Computational Complexity for Computing Sufficient Conditions on the Optimality of a Decoded Codeword

Tadao Kasami[†] and Takuya Koumoto[‡]

[†]Faculty of Information Science, Department of Computer Science, Hiroshima City University

> [‡]Graduate School of Information Science, Nara Institute of Science and Technology

Abstract

Sufficient conditions on the optimality of a candidate codeword, which is generated in an iterative soft-decision decoding algorithm for block codes, have been derived based on (1) partial knowledge of the distance profile of the code and (2) a number, denoted, h, of previously generated candidate codewords. This report presents upperbounds on the computational complexities of the sufficient conditions with $h = 2$ and 3.

1 Sufficient Conditions on the Optimality of a Decoded Codeword

Suppose a binary block code C of length N with distance (or weight) profile $W_C \triangleq \{0, w_1 =$ d_{min} , w_2 ,...} is used for error control over the AWGN channel using BPSK signaling, where $w_1 = d_{\text{min}}$ is the minimum Hamming distance of the code. A codeword c is mapped into a bipolar sequence x. Suppose x is transmitted and $\boldsymbol{r} = (r_1, r_2, \ldots, r_N)$ is the received sequence at the output of a matched filter in the receiver. Let $\boldsymbol{z} = (z_1, z_2, \ldots, z_N)$ be the binary hard-decision sequence.

Any soft-decision decoding scheme is devised based on \bm{r} or reliability information provided by r . For the AWGN channel and BPSK transmission, the reliability of a received symbol r_i is generally measured by its magnitude $|r_j|$ since this value is proportional to the log-likelihood ratio associated with symbol hard-decision.

Let $V^{\prime\prime}$ denote the vector space of all binary N-tuples. For an N-tuple $\boldsymbol{u}=(u_1,u_2,\ldots,u_N)\in$ V , define the following :

$$
D_1(\boldsymbol{u}) \triangleq \{j : u_j \neq z_j, \text{ and } 1 \leq j \leq N\},\tag{1.1}
$$

$$
D_0(\boldsymbol{u}) \triangleq \{1, 2, \ldots, N\} \backslash D_1(\boldsymbol{u}), \qquad (1.2)
$$

$$
n(\boldsymbol{u}) \triangleq |D_1(\boldsymbol{u})|,\tag{1.3}
$$

$$
L(\boldsymbol{u}) \triangleq \sum_{j \in D_1(\boldsymbol{u})} |r_j|.
$$
 (1.4)

 $L(\boldsymbol{u})$ is called the **correlation discrepancy** of \boldsymbol{u} with respect to \boldsymbol{z} .

For a subset U of V , let $L[U]$ be defined as

$$
\underline{L}[U] \triangleq \min_{\mathbf{u} \in U} L(\mathbf{u}). \tag{1.5}
$$

If U is empty, then $L[U]$ is defined as ∞ (infinity). The maximum likelihood decoding (MLD) of a code C can be stated in terms of the correlation discrepancy as follows: The decoder decodes the received sequence \bm{r} into the codeword \bm{c}_{opt} for which

$$
L(\mathbf{c}_{\mathrm{opt}}) = \underline{L}[C]. \tag{1.6}
$$

We call c_{opt} the optimal codeword. If z is a codeword, then z is the optimal codeword. Let $d_H(\boldsymbol{u}, \boldsymbol{v})$ denote the Hamming distance between two N-tuples, \boldsymbol{u} and \boldsymbol{v} . For $\boldsymbol{u}_1, \boldsymbol{u}_2, \ldots$,

 $u_h \in V^N$ and positive integers d_1, d_2, \ldots, d_h , let $V_{d_1, d_2, \ldots, d_h}^N(u_1, u_2, \ldots, u_h)$ (or $V_{d_1, d_2, \ldots, d_h}^N$ for simplicity) be defined as the following set:

$$
V_{d_1,d_2,\ldots,d_h}^N(\boldsymbol{u}_1,\boldsymbol{u}_2,\ldots,\boldsymbol{u}_h)\triangleq\{\boldsymbol{u}\in V^N:d_H(\boldsymbol{u},\boldsymbol{u}_i)\geq d_i\text{ for }1\leq i\leq h\},\qquad \qquad (1.7)
$$

