
Computational Complexity for

Computing Su�cient Conditions on
the Optimality of a Decoded Codeword

Tadao Kasamiy and Takuya Koumotoz

yFaculty of Information Science, Department of Computer Science,

Hiroshima City University

zGraduate School of Information Science,

Nara Institute of Science and Technology

Abstract

Su�cient conditions on the optimality of a candidate codeword, which is generated in

an iterative soft-decision decoding algorithm for block codes, have been derived based on (1)

partial knowledge of the distance pro�le of the code and (2) a number, denoted, h, of previously

generated candidate codewords. This report presents upperbounds on the computational

complexities of the su�cient conditions with h = 2 and 3.

1 Su�cient Conditions on the Optimality of a Decoded

Codeword

Suppose a binary block code C of length N with distance (or weight) pro�le WC , f0, w1 =

dmin, w2; : : :g is used for error control over the AWGN channel using BPSK signaling, where

w1 = dmin is the minimum Hamming distance of the code. A codeword c is mapped into a

bipolar sequence x. Suppose x is transmitted and r = (r1; r2; : : : ; rN) is the received sequence

at the output of a matched �lter in the receiver. Let z = (z1; z2; : : : ; zN) be the binary

hard-decision sequence.

Any soft-decision decoding scheme is devised based on r or reliability information provided

by r. For the AWGN channel and BPSK transmission, the reliability of a received symbol rj is

generally measured by its magnitude jrjj since this value is proportional to the log-likelihood

ratio associated with symbol hard-decision.

Let V N denote the vector space of all binaryN -tuples. For anN -tuple u = (u1; u2; : : : ; uN) 2

V N , de�ne the following :

D1(u) , fj : uj 6= zj; and 1 � j � Ng; (1.1)

D0(u) , f1; 2; : : : ; NgnD1(u); (1.2)

n(u) , jD1(u)j; (1.3)

L(u) ,
X

j2D1(u)

jrjj: (1.4)

L(u) is called the correlation discrepancy of u with respect to z.

For a subset U of V N , let L[U] be de�ned as

L[U] , min
u2U

L(u): (1.5)

If U is empty, then L[U] is de�ned as1 (in�nity). The maximum likelihood decoding (MLD)

of a code C can be stated in terms of the correlation discrepancy as follows: The decoder

decodes the received sequence r into the codeword copt for which

L(copt) = L[C]: (1.6)

We call copt the optimal codeword. If z is a codeword, then z is the optimal codeword.

Let dH(u; v) denote the Hamming distance between two N -tuples, u and v. For u1, u2, : : :,

2

uh 2 V N and positive integers d1; d2; : : : ; dh, let V
N
d1;d2;:::;dh

(u1;u2; : : : ;uh) (or V
N
d1;d2;:::;dh

for

simplicity) be de�ned as the following set:

V N
d1;d2;:::;dh

(u1;u2; : : : ;uh) , fu 2 V
N : dH(u;ui) � di for 1 � i � hg; (1.7)

The sequence, u1;u2; : : : ;uh, is called a sequence of reference words. For a codeword u in

C and a positive integer d, de�ne the following subcode of C:

�Cd(u) , fv 2 C : dH(v;u) < dg: (1.8)

At a stage of an iterative decoding algorithm, suppose that candidate codewords u1;u2; : : : ;uh

have been generated. Let ubest denote the best of all candidate codewords that have been

generated already. For d1; d2; : : : ; dh 2 WC � f0g, if

L(ubest) � L[V N
d1;d2;:::;dh

(u1;u2; : : : ;uh)]; (1.9)

then copt is either ubest or in [
h
i=1

�Cdi(ui).

Formulas for L[V N
d1;d2

] and L[V N
d1;d2;d3

], (where the sequence of reference words is omitted),

will be shown as Theorems 1 and 2, respectively. For the proofs, refer to [1]. For simplicity of

discussion, we assume that the bit positions 1; 2; : : : ; N are ordered according to the following

increasing order of reliability of the received symbols,for 1 � i < j � N ,

jrij � jrjj: (1.10)

For a subset X of f1; 2; : : : ; Ng and a positive integer j � jXj, let X(j) denote the set of j

smallest integers in X. For a non-positive integer j, X(j) , � and for j > jXj, X(j) , X.

