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Sashi Novitasari

Abstract

In human spoken communication, speech production and perception are in-

separable. It is reflected in the human speech chain mechanism, showing that

humans speak while listening. This mechanism allows them to monitor and im-

prove their speech performance in various situations. It is also important for

language acquisition.

Inspired by the human speech chain mechanism, a machine speech chain

framework based on deep learning was recently proposed for a semi-supervised de-

velopment of a text-to-speech (TTS) system and an automatic speech recognition

(ASR) system. However, the basic framework was aimed only for non-incremental

TTS and ASR training, in which the systems require a long delay when encounter-

ing a long input sequence. Moreover, the TTS and ASR still perform separately

during inference. They could not do self-adaptation or change the speech by

considering environmental situations. By contrast, humans can listen to what

they speak in real-time and enhance the intelligibility of their speech, which is

called the Lombard effect. If there is a delay in the hearing, they won’t be able

to continue speaking and adapting to the environment appropriately.

In this thesis, we propose self-adaptive and incremental machine speech chain

frameworks for training and inference by mimicking the human speech chain

closely. To achieve this, first, we reduce the latency of the basic machine speech

chain by replacing the components with an incremental TTS (ITTS) and an

incremental ASR (ISR). During speech chain training, we let these systems im-

prove together through a short-term loop. Second, we design a self-adaptation
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framework focusing on speech synthesis in noisy environments through a speech

chain mechanism. It synthesizes the speech not only by taking text input but

also the auditory feedback representing the current system performance and the

environmental situation. This mechanism allows the TTS to speak in a Lombard

effect automatically according to real situations. Finally, we perform experiments

of self-adaptive incremental speech synthesis with a low-latency adaptation in

noisy environments. Low-latency adaptation is critical for machine to perform

optimally in dynamic situations. All this contribution shows that the feedback

mechanism is not only essential for the human speech chain but also for machines

to dynamically adapt and improve themselves in various situations.
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Chapter 1

Introduction

1.1 Human Speech Communication

Communication plays a crucial role in advancing human civilization. It allows

humans to share their thoughts and experiences to better understand each other.

Among many forms, speech might be the most effective way to communicate our

thoughts in most circumstances [1]. In speech communication, messages can be

transmitted without delay, enabling quick information exchange between people.

It also allows immediate feedback to both speaker and listener and flexibility in

deciding their actions during the conversation.

Speech communication involves the activities of speaking (speech production)

and listening (speech perception). Although these seem to be simple, there are

more complex processes underlying those activities to achieve a successful conver-

sation. To produce speech, one does not simply move the lips and tongue to utter

the words; it also involves the adjustment of linguistic and acoustical planning

in real-time to speak clearly. Speech perception is also not limited to the act of

hearing the sounds, but also to differentiating between the words and noises and

comprehending their meaning. These tasks are deeply related through a speech

chain mechanism.
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Speaking

How are you?
(Auditory feedback)

Listening

Listening

Speaker Listener

Figure 1.1: Human speech chain [1].

1.1.1 Introduction to Human Speech Chain Mechanism

Human speech communication involves a speech chain process, a chain of events

that links the speaker and the listener’s mind [1] in Fig. 1.1. To speak, the

speaker first decides what to say and how to say it, and then generates the

speech by moving the vocal muscles coordinated by the brain. The transmitted

speech will be received by the listeners through their hearing system, which then

continues to the speech perception process to understand the message. During

these events, the speaker also acts as a listener by listening to their voice. By

perceiving their speech as mouth-to-ear auditory feedback, the speaker compares

the quality of speech with their initial speech plan. Based on this, they can

coordinate their vocal efforts to make the next speech match the acoustic goal.

The human speech chain shows that speech perception and production tasks are

closely related. Here, all processes are done simultaneously. In short, speech

communication is established by the activities of speaking while listening.

1.1.2 Functions of Speech Chain

The functions of the speech chain include language acquisition, speech monitoring

through incremental feedback, and speech self-adaptation based on the environ-

ment, including noisy places such as the Lombard effect.
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1.1.2.1 Language Acquisition

Language acquisition is defined as the process of gaining the ability to comprehend

and use the words in a language to communicate with others. Here, speaking

efforts made during the speech chain process may affect language acquisition

and development. The acquisition of the first or native language happens in

the childhood period through babbling in the early stages [4, 5, 6]. Infants’

babble consists of articulate sounds but has not yet formed into recognizable

words. To produce a “sound”, infants first differentiate between sounds in the

environment by listening to them and then select the“sound” to be uttered. The

vocal adjustment might be performed so the produced sound is similar to what

they hear, and from here they learn the articulatory control and the mapping

between the phonetic and phoneme properties. This shows that the development

of speech production and speech perception systems are deeply correlated. By

continuously learning the phonetic map and exploring the language properties

around them, children will eventually produce their first words and more complex

words in the corresponding language structure.

