
�����������

�	�
�	

�
	���	��

�
���

〒 ��������

奈良県生駒市高山町 ������

奈良先端科学技術大学院大学

情報科学研究科

�������������	
�

���� 	�
�����

��� ��� �����	
��� �

������� ��
����	��

�	���	�� �	��

������� ����� ���	����

������ ����	 ���
 ������ ������

��� ���� ������	�

�������� ���	

�������� ������ �� ����������� �������

���� ��������� �� ������� ��� ���������

��
!�� ��"� ���# �"���# ���� !�	�	
	
$�%��

New DFT Techniques of Non-Scan Sequential Circuits
with Complete Fault Efficiency

 Debesh Kumar Das1 Satoshi Ohtake Hideo Fujiwara
Dept. of Comp. Sc. and Engg. Graduate School of Information Science
 Jadavpur University Nara Institute of Science and Technology
 Calcutta-700 032, India 8916-5, Takayama-Cho, Ikoma, Nara 630-0101, Japan
 debeshd@hotmail.com {satosi-o, fujiwara}@is.aist-nara.ac.jp

Abstract: As opposed to scan schemes, non-scan DFT allows at-speed testing. This paper suggests three
techniques on non-scan DFT of sequential circuits. The novelty of the proposed techniques is that by using
combinational ATPG tool 100% fault efficiency is guaranteed. Test sequences are generated from test
patterns obtained by ATPG tool on the combinational part of the sequential machine. In all techniques, an
additional circuit to reach invalid states (CRIS) is proposed to reach unreachable states on the state register
of a machine. The second and third technique use an additional hardware called differentiating logic (DL),
which uniquely identifies a state appearing in a state register. The design of this DL is universal, i.e., not
dependent on the circuit structure. Hardware overhead of DL and CRIS is lower than that of full scan. Test
generation and test application time are also found to compare favorably with those of earlier designs.

Keywords: sequential circuits, DFT, non-scan, complete fault efficiency, at-speed testing

1 presently visiting in Nara Institute of Science and Technology, Japan

2

1. Introduction
Testing of VLSI circuits is very difficult in case of sequential circuits. To ease this problem,
scientists often proposed design for testability (DFT) techniques. The main purpose of these DFT
techniques is to append an additional hardware with the original circuit with the goal to reduce
the test complexity. As the testing time for a circuit includes both test generation and test
application time, designers attempt to decrease the both. While designing DFT, the designers
should also be conscious of the quality of testing, which is often measured by fault efficiency. The
ratio of number of faults detected or proved redundant by a test algorithm to the total number of
faults in a circuit is known as the fault efficiency. Moreover, as ac testing is an important issue
nowadays, at-speed testing is a basic requirement. So a good DFT design must have following
goals – 1) to decrease test generation time, 2) to decrease test application time, 3) to have high
fault efficiency, and 4) to achieve at-speed testing. Furthermore, hardware overhead should also
be optimum in the designs.

The main reason for the difficulty in generating tests for sequential circuits is the poor
controllability and observability of memory elements of these circuits. The oldest and most
commonly used DFT technique to improve this controllability and observability is the full scan
method [1,2] where all the flip-flops are arranged in a chain and their values are scanned in (out)
before (after) each test. The technique reduces the test generation problem of a sequential circuit
to that of a combinational one. Moreover, use of combinational ATPG guarantees complete fault
efficiency in full scan technique. The problem of full scan technique is that it requires large
hardware overhead and though it reduces the test generation time, test application time is high.
Partial scan [3,4] technique suggests a cost effective alternative in comparison to full scan
techniques, where instead of all the flip-flops, a subset of flip-flops are scanned. Though it
decreases the hardware overhead, test application time is not improved. Moreover, as partial scan
techniques require sequential test generation methods, high fault efficiency cannot be achieved. In
both full and partial scan techniques at-speed testing is not possible.

To avoid the problems of scan techniques, non-scan approaches are proposed in [6-9]. In [6], a
subset of all flip-flops are controlled from primary inputs using multiplexers. In [7], DFTs are
designed using locally available lines. Both these techniques use sequential ATPG. In [8], non-
scan design was targeted only to remove equivalent and isomorph redundancy. In all these
approaches, though testing time may be improved, complete fault efficiency cannot not be
achieved. Non-scan DFT approach with complete fault efficiency using combinational ATPG was
first proposed in [9].