The sequence, $\bm{u}_1, \bm{u}_2, \ldots, \bm{u}_h,$ is called a sequence of reference words. For a codeword \bm{u} in C and a positive integer d, define the following subcode of C :

$$
\bar{C}_d(\boldsymbol{u}) \triangleq \{ \boldsymbol{v} \in C : d_H(\boldsymbol{v}, \boldsymbol{u}) < d \}. \tag{1.8}
$$

At a stage of an iterative decoding algorithm, suppose that candidate codewords u_1, u_2, \ldots, u_h have been generated. Let u_{best} denote the best of all candidate codewords that have been generated already. For $d_1, d_2, \ldots, d_h \in W_C - \{0\}$, if

$$
L(\boldsymbol{u}_{\text{best}}) \leq \underline{L}[V_{d_1,d_2,...,d_h}^N(\boldsymbol{u}_1,\boldsymbol{u}_2,...,\boldsymbol{u}_h)], \qquad (1.9)
$$

then $\boldsymbol{c}_{\rm opt}$ is either $\boldsymbol{u}_{\rm best}$ or in $\cup_{i=1}^n C_{d_i}(\boldsymbol{u}_i)$.

Formulas for $\underline{L}[V_{d_1,d_2}]$ and $\underline{L}[V_{d_1,d_2,d_3}]$, (where the sequence of reference words is omitted), will be shown as Theorems 1 and 2, respectively. For the proofs, refer to [1]. For simplicity of discussion, we assume that the bit positions $1, 2, \ldots, N$ are ordered according to the following increasing order of reliability of the received symbols, for $1 \leq i < j \leq N$,

$$
|r_i| \le |r_j|. \tag{1.10}
$$

For a subset X of $\{1, 2, ..., N\}$ and a positive integer $j \leq |X|$, let $X^{(j)}$ denote the set of j smallest integers in X. For a non-positive integer j, $X^{(j)} \triangleq \phi$ and for $j > |X|$, $X^{(j)} \triangleq X$.

For a positive integer h, let B^h be the set of all binary sequences of length h. For $1 \le i \le h$ and $\alpha\in B$ ", let α_i denote the \imath -th symbol of α . For a sequence of reference words $\bm u_1,\bm u_2,\dots,\bm u_h$ in V^N and $\alpha \in B^n$, let D_α and n_α be defined as

$$
D_{\alpha} \triangleq \bigcap_{i=1}^{h} D_{\alpha_i}(\boldsymbol{u}_i), \qquad (1.11)
$$

$$
n_{\alpha} \triangleq |D_{\alpha}|,\tag{1.12}
$$

where $D_{\alpha_i}(\boldsymbol{u}_i)$ is the index set given by either (1.1) or (1.2).

The following theorem provides a formula for $\underline{L}[V_{d_1,d_2}]$.

Theorem 1: Without loss of generality, assume that

$$
\delta_1 \ge \delta_2, \tag{1.13}
$$

where $\delta_i\triangleq d_i-n(\bm u_i)$ for $1\leq i\leq 2.$ If $\min\{n_{01},\delta_1,\lfloor(\delta_1-\delta_2)/2\rfloor\}<\delta_1-n_{00},$ then $\underline{L}[V^N_{d_1,d_2}]=\infty.$ Otherwise,

$$
\underline{L}[V_{d_1,d_2}^N] = \sum_{i \in (D_{00} \cup D_{01}^{(\lfloor \delta_1 - \delta_2)/2 \rfloor)})(\delta_1)} |r_i|. \tag{1.14}
$$