1.1.2.2 Incremental Feedback

When speaking, the auditory feedback that is obtained incrementally allows the

speaker to monitor and improve their speech in real-time. Inadequate monitoring

of auditory feedback may result in speaking difficulties [7, 8]. Several studies

have investigated the importance of auditory feedback in speech perception as

well as in speech production [9, 7, 8]. It is done by constructing a delayed audi-

tory feedback (DAF) device that extends the time between speech and auditory

perception. A study by Badian et al. [7] found that using DAF with a 175-

millisecond delay has been shown to induce mental stress, which was measured

as changes in biochemical and cardiovascular variables. Another study also found

that the effect of a few hundred milliseconds of delay can disturb people, and this

effect disappears immediately by stopping speaking [8]. Thus, if there is a delay

in hearing, humans are unable to continue their speech.
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1.1.2.3 Self-adaptation and Lombard Effect

Humans maintain their speech quality in various conditions by simultaneously

listening to their speech. When an error is detected in their speech, they will

adapt or tune their speech plan according to the auditory feedback. Auditory

feedback is not only used to maintain the stability between the sound output

and the acoustic goal but also helps to make situation-dependent adjustments to

the prosody attributes [9]. The adjustment is not only manifested in the next

utterance but also could be presented as a correction of the previous utterance

through the re-speaking attempt [10].

Speech adaptation notably occurs in noisy conditions. In a noisy environment,

humans continuously adjust their vocal effort to improve their speech intelligi-

bility, a phenomenon known as the Lombard effect [11, 12]. This adjustment

does not only affect the loudness of the speech but also other aspects such as the

speech pitch and speaking rate [13, 14, 15]. As the response to ambient noise,

the intensity and pitch tend to increase, while the speaking rate tends to become

slower. Several works reported the response latency in the human Lombard effect

about 90-287 ms [16, 17, 18].

1.2 Speech Technology for Human-Machine Com-

munication

In recent decades, many speech technologies have been invented by mimicking

the mechanisms in humans to support human-machine and human-human com-

munication and through machine mediation. Corresponding to human speech

production and perception, several approaches in automatic speech synthesis and

speech recognition systems were studied and developed to enable the machine to

speak and listen.

1.2.1 Speech Synthesis Systems

Automatic text-to-speech (TTS) is a technology that automatically synthesizes

a speech signal given a text, as shown in Fig. 1.2. It acts as a “speaking” system

for machines. The research on TTS has progressed to synthesizing speech with

4



TTS“Nice to meet you”

Text Speech

Figure 1.2: Speech synthesis by TTS.

high naturalness and intelligibility. Naturalness shows how close the TTS speech

is to human speech, while intelligibility describes how easily the TTS speech

can be understood. In earlier times, automatic speech synthesis was done by

concatenating segments of recorded speech in the form of diphones by considering

the F0, stress, duration, and formant distance between the segments [19, 20].

From concatenative speech synthesis, TTS technology is then gradually shifted

into a more flexible approach through statistical modeling to synthesize speech

in a spectrogram similar to reference speech. In the statistical approach with a

hidden Markov model (HMM), spectrum, pitch, and state duration are modeled

simultaneously in a unified framework of HMM [21, 22]. Speech generation is done

through speech parameter or feature generation using HMM and Mel-cepstrum-

based vocoding techniques.

Recently, end-to-end text-to-speech modeling with neural networks has gained

high attention in the research and industry community. Previously, the Tacotron

[23, 24] framework was proposed for speech Mel-spectrogram synthesis from

character sequences autoregressively using the recurrent neural network-based

encoder-decoder network with an attention mechanism. Based on Tacotron,

Transformer network-based TTS was also proposed by replacing the recurrent

network with the transformer block [25, 26]. Fastspeech [27, 3] in a Transformer

framework was also proposed for non-autoregressive speech synthesis by modeling

the speech duration inside the network.