This paper suggests three new non-scan DFT techniques for sequential circuits. In all these
methods, test sequences for different faults in a sequential machine are found by generating test
patterns by a combinational ATPG tool used on combinational part of the machine. The novelty
of the proposed techniques is that use of combinational ATPG tool guarantees complete fault
efficiency. However, as each test pattern generated by this ATPG tool consists of values on
primary inputs as well as state registers, some test patterns may consist some values which can
never be reached by state transitions from reset states. To reach such values on state registers
(invalid states), we propose a technique to append an extra logic called circuit to reach invalid
states (CRIS) with the original machine. Among the proposed three techniques, the first one uses
lowest hardware overhead, but it requires k additional observable points, where k is the number
of flip-flops in the circuit. Use of one more additional circuit called as Differentiating Logic (DL)
greatly reduces the number of additional observable points in second and third techniques. This
logic DL is universal, i.e., not dependent on the circuit structure. First two techniques have low
hardware overhead compared to that of full scan. First and third techniques have very low test
application time. The second technique requires larger test application time in comparison to
those of first and third, but this time is less than that of full scan technique. Three proposed

3

techniques, the method proposed in [9] and full scan technique are compared on benchmarks.
Test length and hardware overhead are found to compare favorably with those of earlier designs.

2. Preliminaries
The general model of a synchronous sequential machine is shown in Fig. 1, consisting of a
combinational circuit (CC) and a state register (SR) with k flip-flops. The machine has n primary
input (PI) terminals fed by Binary variables x1, x2,…, xn. The outputs [inputs] y1, y2,…, yk [Y1,
Y2,…, Yk] of k memory elements of SR define the present [next] state of the machine. The
behavior of the machine is described by the state transition diagram (STG). We assume that the
machine has a reset state. Given an input, transition from a state Si means the state transitions and
change in output, if that input is applied in the machine with state Si.

Consider a fault f in a sequential machine. Suppose this fault changes the transitions from a state
Si. Definitely to detect this fault, we have to first initialize the machine to state Si.

Definition 1: Initialization state for a fault f in a machine is a state Si, such that due to occurrence
of f, transitions from Si changes in STG.

Definitely, to initialize the machine to state Si, we need a sequence of vectors to be applied in the
machine from the reset state. This sequence is called as the justification sequence [5] for state Si.

Definition 2: The justification sequence for a state Si is a sequence of input vectors, application
of which to the machine in the reset state, changes the state to Si.

The problem is that there may not exist any such justification sequence for a state Si. That is, with
k memory elements, as the machine can have 2k states, some of these states are unreachable from
the reset state, though may be needed for initialization for testing.

Definition 3: A state that cannot be reached or which is hard to reach from reset state is known as
an invalid state, else it is a valid state.

Note that our definitions for invalid and valid states in this paper are slightly changed from usual
[5], as we include in the set of invalid states, also those states which are hard to reach from reset
state. The list of invalid and valid states in a machine can be known from STG of the machine.

Even when initialization to a particular state is done, it may not be very easy to detect the fault. If
the fault f is such that it changes the output lines of the circuit under some input combinations,
then there is no problem to detect it, only one more test vector after the justification sequence is
sufficient. But if the fault changes only the next state lines (suppose, it produces a state Sk instead
of the expected state Sj under some input combination), then instead of one vector, we need a
sequence of vectors to differentiate two states Sj and Sk.

Definition 4: A differentiating sequence [5] for a pair of states Sj and Sk, in a sequential circuit is
a minimal length sequence of input vectors, such that the output response obtained by applying
the sequence when the circuit is initially in Sj, is different from that obtained when the circuit is
initially in Sk.

Let us extract the combinational circuit from a sequential machine, by replacing inputs [outputs]
of SR by pseudo primary outputs (PPOs) [pseudo primary inputs (PPIs)]. Then this combinational
circuit is known as the combinational test generation model (CTGM) of the sequential machine.

Example: CTGM of the machine of Fig. 1 is shown in Fig. 2.

Given the CTGM of a sequential machine, we try to generate the test vectors for this CTGM.
Obviously each test vector is an ordered (n+k)-tuple, corresponding to n PIs and k PPIs.

4

Definition 5: A state in a machine is called a test state, if it appears in PPI lines of any test vector
of CTGM of the machine.

Definition 6: A test pattern of the CTGM of a sequential machine is known to be a valid test
pattern, if it contains a valid state in its PPIs. Otherwise, it is called as an invalid test pattern.

Definition 7: A state of a machine which is a test state and also a valid [an invalid] state is known
as valid test state [invalid test state].

Note that in general, the number of test states is much smaller compared with the total number of
states, 2k.

3. New DFT designs
Given a sequential circuit with its STG, we try to design a non-scan DFT for it with a goal to
attain complete fault efficiency.

From STG of the machine, first we find the set of valid and invalid states. Then we find the set of
test vectors of CTGM of the machine using a combinational ATPG algorithm. If a test vector,
obtained for CTGM is a valid test pattern, then obviously, this pattern can be reached from the
reset state using original state transitions of the machine. But if it is an invalid test pattern, the
value of PPIs cannot be set to the SR using state transitions of the machine. Actually, as some
states are unreachable by state transitions from the reset state, this problem of state initialization
to an unreachable state poses a major problem in the test generation of sequential circuits. In our
designs, we adopt a new technique to reach these unreachable states. Notice that for testing of a
circuit, we need not reach all invalid states, reaching only to invalid test states are sufficient. So
our attention is to find a method to set invalid test states to SR.