The following theorem gives an expression for $L[V_{d_1,d_2,d_3}]$. Theorem 2: Without loss of generality, assume that

$$
\delta_1 \ge \delta_2 \ge \delta_3. \tag{1.15}
$$

where $\delta_i \triangleq d_i - n(\mathbf{u}_i)$ for $1 \leq i \leq 3$. Consider the parities (even or odd) of δ_i with $1 \leq i \leq 3$. If all the parities are the same, then define $\varepsilon_i \triangleq 0$ for $1 \leq i \leq 3$. Otherwise, there is an index) such that the parity of σ_j is different from the parities of other two σ_i s. Define $\varepsilon_j = 1$ and $\varepsilon_i \triangleq 0$ for $i\neq j$. Define δ_{1i} with $2\leq i\leq 3,~\delta'_i$ and $\delta^{(i)}$ with $1\leq i\leq 3$ as follows:

$$
\delta_{1i} \triangleq \min\{\delta_1, \lfloor (\delta_1 - \delta_i)/2 \rfloor\},\tag{1.16}
$$

$$
\delta_i' = \delta_i + \varepsilon_i,\tag{1.17}
$$

$$
\delta^{(1)} \triangleq \max\{0, \delta_{12} - n_{010}, \delta_{13} - n_{001}\},\tag{1.18}
$$

$$
\delta^{(2)} \triangleq \min\{n_{011}, \delta_{12}, \delta_{13}, n_{000} + \delta_{12} + \delta_{13} - \delta_1\},\tag{1.19}
$$

$$
\delta^{(3)} \triangleq \max\{0, (\delta_2' + \delta_3')/2 - n_{000}\},\tag{1.20}
$$

$$
\delta^{(4)} \triangleq \min\{n_{100}, n_{010} - (\delta_1' - \delta_2')/2, n_{001} - (\delta_1' - \delta_3')/2, (\delta_2' + \delta_3')/2\}.
$$
 (1.21)

 I nen, $L[V_{d_1,d_2,d_3}]$ is given by

$$
\underline{L}[V_{d_1,d_2,d_3}^N] = \min\{\underline{L}_1,\underline{L}_2\},\tag{1.22}
$$

where \underline{L}_1 and \underline{L}_2 are defined as follows:

If $\delta^{(1)} \leq \delta^{(2)}$, then

$$
\underline{L}_1 = \min_{\delta^{(1)} \le \delta \le \delta^{(2)}} \sum_{i \in (D_{000} \cup D_{001}^{(\delta_{13} - \delta)} \cup D_{010}^{(\delta_{12} - \delta)})(\delta_1 - \delta) \cup D_{011}^{(\delta)}} |r_i|.
$$
(1.23)

Otherwise, $\underline{L}_1 \triangleq \infty$.

If $\delta^{(3)} \leq \delta^{(4)}$, then

$$
\underline{L}_2 = \min_{\delta^{(2)} \le \delta \le \delta^{(3)}} \sum_{i \in D_{000}^{((\delta_2' + \delta_3')/2 - \delta)} \cup D_{010}^{((\delta_1' - \delta_2')/2 + \delta)} \cup D_{001}^{((\delta_1' - \delta_3')/2 + \delta)} \cup D_{100}^{(\delta)}} |r_i|.
$$
(1.24)

Otherwise, $\underline{L}_2 \triangleq \infty$.

2 An algorithm for Computing $L[V_{d_1,d_2}(\boldsymbol{u}_1,\boldsymbol{u}_2)]$

Assume that (1.10) $\|r_i\| \leq |r_j|$ for $1 \leq i < j \leq N$ " holds and that $\delta_1 \geq \delta_2$ and $\delta_1 > 0$, and $\delta_{12} \ \triangleq \ \min\{\delta_1,\lfloor(\delta_1-\delta_2)/2\rfloor\}.$ It follows from Theorem 1 that $\underline{L}[V^N_{d_1,d_2}(\boldsymbol{u}_1,\boldsymbol{u}_2)] \neq \infty,$ if and only if

$$
n_{00} \ge \left\lceil \left(\delta_1 + \delta_2 \right) \right\rceil / 2,\tag{2.1}
$$

