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Abstract

We present some results that show the information of sign structure of matrices char-

acterized by signed digraph can reduce computations in interval matrices. With the sign

structure of the matrices, vertices of interval matrices which realizes the max/min of the

determinant can be �xed. We present an algorithm to check singularity of interval matrices

based on the result. We also discuss impact of this approach to other problems of interval

systems.

1 Introduction

Qualitative and structural analysis, especially those by graph plays an important role

when target systems are large-scale and complex. Such analysis have been studied in many

di�erent areas: economic systems, ecosystems, and system theory to mention only few.

There are several di�erent levels of abstraction in qualitative and structural analysis. One

way is to focus on the level of abstraction in the parameters; how speci�c information is

needed for describing the systems.

Systems may be divided into structural systems, sign systems and interval systems based

on whether the parameters of systems are speci�ed as zero/non-zero pattern, sign pattern

and interval between two values, respectively. Researches on these di�erent levels have been

done rather independently and separately. The motivation of our research is to apply the

results for one abstraction level to the other level of abstraction. In this paper, we demon-

strate some results for sign systems can be e�ectively used to reduce the computations of

interval systems.

In section 2, some concepts needed for the analysis of the determinant of interval matrix

are stated. As discussed above, we use qualitative structure of the matrix expressed by

signed digraph to reduce the numerical computations on interval matrices. Thus, the

preliminaries mainly include results for the sign singularity of sign matrices. Section 3
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presents the main result for determining the max/min values of the determinants of the

interval matrices. Some vertex matrices 1 realizing max/min of the determinants of the

interval matrices can be �xed based on the structural properties of signed digraph. Section

3.2 presents an algorithm to check singularity of interval matrices.

2 Sign Singularity Analysis by Signed Digraph

When the matrix is reducible, it can be reduced to irreducible components to each of

which the analysis stated in this paper can be applied independently. Thus, the matrix

is assumed to be irreducible in the rest of this paper. Further, for simplicity, we focus on

interval matrices whose intervals can be identi�ed as +, 0, or -. That is, we do not consider

such interval as [�2; 5].

De�nition 2.1 (Sign Nonsingularity and Interval Nonsingularity) Sign matrix As

is a matrix whose elements are +;�; 0. Sign matrix is called sign nonsingular if all the

matrices having the sign structure is nonsingular. Interval matrix AI is a matrix whose

elements are speci�ed as interval [a,b]. Interval matrix is called interval nonsingular if all

the matrix whose elements are lying within the intervals speci�ed are nonsingular.

An interval matrix can be considered as a set of matrices whose elements are in the

intervals speci�ed by the interval matrix. In this set of matrices, such matrix that each

element take terminal value of the interval is called vertex matrix. There are 2n
2

vertices

for the interval matrix of n�n where all the intervals [a; b] of elements are speci�ed as two

distinct terminal values; a 6= b.

De�nition 2.2 (Signed Digraph for Matrices) Signed digraph of a matrix A 2 R
n�n

is a graph with n nodes and arc of sign +(-) is directed from node i to node j when aij >

0(< 0).

Example 2.1

The signed directed graph of the following interval matrix is shown in Figure 1.

0
B@

[�2;�1] [�2;�1] [0; 0]

[�2;�1] [�4;�3] [�5;�4]

[�3;�1] [2; 4] [�2;�1]

1
CA

1We use the word vertex for interval matrices and the word node for graphs. See the paragraph below

de�nition 2.1.
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De�nition 2.3 (Cycle and G[n]-cycle)

The cycle of length k c[i1; i2; � � � ; ik] is a path connecting the nodes i1; i2; � � � ; ik and i1

sequentially2. The set of disjoint cycles is called G[n]-cycle3 if the total length of these

cycles is n.

All the possible G[n]-cycles for A 2 R
n�n correspond to all the terms in the expansion

of determinant of AI . Figure 2 shows all the possible G[3]-cycle for the graph shown in

Figure 1.