For a positive integer h, let Bh be the set of all binary sequences of length h. For 1 � i � h

and � 2 Bh, let �i denote the i-th symbol of �. For a sequence of reference words u1;u2; : : : ;uh

in V N and � 2 Bh, let D� and n� be de�ned as

D� ,

h\

i=1

D�i(ui); (1.11)

n� , jD�j; (1.12)

where D�i(ui) is the index set given by either (1.1) or (1.2).

The following theorem provides a formula for L[V N
d1;d2

].

Theorem 1: Without loss of generality, assume that

�1 � �2; (1.13)

3

where �i , di�n(ui) for 1 � i � 2. If minfn01; �1; b(�1��2)=2cg < �1�n00, then L[V
N
d1;d2

] =1.

Otherwise,

L[V N
d1;d2

] =
X

i2(D00[D
(b(�1��2)=2c)
01)(�1)

jrij: (1.14)

The following theorem gives an expression for L[V N
d1;d2;d3

].

Theorem 2: Without loss of generality, assume that

�1 � �2 � �3: (1.15)

where �i , di � n(ui) for 1 � i � 3. Consider the parities (even or odd) of �i with 1 � i � 3.

If all the parities are the same, then de�ne "i , 0 for 1 � i � 3. Otherwise, there is an index

j such that the parity of �j is di�erent from the parities of other two �0is. De�ne "j , 1 and

"i , 0 for i 6= j. De�ne �1i with 2 � i � 3, �0i and �
(i) with 1 � i � 3 as follows:

�1i , minf�1; b(�1 � �i)=2cg; (1.16)

�0i = �i + "i; (1.17)

�(1) , maxf0; �12 � n010; �13 � n001g; (1.18)

�(2) , minfn011; �12; �13; n000 + �12 + �13 � �1g; (1.19)

�(3) , maxf0; (�02 + �03)=2� n000g; (1.20)

�(4) , minfn100; n010 � (�01 � �02)=2; n001 � (�01 � �03)=2; (�
0
2 + �03)=2g: (1.21)

Then, L[V N
d1;d2;d3

] is given by

L[V N
d1;d2;d3

] = minfL1; L2g; (1.22)

where L1 and L2 are de�ned as follows:

If �(1) � �(2), then

L1 = min
�(1)����(2)

X

i2(D000[D
(�13��)

001 [D
(�12��)

010)(�1��)[D
(�)
011

jrij: (1.23)

Otherwise, L1 ,1.

If �(3) � �(4), then

L2 = min
�(2)����(3)

X

i2D
((�0

2
+�0

3
)=2��)

000 [D
((�0

1
��0

2
)=2+�)

010 [D
((�0

1
��0

3
)=2+�)

001 [D
(�)
100

jrij: (1.24)

Otherwise, L2 ,1.

4

2 An algorithm for Computing L[V N
d1;d2

(u1;u2)]

Assume that (1.10) \jrij � jrjj for 1 � i < j � N" holds and that �1 � �2 and �1 > 0, and

�12 , minf�1; b(�1 � �2)=2cg. It follows from Theorem 1 that L[V N
d1;d2

(u1;u2)] 6= 1, if and

only if

n00 � d(�1 + �2)e=2; (2.1)

n00 + n01 � �1: (2.2)

De�ne X2 , (D00 +D
(b(�1��2)=2c)
01)(�1) and for a 2 f0; 1g, de�ne �a , jD0a \X2j and for a

nonempty subset X of f1; 2; : : : ; Ng, let i(X) denote the largest index in X. De�ne

�d , minfN;maxfd1; d(dH(u1;u2) + d1 + d2)=2egg: (2.3)

Lemma 1: Suppose that (2.1) and (2.2) hold. Then i(X2) � �d.