$$
n_{00} + n_{01} \ge \delta_1. \tag{2.2}
$$

Define $X_2 \triangleq (D_{00} + D_{01}^{(101-\sigma_2)/2J})^{(\delta_1)}$ and for $a \in \{0,1\},$ define $\nu_a \triangleq |D_{0a} \cap X_2|$ and for a nonempty subset X of $\{1, 2, ..., N\}$, let $i(X)$ denote the largest index in X. Define

$$
\bar{d} \triangleq \min\{N, \max\{d_1, \lceil (d_H(\bm{u}_1, \bm{u}_2) + d_1 + d_2)/2 \rceil\}\}.
$$
\n(2.3)

Lemma 1: Suppose that (2.1) and (2.2) hold. Then $i(X_2) \leq d$.

(Proof): If ν_1 < $\lfloor (\delta_1 - \delta_2)/2 \rfloor$, then $X_2 = D_0^{(o_1)}$. Hence, $i(X_2) \le n_{1*} + \delta_1 = d_1$. If $\nu_1 =$ $\lfloor(\delta_1 - \delta_2)/2\rfloor$, then $\nu_0 = \lceil(\delta_1 + \delta_2)/2\rceil$ and therefore, $i(X_2) \leq n_{1*} + n_{01} + \nu_0 = \lceil(n_{10} + n_{01} + \delta_2)/2\rceil$ $\lfloor d_1 + d_2 \rfloor / 2 = \lceil (d_H({\boldsymbol u}_1, {\boldsymbol u}_2) + d_1 + d_2)/2 \rceil.$

The following $V_{h=2}$ is an algorithm for computing $L[V_{d_1,d_2}(u_1,u_2)]$. In $V_{h=2}$, real number array R and binary arrays U_1 and U_2 of length \bar{d} are used. For $1 \leq j \leq \bar{d}$, $|r_j|$ and the j-th elements of $z + u_1$ and $z + u_2$ are stored in the $(\bar{d} - j + 1)$ -th elements of R, U_1 and U_2 , respectively.

Procedure $V_{h=2}$;

begin

```
step1: (*Initialization*)
   L \leftarrow 0; j \leftarrow \bar{d} + 1; m \leftarrow \delta_1;if \delta_{12} = 0, then
         go to step 2;
   else
        m_1 \leftarrow \delta_{12}; go to step3;
step2: (*m_1 = 0^*)updatej;
```
if $U_1(j) = 0$, then if $U_2(j) = 0$, then updateLm; go to step2; step3: $(*m_1 > 0^*)$ updatej; if $U_1(j) = 0$, then updateLm; if $U_2(j) = 1$, then $m_1 \leftarrow m_1 - 1;$ if $m_1 = 0$, then go to step2; go to step3;

end.

Procedure updateLm;

begin

 $L \leftarrow L + R(j); m \leftarrow m - 1;$ if $m = 0$, then output L ; stop; else return;

end.

Procedure updatej;

begin

 $j \leftarrow j - 1;$ if $j = 0$, then output ∞ ; stop; else return;

end.

Clearly, $V_{h=2}$ always terminates. Let L_t , j_t , m_t and $m_{1,t}$ denote the final values of L, j, m and m_1 respectively. For a current value of $j,$ define $Y(j) = \{d-j'+1: j \leq j' \leq d \text{ and }$ $L \leftarrow L + R(j')$ has been performed in $V_{h=2}$ }. Then, we can see that

(1) $|D_{0*} \cap Y(j)| = \delta_1 - m$, $|D_{01} \cap Y(j)| = \delta_{12} - m_1$ and

$$
Y(j) = (D_{00} \cup D_{01}^{(\delta_{12} - m_1)})^{(\delta_{1} - m)}, \tag{2.4}
$$

and for $1 \leq j' < j \leq d,$ $\{1,2,\ldots,d-j+1\} \backslash Y(j)$ and $Y(j')$ are mutually disjoint.

