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Abstract

Su�cient conditions on the optimality of a candidate codeword, which is generated in

an iterative soft-decision decoding algorithm for block codes, have been derived based on (1)

partial knowledge of the distance pro�le of the code and (2) a number, denoted, h, of previously

generated candidate codewords. This report presents upperbounds on the computational

complexities of the su�cient conditions with h = 2 and 3.



1 Su�cient Conditions on the Optimality of a Decoded

Codeword

Suppose a binary block code C of length N with distance (or weight) pro�le WC , f0, w1 =

dmin, w2; : : :g is used for error control over the AWGN channel using BPSK signaling, where

w1 = dmin is the minimum Hamming distance of the code. A codeword c is mapped into a

bipolar sequence x. Suppose x is transmitted and r = (r1; r2; : : : ; rN) is the received sequence

at the output of a matched �lter in the receiver. Let z = (z1; z2; : : : ; zN) be the binary

hard-decision sequence.

Any soft-decision decoding scheme is devised based on r or reliability information provided

by r. For the AWGN channel and BPSK transmission, the reliability of a received symbol rj is

generally measured by its magnitude jrjj since this value is proportional to the log-likelihood

ratio associated with symbol hard-decision.

Let V N denote the vector space of all binaryN -tuples. For anN -tuple u = (u1; u2; : : : ; uN) 2

V N , de�ne the following :

D1(u) , fj : uj 6= zj; and 1 � j � Ng; (1.1)

D0(u) , f1; 2; : : : ; NgnD1(u); (1.2)

n(u) , jD1(u)j; (1.3)

L(u) ,
X

j2D1(u)

jrjj: (1.4)

L(u) is called the correlation discrepancy of u with respect to z.

For a subset U of V N , let L[U ] be de�ned as

L[U ] , min
u2U

L(u): (1.5)

If U is empty, then L[U ] is de�ned as1 (in�nity). The maximum likelihood decoding (MLD)

of a code C can be stated in terms of the correlation discrepancy as follows: The decoder

decodes the received sequence r into the codeword copt for which

L(copt) = L[C]: (1.6)

We call copt the optimal codeword. If z is a codeword, then z is the optimal codeword.

Let dH(u; v) denote the Hamming distance between two N -tuples, u and v. For u1, u2, : : :,
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uh 2 V N and positive integers d1; d2; : : : ; dh, let V
N
d1;d2;:::;dh

(u1;u2; : : : ;uh) (or V
N
d1;d2;:::;dh

for

simplicity) be de�ned as the following set:

V N
d1;d2;:::;dh

(u1;u2; : : : ;uh) , fu 2 V
N : dH(u;ui) � di for 1 � i � hg; (1.7)

The sequence, u1;u2; : : : ;uh, is called a sequence of reference words. For a codeword u in

C and a positive integer d, de�ne the following subcode of C:

�Cd(u) , fv 2 C : dH(v;u) < dg: (1.8)

At a stage of an iterative decoding algorithm, suppose that candidate codewords u1;u2; : : : ;uh

have been generated. Let ubest denote the best of all candidate codewords that have been

generated already. For d1; d2; : : : ; dh 2 WC � f0g, if

L(ubest) � L[V N
d1;d2;:::;dh

(u1;u2; : : : ;uh)]; (1.9)

then copt is either ubest or in [
h
i=1

�Cdi(ui).

Formulas for L[V N
d1;d2

] and L[V N
d1;d2;d3

], (where the sequence of reference words is omitted),

will be shown as Theorems 1 and 2, respectively. For the proofs, refer to [1]. For simplicity of

discussion, we assume that the bit positions 1; 2; : : : ; N are ordered according to the following

increasing order of reliability of the received symbols,for 1 � i < j � N ,

jrij � jrjj: (1.10)

For a subset X of f1; 2; : : : ; Ng and a positive integer j � jXj, let X(j) denote the set of j

smallest integers in X. For a non-positive integer j, X(j) , � and for j > jXj, X(j) , X.

