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Abstract

We apply evolutionary computations to Hop�eld's neural net-

work model of associative memory. We reported elsewhere that

a fully connected neural network with random synaptic weights

evolves to create �xed point attractors exactly at the locations

of patterns to be memorized by a genetic algorithm. In this

paper, we present the process of the evolution from chaotic

behaviors to an associative memory.

1 Introduction

Associative memory is a dynamical system which has a

number of stable states with a domain of attraction around

them [Koml�os and Paturi, 1988]. If the system starts at

any state in the domain, it will converge to the stable state.

Hop�eld [1982] proposed a fully connected neural network

model of associative memory in which we can store infor-

mation by distributing it among neurons and recall it from

its noisy and/or partial input.

The dynamical behavior of its neuron states strongly de-

pends on the values of synaptic strength (weight) between

neurons. Hop�eld used the Hebbian rule [Hebb, 1949] to

prescribe these weight values. We explore it with a genetic

algorithm (GA) [Holland, 1975, Goldberg, 1989].

Previously, we reported that a fully connected neural

network with random synaptic weights evolves to cre-

ate �xed point attractors exactly at the locations of pat-

terns to be memorized by a GA [Imada and Araki, 1995,

Imada and Araki, 1997]. Here, we study the evolution in

more detail by observing trajectories of network state as

snapshots.

2 The Hop�eld Model

The model consists of N neurons and N2 synapses where

each neuron can be in one of two states �1. The network

of these neurons memorized p bipolar patterns:
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as equilibrium states, where ��
i
takes the value of either 1

or �1. Hop�eld employed a discrete-time, asynchronous

update scheme. Namely, at most one neuron updates its

state at a time1, according to
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where si(t) is a state of i-th neuron at time t. The behav-

iors of the collective states of individual neurons are char-

acterized by the synaptic weights. When these synaptic

weights are determined appropriately, the network stores

some number of patterns as �xed points. Hop�eld speci-

�ed these wij 's by the Hebbian rule [Hebb, 1949], i.e.,

wij =
1
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(i 6= j); wii = 0:

Then giving one of the memorized patterns to the net-

work as an initial state, possibly including a few errors,

will result in the stable state after certain time steps of

updating.

3 GA Implementation

In this simulation, a weight matrix Rij is produced ran-

domly before the start of the GA run, and remains un-

changed during the evolution.

In each generation, chromosomes, made up of mostly 1

but a few of -1 and 0 (allele), modify this initial matrix Rij

by multiplying the alleles to the component of the matrix

and produce a population of weight matrices. Then the

1Though Hop�eld chose one neuron at a time randomly, in this

paper, a neuron is chosen according to pre-assigned order (once in a

cycle).



obtained matrices are evaluated their capability of memo-

rizing the given patterns (�tness value). According to the

�tness values, two parent chromosomes are selected to be

recombined to make one o�spring. The o�spring is mu-

tated occasionally and reconstructs the next generation.

The cycle of reconstructing the new population with

better individuals and restarting the search is repeated

until a perfect solution is found or a maximum number of

generation has been reached. The speci�c details are as

follows.

(1) (initialization) Chromosomes are N2-dimensional

vectors, and they are initialized so that their com-

ponents are randomly selected from f1; 0;�1g with

the probability of .98, .01 and .01, respectively.

(2) (�tness evaluation) When �� , one of the patterns

to be stored, is given to the network as an initial

state, the state of neurons varies from time to time

afterwards (unless �� is a �xed point). In order for

the network to function as an associative memory, the

instantaneous state of the neurons must be similar to

the initial state. The similarity as a function of time

is de�ned by,

m�(t) =
1

N

NX
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i
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where s�
i
(t) is the state of the i-th neuron at time t.

This is referred to as overlap by convention. In eval-

uating the �tness value, the temporal average of the

overlap hm�i is calculated for each stored pattern.

Then they are also averaged over all patterns. That

is, the �tness value f is

f =
1

t0 � p

t0X
t=1

pX
�=1

m�(t):

In this paper, t0 is set to 2N , twice the number of

neurons. Note that the �tness 1 implies all the p

patterns are stored as �xed points, while �tness less

than 1 includes many possible other cases.

(3) (selection) Two parent chromosomes are chosen ran-

domly from the best 40% of the population to be re-

combined.

(4) (recombination) Recombinations are made with

uniform crossover [Syswerda, 1989], operating on al-

leles of the selected parents' chromosomes, i.e., two

parents (u1; � � � ; un) and (v1; � � � ; vn) produce an o�-

spring (w1; � � � ; wn) such that wi is either ui or vi with

equal probability.