- (2) $V_{h=2}$ stops in step 2, if and only if $m_{1,t} = 0$, i.e., $|D_{01} \cap Y(j_t)| = \delta_{12}$.
- (3) $V_{h=2}$ outputs $L_t = \sum_{i \in Y(i_t)} |r_i|$, if and only if $m_t = 0$, i.e., $|D_{0*} \cap Y(j_t)| = \delta_1$. From (1), $|D_{01}\cap Y(j_t)| \leq \delta_{12}$. Hence, $n_{0*} \geq \delta_1$ and $n_{00} = n_{0*}-n_{01} \geq \lceil (\delta_1+\delta_2)/2 \rceil$. From (2.1) , (2.2) and (2.4) , $Y(j_t) = (D_{00} \cup D_{01}^{(012)})^{(01)} = (D_{00} \cup D_{01}^{(1)(10-2)/2})^{(01)}$ and $\underline{L}_t = \underline{L}[V_{d_1,d_2}^N(\boldsymbol{u}_1, \boldsymbol{u}_2)].$
- (4) $V_{h=2}$ outputs ∞ as L, if and only if $m_t > 0$ and $j_t = 0$. Then, $|D_{0*} \cap Y(j_t)| < \delta_1$ from (1). If (2.1) and (2.2) hold, then $j(X_2) > \overline{d}$, which contradicts Lemma 1. Hence $\underline{L}[V_{d_1,d_2}(\boldsymbol{u}_1,\boldsymbol{u}_2)] = \infty.$

In $V_{h=2}$, the number of access to array R and real number addition is at most δ_1 , the number of access to array U_1 , binary test jump on $U_1(j)$ and the index decrement and zero test jump of j is at most \bar{d} , the number of access to array U_2 and binary test jump on $U_2(j)$ is at most $\bar{d} - d_1$ and the numbers of index decrements and zero test jumps of m and m_1 are at most δ_1 and δ_{12} , respectively.

For the algorithm $V_{h=2}$, it is sufficient to assume that $|r_i| \leq |r_j|$ for either $1 \leq i < j \leq d$ or $1 \leq i \leq \overline{d} < j \leq N$.

3 Computational Complexity for Computing $\mathcal{L}\lbrack V_{d_1,d_2,d_3}(\boldsymbol{u}_1,\boldsymbol{u}_2,\boldsymbol{u}_3)\rbrack$

(1) Computing \underline{L}_1 .

For convenience, assume that if $|r_i| = |r_j|$ for $i \in D_{000}$ and $j \notin D_{000}$, then

$$
i < j,\tag{3.1}
$$

and define

$$
\rho_{10} \triangleq \delta_{12}, \text{ and } \rho_{01} \triangleq \delta_{13}. \tag{3.2}
$$

$$
X(\delta)\triangleq (D_{000}\cup D_{001}^{(\rho_{01}-\delta)}\cup D_{010}^{(\rho_{10}-\delta)})^{(\delta_1-\delta)}\cup D_{011}^{(\delta)},\,\text{ for }\delta^{(1)}\leq\delta\leq\delta^{(2)},\\\nonumber L_1(\delta)\triangleq\sum_{i\in X(\delta)}|r_i|.
$$

We first prove the following lemma:

Lemma 2: There exists an integer δ_1 such that $\delta^{(1)} \leq \delta_1 \leq \delta^{(2)}$, and $L_1(\delta)$ is nonincreasing for $\delta^{(1)} \leq \delta \leq \delta_1$, and is nondecreasing for $\delta_1 \leq \delta \leq \delta^{(2)}$.