For a positive integer h, let Bh be the set of all binary sequences of length h. For 1 � i � h

and � 2 Bh, let �i denote the i-th symbol of �. For a sequence of reference words u1;u2; : : : ;uh

in V N and � 2 Bh, let D� and n� be de�ned as

D� ,

h\

i=1

D�i(ui); (1.11)

n� , jD�j; (1.12)

where D�i(ui) is the index set given by either (1.1) or (1.2).

The following theorem provides a formula for L[V N
d1;d2

].

Theorem 1: Without loss of generality, assume that

�1 � �2; (1.13)
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where �i , di�n(ui) for 1 � i � 2. If minfn01; �1; b(�1��2)=2cg < �1�n00, then L[V
N
d1;d2

] =1.

Otherwise,

L[V N
d1;d2

] =
X

i2(D00[D
(b(�1��2)=2c)
01 )(�1)

jrij: (1.14)

The following theorem gives an expression for L[V N
d1;d2;d3

].

Theorem 2: Without loss of generality, assume that

�1 � �2 � �3: (1.15)

where �i , di � n(ui) for 1 � i � 3. Consider the parities (even or odd) of �i with 1 � i � 3.

If all the parities are the same, then de�ne "i , 0 for 1 � i � 3. Otherwise, there is an index

j such that the parity of �j is di�erent from the parities of other two �0is. De�ne "j , 1 and

"i , 0 for i 6= j. De�ne �1i with 2 � i � 3, �0i and �
(i) with 1 � i � 3 as follows:

�1i , minf�1; b(�1 � �i)=2cg; (1.16)

�0i = �i + "i; (1.17)

�(1) , maxf0; �12 � n010; �13 � n001g; (1.18)

�(2) , minfn011; �12; �13; n000 + �12 + �13 � �1g; (1.19)

�(3) , maxf0; (�02 + �03)=2� n000g; (1.20)

�(4) , minfn100; n010 � (�01 � �02)=2; n001 � (�01 � �03)=2; (�
0
2 + �03)=2g: (1.21)

Then, L[V N
d1;d2;d3

] is given by

L[V N
d1;d2;d3

] = minfL1; L2g; (1.22)

where L1 and L2 are de�ned as follows:

If �(1) � �(2), then

L1 = min
�(1)����(2)

X

i2(D000[D
(�13��)

001 [D
(�12��)

010 )(�1��)[D
(�)
011

jrij: (1.23)

Otherwise, L1 ,1.

If �(3) � �(4), then

L2 = min
�(2)����(3)

X

i2D
((�0

2
+�0

3
)=2��)

000 [D
((�0

1
��0

2
)=2+�)

010 [D
((�0

1
��0

3
)=2+�)

001 [D
(�)
100

jrij: (1.24)

Otherwise, L2 ,1.
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2 An algorithm for Computing L[V N
d1;d2

(u1;u2)]

Assume that (1.10) \jrij � jrjj for 1 � i < j � N" holds and that �1 � �2 and �1 > 0, and

�12 , minf�1; b(�1 � �2)=2cg. It follows from Theorem 1 that L[V N
d1;d2

(u1;u2)] 6= 1, if and

only if

n00 � d(�1 + �2)e=2; (2.1)

n00 + n01 � �1: (2.2)

De�ne X2 , (D00 +D
(b(�1��2)=2c)
01 )(�1) and for a 2 f0; 1g, de�ne �a , jD0a \X2j and for a

nonempty subset X of f1; 2; : : : ; Ng, let i(X) denote the largest index in X. De�ne

�d , minfN;maxfd1; d(dH(u1;u2) + d1 + d2)=2egg: (2.3)

Lemma 1: Suppose that (2.1) and (2.2) hold. Then i(X2) � �d.

