Lemma 5 we see
Ej‘:l p(E1); > 0 and p(E1)1 + p(Eq)sa > 0. We can
also see (p(F1)1 — 61) +(p(E1)s — 84) < 1. Hence
61+64+12>0. JAVAN

=l

faary

IN IV
=2

The following theorem is a direct corollary of
Lemma 6.

Theorem 2 Assume 6; satisfy (26), then we have
N\{Cl,02,C3,04} C N*, (27)

where N* is defined as

(i). O if 62465 +1 <0 and S5, p(E1): < 0;

(ii). {E1} if 63+ 63+ 1< 0 and ;_, p(E1)s > 0;
(iii). {Da} if 63+ 65 +1>0 and 6y +65 +1 < 0;
(il’). {El,D4} lf(Sz +(53 +1 2 0, (51 +54 +1 2 0 and
6o+ 644+1<0;

(’U). {E],Eg,Dg,D4} Zf(52+64+l >0 andbs3+64+1 <
0;

(’UZ) {El,EQ,Eg,E4,D2,D3,D4} Zf(Sg +64+]. 2 0 and
p(D1)1 > 2?22 p(D1)i;

(’I)’LZ) {El,Ez,Eg,E4,D1,D2,D3,D4} Zf P(Dl)l S

E?:z P(Dl)i'

4 Computation methods for the testing
condition of the case h =4

For any M(0)-set Z, if = € N, i.e. Q(E) # 0, then we

write

>

L= min_L'(q), (28)

q<Q(E)

if =2 ¢ R ie Q) =0, then we write L = 2 +oo. If
6; satisfy (26), then according to Theorem 1 and (i) of
Lemma 6, we know

Qu = Q(Cy) U ( U Q(E)) . (29)
ZEN*
Hence by Lemma 2 we have
L[del’,dz,ds,dz;(ul’ u?, v’ ut)] = Ee{rgli?uzi* LE. (30)

By using of the Lemma 5, we will propose some
sub-algorithms for computing L_Z in the subsections
4.1-4.3 for = = C4, Dy and FEy, respectively. A main
algorithm for computing L[Vd]l’,dz,ds,d‘; (u', u?, u?, u?)]

is proposed in subsection 4.4.

4.1 Sub-algorithm for computating L_C;

From 1 of Lemma 5, we can get the following corollary
easily.

Corollary 1 Write 67 = max{0, (61 + & + 1)/2]},

i = 2,3,4. Then Q(C1) consists of the 2"-tuples q in
Q* which satisfy (12) and

Qo000 1+ Dooo1 T Doo10 T o100
+do110 + Qo101 + o011 + o111 = 61,
40000 t 90001 t o010 t Do011 = ‘5§a (31)
20000 + Q0001 + o100 + Y0101 = 65,
20000 + 90010 + o100 + o110 > 05
q, =0, foradgdC.

For integers d, k with 0 < d < 67, 0 < k < &1, let
Ry be the set of the 2h-tuples ¢ in Q* which satisfy
(12) and

90000 + 90001 = @
o010 + 90100 T Do110 T Qo101
+4o011 + 90111 = 61 — 4,
do010 + doo11 2 5? —d, (32)
Qo100 + Qo101 > 65 — 4,

Qo000 t Qo010 t o100 + o110 = K,
q, =0, fora ¢ C.

Clearly, we have

Rd,ég ={g € Q(C1) : dooo0 + o001 = 4}, (33)
RM? CRd,gg,l C...CRgoCQ". (34)

If a 2*-tuple g€ Ry, satisfies

L'(g)= min L'(q'), (35)

q'€Rg 1



we call it Rg ;-tuple. We consider to find a Rd éc—tuple
104
for each d with R ;¢ # 0.
194

At first, we give a condition for Rgo # (. Assume
Ry # 0. From (32) and (12), we have 0 < d < ngooo +
10001, 01 — d < Moo11 + Mooto + o101 + o100 + o110 +
no111, 65 — d < moo11 + Rooto, 65 — d < No101 + o100
and max{6S — d,0} + max{6§ — d,0} < &; — d. Write

A
*
dl = 61 — ™go11 — Mo010 — Mo101 — M0100

—7No110 — Mo111, 36

d' £ max{0,d;,ds,d;, 65 + 65 — 611,

(36)

VAN IRVAN
dj =65 — noo11 — o010, d3 = 65 — note1 — Notoo, (37)
(38)
(39)

A
d” = min{61, mg000 + T0001 }- 39

Then we have d* < d < d".
On the other hand, assume d'<d<d. Let

v(d) 2 6 — d — max{6S — d,0} — max{s{ — d,0}, (40)
C C
V(d) = (Doo11 U 770010)(52 Dy (Do101 U D0100)(§3 7d), (41)

V*(d) = (Doooo U Duool)(d) U V(d) U ((Doo11 U Doozo
UDy101 U Do1go U Dop110 U D0111)\V(d))(v(d))- (42)

Then v(d) > 0, and it is easy to illustrate that the 2%-
tuple ¢, which satisies D(g) = V*(d), must belong to

Ry, and furthermore it is a Ry p-tuple for all k < vq 2
[V*(d) N (Doooo U Dop1o U Do10a U Do11o)|. If 67 > vg,
we will give a R, ;c-tuple by iteration.
104

For X ¢ {1,2,...,N}, let s(X) and I(X) de-
note the smallest integer and the largest integer in
X, respectively. For convenience, we define s(0) 2
+oo, 1(0) 2 —o0, and |r_s| £ _o. We note that
|7 +oo| has been defined as +oo before. We have the
following lemma.

Lemma 7 Assume Ry i1 # 0 and g¥F is a Ry p-tuple
which satisfies

d,k d,k d,k dk _
Qo000 T 90010 T o100 + doi10 = % (43)

then there exist two sequences o € {0000,0010,0100,
0110} and B € {0001,0011, 0101,0111} such that the
24 tuple q with

_ dk _ bk

Qo = 4o, Jor all o’ € B*\{a, B},

s a Ry pq1-tuple.