From this lemma, we have that

$$
\underline{L}_1 = L_1(\tilde{\delta_1}).\tag{3.3}
$$

 $(\textbf{Proof}) \text{ Define } \nu_{\alpha}(\delta) \triangleq |D_{0\alpha} \cap X(\delta)|, \text{ for } \alpha \in B^2. \text{ Then, } \nu_{11}(\delta) = \delta, \text{ and}$

$$
\nu_{00}(\delta) + \nu_{01}(\delta) + \nu_{10}(\delta) = \delta_1 - \delta. \tag{3.4}
$$

Define

$$
i_{\alpha}(\delta) \triangleq \text{the largest index of } D_{0\alpha} \cap X(\delta), \text{ for } \alpha \in B^2,
$$

$$
i(\delta) \triangleq \text{the largest index of } X(\delta) \backslash \{D_{011}\}.
$$

Let $\beta(\delta)$ indicate that $i(\delta)$ is in $D_{0\beta(\delta)}$. It follows from (1.19) that for $\delta^{(1)} \leq \delta < \delta^{(2)}$,

$$
\rho_{\alpha} > \delta, \text{ for } \alpha \in \{01, 10\}. \tag{3.5}
$$

There are three cases (i), (ii) and (iii), and each case is partitioned into two subcases. Case (i) $\nu_{01}(\delta) < \rho_{01} - \delta$ and $\nu_{10}(\delta) < \rho_{10} - \delta$:

$$
X(\delta+1) = \{i_{11}(\delta+1)\} \cup X(\delta) \setminus \{i(\delta)\}.
$$
\n(3.6)

Subcase (i.1) $i_{11}(\delta + 1) < i(\delta)$: Then $L_1(\delta + 1) \le L_1(\delta)$. Subcase (i.2) $i(\delta) < i_{11}(\delta + 1)$: Then $L_1(\delta) \le L_1(\delta + 1)$, and

$$
i(\delta + 1) < i_{11}(\delta + 1). \tag{3.7}
$$

Case (ii) For $\alpha \in \{01, 10\}$, $\nu_{\alpha}(\delta) = \rho_{\alpha} - \delta$ and $\nu_{\alpha}(\delta) < \rho_{\alpha} - \delta$: Then $\nu_{\alpha}(\delta) > 0$ (from (3.5)) and

$$
X(\delta+1) = \{i_{11}(\delta+1)\} \cup X(\delta) \setminus \{i_{\alpha}(\delta)\}.
$$
\n(3.8)

$$
\nu_{\alpha}(\delta + 1) = \rho_{\alpha} - \delta - 1. \tag{3.9}
$$

Subcase (ii.1) If $i_{11}(\delta + 1) < i_{\alpha}(\delta)$: Then $L_1(\delta + 1) \le L_1(\delta)$.

Subcase (ii.2) If $i_{\alpha}(\delta) < i_{11}(\delta + 1)$: Then $L_1(\delta) \le L_1(\delta + 1)$.

Case (iii) $\nu_{01}(\delta) = \rho_{01} - \delta$ and $\nu_{10}(\delta) = \rho_{10} - \delta$: Then, $\nu_{01}(\delta) > 0$ and $\nu_{10}(\delta) > 0$ (from (3.5)). It follows from (3.4) and (1.19) that

$$
\nu_{00}(\delta) < n_{000}.\tag{3.10}
$$

Therefore,

$$
X(\delta+1) = \{i_{00}(\delta+1), i_{11}(\delta+1)\} \cup X(\delta) \setminus \{i_{01}(\delta), i_{10}(\delta)\},\tag{3.11}
$$

where $i_{00}(\delta+1)$ denotes the $(i_{00}(\delta)+1)$ -th index of D_{000} . If $\beta(\delta)=00$, then $i(\delta) < i_{00}(\delta+1)$. Otherwise, if $i(\delta) > i_{00}(\delta + 1)$, then from (3.1) and the definition of $X(\delta)$, $i_{00}(\delta + 1) \in X(\delta)$ a contradiction. Hence, we have that

$$
i_{\alpha}(\delta) \le i(\delta) < i_{00}(\delta + 1), \text{ for } \alpha \in \{01, 10\}. \tag{3.12}
$$

Subcase (iii.1) The following inequality holds:

$$
|r_{i_{00}(\delta+1)}| + |r_{i_{11}(\delta+1)}| < |r_{i_{01}(\delta)}| + |r_{i_{10}(\delta)}|.
$$
\n(3.13)

Then, $L_1(\delta + 1) < L_1(\delta)$.