(Proof): If �1 < b(�1 � �2)=2c, then X2 = D
(�1)
0 . Hence, i(X2) � n1� + �1 = d1. If �1 =

b(�1 � �2)=2c, then �0 = d(�1 + �2)=2e and therefore, i(X2) � n1� + n01 + �0 = d(n10 + n01 +

d1 + d2)=2e = d(dH(u1;u2) + d1 + d2)=2e. 44

The following Vh=2 is an algorithm for computing L[V N
d1;d2

(u1;u2)]. In Vh=2, real number

array R and binary arrays U1 and U2 of length �d are used. For 1 � j � �d, jrjj and the j-th

elements of z + u1 and z + u2 are stored in the (�d � j + 1)-th elements of R, U1 and U2,

respectively.

Procedure Vh=2;

begin

step1: (*Initialization*)

L 0; j �d+ 1; m �1;

if �12 = 0, then

go to step 2;

else

m1 �12; go to step3;

step2: (*m1 = 0*)

updatej;

5

if U1(j) = 0, then

if U2(j) = 0, then

updateLm;

go to step2;

step3: (*m1 > 0*)

updatej;

if U1(j) = 0, then

updateLm;

if U2(j) = 1, then

m1 m1 � 1;

if m1 = 0, then

go to step2;

go to step3;

end.

Procedure updateLm;

begin

L L+R(j); m m� 1;

if m = 0, then

output L; stop;

else

return;

end.

Procedure updatej;

begin

j j � 1;

if j = 0, then

output 1; stop;

else

return;

end.

6

Clearly, Vh=2 always terminates. Let Lt, jt, mt and m1;t denote the �nal values of L; j;m

and m1 respectively. For a current value of j, de�ne Y (j) = f �d � j 0 + 1 : j � j 0 � �d and

L L +R(j 0) has been performed in Vh=2g. Then, we can see that

(1) jD0� \ Y (j)j = �1 �m, jD01 \ Y (j)j = �12 �m1 and

Y (j) = (D00 [D
(�12�m1)
01)(�1�m); (2.4)

and for 1 � j 0 < j � �d, f1; 2; : : : ; �d� j + 1gnY (j) and Y (j 0) are mutually disjoint.

(2) Vh=2 stops in step 2, if and only if m1;t = 0, i.e., jD01 \ Y (jt)j = �12.

(3) Vh=2 outputs Lt =
P

i2Y (jt)
jrij, if and only if mt = 0, i.e., jD0� \ Y (jt)j = �1. From (1),

jD01\Y (jt)j � �12. Hence, n0� � �1 and n00 = n0��n01 � d(�1+�2)=2e. From (2.1), (2.2)

and (2.4), Y (jt) = (D00[D
(�12)
01)(�1) = (D00[D

(b(�1��2)=2c)
01)(�1) and Lt = L[V N

d1;d2
(u1;u2)].

(4) Vh=2 outputs 1 as L, if and only if mt > 0 and jt = 0. Then, jD0� \ Y (jt)j < �1

from (1). If (2.1) and (2.2) hold, then j(X2) > �d, which contradicts Lemma 1. Hence

L[V N
d1;d2

(u1;u2)] =1.

In Vh=2, the number of access to array R and real number addition is at most �1, the

number of access to array U1, binary test jump on U1(j) and the index decrement and zero

test jump of j is at most �d, the number of access to array U2 and binary test jump on U2(j)

is at most �d� d1 and the numbers of index decrements and zero test jumps of m and m1 are

at most �1 and �12, respectively.

For the algorithm Vh=2, it is su�cient to assume that jrij � jrjj for either 1 � i < j � �d

or 1 � i � �d < j � N .

3 Computational Complexity for Computing

L[V N
d1;d2;d3

(u1;u2;u3)]

(1) Computing L1.

For convenience, assume that if jrij = jrjj for i 2 D000 and j =2 D000, then

i < j; (3.1)

and de�ne

�10 , �12; and �01 , �13: (3.2)

7

X(�) , (D000 [D
(�01��)
001 [D

(�10��)
010)(�1��) [D

(�)
011; for �

(1) � � � �(2);

L1(�) ,
X

i2X(�)

jrij:

We �rst prove the following lemma:

Lemma 2: There exists an integer ~�1 such that �(1) � ~�1 � �(2), and L1(�) is nonincreasing

for �(1) � � � ~�1, and is nondecreasing for ~�1 � � � �(2).