The proof of this lemma is given in the appendix
of this paper. It is easy to see, for the output Q(d)
of the following Procedure-C, that Q(d) = D(q) for
some Rdyégg—tuple q if Q(d) # {+oc}, and Rd,ég =0if

Q(d) = {+oo}.

Procedure-C
Input: Received tuple r with (14). Integers 65, 65,

65 and d. Sets V*(d) and Da, o € C.
Output: Set Q(d).

Start: Let Vj = V*(d) and goto Step 0.
Step m:

If [V N (Doooo YU DPooro Y Dotoo Y Dor1o)| > 55,
output V,,, and END.

Else, let i, = 5(Doooo\Vim), 11

A A g A
t=ri|=I7il, 55 = $(Doo10\Vin), 3t = U(Doo11N
AN .
Vi), t1 = |rjs| = Irpl, 33 5(Do100\Vim),
g A N
]% = l(DglOl n Vm), t2 = |’I"Jza| — |’I"J;|
Step m.1:

Case 1: If |Vm n (DOOII @] D0010)| = 6; — d and
|Vmﬂ(D0101 UD0100)| = 5:? —d, let Z; é Z(D0111 n
Vin), and goto step m.2.

Case 2: If |Vm N (D0011 U D0010)| = 65 — d and
[Vin N (Do101UDo100)| > 65 —d, let 7] = 1((Do101Y
Do111) N Vi), and goto step m.2.

Case 3: If |Vm n (DOOII @] D0010)| > 6; — d and
[VinN(Do101UDo100)| = 6§ —d, let 4] = 1((DPgo11V
Do111) NV,,), and goto step m.2.

Case 4: If |V,, N (Doo11 U Dooro)| > 65 — d and
|Ve, N(Do101YDo100 )| > 6§j_d7 let ] £ 1((Doo11U
Do101 U Do111) N Vi), and goto step m.2.

Step m.2: Let le é S((D()[)u) UDO]O[) UDgllo)\Vm) and

A
t’ = |r22| — |’I’Z;|

A
= U(Dooo1 N Vi),

~—

e

It - = min{¢,¢',t1,83} = +oo, output {+oo} and
END.
Else
Case 1: If t* = ¢, let Vinyy 2 (Vie\{a1}) U {is},
and goto Step (m + 1).
Case 2: If t* = ', let Vinyy = (Viu\{i'}) U {11},
and goto Step (m + 1).
Case 3: If t* = 1, let Vini1 2 (Vi \{il}) U {i5),
and goto Step (m + 1).
Case 4: If t* = by, let Vini1 2 (Vi \{ik}) U {i5),
and goto Step (m + 1). AN

Now we can give the following Sub-algorithm _C for
computing L_Cj.

Sub-algorithm C;
Input: Received tuple » with (14). Sets Dq, a € Cy.
Integers 61, 62, 63, 64 with (26), and ng, o € C1.
Output: L. Cy.
1. By Corollary 1, compute 6;3, 7 = 2,3,4. And then
by (36)-(39) compute d’ and d". If d' > d", then output
+00 (i.e. Q(Cy) = 0). If d' < d", for all integers d with
d' < d < d", by (41) and (42) generate the set V*(d)
and by Procedure-C generate the set Q(d).
2. Output mindlgdgdr EiEQ(d) |r1| AN
For Sub-algorithm_C4, in the worst case, the num-
ber of d with d* < d < d" is 6 + 1, and it needs
6 < 61 steps to generate the set (d) for each d. In



Steps 0, 0.1, 0.2, the number of operations of real num-
ber is 7. For m > 0, in Steps m, m.l, m.2, at most
two of t,t',t1,t2 need to be computed, and total num-
ber of operations of real number is 5. The number of
operations of real number for computing Zieﬂ(d) |7
is 61 — 1. Hence the total number of operations of
real number for Sub-algorithm _C; is not more than
(614 1)(7T+5(061— 1)+ (61— 1))+ 61 =667 + 86+ 1

in the worst case.

4.2 Sub-algorithm for computating L_D,

From 2 of Lemma 5, we can also get the following
corollary easily

Corollary 2 Assume Q(D,) #0,1<1{ < 4.
DIft=1lete=4, f =2, g=3 and pp = 0001,
Py = 1001, p; = 0100, py = 1100, ps = 0010, ps =
1010, p; = 0000, ps = 1000.

2)Ift=2,lete=1, f =4, g =3 and p; = 1000,
pz = 1100, ps = 0001, py = 0101, ps = 0010, ps =
0110, p7 = 0000, pg = 0100.

3)IfLt=3,lete=1, f=2, g=4 and pp = 1000,
py = 1010, ps = 0100, py = 0110, ps = 0001, pg =
0011, py = 0000, pg = 0010.

4)Ift=4lete=1, f =2, g =3 and py = 1000,
pz = 1001, ps = 0100, py = 0101, ps = 0010, ps =
0011, p7 = 0000, pg = 0001.

Write 82 2 (6 + 8; + 1)/2), i,j = e, f,g, and

A .
6P = max{0, | (8¢+60; + 60y +67,+1)/2]}, then Q(Dy)
consists of the 2"-tuples q in Q* which satisfy (12) and

2qP7 + qu + qu + q;ﬁs + qps Z 5D’

qp, + qps + qp, + qp, = 659’

Qp + 4y + 0, + 4, = 5%97 (45)
qu + qu + qu + qps = 6€f’

q, =0, fora¢D,.

The discussions in this subsection is almost done by
following those of the last subsection. For nonnegative
integers d, k, let R%* denote the set of the 2"-tuples ¢
in Q* which satisfy (12) and

qP7 + qps = d]’)
9y, + dp, = 6{)9 —d,
qu + qp4 = 669 - d’

(46)
dps + dps = 6']?)f —d,

qp, + 4y, + 4, +4,, 2K,
q, =0, for a & D,.

We see easily R4V —d = {a€eQ(De):q,, +4q, =d}.
If a 2*-tuple g€ RY* satisfies

min L'(q'), (47)

we call it R%*-tuple. If Rd"SD*d # (B, we can also find
a Rd"SD’d-tuple by iteration with using of the following
Lemma 8, which is an analogue of Lemma 7, but much
simpler.