Subcase (iii.2) The above inequality does not hold. Then $L_1(\delta + 1) \geq L_1(\delta)$.

Suppose that $\delta^{(1)} \leq \delta$, $\delta + 1 < \delta^{(2)}$ and either subcase (i.2), (ii.2) or (iii.2) holds for δ . We show that neither subcase (i.1), (ii.1) nor (iii.1) occurs afterward. Subcase (i.2) Then, $i(\delta + 1) < i_{11}(\delta + 1) < i_{11}(\delta + 2)$ from (3.8). Since $i_{\alpha}(\delta + 1) \le i(\delta + 1) < i_{11}(\delta + 1)$ $i_{11}(\delta + 2)$ for $\alpha \in \{01, 10\}$, neither subcase (i.1) nor subcase (ii.2) holds for $\delta + 1$. If case (iii) holds for $\delta + 1$, then from (3.12)

$$
i_\alpha(\delta+1)\leq i(\delta+1)
$$

Hence, subcase (iii.1) can not hold for $\delta + 1$.

Subcase (ii.2) From (3.10), case (i) can not hold for $\delta + 1$. For $\alpha = 01$ or 10 such that $\nu_{\alpha}(\delta) = \rho_{\alpha} - \delta$, $i_{\alpha}(\delta + 1) < i_{\alpha}(\delta) < i_{11}(\delta + 1) < i_{11}(\delta + 2)$ and therefore, subcase (ii.1) can not hold for $\delta + 1$. If case (iii) holds for $\delta + 1$, then $i_{\alpha}(\delta + 1) < i_{00}(\delta + 2)$ for $\alpha \in \{01, 10\}$ (from (3.12)) and therefore, subcase (iii.1) can not hold for $\delta + 1$.

Subcase (iii.2) Since $0 + 1 \leq v^{-1}$, case (iii) notics for $0 + 1$. Since $i_{\alpha}(0 + 1) \leq i_{\alpha}(0)$ for $\alpha \in \{01, 10\}$ and $i_{\alpha}(\delta + 1) < i_{\alpha}(\delta + 2)$ for $\alpha \in \{00, 11\}$, (3.13) can not hold for $\delta + 1$.

Consequently, by induction, once one of subcase (i.2), (ii.2) and (iii.2) holds at δ , then neither subcase (1.1) , (11.1) fior (11.1) can occur afterward. If there is such a θ , let θ 1 denote the smallest one for which subcase (i.2), (ii.2) or (iii.2) holds. Otherwise, $\sigma_1 = \sigma^* \wedge$. Then, Lemma

 v_1 can be found as follows.

(1.1) First, obtain $A(0^{s})$. This can be done only by non-real number operations, that is, array access, array index operations and binary operations whose total number is $O(N)$. (1.2) Then, for $\delta^{(1)} \leq \delta < \delta^{(2)}$, we construct $X(\delta+1)$ from $X(\delta)$ step by step by a few non-real number operations until either subcase (1.2), (11.2) or (111) occurs or $\theta + 1$ becomes to $\theta^{<\gamma}$. If subcase (i.2) or (ii.2) occurs first at δ , then $\delta_1 = \delta$. For $\alpha \in B^2$, $i_{\alpha}(\delta_1) = i_{\alpha}(\delta)$.

Otherwise, let δ_{ii} denote the smallest δ for which case (iii) holds with no preceding subcase $(i.2)$ nor $(ii.2)$. For case (iii) , we need two real number additions and one real number comparison to decide which of subcases $\{\text{m.i.}\}$ and $\{\text{m.z.}\}$ holds. v_1 can be found by a binary search. The number of addition equivalent operations for the binary search is at most

$$
3\lceil \log_2(\delta^{(2)} - \delta_{iii} + 1) \rceil. \tag{3.14}
$$

Then, $\nu_{\alpha}(\delta_1)$ with $\alpha \in B^2$ are also found.