From this lemma, we have that

L1 = L1(~�1): (3.3)

(Proof) De�ne ��(�) , jD0� \X(�)j; for � 2 B2. Then, �11(�) = �, and

�00(�) + �01(�) + �10(�) = �1 � �: (3.4)

De�ne

i�(�) , the largest index of D0� \X(�); for � 2 B2;

i(�) , the largest index of X(�)nfD011g:

Let �(�) indicate that i(�) is in D0�(�). It follows from (1.19) that for �(1) � � < �(2),

�� > �; for � 2 f01; 10g: (3.5)

There are three cases (i), (ii) and (iii), and each case is partitioned into two subcases.

Case (i) �01(�) < �01 � � and �10(�) < �10 � �:

X(� + 1) = fi11(� + 1)g [X(�)nfi(�)g: (3.6)

Subcase (i.1) i11(� + 1) < i(�): Then L1(� + 1) � L1(�).

Subcase (i.2) i(�) < i11(� + 1): Then L1(�) � L1(� + 1), and

i(� + 1) < i11(� + 1): (3.7)

Case (ii) For � 2 f01; 10g, ��(�) = ��� � and ���(�) < ���� �: Then ��(�) > 0(from (3.5)) and

X(� + 1) = fi11(� + 1)g [X(�)nfi�(�)g: (3.8)

��(� + 1) = �� � � � 1: (3.9)

Subcase (ii.1) If i11(� + 1) < i�(�): Then L1(� + 1) � L1(�).

8

Subcase (ii.2) If i�(�) < i11(� + 1): Then L1(�) � L1(� + 1).

Case (iii) �01(�) = �01 � � and �10(�) = �10 � �: Then, �01(�) > 0 and �10(�) > 0 (from (3.5)).

It follows from (3.4) and (1.19) that

�00(�) < n000: (3.10)

Therefore,

X(� + 1) = fi00(� + 1); i11(� + 1)g [X(�)nfi01(�); i10(�)g; (3.11)

where i00(�+ 1) denotes the (i00(�) + 1)-th index of D000. If �(�) = 00, then i(�) < i00(�+ 1).

Otherwise, if i(�) > i00(� + 1), then from (3.1) and the de�nition of X(�), i00(� + 1) 2 X(�),

a contradiction. Hence, we have that

i�(�) � i(�) < i00(� + 1); for � 2 f01; 10g: (3.12)

Subcase (iii.1) The following inequality holds:

jri00(�+1)j+ jri11(�+1)j < jri01(�)j+ jri10(�)j: (3.13)

Then, L1(� + 1) < L1(�).

Subcase (iii.2) The above inequality does not hold. Then L1(� + 1) � L1(�).

Suppose that �(1) � �, � + 1 < �(2) and either subcase (i.2), (ii.2) or (iii.2) holds for �. We

show that neither subcase (i.1), (ii.1) nor (iii.1) occurs afterward.

Subcase (i.2) Then, i(� + 1) < i11(� + 1) < i11(� + 2) from (3.8). Since i�(� + 1) � i(� + 1) <

i11(� + 2) for � 2 f01; 10g, neither subcase (i.1) nor subcase (ii.2) holds for � + 1. If case (iii)

holds for � + 1, then from (3.12)

i�(� + 1) � i(� + 1) < i00(� + 2) for � 2 f01; 10g:

Hence, subcase (iii.1) can not hold for � + 1.

Subcase (ii.2) From (3.10), case (i) can not hold for � + 1. For � = 01 or 10 such that

��(�) = ��� �, i�(�+1) < i�(�) < i11(�+1) < i11(�+2) and therefore, subcase (ii.1) can not

hold for � + 1. If case (iii) holds for � + 1, then i�(� + 1) < i00(� + 2) for � 2 f01; 10g(from

(3.12)) and therefore, subcase (iii.1) can not hold for � + 1.