3.1 The first technique

In our design to set the invalid test states to the SR, we append an extra logic called as CRIS
(circuit to reach invalid states) to the original machine which generates all invalid test states of
the machine. The DFT scheme is shown in Fig. 3. CRIS has the inputs as the next state lines of
the original machine. In a similar approach recently [9], an additional circuit was also used to
reach these invalid test states, where primary inputs are used as inputs to the extra logic. The
method to design the CRIS is described in the following.

3.1.1 Designing CRIS

Suppose V is the set of valid states in the machine, and SITS denotes the set of invalid test states.
Then obviously, any state Si ∈V can appear in lines (Y1, Y2,…, Yk) by proper transition from
reset state. Similarly, any state Si ∈ SITS cannot appear in lines (Y1, Y2,…, Yk) by any transition
from reset state. The function of CRIS is to make also the appearance of these invalid test states

at the inputs to SR. For this, to map V into (V ∪ SITS), CRIS takes PPOs (Y1, Y2, …, Yk) as the
inputs, and produces new next state lines (Y′1, Y′2,…, Y′k) as inputs to SR with the help of some
control inputs. The control inputs are such that when each of them is at logic 0, output of CRIS is
the same as input and when one or more of them is 1, it produces some invalid test state from a
valid state. The question is how to optimize the circuit of CRIS with minimum number of control

inputs to map V into (V ∪ SITS). The problem of optimization of number of control inputs and
hardware of CRIS is an open problem and yet to be solved. However, in this paper we give a
heuristic approach.

5

To generate SITS from V, for each state Si ∈ SITS, we first find how Si can be produced from each
state Sj ∈V. For example, say a state (0101) is an invalid test state and that is to be produced
from a valid state (0011). To do this, we need to complement 2nd and 3rd bits of (0011). This can
be done by ORing Y2 and ANDing Y3 with a control input C such that Y′2= Y2+C and Y′3= Y3⎯C;
it means that with C = 0 output of CRIS is its input, whereas with C = 1 it can show 0101 at
outputs (Y′1, Y′2, Y′3, Y′4) when input is (Y1, Y2, Y3, Y4): (0011). For each state Si ∈ SITS, we find
how Si can be produced from each state in V. Among these different productions, we implement
that one which requires minimum number of gates to produce Si at output of CRIS from a valid
state input at CRIS. If different invalid test states require same set of bits tso be complemented,
we use the same control line. If any bit requires both ANDing and ORing, we replace the gate by
XOR.

3.1.2 Number of control inputs and hardware overhead of CRIS

Theoretically, the number of such control lines requirement can be maximum k, and that happens
when there is only one valid state in the machine and there are at least 2k-1 invalid test states. But
practically, as number of invalid test states is much smaller (can be at most the number of test
states) in comparison to total number (=2k) of states, and that is not very high in comparison to
number of valid states, control lines requirement and hardware overhead cannot be high. By our
heuristic approach, benchmarks result depicts significantly low overhead in designs of CRIS.
Only in two cases, it shows the use of two additional control lines with two two-input gates, in all
other cases, one control input with one two-input gate is found to be sufficient.

3.1.3 Short test application time

As CRIS ensures generation of all invalid test states, then for each and every fault in the
appended machine, we can always find the justification sequence to reach a test state. In
Technique 1, as we make all next state lines as observable points, so whether or not a particular
state (required for initialization for testing) is reached after justification sequence that is also
observable. After this state is reached at present state lines, one more vector is sufficient to
observe any change due to a fault. This vector is the test vector obtained by using combinational
ATPG tool on CTGM of the machine. We use a hold mode in SR, while applying this test. The
use of this hold mode can be described as follows.

Suppose an initialization state Si for a fault is properly reached from reset state. When this
initialization state appears in present state lines of SR, hold mode is activated. During hold mode,
the state of the machine remains at Si, whatever be the inputs at PIs. As several faults may require
same initialization, for all such faults test vectors are applied consecutively holding the machine
at state Si. That is, we don’t need to initialize the machine separately for each of the faults using
same justification sequence repeatedly.

Also notice that as we observe the next state lines we don’t need any differentiating sequence.
Use of CRIS to reach unreachable states, use of no differentiating sequences and use of hold
mode to avoid the repeated application of same justification sequence highly reduce test
application time.

3.1.4 Short test generation time and complete fault efficiency

Use of combinational ATPG tool decreases test generation time. Use of this tool and use of CRIS
to ensure the machine to reach any test state make fault efficiency to be 100%.