Let p[ci] denote the product of all the elements in the cycle ci = c[i1; i2; � � � ; ik]. That is,

p[ci] = ai1i2
ai2i3

� � � aik�1ik
. Let Ci = fci1; ci2; � � � ; ciqig be a G[n]-cycle. Then a term in the

expansion of the determinant A can be written as follows [3]:

(�1)�ip[ci1]p[ci2] � � � p[ciqi]

where �i is the number of cycles with even length in Ci. Or equivalently,

(�1)n(�1)qip[ci1]p[ci2] � � � p[ciqi]:

De�nition 2.4 (Admissible Qualitative Operations)[4]

(1) multiplying the sign in any rows by (-1).

(2) multiplying the sign in any column by (-1).

(3) interchanging any two rows.

(4) interchanging any two columns.

For any sign matrix, sign solvability (hence sign nonsingularity) is known to preserve under

any combination of above admissible qualitative operations [4]. The admissible qualitative

operations, however, do not preserve the structure of graph as known from the following.

2We use the word cycle to mean a simple cycle. That is, the nodes i1; i2; � � � ; ik are di�erent.
3G[n]� cycle has been used to explore the condition for potential stability of sign matrices [1, 2].

1
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Figure 1: The Signed Digraph of the Interval Matrix
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Lemma 2.1 A cycle c[i1; i2; � � � ; ik] of length k can be transformed into a set of k loops

(i.e. cycle with length one) fc[i1]; c[i2]; � � � ; c[ik]g by the admissible qualitative operations.

[Proof]

A cycle c[i1; i2; � � � ; ik] can be transformed into two cycles: a loop c[i1] and a cycle c[i2; � � � ; ik]

of length k-1 by permuting i1-th column and i2-th column. By applying this operation to

the cycle of length greater than one sequentially, the original cycle of length k will be

transformed into a set of k loops.

Sign structure of sign matrices has been studied extensively by Maybee[5, 6]. The fol-

lowing is a graphical characterization for a sign matrix to be sign nonsingular quoted from

[5].

Theorem 2.2 (Maybee [5]) Let A 2 R
n�n be a matrix with aii < 0 for i = 1; � � �n. Then

all terms in the expansion of det A are weakly of the same sign if and only if all cycles of

A are nonpositive.

In fact, the condition that all the diagonal elements are negative can be considered to

be necessary.

Lemma 2.3 If a sign matrix is nonsingular then by the admissible qualitative operations

it can be put into the form where all the diagonal elements are negative.

[Proof]

If a sign matrix is nonsingular, its determinant must have at least one non-zero term in its

expansion. (Otherwise, it will be structurally singular4.) Then the term corresponds to a

4If a matrix can be determined as singular based only on its zero/non-zero pattern of its elements, then

it is called structurally singular. Equivalently, structurally singular matrix can be transformed into the

form which has at least one all zero column or all zero row by admissible qualitative operations.
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Figure 2: G[3]-Cycle Decomposition of the Signed Digraph
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product of p[i1; i2; � � � ; ik] where for all the cycles c[i1; i2; � � � ; ik] in a a set of disjoint cycles

whose total length is n (i.e. G[n]-cycle). By applying the admissible qualitative operation,

each disjoint cycle c[i1; i2; � � � ; ik] of length k in the set can be transformed into a set of k

disjoint loops by Lemma 2.1.

Theorem 2.4 By the admissible qualitative operations, if an interval matrix can be put

into the form:

(1) All the diagonal elements are negative, and

(2) There are no positive cycle.

In the rest of paper, matrix is assumed to be transformed into the form where all the

diagonal elements are negative.

Corollary 2.5 The sign of of a term in the expansion of the determinant of the matrix

A 2 R
n�n is invariant if any negative cycle of length k c[i1; i2; � � � ; ik] is replaced with

corresponding k disjoint negative loops: fc[i1]; c[i2]; � � � ; c[ik]g .