Subcase (iii.2) Since � + 1 < �(2), case (iii) holds for � + 1. Since i�(� + 1) < i�(�) for

� 2 f01; 10g and i�(� + 1) < i�(� + 2) for � 2 f00; 11g, (3.13) can not hold for � + 1.

9

Consequently, by induction, once one of subcase (i.2), (ii.2) and (iii.2) holds at �, then neither

subcase (i.1), (ii.1) nor (iii.1) can occur afterward. If there is such a �, let ~�1 denote the

smallest one for which subcase (i.2), (ii.2) or (iii.2) holds. Otherwise, ~�1 , �(2). Then, Lemma

2 holds. 44

~�1 can be found as follows:

(1.1) First, obtain X(�(1)). This can be done only by non-real number operations, that is,

array access, array index operations and binary operations whose total number is O(N).

(1.2) Then, for �(1) � � < �(2), we construct X(�+1) from X(�) step by step by a few non-real

number operations until either subcase (i.2), (ii.2) or (iii) occurs or � + 1 becomes to �(2). If

subcase (i.2) or (ii.2) occurs �rst at �, then ~�1 = �. For � 2 B2, i�(~�1) = i�(�).

Otherwise, let �iii denote the smallest � for which case (iii) holds with no preceding sub-

case (i.2) nor (ii.2). For case (iii), we need two real number additions and one real number

comparison to decide which of subcases (iii.1) and (iii.2) holds. ~�1 can be found by a binary

search. The number of addition equivalent operations for the binary search is at most

3dlog2(�
(2) � �iii + 1)e: (3.14)

Then, ��(~�1) with � 2 B
2 are also found.

(1.3) Once ~�1 is found, X(~�1) = D
(�00(~�1))
000 [D

(�01(~�1))
001 [D

(�10(~�1))
010 [D

(~�1)
011 and, since jX(�)j = �1,

L1(X(~�1)) can be found by �1 real number additions and non-real-number operations of order

N . Thus, the total number of addition equivalent operations for computing L1 is at most

�1 + 3dlog2(�
(2) + 1)e � �1 + 3dlog2(�1 + 1)e (3.15)

(2) Computing L2.

For � 2 B3 and 1 � j � n�, let i�(j) be the j-th index of D�. For convenience, de�ne

X 0(�) , D
(�0000��)
000 [D

(�0010+�)

010 [D
(�0001+�)

001 [D
(�)
100;

for �(3) � � � �(4), where �0000 , (�02 + �03)=2, �
0
010 , (�01 � �02)=2, and �0001 , (�01 � �03)=2,

L2(�) =
P

i2X0(�) jrij. Let
~�2 be the smallest of � with �(3) � � � �(4) such that

L2 = L2(~�2):

Note that L2(�) � L2(� + 1), for �(3) � � < �(4), if and only if

jri000(�0000��)j � jri010(�0010+�+1)j+ jri001(�0001+�+1)j+ jri100(�+1)j: (3.16)

10

It follows from (1.10) and the de�nition of i�(j) that if (3.16) holds for �, then it holds for all

�0 such that � � �0 � �(4). Hence, if there is � with �(3) � � < �(4) which satis�es (3.16), then

~�2 is the smallest of such j, and otherwise ~�2 , �(4). Consequently, ~�2 can be found by a binary

search whose number of addition equivalent operations is 3dlog2(�
(4) � �(3) + 1)e. Once ~�2 is

found, since jX 0(~�2)j = �01 + 2 ~�2, the number of addition equivalent operations for computing

L2(~�2) is

�01 + 2 ~�2:

Hence, the number is at most

�01 + 2�(4) + 3dlog2(�
(4) + 1)e � 3�01 + 3dlog2(�

0
1 + 1)e:

The number of non-real-number operations is of order N .

References

[1] T. Kasami, T. Takata, T. Koumoto, T. Fujiwara, H. Yamamoto and S. Lin, \The Least

Stringent Su�cient Condition on Optimality of Suboptimal Decoded Codewords," Tech-

nical Report of IEICE, IT94-82, The Inst. of Electronics, Information and Communication

Engineers, Japan, Jan. 1995. A revised version is in preparation.

11