 $(1.3) \text{ Once }\delta_1 \text{ is found, } X(\delta_1) = D_{000}^{(\nu_{00}(o_1))} \cup D_{001}^{(\nu_{01}(o_1))} \cup D_{010}^{(\nu_{10}(o_1))} \cup D_{011}^{(o_1)} \text{ and, since } |X(\delta)| = \delta_1,$ $L_1(X(0))$ can be found by v_1 real number additions and non-real-number operations of order N. Thus, the total number of addition equivalent operations for computing \underline{L}_1 is at most

$$
\delta_1 + 3\lceil \log_2(\delta^{(2)} + 1) \rceil \le \delta_1 + 3\lceil \log_2(\delta_1 + 1) \rceil \tag{3.15}
$$

(2) Computing L_2 .

For $\alpha \in B^3$ and $1 \leq j \leq n_\alpha$, let $i_\alpha(j)$ be the j-th index of D_α . For convenience, define

$$
X'(\delta)\triangleq D_{000}^{(\rho'_{000}-\delta)}\cup D_{010}^{(\rho'_{010}+\delta)}\cup D_{001}^{(\rho'_{001}+\delta)}\cup D_{100}^{(\delta)},
$$

for $\delta^{(3)} \leq \delta \leq \delta^{(4)}$, where $\rho'_{000} \triangleq (\delta'_2 + \delta'_3)/2$, $\rho'_{010} \triangleq (\delta'_1 - \delta'_2)/2$, and $\rho'_{001} \triangleq (\delta'_1 - \delta'_3)/2$, $L_2(\delta) = \sum_{i \in X'(\delta)} |r_i|$. Let δ_2 be the smallest of δ with $\delta^{(3)} \leq \delta \leq \delta^{(4)}$ such that

$$
\underline{L}_2=L_2(\tilde{\delta_2}).
$$

Note that $L_2(\delta) \leq L_2(\delta+1)$, for $\delta^{(3)} \leq \delta < \delta^{(4)}$, if and only if

$$
|r_{i_{000}(\rho'_{000}-\delta)}| \le |r_{i_{010}(\rho'_{010}+\delta+1)}| + |r_{i_{001}(\rho'_{001}+\delta+1)}| + |r_{i_{100}(\delta+1)}|.
$$
\n(3.16)

It follows from (1.10) and the definition of $i_{\alpha}(j)$ that if (3.16) holds for δ , then it holds for all δ' such that $\delta \leq \delta' \leq \delta^{(4)}$. Hence, if there is δ with $\delta^{(3)} \leq \delta \leq \delta^{(4)}$ which satisfies (3.16), then ϑ_2 is the smallest of such J, and otherwise $\vartheta_2 = \vartheta^{++}$. Consequently, ϑ_2 can be found by a binary search whose number of addition equivalent operations is $3\lceil\log_2(\delta^{(4)}-\delta^{(3)}+1)\rceil$. Once δ_2 is found, since $|X'(\delta_2)| = \delta_1' + 2\delta_2,$ the number of addition equivalent operations for computing L_{2} (U_{2}) is

$$
\delta_1'+2\tilde{\delta_2}.
$$

Hence, the number is at most

$$
\delta_1'+2\delta^{(4)}+3\lceil\log_2(\delta^{(4)}+1)\rceil\leq 3\delta_1'+3\lceil\log_2(\delta_1'+1)\rceil.
$$

The number of non-real-number operations is of order N.

References

[1] T. Kasami, T. Takata, T. Koumoto, T. Fujiwara, H. Yamamoto and S. Lin, \The Least Stringent Sufficient Condition on Optimality of Suboptimal Decoded Codewords," Technical Report of IEICE, IT94-82, The Inst. of Electronics, Information and Communication Engineers, Japan, Jan. 1995. A revised version is in preparation.