(Proof): If �1 < b(�1 � �2)=2c, then X2 = D
(�1)
0 . Hence, i(X2) � n1� + �1 = d1. If �1 =

b(�1 � �2)=2c, then �0 = d(�1 + �2)=2e and therefore, i(X2) � n1� + n01 + �0 = d(n10 + n01 +

d1 + d2)=2e = d(dH(u1;u2) + d1 + d2)=2e. 44

The following Vh=2 is an algorithm for computing L[V N
d1;d2

(u1;u2)]. In Vh=2, real number

array R and binary arrays U1 and U2 of length �d are used. For 1 � j � �d, jrjj and the j-th

elements of z + u1 and z + u2 are stored in the ( �d � j + 1)-th elements of R, U1 and U2,

respectively.

Procedure Vh=2;

begin

step1: (*Initialization*)

L 0; j  �d+ 1; m �1;

if �12 = 0, then

go to step 2;

else

m1  �12; go to step3;

step2: (*m1 = 0*)

updatej;
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if U1(j) = 0, then

if U2(j) = 0, then

updateLm;

go to step2;

step3: (*m1 > 0*)

updatej;

if U1(j) = 0, then

updateLm;

if U2(j) = 1, then

m1  m1 � 1;

if m1 = 0, then

go to step2;

go to step3;

end.

Procedure updateLm;

begin

L L+R(j); m m� 1;

if m = 0, then

output L; stop;

else

return;

end.

Procedure updatej;

begin

j  j � 1;

if j = 0, then

output 1; stop;

else

return;

end.
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Clearly, Vh=2 always terminates. Let Lt, jt, mt and m1;t denote the �nal values of L; j;m

and m1 respectively. For a current value of j, de�ne Y (j) = f �d � j 0 + 1 : j � j 0 � �d and

L L +R(j 0) has been performed in Vh=2g. Then, we can see that

(1) jD0� \ Y (j)j = �1 �m, jD01 \ Y (j)j = �12 �m1 and

Y (j) = (D00 [D
(�12�m1)
01 )(�1�m); (2.4)

and for 1 � j 0 < j � �d, f1; 2; : : : ; �d� j + 1gnY (j) and Y (j 0) are mutually disjoint.

(2) Vh=2 stops in step 2, if and only if m1;t = 0, i.e., jD01 \ Y (jt)j = �12.

(3) Vh=2 outputs Lt =
P

i2Y (jt)
jrij, if and only if mt = 0, i.e., jD0� \ Y (jt)j = �1. From (1),

jD01\Y (jt)j � �12. Hence, n0� � �1 and n00 = n0��n01 � d(�1+�2)=2e. From (2.1), (2.2)

and (2.4), Y (jt) = (D00[D
(�12)
01 )(�1) = (D00[D

(b(�1��2)=2c)
01 )(�1) and Lt = L[V N

d1;d2
(u1;u2)].

(4) Vh=2 outputs 1 as L, if and only if mt > 0 and jt = 0. Then, jD0� \ Y (jt)j < �1

from (1). If (2.1) and (2.2) hold, then j(X2) > �d, which contradicts Lemma 1. Hence

L[V N
d1;d2

(u1;u2)] =1.

In Vh=2, the number of access to array R and real number addition is at most �1, the

number of access to array U1, binary test jump on U1(j) and the index decrement and zero

test jump of j is at most �d, the number of access to array U2 and binary test jump on U2(j)

is at most �d� d1 and the numbers of index decrements and zero test jumps of m and m1 are

at most �1 and �12, respectively.

For the algorithm Vh=2, it is su�cient to assume that jrij � jrjj for either 1 � i < j � �d

or 1 � i � �d < j � N .

3 Computational Complexity for Computing

L[V N
d1;d2;d3

(u1;u2;u3)]

(1) Computing L1.

For convenience, assume that if jrij = jrjj for i 2 D000 and j =2 D000, then

i < j; (3.1)

and de�ne

�10 , �12; and �01 , �13: (3.2)
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X(�) , (D000 [D
(�01��)
001 [D

(�10��)
010 )(�1��) [D

(�)
011; for �

(1) � � � �(2);

L1(�) ,
X

i2X(�)

jrij:

We �rst prove the following lemma:

Lemma 2: There exists an integer ~�1 such that �(1) � ~�1 � �(2), and L1(�) is nonincreasing

for �(1) � � � ~�1, and is nondecreasing for ~�1 � � � �(2).