[Proof]

The sign of a term in the expansion of determinant A can be written:

(�1)n(�1)qisgn(p[ci1]p[ci2] � � � p[cis] � � � p[ciqi ])

for a G[n]-cycle Ci = fci1; ci2; � � � ; cis; � � � ; ciqig. Let cis represent the negative cycle of length

r. Then replacing cis with r disjoint negative loops cis1 � � � cisr results in sgn(p[cis]) = � =

sgn(p[cis1] � � � p[cisr]) when r is odd, sgn(p[cis]) = � = �sgn(p[cis1] � � � p[cisr]) when r is

even. However, the sign of (�1)qi changes when r is even while it doesn't change when r is

odd. Therefore the total sign of the term does not change after the replacement.

De�nition 2.5 (Sign Conict) If all the cofactors of the element aij of the matrix A is

not of the same sign, then the element aij (or its corresponding arc in the signed directed

graph) is called sign conict.

The next lemma follows directly from the de�nition of sign conict and G[n]-cycle.

Lemma 2.6 If an element of the matrix is both in the G[n]-cycle consisting of only negative

cycles and in the G[n]-cycle consisting of at least one positive cycle then the element is sign

conict.

Whether or not the element is sign conict can be known in the signed digraph without

decomposing it into G[n]-cycle. The following is a graph theoretical condition for an element

to be sign conict.
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Theorem 2.7 An element aij is sign conict, if and only if (1) the arc aij is both in a

positive cycle and a negative cycle, or (2) the arc aij is in the cycle disjoint with a positive

cycle.

[Proof]

Su�ciency:

Suppose the condition (1) is satis�ed. Let the length of the positive cycle and the negative

cycle continuing the arc aij be kp and kn, respectively. Then there are two terms in the

expansion of the determinant of the matrix: one consisting of the positive cycle and all

the rest negative loops, the other consisting of the negative cycle and all the rest negative

loops. Then the sign of the term including the positive cycle is (�1)n�kp when kp is odd and

(�1)n�kp+1 when kp is even as stated above, thus equal to (�1)n+1. In the same manner,

the sign of the term including the negative cycle is (�1)n, thus the sign of the cofactors of

aij corresponding to these terms is opposite.

When the condition (2) is satis�ed, cofactors of aij corresponding to two terms: one

consisting of the cycle including aij, the positive cycle disjoint with the cycle including aij

and all the rest negative loops, the other consisting of the cycle including aij and all the

rest negative loops, are known to have the opposite sign in the same manner as above.

Hence, aij turned out to be sign conict.

Necessity:

Suppose both conditions (1) and (2) is not satis�ed. Let Ci = fci1; ci2; � � � ; ciqig be a G[n]-

cycle where the cycle including the arc ij is assumed to be arranged at ci1. Then the terms

including aij in the expansion of the determinant of the matrix have the following form:

(�1)�ip[ci1]p[ci2] � � � p[ciqi]

where �i is the number of cycles with even length in Ci, ci1 is the cycle with length k

including the arc ij and the other cycles ci2; � � � ciqi are cycles disjoint with ci1.

Since the condition (2) does not hold, all the cycles ci2; � � � ciqi must be negative. By

corollary 2.5 this sign is equal to the one obtained by replacing the negative cycles ci2; � � � ciqi
with corresponding negative loops, resulting in (�1)�

0

isgn(ci1)(�1)
n�k where �0

i
is 1 when

k is even and 0 when odd. Since ci1 must be of the same sign for all i by the fact that (1)

does not hold, all the terms including aij must be of the same sign.

Although the following corollary follows directly from the de�nition of sign nonsingularity

and sign conict, it can also be proved by the above theorem.

Corollary 2.8 The submatrix obtained by removing i-th row and j-th column is sign non-

singular if and only if the element aij is not sign conict.

[Proof]

Removing i-th row and j-th column in the matrix amounts to the graph operation of
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concatenating node i and node j as node [i,j] where all the incoming arc to i is then directed

to the new node[i,j] and all the outgoing arcs from node j are then originated from the new

node [i,j]. Thus, if this modi�ed graph satis�es the condition of sign nonsingularity by

theorem 2.2 (i.e. it does not have positive cycle) then the original graph must not satisfy

neither (1) nor (2) of theorem 2.7.