6

3.2 The second technique

In the first technique, observation of next state lines makes the length of a differentiating
sequence always to be zero, but its drawback is the requirement of k additional observable points.
To reduce this number in observable points, as well as to achieve differentiating sequences of
short length we use one more additional circuit known as differentiating logic (DL), which takes
PIs and PPIs as inputs. The complete scheme for DFT in technique 2 is shown in Fig. 4.

3.2.1 Design of Differentiating Logic (DL)

The number of outputs of DL is dependent on n and k. Two cases need to be considered: (i) k < n,
(ii) k > n.

Case 1: k < n

In this case, DL has one output. The output function of the DL is given as F = x1y1+ ⎯x1⎯y1+
x2y2+ ⎯x2⎯y2+ ……+xkyk+ ⎯xk⎯yk and the circuit to realize F is shown in Fig. 5. The function F
has a unique property. For every combination of (y1, y2,…, yk), yi ∈ (0,1), the sub-function
contains a unique pattern in xis. This pattern is such that for a pattern (y1, y2,…, yk) at PPIs, if we
apply a pattern X at PIs with (x1, x2,…, xk) = (⎯y1, ⎯y2,…, ⎯yk), we get the output of DL as 0, and
for any other pattern at PI the output of DL is always at logic 1. It implies that if the machine
reaches a state Si(y1, y2,…, yk), then by applying a single input pattern, obtained by
complementing each bit of (y1, y2,…, yk), this state can be uniquely identified. That is,
differentiating sequence of any two states is of unit length.

Example 1: The K-map for k=3 is shown in Fig. 6. Variables xi’s (yi’s) are used to label the map
horizontally (vertically). A horizontal line in k-map corresponds to a state. Notice that in any
horizontal line, there exists exactly one zero for a specific combination in xi’s, and for all other
combination in xi’s, the minterms are true. Similarly, there exists exactly one zero in any vertical
line. Say, for a state (y1,y2,y3) = (010), if we apply an input with (x1,x2,x3) = (101) we get F = 0,
and for any other combination in (x1,x2,x3) we obtain F = 1. Moreover, with (x1,x2,x3) = (101), for
any state other than (010), we get F=1. It implies that differentiating sequence of any two states
including (010) can be obtained by a single vector with (x1,x2,x3)=(101).

Case 2: k > n

In this case, as we have less number of inputs, same inputs are used repeatedly. DL has r outputs
where r = ⎡k/n⎤.

Each output line of DL realizes a function Fi (1< i <r) such that

Fj+1 = x1yjn+1+ ⎯x1⎯yjn+1+ x2yjn+2+ ⎯x2⎯yjn+2+ ……+xayjn+a+ ⎯xa⎯yjn+a where a = n for (0<j<r-1), and
a=k-(r-1)n for j=r-1. If a is found to be 1, then we replace Fj+1 by yjn+1.

When n = 1, we get r = k, which means Fi = yi ∀ i (1< i <r =k). It means we don’t need to have
any special logic DL as shown in Fig. 5. This logic for DL is used to decrease the number of
observable points. But for n=1, we cannot decrease this number (as r = k). So, for n=1, we apply
only the first technique.

3.2.2 DL is universal

Notice that while in first technique the observable points are at the next state lines (inputs of SR),
the second technique uses the present state lines (outputs of SR) to have the observable points. It
is necessary, because in second technique to identify a state uniquely, we have to apply a
specified pattern in PIs, so if we want to use the next state lines (inputs to SR) as inputs to DL,
their values are changed with changing in PIs.

7

It can be noted that the design of this DL is universal, i.e., not dependent on the circuit structure.

3.2.2 Use of Hold mode

Hold mode is also used in the second technique, but its use is different to that of first technique.
When we have to identify a state on present state lines, hold mode is activated during
identification. If a state (y1, y2,…, yk) is expected at present state lines for case 1 (k < n), we
activate hold mode and apply an input at (x1, x2,…, xk) lines of PIs such that xi = ⎯yi ∀ i (1<i<n).
If the output of DL is 0, then the state of the machine is at the desired state. For case 2 (k >n), in
stead of an input, an input sequence has to be applied at PIs keeping the hold signal active.

To detect a fault, we apply justification sequence from reset state to reach a state required for
initialization for detecting a fault. Whether this initialization has properly reached that is checked
by applying a proper input (or a sequence of inputs in case 2) at PIs with hold signal active. After
that, with hold inactive, we apply the test vector obtained by ATPG tool used on CTGM. If this
test vector does not change PO lines, then we need to identify any change on the state of the
machine. That identification is done by again activating the hold signal with application of proper
input (or a sequence of inputs) at PIs.

3.2.3 Techniques to achieve low test application time

By using DL in second technique, we decrease the number of additional observable points from k
to r in comparison to first technique. Thus, differentiating sequence is of unit length in case of k <
n, and for k > n, this length is r = ⎡k/n⎤. Note that in case of full scan technique, this length is
always n. Short differentiating sequence decreases the test application time.