Lemma 8 If R**+1 £ () and i]d’k is a R%* -tuple which
satisfies

apt + )t +apt +ap =k, (48)

then there is an index j € {1,3,5,7} such that the 2*-
tuple q with
- d,k _ -dk
{ qp, =‘qdp- +1 4, =, — L (49)
d, =4, fOT all a € B4\\{pj7pj+1}a

is a RY*1_tuple.

The proof of this lemma can be given by following
the proof of Lemma 7, and is omitted here. Now we can
propose the following Sub-algorithm_D, for computing
L_D,.

Sub-algorithm_D,

Input: Received tuple » with (14). Integers ¢ with

1<£<4,6;,1=1,2,3,4, and ny, a € Dy. Sets D,

a € Dy.

Output: L_D,.

1. By Corollary 2, define e, f,g and p;, 1 < ;7 < 8,
and compute 63, i,j = e, f g, and 6°. And then
compute

AN FAN
/I 2 D 1 =2 ¢D
6fg - 5fg — Npy, — Npy, 6eg - ‘5eg — Npy — Npy,

8L; 2 80 — mp, — Mg, di = max{0,84,,6.,,8. ),

5

A
d’r‘ = mln{é?fa 5]e)g7 5]]?g, Tepy + Tps }

2. If d; > d,, output +oo (i.e. Q(Dy) =0). If d; < d,,
for all integer d with d; < d < d,., generate

W(d) £ (D, UD,) D U (D,, UD,, )5
U (DP3 U Dp‘l)(é?q_d) U (Dps u Dps)(ég_d)a

and generate ¥(d) by using of the Procedure-D.
3. Output mindlgdgdr Zie\lf(d) |’I’Z| AN

Procedure-D

Input: Received tuple » with (14). Integers 6° and
d. Sets W(d) and D,, o € D,. Sequences p;, ¢ =
1,2,...,8.

Output: Set ¥(d).

Start: Let Wy = W (d) and goto step O.

Step m:
If |(Dp, UDp, UD,, UD,, ) N W,y,| > 6P — d, output
W, and END.
Else, compute
RN g A A
o = S(Dp7\Wm)7 Zé = Z(Dps n Wm)a = |TZS - |lrif)|a
N N A
1= S(Dpl\\Wm)7 7’11 = Z(Dpz n W’m)a t= |’rif - |Till|7
i$ = 5(Dp\Win), 34 = U(Dp, N Win), ¢ = [rig] = [y,
i = 5(Dp\Win), ib = U(Dp, 1 Win), ¢ = [riz] = |y |

and then goto Step m.1.
Step m.1: Determine sg, s1, 82, 83 with {so, s1, 82,3}
=1{0,1,2,3} and t,, < ts, < ts, < ts,.



If t5, = 400, output {+oc} and END.
Else
Case 1: If sp = 0, let W41 = (
and goto Step (m + 1).

W \{i5}) U{is},

Case 2: If sg = 1, let W41 = ( W\ {4 }) u {5},
and goto Step (m +1).

Case 3: If sg = 2, let Wi, 41 = ( W\ {i5}) U {5},
and goto Step (m + 1).

Case 4: If s = 3, let W11 = ( W\ {iL U {23}

and goto Step (m + 1).

We can show easily that R%? is not empty if and
only if d satisfies d; < d < d,. Furthermore, it is very
easy to illustrate that the output of Sub-algorithm_Dy
is just L_Dy by Lemma 8. Now we consider the com-
putation complexity of this algorithm. The number of
d with d; < d < d, is not more than é; + 1. We note
that, for each d, it needs 10 computations of real num-
bers in the first step, and in each next step, only one
of tg,t1,12,t3 needs to be computed again, and by only
two computations of real numbers we can get the or-
der of tg,t1,ta,t3 from the old one. It needs at most
6P — d steps to generate ¥(d). The number of oper-
ations of real numbers for computing } ;cg (g |7il is

(5D + 5D + 6D — 2d — 1. Thus the total number of
operatlons of real numbers for Sub-algorithm_Dy is not
greater than Y 0! (10 +3(60 —d — 1) + (5? + 60 +
6%, —2d)) < (136% + 276, + 14)/2.

4.3 Sub-algorithm for computating L_FE,

The following corollary can also be deduced easily
from 3 of Lemma 5.

Corollary 3 Assume Q(E,) #0, 1 < <4.
1)Ift=1,lete=4, f =2, g =3 and p; = 0001,
py = 0110, ps = 0100, py = 0011, ps = 0010, pg =
0101, pr = 0000, ps = 1000.
2)Ift=2,lete=4, f=1, g =3 and p; = 0001,
ps = 1010, p; = 1000, ps = 0011, ps = 0010, ps =
1001, pr = 0000, ps = 0100.
3)IfL=3,lete=4, f=2, g=1 and p; = 0001,
py = 1100, ps = 0100, py = 1001, ps = 1000, ps =
0101, p; = 0000, ps = 0010.
4)Ift=4lete=1 f=2 g=3andp = 1000,
py = 0110, ps = 0100, py = 1010, ps = 0010, pg =
1100, pr = 0000, ps = 0001.

Write 62 = |(6¢+6;+1)/2], i =, f,g, and denote

L(3iy 8+ 1)/2], if 2/(8c + 67) and 2|(8c + &),
&8+ 6)}23 + 65 — 6y, for other cases,

by 6%, then Q(E,) consists of the 2"-tuples q in Q*
which satisfy (12) and

2qp7 + qPS + qu + qps + qu - 6E’
+qP3+qP5 +qP2 _66’

q pr T dp, T4y, T4, = E, (50)

qP7 + qu + an + qu = 69 ’

g4, =0, forad K.