1.2.2 Speech Recognition Systems

Automatic speech recognition (ASR) is a technology that transcribes speech into

text, which is shown in Fig. 1.3. This system works in a reversed way in TTS

and acts as a machine “listening” component. In the classic approach, the HMM-
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ASR “Nice to meet you”

TextSpeech

Figure 1.3: Speech recognition by ASR.

based ASR was used for the large vocabulary continuous speech recognition sys-

tem [28, 29, 30]. HMM-based ASR consists of three separate components: the

acoustic model, the lexicon, and the language model. The acoustic model predicts

the phoneme sequence from the input speech by modeling the speech features

distribution using a Gaussian mixture model (GMM) and finding the optimal

phoneme sequence using HMM. The second component, a lexicon consisting of

the word-to-phonemes dictionary, proposes the word candidates. From the word

candidates, the final word sequence is decided by the language model by maxi-

mizing the word sequence probability score.

Similar to the progress in TTS, recent ASR also works in an end-to-end

manner using a neural network structure. Connectionist temporal classification

(CTC) based ASR was proposed for speech modeling with the recurrent units

to directly map the speech into text [31, 32]. A listen, attend, and spell (LAS)

framework was also proposed for speech recognition with the encoder-decoder

network with the attention mechanism [33]. Recently, Transformer-based ASR

also gained high attention in the research fields [34, 35].

1.3 Limitations and Challenges

Problem:

Common TTS and ASR systems perform separately, unable to dyna-

mically adapt to the changing inference environments

TTS and ASR systems commonly perform their tasks separately. It simplifies

the construction and utilization of these systems. However, they do not have a

feedback mechanism like humans. TTS can only speak and ASR can only listen.
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Therefore, during inference, those systems are not aware of the current situation

and their performance, and they can not adapt themselves.

In contrast, humans can do self-adaptation dynamically in various situations

with speech chain mechanisms. The auditory feedback connection in the speech

chain shows that speech production and speech perception systems are deeply

related. If we could apply a similar mechanism to the human speech chain to

machines, we might be able to make TTS and ASR improve and adapt them-

selves to various conditions by doing self-monitoring. But despite this potential,

unfortunately, these have received less attention in the TTS and ASR research

communities.

Existing approaches:

Machine speech chain for joint TTS and ASR construction through

auditory feedback loop

A machine speech chain framework [2, 36] was previously proposed to link the

TTS and ASR with an auditory feedback loop during training. The motivation

was to enable TTS and ASR semi-supervised construction with only a small

number of paired speech-text data and unpaired data, which are less complicated

to collect than paired data. From the unpaired data, a data reconstruction loss

will be computed and regarded as feedback. From this, TTS and ASR could

support each other and improve together. In inference, TTS and ASR perform

separately without the auditory feedback connection. Although this framework

successfully improved TTS and ASR in a semi-supervised training setting, those

systems are still unable to do self-adaptation during inference due to the lack of

auditory feedback, unlike humans.

Another limitation in the previous machine speech chain is that the framework

was originally designed for the utterance-level TTS and ASR systems. Utterance-

level systems require a completed utterance input to produce an output. Because

of this, the speech chain mechanism to listen while speaking can be done only

after receiving the entire input sequences. ASR starts recognition after receiving a

complete speech utterance from TTS, and TTS begins its synthesis after receiving

a complete sentence from ASR. As a result, there is a significant delay when

encountering long utterances. In contrast with machines, humans can listen to
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what they speak in real-time, whereas a delay in auditory feedback may cause

speaking issues in humans.

Offline fine-tuning on specific environment conditions

Offline fine-tuning is commonly applied to enable the TTS and ASR to perform

well in the new environments [37, 38, 39, 40]. Fine-tuning trains a pre-trained

model using the dataset representing the new environments. This is done before

the system is utilized in inference. By using this method, we can improve system

performance when presented in similar environments to the training condition.

However, the current fine-tuned TTS and ASR systems might still not be able to

perform dynamically because they only take speech or text as the input without

knowing the current situation. For example, a TTS fine-tuned to Lombard speech

will always produce Lombard speech, with a similar sound to the training data,

in any situation. The TTS might perform well if the inference environment is

similar to the presumed condition in training. However, environmental noise can

change dynamically. Moreover, in quiet conditions, it might not be preferred that

TTS produce loud speech.