To decrease the test application time further, we adopt another technique. Suppose, the detection
of a fault f1 requires the application of a test vector at the machine with state Si. After proper
initialization is done, application of the test vector may change the state of the machine to another
state Sj, which again can be identified. But another fault f2 may require same initialization state Si,
for which we need to reach the reset state and then to apply the same justification sequence, if we
next want to test for f2. In this case, instead of further initialization to Si, we check, whether Sj is a
test state. If Sj is a test state, we use it as an initialization state of another fault which is not yet
detected. If Sj is not a test state or there is no other fault remaining to be detected with
initialization state Sj, in that case we may attempt to reach again to state Si from reset state to
detect fault f2. Following this technique, benchmark results shows less test application time in
comparison to that of full scan, though this time is increased from that of first technique.

3.2.4 Hardware overhead

Amount of hardware overhead of DL is (2k+r) gates, where r = ⎡k/n⎤. This overhead is less than
that (=3k) of full scan technique for r < n-1.

3.3 The third technique

Though the second technique decreases the number of observable points, one drawback of it is
that as observable points use the present state lines, initialization state for a fault is always lost.
We cannot use the same justification sequence for different faults which need same initialization
state for their detection.

To achieve the same test application time as that of first technique, using less observable points,
the second technique is modified in the third technique, where a register is used to load the values
of the next state lines and output lines of this register are fed into DL instead of PPIs. The
complete scheme is shown in Fig. 7. Use of hold mode is similar to that of first technique, one
justification sequence is used to initialize for detection of different faults. Whether, a specified

8

state can be reached in the machine that can be observed at output lines of DL. However this
technique requires more hardware, as its hardware overhead needs one more register in
comparison to that of second technique.

4. Experimental Results
General performance of the DFT Design can be described as in Table 1. The machine is
considered to have n inputs and k flip-flops. O(ISG) and O(CRIS) indicate the overhead of
invalid state generator (ISG) in the paper (ATS-98) of [9] and that of CRIS of this paper
respectively. It is found experimentally that O(CRIS) < O(ISG). O(CRIS) was found to be
maximum of two two-input gates in MCNC benchmarks. In techniques 1,2 & 3, c denotes the
number of control inputs needed for CRIS. In most of the cases of benchmarks, the value of c is
found to be 1, except in two cases, where it is found to be 2. In techniques 2 & 3, r denotes the
value ⎡k/n⎤.

Table 1: Overall comparison

 Method Pin Area Test Test At-speed
 overhead overhead generation application time Testing

 time

Full-scan 3 3k gates low high Not possible

ATS-98 [9] k+2 O(ISG) + 3k gates low low possible

Technique-1 k+ 1+ c O(CRIS) low low possible

Technique-2 r+ 1+ c O(CRIS) + (2k+r) gates low higher than tech. 1, possible

 less than full scan

Technique-3 r+ 1+ c O(CRIS) + (2k+r) gates low low possible

 + register (k flip-flops)

Our experimental results on benchmarks are also shown. We compare our three methods with full
scan and a recent work with complete fault efficiency [9]. Hardware overhead, test generation
time and test application time are the parameters to be compared.

Benchmark specifications are shown in Table 2. AutoLogic II (Mentor Graphics) tool synthesizes
the circuits from MCNC benchmarks [10]. Columns “name”, “#PIs”, “#POs”, “#states” denote
the name, the number of primary inputs, the number of primary outputs and the number of states
of the original sequential machines respectively. Columns “#FFs” and “area” denote the number
of flip-flops and circuit areas after synthesis. In benchmark results, we show only those cases
when number of inputs (n) > 1. For n=1, we apply only the first technique of our DFT designs.

Table 3 shows hardware and pin overhead. Columns “name” represent the different circuits.
Columns “scan” and “ATS98 [9]” represent full scan and the method in [9] respectively.
Columns “case 1”, “case 2” and “case 3” correspond to technique 1, technique 2 and technique 3
of our DFT design respectively. Hardware overhead of first technique is lowest and significantly
small. Hardware overhead of both first and second technique is smaller than that of full scan. The
third technique needs more hardware as an additional register of k flip-flops (k= # of flip-flops)

9

are used. We have considered 7 gates per flip-flop in third technique. In the techniques 2 & 3,
number of gates are decreased by 3 from that given in the formula of Table 1, if the remainder in
dividing k by n be 1. Pin overhead of proposed second and third techniques are same and in most
cases it equals to that of full scan technique. In full scan technique pin overhead is always 3. The
first technique, which has very low overhead in hardware requires more number of pins. This pin
overhead of technique 1 is same as that in the method of [9].