Suppose aij is not sign conict, then the graph must not satisfy neither (1) nor (2). That

is all the cycles containing aij are of the same sign and all the other cycles are negative

sign. Since the sign of all the cycles containing aij can be changed without a�ecting the

sign of all the other cycles disjoint with the cycles containing aij by multiplying the sign

of i-th row (or j-th column) by -1, concatenating node i and node j result in the graph of

sign nonsingular after admissible qualitative operations.

In other words, sign nonsingular matrix is such a matrix that does not have any sign

conict element. The next corollary follows from the theorem 2.7.

The element a12 of the matrix of Example 2.1 is sign conict, since it satis�es the con-

dition (1) of theorem 2.7 (it is included in the positive cycle c[1; 2] and the negative cycle

c[1; 2; 3]). The element a33 is also known to be sign conict, since it satis�es the condition

(2) of theorem 2.7 (there is a positive cycle e c[1; 2] disjoint with it). These are also known

to be sign conict by applying above Lemma 2.6 to the G[3]-cycle decomposition shown in

Figure 2.

3 Analysis on Interval Matrices

3.1 Min/Max of the det A of interval matrices

Since sign nonsingularity requires that all the non-zero terms of the expansion of determi-

nant must be of the same sign, the next lemma follows immediately.

Lemma 3.1 If the sign digraph of an interval matrix is sign nonsingular, then the vertex

that realizes the minimum absolute value of determinant of the interval matrix is that with

smaller(greater) absolute value of two terminal values for each interval.

Since all the diagonal elements of the interval matrices under consideration are assumed

to be negative, the determinant of the interval matrices have the term p[c1]p[c2] � � � p[cn]

in the expansion. We call the sign of the term sgn(p[c1]p[c2] � � � p[cn]) = (�1)n standard

sign, since all the other non-zero terms in the determinant expansion of sign nonsingular

matrices have the same sign as this.

Even if an interval matrix is not sign nonsingular, the terminal value that realizes the

maximum or minimum absolute value can be determined if the element is sign non-conict.
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Theorem 3.2 The vertex that realizes the minimum absolute value of determinant of the

interval matrix is that with smaller(greater) absolute value for the sign non-conict element

when it is in the negative(positive) cycle.

[Proof]

If the arc corresponding to the sign non-conict element is in the negative cycle then the

term of determinant expansion including the cycle has the same as the standard sign. Thus,

the minimum absolute value of determinant is realized at the terminal of greater absolute

value in the same manner as the case of sign nonsingular stated in lemma 3.1. When

the sign non-conict element is in the positive cycle, corresponding term of determinant

expansion is opposite to the standard sign, hence it must take smaller absolute value for

the maximum absolute value of the determinant.

Obviously, results similar to lemma 3.1 and theorem 3.2 stating the vertex realizing the

maximum absolute value can be obtained with the word \smaller" and \greater" exchanged.

3.2 Algorithm for �nding minimum value of the determinant

Based on above theorem 3.2, the following algorithm for �nding the vertex that realizes

determinant with minimum absolute value is proposed.

Algorithm 3.3

STEP 1: Assign the terminal values to the elements of sign non-conict based on the

theorem 3.2.

STEP 2: Find the element of sign conict whose cofactor does not have the element of

sign conict. If found, assign the appropriate terminal value to the element of sign conict

depending on the sign of the cofactor. Continue this step until there is no element of sign

conict whose cofactor does not have the element of sign conict.

STEP 3: Find the element of sign conict whose cofactor has the elements of sign con-

ict, but the sign of the cofactor does not change which terminal value the element of sign

conict may take. If found, assign the appropriate terminal value to the element of sign

conict depending on the sign of the cofactor, and go back to the STEP 2. If not found,

proceed to the next step.

STEP 4: Carry out a combinatorial search for the remained elements of sign conict.