From this lemma, we have that

L1 = L1( ~�1): (3.3)

(Proof) De�ne ��(�) , jD0� \X(�)j; for � 2 B2. Then, �11(�) = �, and

�00(�) + �01(�) + �10(�) = �1 � �: (3.4)

De�ne

i�(�) , the largest index of D0� \X(�); for � 2 B2;

i(�) , the largest index of X(�)nfD011g:

Let �(�) indicate that i(�) is in D0�(�). It follows from (1.19) that for �(1) � � < �(2),

�� > �; for � 2 f01; 10g: (3.5)

There are three cases (i), (ii) and (iii), and each case is partitioned into two subcases.

Case (i) �01(�) < �01 � � and �10(�) < �10 � �:

X(� + 1) = fi11(� + 1)g [X(�)nfi(�)g: (3.6)

Subcase (i.1) i11(� + 1) < i(�): Then L1(� + 1) � L1(�).

Subcase (i.2) i(�) < i11(� + 1): Then L1(�) � L1(� + 1), and

i(� + 1) < i11(� + 1): (3.7)

Case (ii) For � 2 f01; 10g, ��(�) = ��� � and ���(�) < ���� �: Then ��(�) > 0(from (3.5)) and

X(� + 1) = fi11(� + 1)g [X(�)nfi�(�)g: (3.8)

��(� + 1) = �� � � � 1: (3.9)

Subcase (ii.1) If i11(� + 1) < i�(�): Then L1(� + 1) � L1(�).
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Subcase (ii.2) If i�(�) < i11(� + 1): Then L1(�) � L1(� + 1).

Case (iii) �01(�) = �01 � � and �10(�) = �10 � �: Then, �01(�) > 0 and �10(�) > 0 (from (3.5)).

It follows from (3.4) and (1.19) that

�00(�) < n000: (3.10)

Therefore,

X(� + 1) = fi00(� + 1); i11(� + 1)g [X(�)nfi01(�); i10(�)g; (3.11)

where i00(�+ 1) denotes the (i00(�) + 1)-th index of D000. If �(�) = 00, then i(�) < i00(�+ 1).

Otherwise, if i(�) > i00(� + 1), then from (3.1) and the de�nition of X(�), i00(� + 1) 2 X(�),

a contradiction. Hence, we have that

i�(�) � i(�) < i00(� + 1); for � 2 f01; 10g: (3.12)

Subcase (iii.1) The following inequality holds:

jri00(�+1)j+ jri11(�+1)j < jri01(�)j+ jri10(�)j: (3.13)

Then, L1(� + 1) < L1(�).

Subcase (iii.2) The above inequality does not hold. Then L1(� + 1) � L1(�).

Suppose that �(1) � �, � + 1 < �(2) and either subcase (i.2), (ii.2) or (iii.2) holds for �. We

show that neither subcase (i.1), (ii.1) nor (iii.1) occurs afterward.

Subcase (i.2) Then, i(� + 1) < i11(� + 1) < i11(� + 2) from (3.8). Since i�(� + 1) � i(� + 1) <

i11(� + 2) for � 2 f01; 10g, neither subcase (i.1) nor subcase (ii.2) holds for � + 1. If case (iii)

holds for � + 1, then from (3.12)

i�(� + 1) � i(� + 1) < i00(� + 2) for � 2 f01; 10g:

Hence, subcase (iii.1) can not hold for � + 1.

Subcase (ii.2) From (3.10), case (i) can not hold for � + 1. For � = 01 or 10 such that

��(�) = ��� �, i�(�+1) < i�(�) < i11(�+1) < i11(�+2) and therefore, subcase (ii.1) can not

hold for � + 1. If case (iii) holds for � + 1, then i�(� + 1) < i00(� + 2) for � 2 f01; 10g(from

(3.12)) and therefore, subcase (iii.1) can not hold for � + 1.