The 2*-tuples g in Q(E,) can also be given by

4y, =68 — g, 4y, =6?—y (51)
Qe zéf—z, dps =68 —w, (52)
Qp, =Y +z-w, q,, =T+ 2 —w, (53)
(54)

Qp, =T +y—w, gy, = 2w — (z+y+2),

where w, z,y, z satisfy

max{0,6" —n,, } <w < 6", (55)
max{0, 6% — Np, } < < 68, (56)
rnaX{O,(S}}Z3 —npp <y < 6]}?, (57)
max{O,é? —Npg} <2< 6!};3, (58)
0<y+z—w<ny,, 0<z+z-—w<n,, (59)
0<z+y—w<n,,0<2w—(z+y+2) <ny,. (60)

For any integer w with (55), let U(w) denote the

. A . . .
set of pairs 7 = (z,y, z) of integers =, y, z which satisfy

(56)-(60). For m € B(w), let g, (m) be the 2*-tuple of
Q(E,) defined by (51)-(54). Clearly,
{q,(r): ™ eB(w )}
=1g € Q(E): g, =67 —w}. (61)

For simplicity, we write L,,(m) = L'(q,(m)). Let

T, £{(1,0,0), (~1,0,0), (0,1,0), (0,—1,0),

(0,0,1), (0,0,—1), (1,—1,0), (-1,1,0),
(1,0,—1), (-=1,0,1), (0,1,—1), (0,—-1,1)},
T, 2{(1,1,-1), (-1,-1,1), (1,-1,1),

(-1,1,-1), (-1,1,1), (1,-1,-1)}
If 1 € O(w), we see that L, (7+n") can be computed
from L., (7) by only four operations of real numbers for
any ' € T; and by six operations of real numbers for
any 7' € T5. We also see, for any 7' € T; U Y5, that
the well-defined domain of the function L,, (7w + ¢t7') of
t is an interval and L, (7 + ¢7') is down-convex on ¢,

ie. Ly(r+ (¢t + 1)7') — Ly(w + ¢tr') is monotonous

. . . A
increasing on ¢. For convenience, we define L, (7) =

+oo if # ¢ B(w). For m € B(w), let () ) denote the
set of pairs 7' € Ty U Ty with L, (« ) L, (7 + 7).
For ' = (&',y',2') € T UT,, let T(x') denote the set
of pairs 7" = (2", y",2z") in T; U Y, which satisfy the
following 7 inequalities

:BI.',U” 2 0’ (yl+zl)(y +Z”)

y/yll 2 0, (ml-l—zl)(w +z”)

Z,Z” 2 0’ (ml +yl)(x _I_yll)
(:B’—]—y’+z’)(:l,‘ll—|—y +Z )

For example, we can show easily that {(1,0,
(00.1), (1,-1,0), (10,1}, {1,1,-1),
(1 O 0)7 {(170 0)7 ( ) ( -1, )
( )’ (17 ’1)’ (1 _1 _1)} T( »



{(1 0 0) (0 170)7 (1707_1)7 (0717_1)7 (1717_1)} C
T(1,1,—1). We say subset T C Ty U T, coherent if
T C Y(x') for every n' € T. For example, {(1,0,0),
(0,1,0), (0,0,1)}, {(1,0,0), (0,1,0), (1,1,-1)},
{( ’ 70) (1 _1’0)’ (1707_1)}7 {(17070)7 (17_170)’
(17_151)} and {(1a_1)0)’ (1’0,_1)5 (la_la_l)} are
coherent sets.

Lemma 9 Assume m € O(w), T = {my,m2,..., T} C
R(7) is coherent and t1,ts,...,t; are nonnegative in-
tegers, then Ly, () < Ly (7 + Zle t;m;). Indeed,

1.7 C 8?(7r+ S tm) if T+ 8 tim € B(w).
2.+ Ez L timi & O(w) for any nonnegative integers
thwith t) > tii = 1,2,...,k if T4+ S0 tim & O(w).

The proof of this lemma can be gotten easily from
(14) and the definitions of R(r) and the coherent set,
and is omitted here.

Lemma 10 A pair 7 € O(w) satisfies

Ly(m) = min  Ly(x'), (62)

7w €B(w)

called UO(w)-pair, if end only if T1 U T, C (7).

Proof: If 7 € U(w) is a U(w)-pair, we see easily
that T3 U Y2 C R(w) holds with respect to (62).
On the other hand, assume YT; U YT, C R(x) for
m € U(w), «' is an arbitrary pair in O(w) and write

(z,y,2) S & — & If all of x,y,z are nonnegative
or nonpositive, from {(1,0,0),(0,1,0),(0,0,1)} and
{(-1,0,0),(0,-1,0), (0,0, —1)} are coherent, we know
L(n") > Ly(w) easily. Now we assume, without loss
of generality, that x >y > 0,2 < 0.

If -z < y, from (z,y,2) = (¢ +

2)(1,0,0)+
1) and {(1,0,0), (0, 1,0),

(y +2)(0,1,0) + (—2)(1,1, — 1,0
(1,1,-1)} is coherent, we know L, (7') > L (7).
If y < —z < 2, from (z,9,2) = (z + 2

> ~—

(1,0,0) + (—y — 2)(1,0,-1) +y(1,1,-1) and {(1,0,0)
(1,0,—1),(1,1,—1)} is coherent, we know L. (7') >

Ifz <-z<uz+y, from (z,9,2) = (—y — 2)(1,0,
+ (—z — 2)(0,1,-1) + (z + y + 2)(1,1,—1) and
-1),(0,1,-1),(1,1,—1)} is coherent, we know

f -z > z+y, from (z,9,2) = (—z —y — 2)

(0,0, 1) + (1,0, ~1) + y(0,1,—1) and {(0,0,—1),
(1,0,-1),(0,1,—-1)} is coherent, we know L, (7') >
Lo (7). AN

For integers w, z, let O(w, z) = {r e B(w): 7=
('7 " Z)}
Lemma 11 A pair 1 € B(w, z), called U(w, z)-pair,
satisfies Ly,(m) = mincy(w,z) Lw(n’) if and only if
$q = {(1,0,0),(-1,0,0),(0,1,0),(0,—-1,0),(1,-1,0),
(—1,1,0)} € R(x).

The proof of this lemma is very simple, we omit it
here. From Lemmas 10 and 11, we see easily that

Corollary 4 Assume w € B(w, z). Then 7 is a B(w)-
pair if and only if m is a B(w,z)-pair and L, (7) <
min{ L., (7(w, z—1)), Ly, (7(w, 2+1))}, where 7(w, 2—1)
and 7(w, z+1) are O(w, z—1)-pair and B(w, z+1)-pair
respectively.