Example 3.1
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In the following, the above algorithm is demonstrated for the same example as 2.1

In STEP 1 of the algorithm, a12 is the sign conict element by the condition (1) of

theorem 2.7. a33 is also the sign conict element by the condition (2) of the theorem. All

the other elements are sign non-conict and their terminal value can be determined. Sign

conict element is indicated by * symbol in the matrix.

Since a33 has the sign conict element a12 in its disjoint cycle, and a12 has the sign conict

element a33 in its disjoint cycle, there is no sign conict element speci�ed in the STEP 2.

The terminal values so far determined for the sign non-conict elements are underlined in

the matrix.

In STEP 3, the cofactor of a12, i.e., (�4)� (�1)� (�2)� [�2;�1] does not change the

sign whichever the terminal value a33 = [�2;�1] may take. Hence the terminal value of a12
can be determined. Since there is no more sign conict other than a33, the terminal value

of a33 can be assigned in the STEP 2. Thus, the terminal value of -1 at a12 is taken for the

minimum absolute value of the determinant. Then, this will again determine the terminal

value of -1 at a33. Thus the vertex that realize minimum absolute value of determinant is

obtained. The value the determinant is -13, hence the interval matrix is nonsingular.

0
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4 Discussions

Checking singularity of interval matrices is known to be NP-hard [7]. One practical way

of reducing computations in such problems is to use qualitative and structural characters

embedded, which may be exposed by graphs.

Comparing with the Rohn's algorithm [8], our algorithm considers the sign nonsingular

system as a basis and other elements as disturbance elements. On the other hand, Rohn's

algorithm considers the center matrix as a basis and radius matrix as the disturbing ele-

ments.

The graphical analysis stated in this paper can be applied before carrying out any algo-

rithms for checking singularity of the interval matrices such as [8], which would reduce the

calculation done in the algorithms.

The signed digraph analysis can be used not only to check the singularity of given interval

matrix by only sign pattern, but also it will direct which submatrices to calculate rather

than calculating 22n�1 matrices of full size5 [8, 9].

5Rohn has shown that checking singularity of 22n�1 vertices will su�ce for interval singularity rather

than checking all the vertices 2n
2

.
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Although our method requires �nding cycles in the graph which is also computationally

expensive, computer simulations (the results of computer simulation are omitted in this

paper due to the page limitation) show that our method is more e�cient than by those so

far proposed [8, 9], for large-scale matrices especially those with many zero elements and

hence small number of cycles. It should be stressed that result by the graphical analysis in

our algorithm (i.e. whether or not a given interval matrix is sign nonsingular, and whether

or not each element of the matrix is sign conict,) can be used not only for the given

particular interval matrix, but for all interval matrices that have same sign structure as the

given one. Further, the results by graphical analysis can be used for sensitivity analysis; it

can tell which terminal values can be changed keeping nonsingularity, and which terminal

values contribute to the maximum or minimum value of the determinant.

It is expected that our approach of using qualitative and structural information to re-

duce combinations of interval matrices may be applied to many other similar problems:

solvability of static interval systems, stability, initial value problem of dynamic interval

systems, and so on. These problems are currently under investigation.

5 Conclusion

Computations about interval matrices often require an computationally expensive combina-

torial search. Finding the vertices of interval matrices that realizes max/min determinant

and checking singularity of interval matrices are two examples of such computation. We

proposed a method incorporating the features of sign structure obtained by the analysis on

signed digraph of matrices. We have shown that some elements of the matrix, originally

speci�ed to lie in an interval, can be �xed at the terminal value for �nding max/min deter-

minant of the interval matrices. Further, the analysis on signed digraph not only reduces

the computation but also suggests the structural properties such that which terminal values

of the interval contribute for max/min of the determinant and which elements are sensitive

for interval singularity.

Implementation of the algorithm and precise numerical evaluation of how much our

method reduce the computation of interval matrices will be discussed elsewhere. Similar

approach to the other computations about interval matrices such as stability analysis and

solving interval systems are currently under investigation.
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