Test generation and test application time for different methods are shown in Table 4. A
combinational/sequential test generation tool TestGen (Sunrise) is used. Results show that test
generation time is almost equal in five cases. This happens as all these techniques use
combinational ATPG tool. Test application time is highest in case of full scan method. This time
is almost equal in the method of [9], first technique and third technique. Second technique
requires larger test application time in comparison to those of first and third techniques, but this
time is short in comparison to that of full scan.

5. Conclusions
The paper suggests three new techniques on non-scan DFT. As test initialization is a major
problem in testing of sequential circuits, it solves that problem by using an additional hardware
called as CRIS (circuit to reach invalid states). It is found experimentally that hardware overhead
of CRIS is also low. The techniques use combinational ATPG tool to find the test sequences of
the machine. Among the three techniques, hardware overhead of the first technique is the lowest,
but it requires k additional observable points. To decrease the number of observable points, a
notion of differentiating logic (DL) is proposed in technique 2. Even with the use of this DL,
hardware overhead is less than that of full scan. Use of this DL increases test application time in
comparison to that of first technique, but this time is less than that of full scan. To achieve the test
application time, same as that of first technique, an additional register is used in third technique.
The novelty of these techniques is that they guarantee complete fault efficiency with at-speed
testing. Hardware overhead, test generation time and test application time compare favorably with
those of earlier designs.

Acknowledgement: Debesh Kumar Das is supported by JSPS-INSA fellowship. Satoshi
Ohtake is under JSPS research fellowship. This work was supported in part by Semiconductor
Technology Academic Research Center (STARC) under the Research Project and in part by the
Ministry of Education, Science, Sports and Culture, Japan under Grant-in-Aid for Scientific
Research B(2) (no.09480054). Authors would like to thank Toshimitsu Masuzawa, Tomoo Inoue,
and Michiko Inoue of Nara Institute of Science and Technology for their helpful discussion.

References:

1. H. Fujiwara, Logic Testing and Design for Testability, The MIT Press, 1985.
2. M. Abramovici, M. A. Breuer and A. D. Friedman, Digital Systems Testing and Testable

Design, W. H. Freeman & Co., New York 1990.
3. S. T. Chakradhar, A. Balkrishnan and V. D. Agrawal, “An exact algorithm for selecting

partial scan flip flops”, Proceedings of ACM/IEEE Design Automation Conference, pp. 81-
86, 1994.

10

4. P. S. Parikh and M. Abramovici, “A cost based approach to partial scan,” Proceedings of
ACM/IEEE Design Automation Conference, 1993.

5. S. Devadas and K. Keutzer, “A unified approach to the synthesis of fully testable sequential
machines,” IEEE Transactions on Computer-Aided Design, vol.10, pp. 39-50, 1991.

6. V. Chickermane, E. M. Rudnick, P. Banerjee and J. H. Patel, “Non-scan design-for-
testability techniques for sequential circuits,” Proceedings of 30th ACM/IEEE Design
Automation Conference, pp. 236-241, 1993.

7. I. Pomeranz and S. M. Reddy, “Design for testability for sequential circuits using locally
available lines,” Proceedings of Design, Automation and Test in Europe (DATE-98), p. 983-
984, 1998.

8. D. K. Das and B. B. Bhattacharya, “Testable design of non-scan sequential circuits using
extra logic,” Proceedings of Asian Test Symposium, pp. 176-182, 1995.

9. S. Ohtake, T. Masuzawa and H. Fujiwara, “A non-scan DFT method for controllers to
achieve complete fault efficiency,” to appear in Proceedings of Asian Test Symposium, 1998.

10. S. Yang, “Logic synthesis and optimization benchmarks user guide,” Technical Report 1991-
IWLS-UG-Saeyang, Microelectronics Center of North Carolina.

11

Table 2: STG characteristic
name #PIs #POs #States #FFs Area(gates)

bbara 4 2 10 4 418.6
bbsse 7 7 16 4 781.2
bbtas 2 2 6 3 87.6
beecount 3 4 7 3 331.5
cse 7 7 16 4 1104.1
dk14 3 5 7 3 295.1
dk15 3 5 4 2 169.9
dk16 2 3 27 5 510.4
dk17 2 3 8 3 150.1
ex1 9 19 20 5 2740.5
ex2 2 2 19 5 416.9
ex3 2 2 10 4 192.8
ex4 6 9 14 4 479.2
ex5 2 2 9 4 183.7
ex6 5 8 8 3 667.0
ex7 2 2 10 4 189.6
keyb 7 2 19 5 1835.4
kirkman 12 6 16 4 2848.2
lion 2 1 4 2 104.0
lion9 2 1 9 4 340.9
mc 3 5 4 2 81.1
opus 5 6 10 4 567.6
planet 7 19 48 6 2791.1
planet1 7 19 48 6 2791.1
pma 8 8 24 5 1068.6
s1 8 6 20 5 2396.0
s1488 8 19 48 6 6190.2
s1494 8 19 48 6 6242.8
s208 11 2 18 5 2361.3
s27 4 1 6 3 416.3
s298 3 6 218 8 8720.8
s386 7 7 13 4 1241.1
s420 19 2 18 5 2217.5
s510 19 7 47 6 1184.2
s820 18 19 25 5 4411.0
s832 18 19 25 5 4543.7
sand 11 9 32 5 3860.9
sse 7 7 16 4 781.2
styr 9 10 30 5 2748.9
tav 4 4 4 2 228.9
tbk 6 3 32 5 8605.3
tma 7 6 20 5 802.7
train11 2 1 11 4 364.5
train4 2 1 4 2 83.3