Let S, 2 {(0,0,0),(=1,0,0),(0,-1,0), (1, —1,0),
(-1,1,0),(—-1,-1,0)}. For the U(w, z)-pairs, we have
the following result further.

Lemma 12 Assume 7(w, z) is a O(w, z)-pair.

1. If B(w,z+ 1) # 0, then there exists a pair ' in I
such that T(w,z) + (0,0,1) + 7' is a B(w, z + 1)-pair.
2. If O(w,z—1) # 0, then there exists a pair " in I
such that T(w,z) — (0,0,1) — " is a O(w, z — 1)-pair.

The proof of this lemma is given in the appendix
of this paper. If a UO(w, z)-pair 7(w, z) has been gen-
erated, according to Lemma 12, we can generate a
U(w,z + 1)-pair 7(w,z + 1) (or a U(w,z — 1)-pair
7(w, z—1)) with at most 20 operations of real numbers,
and determine whether L., (7(w, z)) < L ((w, z + 1))
(or Ly(7(w, z)) < Ly(r(w,z — 1))) holds or not with
5 more operations of real numbers. Now we consider
to propose a procedure to generate a U(w, z)-pair for
given integers w, z.

For pairs 7 € U(w) and ©' € T U T, with 7’ ¢
R(7), let P(x') denote the procedure: Replace = by

m+t'n’, where t/ 2 min{t: ¢t > 0,7 € R(r+tx')}. The
following Procedure-E generates a U(w, z)-pair 7(w, z)
from any given pair m of U(w, z) .

Procedure-E
Input: Received tuple r with (14). Integers w and z.
Sequences p;, ¢ = 1,2,...,8. Pair 7 € U(w, z) and the
2% tuple gy (7). Sets Dy, a € E,.
Output: Pair 7(w, z).
Step 0.1:

If (1,0,0) ¢ R(r), do P(1,0,0) and goto Step 0.2.

Else, if (-1,0,0) ¢ ®(n), do P(—1,0,0) and goto

Step 0.2.
Else, goto Step 0.2.

Step 0.2:

If (0,1,0) € R(7), let p = 1 and do P(0,1,0) and

goto Step 1.1.
Else, if (0,—1,0) ¢ R(w), let p = —1 and do
P(0,-1,0) and goto Step 1.3.
Else, let p = 0 and goto Step 2.

Step 1.1:

If (-1,0,0) ¢ R(x), do P(—1,0,0) and goto Step
1.2. Else, goto Step 2.
Step 1.2:

If (0,1,0) ¢ R(x), do P(0,1,0) and goto Step 1.1.
Else, goto Step 2.
Step 1.3:

If (1,0,0) ¢ R(x), do P(1,0,0) and goto Step 1.4.
Else, goto Step 2.
Step 1.4:

If (0,-1,0) ¢ R(n), do P(0,—1,0) and goto Step
1.3. Else, goto Step 2.



Step 2:
If p > 0and (-1,1,0) ¢ R(x), do P(—1,1,0).
Output m and END.
Else, if p < 0 and (1,-1,0) ¢ R(x), do
P(1,-1,0). Output = and END.
Else, output « and END. AN

Procedure-E says that from a pair 7 of U(w, z) we
can get a U(w, z)-pair 7(w, z) through one of the 4
routes showed in Figure 1.

y y

L aw,2)

\\\T(sz)

Figure 1 ( pairs visited by Procedure-E)

Lemma 13 The output 7(w, z) of the above procedure
is a O(w, z)-pair.

Proof: For clarify, we denote the input pair 7 of
Step 2 by min. It is easy to see that {(1,0,0),
(0,1,0),(-1,0,0),(0,-1,0)} C R(my), and either
(—1,1,0) € R(mia) or (1,-1,0) € R(min) holds. Let
m = (0,1,0), 71 = (1,0,0), m = (-1,0,0), @ =
(0,-1,0), m3 = (0,-1,0), 7, = (=1,0,0), 74 =
(1,0,0), =, = (0,1,0). If my, is the output of Step
1.7, then m, — m; is also visited by Procedure-E, and
m; € R(min — i), and thus Ly, (mip — 7+ 7)) > Ly (min —
;) > Ly(min). Hence, we see (1,—1,0) € R(my) if my
is the output of Step 1.1 or Step 1.2, and (-1,1,0) €
R(min) if mn is the output of Step 1.3 or Step 1.4.

We assume, without loss of generality, that Ty =
-1,0), (-1,1,0)} C

{(1,0,0), (0,1,0), (—1,0,0), (07
R(min) and (1,—1,0) € R(in)-
Now, we conclude that Yo C R(ma + (1,-1,0)).

Indeed, by L(ma + (1,-1,0)) < u,(7rm) <
min{ L, (mn + (0, —1,0)),Lw(7rm (1,0,0))}, we know
{( 1 1 0) ( 1 070)7 (03170)} C %(ﬂ-ln ( 7_170))'
On the other hand, since {(1,0,0),(0,—1,0)} C
R(mn) N Y(1,-1,0), we have {(1,0,0),(0,-1,0)} C

R(mim + (1, —1,0)).

Thus, by inductive method, we know Yo C R(min +
k(1,—1,0)) for £ > 1, and furthermore we have Yo C
R(r(w, z)) for the output 7(w,z) of the procedure.
Clearly, (1,-1,0) C R(r(w,z)) aslo holds. Hence
T(w, z) is a U(w, z)-pair by Lemma 11. AN

Now we consider the condition for O(w, z) # 0. Let

a:lwyz = max{0, 62 — Np,, W— 2},
2 min{6F, n,, +w — 2z},

Yooz = max{0, 5?
Yoo & = min{67, ny, +w — z},

2 max{2w — z — n,,, w},

(
(
— Npy, W— 2}, (65
(
(
2 min{n,, + w, 2w — z}. (
If B(w, z) # 0, then from (51)-(60) we see that a pair
(z,y, z) belongs to U(w, z) if and only if
Thpe ST Sy Vs SYS Ui (69)
k. <z+y<kl.. (70)
Hence, U(w, z) # 0 if and only if w and z satisfy (55),
(58) and
Tz S Tl s Yooz S Vinor bz Shiyzy (71
mhz+y Skmz,xﬁz+y322kbz- (72)
Furthermore, if we write
2"(w) £ min{8;, 8 + npy, 87 + Mgy iy + My + M