(5) (mutation) Mutation is made by rotating the allele

with the probability 0.01 as follows.

f1g ! f�1g; f�1g ! f0g; f0g ! f1g

The procedures (3){(5) are repeated until all the individ-

uals in the worst 60% of the population are replaced with

the o�spring.

4 Experimental Results

Evolution of Random Synaptic Weights

Since the initial matrix is completely random, all the net-

works in the �rst generation do not function as an asso-

ciative memory. The goal of the GA is to �nd the opti-

mal combination of alleles cij 2 f1; 0;�1g in chromosome

which modi�es the initial matrix Rij by multiplying the

cij to the corresponding component of the matrix.

All the simulations in this paper were carried out on

networks with 49 neurons.

First, the e�ect on evolution of varying p, the number

of given patterns, is studied. We repeat each simulation

30 times with di�erent random number seed for the same

p. If we �nd the perfect solution(s) then we increment p.

Thus, we found a matrix evolved to store a maximum of

seven patterns. In Figure 1, we show the representative

sample of the best �tness versus generation for these seven

patterns. In this case, at the 2312-th generation a network

emerges that stores all the seven patterns as �xed points.

In the next two subsections, we present the dynamical

behavior of this evolution.
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Figure 1: Fitness of the Best of Generation

How the Chaotic Trajectories Turn to Attractors?

In the Hop�eld model of associative memory, an initial

state of the network determined by an input is to be up-

dated from time to time. We can observe this by the

temporal expansion of the Hamming distance between an

instantaneous network state and the input.

In Figure 2, the Hamming distances of instantaneous

network state from the input are plotted against updating

time as snapshots during the evolution.
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Figure 2: Trajectories Resulted from 7 Inputs.

Since we started with random synaptic weights, any in-

put of the given patterns results in the chaotic trajectory

in an early generation (Figure 2-a). Then, an attractor

appears (Figure 2-b). Thereafter, the number of the at-

tractors increases (Figure 2-c). As evolution proceeds fur-

ther, chaotic trajectories disappear (Figure 2-d). In the

mean time, some limit cycle trajectories occasionally ap-

pear and disappear (Figure 2-e). In the last stage of the

evolution, the location of the most of these attractors are

shifted towards the patterns to be memorized. At gener-

ation 1000, for example, the locations of �ve out of seven

attractors coincide with the given patterns, and the other

two locations are within 5 Hamming distances from the

patterns (Figure 2-f). It requires a long time for these

near-�xed-point-attractors to disappear (Figure 2-g). Fi-

nally, at generation 2312, seven �xed point attractors are

created exactly at the location of each given pattern.

There Still Remains Spurious Attractors

We observed the basin size of the network as follows. An

input is randomly sampled from the given patterns. After

d bits are 
ipped at random, this is given to the network.

The temporal average of the overlaps between the input

and the network state visited by the dynamics is calcu-

lated. In Figure 3, the averaged overlap over 800 runs are

plotted against noisy-bit d. We also show the result of

the Hebb rule associative memory which stores the same

seven patterns.

As shown in the �gure, the obtained matrix has com-

paratively small basin of attraction. This is probably due

to remaining spurious attractors around the created mem-

ories.
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Figure 3: Basin of Attraction



5 Conclusions

We have shown that a fully connected neural network with

random synaptic weights evolves to function as an asso-

ciative memory. This is by adaptively pruning some of the

connections and reversing some excitatory/inhibitory con-

nections. Before the GA runs, the network shows chaotic

behavior because of its random synaptic weights. As evo-

lution proceeds, these chaotic trajectories turn to attrac-

tors, though their locations are apart from the patterns to

be memorized. Then, they gradually approach to the lo-

cation of the given patterns. Finally, all locations of these

attractors coincide with the given patterns. We have pre-

sented this process by showing input trajectories during

the evolution.

It is surprising to see that the learning of the patterns is

only by �nding the optimum combination of 1, 0, -1 to be

multiplied to the component of a randomly chosen weight

matrix Rij . The absolute values of the synaptic weights

remain unchanged except that some of them are zeroed.

In [Imada and Araki, 1997], we conjectured that the evo-

lution is partly by destabilizing spin-glass attractors due

to the asymmetry and dilution of synaptic weights, as Herz

et al. [1987] suggested.

However, we have not known the reason of this pro-

cess well, so far. Especially, the fate of many states that

followed chaotic trajectories which were seen in the early

stages of the evolution and the possibility to remove the

still-remained-spurious-attractors are interesting to be re-

vealed. We leave these problems to our future study.
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