12

Table 3: Hardware/pin overhead
Hardware Overhead (gates) Pin Overhead

name scan ATS98[9] case1 case2 case3 scan ATS98[9] case1 case2 case3
bbara 12 12 1 10 38 3 6 6 3 3
bbsse 12 12 1 10 38 3 6 6 3 3
bbtas 9 10 1 6 27 3 5 5 4 4
beecount 9 9 1 8 29 3 5 5 3 3
cse 12 0 0 9 37 3 5 5 2 2
dk14 9 9 1 8 29 3 5 5 3 3
dk15 6 0 0 5 19 3 3 3 2 2
dk16 15 31 1 11 46 3 7 7 5 5
dk17 9 0 0 5 26 3 4 4 3 3
ex1 15 15 1 12 47 3 7 7 3 3
ex2 15 34 2 12 47 3 7 8 6 6
ex3 12 20 1 11 39 3 6 6 4 4
ex4 12 12 1 10 38 3 6 6 3 3
ex5 12 20 1 11 39 3 6 6 4 4
ex6 9 0 0 7 28 3 4 4 2 2
ex7 12 20 2 12 40 3 6 7 5 5
keyb 15 15 1 12 47 3 7 7 3 3
kirkman 12 0 0 9 37 3 5 5 2 2
lion 6 0 0 5 19 3 3 3 2 2
lion9 12 20 1 11 39 3 6 6 4 4
mc 6 0 0 5 19 3 3 3 2 2
opus 12 12 1 10 38 3 6 6 3 3
planet 18 18 1 14 56 3 8 8 3 3
planet1 18 18 1 14 56 3 8 8 3 3
pma 15 15 1 12 47 3 7 7 3 3
s1 15 15 1 12 47 3 7 7 3 3
s1488 18 18 1 14 56 3 8 8 3 3
s1494 18 18 1 14 56 3 8 8 3 3
s208 15 15 1 12 47 3 7 7 3 3
s27 9 9 1 8 29 3 5 5 3 3
s298 24 165 1 20 76 3 10 10 5 5
s386 12 12 1 10 38 3 6 6 3 3
s420 15 15 1 12 47 3 7 7 3 3
s510 18 18 1 14 56 3 8 8 3 3
s820 15 15 1 12 47 3 7 7 3 3
s832 15 15 1 12 47 3 7 7 3 3
sand 15 0 0 11 46 3 6 6 2 2
sse 12 12 1 10 38 3 6 6 3 3
styr 15 15 1 12 47 3 7 7 3 3
tav 6 0 0 5 19 3 3 3 2 2
tbk 15 0 0 11 46 3 6 6 2 2
tma 15 15 1 12 47 3 7 7 3 3
train11 12 16 1 11 39 3 6 6 4 4
train4 6 0 0 5 19 3 3 3 2 2

13

Table 4: Test generation/application time
Test Generation Time (sec.) Test Application Time (cycles)