E E
w_ﬁe + 1y, +nP3aw_5f + Npy + Npy,

w4+ n, +n B B
L%J,Zw—& — &5 + mp, + npyt, (73)

1 A E E
z (w) = max{0,6, — npg,6. — np, — Npy,
E
— Npy, w — b,

52 — 8% — npy }. (T4)

E
6f — Mpy

E wW—n
w—8f, [~ ], 2w -

Then we see that U(w, z) # 0 if and only if 2! w%} <
z < z"(w) and max{0, 6 —n,,, 62 —np2,6E Tpy, Of
6]]:3 Ny — Mpy — nps} Sw< min{‘SEv‘Se + 6f76§

Npy + Npys 61123 + np, + Ny, ). Now we write

— TMpy, W — Tpg

w" é min{ﬁE, Rpy + Npg + Nps + 21p,, 25? + npq,
267 4 s, 260 4y, 67 + 60, 2+ 61,
8+ 67, 62 + oy + 1y, OF + My + e,

88 + 67 + 65 + np,

E
8g + mps +1pr, | 2 13, (75)
E E E
w' 2 max{0, |-(SE Hor _an’z - _np6-|v
E B B E
) — Npg, 55 — MNpy, 5f — TNipy, 59 — Tipg»

E B E
266 - 2”?2 — Mpy — npsvéf +69 — Tpy — Tipy — Tipg,
E E
— Npgyde 85 — Mpy — Npy — Mg

E E
— Np3y 0 +0F — Npg — Npy — np, }. (76)

25? — 2np, — np,

25? = 2nps = Npy



It is not difficult to show that U(w) # @ if and only if
w! < w < w" and

0 S 6? S np7 + nps + nps + anﬂ (77)
0 < 6% < np, + ngy + Ny + 1y, (78)
0< 65 < Np, + Tep,y + Tps + Tpes (79)

maX{é? — Tpys 6]}? — Tpy ‘5_1}73 - npe}
< min{éiE + Np, s 6? + Npg s 6;3 + np, }. (80)
On the other hand, if U(w, z) # 0 and let

A
O-w,z = ma‘X{kql.v,zv wiu,z + yf.v,z}7 (81)

then we can show easily that O(w, z) contains two of
the following four pairs.

(fciu,z, Ow,z = wﬁu,z, z), (mrw,za Ow,z = ‘r:u,z’ Z)’ (82)
(Uw,z _yql,u,za yf.v,z? Z)? (Uw,z _y;7z7 y:u,za Z) (83)

Now we can give the following Sub-algorithm_FE, for
computing L_F,.

Sub-algorithm F,

Input: Received tuple » with (14). Integers £ with
1<{¢<4and é;, 2 =1,2,3,4, and ny, o € Ey. Sets
Da, o € Fy.

Output: L_F,.

1. By Corollary 3, define e, f,g, p;, 1 < j < 8, com-
pute 6;-3, j=¢e, f,g,and 6. Then use (75) and (76) to
compute w” and w'.

2. If one of (77)-(80) or w! < w" is not valid, then out-
put +oo (i.e. Q(E,;) = 0), otherwise, for each integer w
with w! < w < w", by (73), (74) compute 2"(w), z'(w)
and let z,, = |(2!(w) + 2"(w))/2]. According to (63)-
(70) and (81)-(83), select a pair 7 in B(w, z,,) and use
the Procedure-E to generate a U(w, 2, )-pair 7(w, z).
Then according to Lemma 12 and Corollary 4 to find
a U(w)-pair 7(w) and compute L, (7(w)) further.

3. Output mini<y<pr L (T(w)). AN

About the complexity of this sub-algorithm, only
the Procedure-E’s is remained. Since z < w if
U(w, z) # 0, according to symmetry of z,y,z we see
the pairs (z,y,z) in U(w,z) must satisfy z < w and
y < w too. Hence we have

U(w, 24) C {(2,9,20) i w — 2y <z < w,
w—2p <YL w,w <4y < 2w — 2y}

With respect to Figure 1, we see that Procedure-E vis-
its at most 4w pairs of U(w, z,), and the number of
operations of real numbers is not more than 16w. From
the output 7(w, 2z ) of Procedure-E to find a U(w)-pair
T(w), it need at most 25|w/2| operations of real num-
bers. The number of operations of real numbers for
computing L, (7(w)) is 6E+5§+5?—|—5§} —2w—1. Thus,
by w" < 68 we know Sub-algorithm_FE, needs at most
Su ot (25[w/2] +14w+6"+68+65+6F) < 6357+196
operations of real numbers.

4.4 Main algorithm for computing the testing
condition

In the end of this paper, we present an algorithm for
computing L[ley,dz,ds,,@ (ul, u?, ud ut)].

Main algorithm

Input: Hard-decision tuple z. Received tuple r with
(14). Reference codewords u',u?u® u*.
dy, dy, ds, dy.

Output: L[V, o 4 (ul,u?, u?, u*)].

1. Compute n(u'),n(u?),n(u?),n(u*) by (2) and (8),
compute 61,62, 63,64 by (11). And then re-order the
tuple § = (61,82, 63, 64) such that §; > 62 > 83 > 6.

2. If 61 < 0, then output 0 and END. Otherwise, re-
order the order of the reference codewords u!, u? u® u*
according to 1.

3. Generate the sets D, by (2), (3) and (6), and com-
pute ny by (6) for all sequences o € B*.

4. Generate the 4-tuples p(D;) and p(F;) by the defi-
nitions, and then generate the set X* by Theorem 2.
5. Compute L_C; by Sub-algorithm_C;. For all M(0)-
sets = in N*, compute L_= by Sub-algorithm _=.