Subcase (iii.2) Since � + 1 < �(2), case (iii) holds for � + 1. Since i�(� + 1) < i�(�) for

� 2 f01; 10g and i�(� + 1) < i�(� + 2) for � 2 f00; 11g, (3.13) can not hold for � + 1.

9



Consequently, by induction, once one of subcase (i.2), (ii.2) and (iii.2) holds at �, then neither

subcase (i.1), (ii.1) nor (iii.1) can occur afterward. If there is such a �, let ~�1 denote the

smallest one for which subcase (i.2), (ii.2) or (iii.2) holds. Otherwise, ~�1 , �(2). Then, Lemma

2 holds. 44

~�1 can be found as follows:

(1.1) First, obtain X(�(1)). This can be done only by non-real number operations, that is,

array access, array index operations and binary operations whose total number is O(N).

(1.2) Then, for �(1) � � < �(2), we construct X(�+1) from X(�) step by step by a few non-real

number operations until either subcase (i.2), (ii.2) or (iii) occurs or � + 1 becomes to �(2). If

subcase (i.2) or (ii.2) occurs �rst at �, then ~�1 = �. For � 2 B2, i�( ~�1) = i�(�).

Otherwise, let �iii denote the smallest � for which case (iii) holds with no preceding sub-

case (i.2) nor (ii.2). For case (iii), we need two real number additions and one real number

comparison to decide which of subcases (iii.1) and (iii.2) holds. ~�1 can be found by a binary

search. The number of addition equivalent operations for the binary search is at most

3dlog2(�
(2) � �iii + 1)e: (3.14)

Then, ��( ~�1) with � 2 B
2 are also found.

(1.3) Once ~�1 is found, X( ~�1) = D
(�00( ~�1))
000 [D

(�01( ~�1))
001 [D

(�10( ~�1))
010 [D

( ~�1)
011 and, since jX(�)j = �1,

L1(X( ~�1)) can be found by �1 real number additions and non-real-number operations of order

N . Thus, the total number of addition equivalent operations for computing L1 is at most

�1 + 3dlog2(�
(2) + 1)e � �1 + 3dlog2(�1 + 1)e (3.15)

(2) Computing L2.

For � 2 B3 and 1 � j � n�, let i�(j) be the j-th index of D�. For convenience, de�ne

X 0(�) , D
(�0000��)
000 [D

(�0010+�)

010 [D
(�0001+�)

001 [D
(�)
100;

for �(3) � � � �(4), where �0000 , (�02 + �03)=2, �
0
010 , (�01 � �02)=2, and �0001 , (�01 � �03)=2,

L2(�) =
P

i2X0(�) jrij. Let
~�2 be the smallest of � with �(3) � � � �(4) such that

L2 = L2( ~�2):

Note that L2(�) � L2(� + 1), for �(3) � � < �(4), if and only if

jri000(�0000��)j � jri010(�0010+�+1)j+ jri001(�0001+�+1)j+ jri100(�+1)j: (3.16)
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It follows from (1.10) and the de�nition of i�(j) that if (3.16) holds for �, then it holds for all

�0 such that � � �0 � �(4). Hence, if there is � with �(3) � � < �(4) which satis�es (3.16), then

~�2 is the smallest of such j, and otherwise ~�2 , �(4). Consequently, ~�2 can be found by a binary

search whose number of addition equivalent operations is 3dlog2(�
(4) � �(3) + 1)e. Once ~�2 is

found, since jX 0( ~�2)j = �01 + 2 ~�2, the number of addition equivalent operations for computing

L2( ~�2) is

�01 + 2 ~�2:

Hence, the number is at most

�01 + 2�(4) + 3dlog2(�
(4) + 1)e � 3�01 + 3dlog2(�

0
1 + 1)e:

The number of non-real-number operations is of order N .
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