name scan ATS98[9] case1 case2 case3 scan ATS98[9] case1 case2 case3
bbara 0.32 0.32 0.36 0.39 0.37 339 88 86 171 89
bbsse 0.58 0.58 0.60 0.63 0.63 399 101 106 250 105
bbtas 0.06 0.06 0.05 0.06 0.06 71 27 29 43 54
beecount 0.19 0.19 0.21 0.19 0.26 199 60 63 69 79
cse 1.08 1.08 1.16 1.13 1.19 584 144 142 323 153
dk14 0.13 0.13 0.15 0.15 0.16 199 60 69 56 68
dk15 0.10 0.10 0.05 0.09 0.12 110 42 37 35 35
dk16 0.35 0.35 0.43 0.41 0.46 593 148 151 408 376
dk17 0.06 0.06 0.09 0.09 0.14 127 47 46 74 90
ex1 4.58 4.58 5.07 5.18 5.14 1679 323 335 838 340
ex2 0.27 0.27 0.29 0.24 0.35 461 119 107 196 307
ex3 0.12 0.12 0.12 0.14 0.17 249 72 61 84 133
ex4 0.31 0.31 0.32 0.33 0.29 294 76 77 212 83
ex5 0.11 0.11 0.10 0.15 0.15 244 71 64 90 116
ex6 0.46 0.46 0.45 0.50 0.47 243 70 71 69 69
ex7 0.08 0.08 0.13 0.18 0.12 194 60 61 33 123
keyb 4.90 4.90 5.18 5.20 5.47 1481 282 307 634 316
kirkman 13.88 13.88 12.79 12.89 12.76 2409 499 499 2796 508
lion 0.07 0.07 0.09 0.05 0.07 56 24 23 23 22
lion9 0.21 0.21 0.21 0.19 0.20 259 69 67 180 139
mc 0.06 0.06 0.06 0.06 0.10 44 20 19 22 23
opus 0.39 0.39 0.36 0.42 0.43 394 106 105 289 110
planet 4.14 4.14 4.13 4.25 4.38 1539 400 392 2002 407
planet1 4.28 4.28 4.02 4.18 4.12 1539 400 392 2002 407
pma 1.30 1.30 1.36 1.38 1.40 971 204 204 428 208
s1 5.19 5.19 5.14 5.23 5.05 1283 269 291 889 288
s1488 20.27 20.27 20.35 20.66 20.88 3051 615 660 5571 647
s1494 21.60 21.60 22.07 21.87 20.91 3065 645 677 4379 650
s208 9.35 9.35 7.85 8.11 7.80 1535 289 313 1645 319
s27 0.24 0.24 0.28 0.35 0.38 191 59 66 44 74
s298 82.40 82.40 79.58 83.91 86.98 9746 2429 2516 25924 5031
s386 1.23 1.23 1.31 1.27 1.29 554 131 144 404 134
s420 9.42 9.42 7.70 8.38 7.83 1439 273 305 1896 305
s510 1.06 1.06 1.13 1.22 1.21 930 195 194 1899 201
s820 16.09 16.09 16.39 16.24 16.26 2273 450 507 3010 484
s832 17.25 17.25 17.63 17.95 18.01 2225 438 516 2443 525
sand 9.26 9.26 8.87 8.72 9.12 1547 308 301 691 324
sse 0.61 0.61 0.58 0.60 0.58 399 101 106 250 105
styr 5.60 5.60 5.44 5.52 5.51 1385 296 319 793 309
tav 0.24 0.24 0.24 0.29 0.24 119 45 42 52 46
tbk 51.75 51.75 49.86 49.64 50.14 4469 793 780 1864 783
tma 0.85 0.85 0.88 0.90 0.99 623 151 157 252 162
train11 0.23 0.23 0.26 0.23 0.24 264 74 83 76 140
train4 0.05 0.05 0.05 0.05 0.07 41 19 18 12 21

14

 Combinational
 Circuit
 (CC)

 State
Register
 (SR)

Yk

Y1

y1

yk

xn

x1 Z1

Zm

PI PO

Reset

Fig. 1: The general model of a sequential machine

 Combinational
 Circuit
 (CC)

xn

x1 Z1

Zm

PI PO

Fig. 2: CTGM of the machine of Fig. 1

y1

yk

PPI

Y1

Yk

 Combinational
 Circuit
 (CC)

 State
Register
 (SR)

y1

yk

xn

x1 Z1

Zm

PI PO

Reset

Fig. 3: DFT Design to achieve complete fault efficiency (Technique 1)

Y1

Yk

C
R
I
S

 Additional
observable points

PPO

Y′1

Y′k

Hold

control inputs

15

 Combinational
 Circuit
 (CC)

 State
Register
 (SR)

y1

yk

xn

x1 Z1

Zm

PI PO

Reset

Fig. 4: DFT Design with complete fault efficiency and less observable points (Technique 2)

Y1

Yk

C
R
I
S

 Differentiating
 Logic
 (DL)

Observable point

x1

y1

x2

y2

xk

yk

F

F

Fig. 5: Differentiating Logic (DL)

Hold

Y′1

Y′k

control inputs

16

1 1 1 1 1 0 1 1

1 1 1 1 0 1 1 1

1 1 1 1 1 1 1 0

1 1 1 1 1 1 0 1

1 0 1 1 1 1 1 1

0 1 1 1 1 1 1 1

1 1 1 0 1 1 1 1

1 1 0 1 1 1 1 1

x1

x2
x3x3

y1

y2

y3

y3

Fig. 6: K-map of DL for k=3 and n > 3

 Combinational
 Circuit
 (CC)

 State
Register
 (SR)

y1

yk

xn

x1 Z1

Zm

PI PO

Reset

Fig. 7: DFT Design of Technique 3

Y1

Yk

C
R
I
S

 Differentiating
 Logic
 (DL)

Observable point

F

Register
Hold

Y′1

Y′k

control inputs