6. Output minzeic,jun+ L-Z and END. AN

Radiuses

Since for all of sub-algorithms the numbers of ad-
ditions and comparisons of real numbers are of order
(max?zl{(?j})z, we can see easily that the numbers of
additions and comparisons of real numbers of our Main
Algorithm is of N2. Comparing to the computational
complexity of generating the next candidate codeword
in the iterative decoding processes of the iterative soft-
decion decoding algorithms, we can see the case h = 4
of the sufficient testing condition is still very effective.
If there are more than 4 candidate codewords have
been generated, we can also select some combinations
of them to generate a number of testing conditions,
so as to provides a faster termination for the iterative
soft-decion decoding algorithms.
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Appendix
Proof of Lemma 7: Assume ¢%»**1isa Rg p41-tuple.
For j = k,k+ 1 and any sequence o € B, we write

A a5 - &g
li’] é Z('nyq“ ))’ Sg’J é s('Da\Dl(yq“ )), (84)

Instead of proving this lemma directly, we will prove
that there is a pair (a, 8), called ¢-pair for convenience,
with a € {0000,0010,0100,0110} and 3 € {0001, 0011,
0101,0111} such that

d,k+1

¢ d,k+1 d,k

>qo", q5" < q5", (85)

and the 2%-tuples ¢ and ¢’ with

d.k
9. =495"+1, ¢s=q5 -1, (86)
qy = qi’,k, for all o/ € B*\{«, 8},
b dkel ;_ dkt1
do =da " L 45 =45 . +1, (87)
! sK !
g, =q"" ", forall o' € B*\{a, 3},

belong to Rg ;41 and Rg y, respectively.
Indeed, if (o, 8) is a (-pair, then we have

li’kJrl > si’k, sg’kﬂ < lg’k. (88)

Thus for the 2*-tuples ¢ and ¢’ defined by (86) and
(87), we see

L(g**) = L(g) + [rygsn] = 7 jass ]
> L(g%") + |r an| - ryea| = Lg).  (89)

By q € Rg 11 and the definition of g%**1, we know ¢

is a R%**+1_tuple too, and the lemma follows.
dk d,k d,k dk
If gooo > oboor them ggoor < Qopor-  Let
a = 0000 and B = 0001. We can see easily that («, 3)

is a (-pair. Below we assume that nglf]—gl < ng%o
and, consequently, nglf;{l > nglfn. By (43), we can

see easily that qi’,k+1 > qz’,k for at least one sequence

o' € {0010,0100, 0110} and ¢! < ¢®F for at least

o'l

one sequence o € {0011,0101,0111}.
Forj =k, k+ 1, let

S dj _
n = { 0, if ging + dgins = 8 — . (90)
’ 1, if qogho + dob1s > 85 — d,
1 dv‘ d?‘ —
w = { 0. if diivo + diion =95 — o (91)
! 1, if goipe + goior > 65 — d.

Without loss of generality, we suppose n;, < 7. We
will divide our discussion into 12 cases according to the
values of 1, 7, Mk+1 and 7ey1, and show that there
exists a (-pair (a, 3) for each case.

Case 1: Assume (nk, 7, Mk+1,Mhp1) = (1,1,1,1).
Then there is a pair (a, §) with o € {0010, 0100, 0110}
and 3 € {0011,0101,0111} which satisfies (85). We see
easily that (a, 8) is a {-pair.

Case 2: Assume (7, 0}, Mk+1, My1) = (1,1,0,1).

Subcase 2.1: Assume ng’iﬁl > qff;]"io. Then
gkt < gk Let o = 0010 and 8 = 0011. We
see easily that (a, 8) is a (-pair.

Subcase 2.2: Assume ngﬁ:;l < nglio- Then (85)
must hold for some pair (a, ) with o € {0100, 0110}
and B € {0011,0101,0111}. We see easily that (o, 8)
is a (-pair.

Case 3: Assume (7x, My, Mh+1, Mppq) = (1,1,1,0). Sim-
ilar to the case 2, we can show that there is a (-pair
(e, B).

Case 4: Assume (0, 0}, Mht1, Myq) = (1,1,0,0).

Subcase 4.1=subcase 2.1.

. dyk+1 dk

Subcase 4.2: Assume ¢yjo0 > dglgo- Clearly,
gkt < gk . Let a = 0100 and 8 = 0101. We
see easily that («, 8) is a (-pair.

Subcase 4.3: Assume ngklgl < ngkm and qg’llggl <
qg’l]fm. Then (85) must hold for some pair («,3) with
a = 0110 and 8 € {0011,0101,0111}. We see easily



that (o, 3) is a -pair.
Case 5: Assume (0, 0}, Mht1, Mpyq) = (0,1, 1,1).

Subcase 5.1: Assume qoolﬁ_l < qodb]il. Clearly,
goltl > bk Let a = 0010 and B = 0011. We
see easily that (a, 3) is a (-pair.

Subcase 5.2: Assume qooli{l > ngku. Then
(85) must hold for some pair (a,8) with a €
{0010,0100,0110} and 8 € {0101,0111}. We see easily
that (a, 3) is a ¢-pair.

Case 6: Assume (1k, ), Mht15 Myppr) = (0 1,0,1).

Subcase 6.1: Assume qgokif]rl > ‘10010 or qgolﬁrl <

11 Then ggiit" > ggiho and gg5ii’ < gopyy- Let
a = 0010 and 8 = 0011. We see easily that (o, §) is a
(-pair.

Subcase 6.2: Assume ng]i—gl < ngﬁo and ng]i—fl >
qg(’)]il. Then (85) must hold for some pair (a,3) with
o € {0100,0110} and 8 € {0101,0111}. We see easily
that (o, 3) is a -pair.

Case 7: Assume (1k, M), Tht1s Mp1) = (0 1,1,0).
Subcase 7.1: Assume qookl—gl > ‘10010- Then (85)

must hold for some pair (o, 8) with o = 0010 and g €
{0011,0101,0111}. We see easily that («, 3) is a (-pair.
Subcase 7.2=subcase 4.2.
Subcase 7.3=subcase 5 1
d,k+1

Subcase 7.4: Assume ggp1,° < q‘oiblio and qg’l]fjgl <
dhtl S dk

q0100 and gg)17 > doh11- Then (85) must hold for
some pair (a, ) with o = 0110 and 8 € {0101,0111}.
We see easily that (a, 8) is a (-pair.

Case 8: Assume (0,7}, Tht1, Tpyq) = (0,1,0,0).
Subcase 8.1=ubcase 6.1.
Subcase 8.2=subcase 4.2.
Subcase 8.3=subcase 7.4.

Case 9: Assume (9x, 7}, Th+1,Mpr1) = (0,0,1,1).

Subcase 9.1=subcase 5.1.

Subcase 9.2: Assume qg’llfﬁrl < qg’llfn. Then
gibt > g®k . Let o = 0100 and 8 = 0101. We
see easily that (a, 8) is a (-pair.

Subcase 9.3: Assume qool?l'l > nglil and qg’l]fﬁl'l >

‘10101- Then (85) must hold for some pair («, 3) with
a € {0010,0100,0110} and 8 = 0111. We see easily
that (o, 3) is a -pair.
Case 10: Assume (7k, 7, Mh+1s Mprq) =
Subcase 10.1=subcase 6.1.
Subcase 10.2=subcase 9.2.

Subcase 10.3: Assume qgl’ﬁgl dk+1 o

dk
< 4op10 and gop1;

gt and ¢ > ¢4k, Then (85) must hold for
some pair (o, 3) with o € {0100,0110} and g = 0111.
We see easily that (o, 8) is a (-pair.

Case 11: Assume (0,7, Mht1,M541) = (0,0,1,0).
Similar to the case 10, we can show that there is a
¢-pair (a, B).

Case 12: Assume (1k, My, Mht1s Mpyq) =

Subcase 12.1=subcase 6.1.

Subcase 12.2: Assume qg’l]f]gl > q0100 or qglﬁrl <

d,k d,k+1 d,k d,k+1 d,k
doior- Them gpiog > doioo and dolpr < Goior- Let
a = 0100 and B = 0101. We see easily that (a, ) is a

(-pair.

(0,0,0,1).

(0,0,0,0).

Subcase 12.3: Assume ngki;rl < nglio and ngkﬂrl >

d,k d,k+1 d,k d,k+1 d,k
doo11 and goloo” < doioo and goio1 = Goie1- Then

dk+t1 dk d,k+1 dk -
doii0 > o310 and ggi71” < ggiip- Let e = 0110 and

B = 0111. We see easily that (a, 8) is a {-pair. AA

Proof of Lemma 12: We only prove the case 1, the
case 2 can be proved by similar method. Let my denote
the pair in &2 which satisfies

Ly(r(w,z) +(0,0,1) + m) =
Hélcp Ly(r(w,z)+(0,0,1) + 7). (92)
Below we prove that S C R(r(w, z) + (0,0,1) + 7q),
and thus 7(w, z) +(0,0,1) + 7 is a O(w, z + 1)-pair by
Lemma 11.
If mg = (0,0,0), then by (92) we know {(—1,0,0),
1 ¥

(07_1’0)7(17_ 70) ( L1 0) C §R( ( ) (07 71))'
Since {(1,0,0), (0, ,0)} C 1(0,0,1) N 8?( (w, z)), we
know {(1,0,0), (0,1,0)} € R(r(u,2) + (0,0,1)) also
holds, and thus §; C R(7(w,z) + (0 0,1)).

If 1 = (—1,0,0), then by (92) we know {(1,0,0),
(0,1,0),(0,-1,0),(1,-1,0)} C R(r(w, z) + (— 1,0,1))
Since {(_17070)7(_17170)} C %(T( 72))0 ( ’ al)v
we know {(-1,0,0),(-1,1,0)} <C R(r(w,z) +
(=1,0,1)) also holds, and thus ¥; C R(r(w,z) +
(_1’07 l))

If my = (0, —1,0), similar to the above case, we can
show 1 C R(7(w, z) + (0, —1,1)).

If mp = (-1,—1,0), then by (92) we know
{(1,0,0),(0,1,0)} R(7(w, z) + (-1,-1,1)). Since
{(_17070) ( L )} C T( )ﬂ %(T(w’z))v we
know {(-1,0 0) (0,-1,0)} C 3%( ( z)+(-1,-1,1))
also holds. On the other hand, from (0,—-1,0) €
Y(0,-1,1) N R(7(w, 2)) and (-1,0,0) € T(-1,0,1) N
R(7(w, z)), we know (0, —1,0) € 8?( (w,z)+(0,-1,1))
and (-1,0,0) € R(r(w,z) + (-1,0,1)).  Then

(T(w,z) (0 —2 1)) > L (r(w,z) + (0,-1,1)) >

La(r (w0 2)(—1, ~1, 1) and Lu(r(w, 2)-(~2,0,1)) >

( (w’z) +( 1 0 1)) 2 Ly ( (w’z) + (_1’_1’1))7
hence {(1, —1,0),( 1,1,0)} C R(7(w, 2)+(-1,-1,1)).
Thus &; C E)?(T(w, )+ (—1,-1,1)).

If o = (1,-1,1), then by (92) we know
{(~1,0,0), (~1,1,0)} € R(r(w, ) + (1, ~1,1)). Since
{(1,0,0),(1,-1,0)} C T(1, 1 )N R T(w,z)), we
know {( )a(l _1’0)} C ER(7—(w’z) + (1’_171))
also holds. On the other hand, from (1,—1,0) €
Y(0,-1,1) N R(7(w,z)) and (1,0,0) € Y(0,0,1) N
R(7(w, z)) we know (1,—1,0) € R(r(w, 2)+(0,—1,1))
and (1,0,0) € §R(T(w,z) + (0,0,1)). Then

( (w7z) + (17_2’1)) 2 Lw(T(w’z) + (07_171)) 2

Ly(r(w,z) + (1,-1,1)) and L (7(w, z) + (1,0,1)) >

Ly(7(w,2)+(0,0,1)) > Ly(7(w, z) +(1,—1,1)), hence
{(0,-1,0),(0,1,0)} € R(v(w,z) + (1,-1,1)). Thus
S C R(r(w,2) +(1,-1,1)).

If mp = (—1,1,1), similar to the above case, we can
get 1 C R(r(w,2) + (-1,1,1)). AN