1.4 Thesis Objective and Contribution

1.4.1 Thesis objective: Machine speech chain framework

for machine self-adaptive inference based on envi-

ronmental conditions

We borrow the concept of the human speech chain to improve the machine’s per-

formance in inference dynamically based on feedback observation. The previous

machine speech chain focused on joint semi-supervised TTS and ASR training. In

this thesis, we propose an advanced version of a machine speech chain that applies

the feedback mechanism during training and inference. The auditory feedback

mechanism aims to enable self-adaptation in the machine conditioned on the ma-

chine’s performance and environmental factors. As one of the use-cases, in this

thesis, we specifically focus on a self-adaptive and incremental machine speech
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chain framework for speech synthesis in noisy situations with the similar idea

to the Lombard effect. In inference, TTS synthesizes the speech by considering

auditory feedback from ASR and environmental conditions.

To achieve our goal, two challenges are considered:

1. Low-latency processing

Low-latency self-adaptation is necessary to make the machine perform and

adapt optimally. In real situations, environmental conditions often change.

Systems with a long output and adaptation latency might be unable to catch

up with those changes and perform poorly. Therefore, machines should be

able to make immediate adaptations by generating and processing short-

term output and feedback incrementally.

2. Auditory feedback during inference

Auditory feedback is critical to perceiving the environmental situation and

how the system performs now. The existing machine speech chain uses

reconstruction loss as feedback. In this thesis, we extend the auditory

feedback closer to humans, which also contains environmental information

and use it explicitly in inference.

1.4.2 Thesis contribution

We propose self-adapting and incremental machine speech chain for both training

and inference. Fig. 1.4 shows the tasks covered in this thesis. The proposed

frameworks are the extensions of the basic machine speech chain proposed by

Tjandra et al. [2, 36] for semi-supervised TTS and ASR training. Here, we

construct three frameworks to achieve our goal step-by-step.

First, we reduce the latency of the basic machine speech framework by replac-

ing the components with an incremental TTS (ITTS) and an incremental ASR

(ISR). We formally call the proposed framework the incremental machine speech

chain. This framework aims to improve the learning quality of ITTS and ISR

through the short-term feedback loop and also demonstrates short-term feedback

generation during inference.

Second, we design a machine speech chain inference mechanism for TTS self-

adaptation in noisy conditions. The feedback loop between TTS and ASR is
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Figure 1.4: Thesis contribution.

maintained during training and inference. We also add a new feedback to the au-

ditory feedback: the speech-to-noise ratio (SNR), which represents the intensity

ratio between speech and environmental noises. At this point, the TTS synthe-

sizes the speech at utterance-level with utterance-level feedback.

Lastly, we show a self-adaptive ITTS with machine speech chain inference

that performs incremental speech synthesis with the immediate adaptation to

environmental noises. The adaptation is done by progressively generating the

output and feedback and utilizing the feedback to synthesize and improve the

next output.

1.5 Thesis Outline

The structure of the remaining chapters of this thesis is as follows. In Chapter

2, we describe the end-to-end speech modeling technology for speech synthesis

and speech recognition. We elaborate on the neural network frameworks that we

use in the proposed systems. In Chapter 3, we describe the basic machine speech

chain that becomes the basis of the proposed systems.
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In Chapter 4, we introduce our proposed incremental machine speech chain

framework for ITTS and ISR training. We show our attempts at reducing system

latency through the supervised and unsupervised short-term feedback loop.

In Chapter 5, we show the machine speech chain mechanism for TTS inference

in noisy situations. We describe our attempt at synthesizing Lombard speech

through an auditory feedback mechanism under static noise conditions.

In Chapter 6, we describe our attempt to reduce the adaptation latency in

speech synthesis with machine speech chain inference by using an ITTS. Here we

perform speech synthesis experiments by considering static and dynamic noises.

Finally, we conclude our thesis in Chapter 7. In addition, we also discuss

further possible future research on the topic related to this thesis.
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Chapter 2

End-to-end Neural Speech

Modeling Framework

This chapter covers the basic knowledge about the end-to-end neural network

frameworks that are implemented in the proposed system.

2.1 Sequence-to-sequence Framework

Sequence-to-sequence (seq2seq) framework is a neural network structure that con-

verts an input sequence into another output sequence. This framework is com-

monly used in end-to-end systems that model the conditional probability directly:

p(y|x) =
T∏
t=1

p(yt|x, y<t) (2.1)

using single model given an input sequence x = [x1, x2, ..., xS] with a length S and

the target output sequence y = [y1, y2, ..., yT ] with length T . Seq2seq frameworks

commonly consist of two main components:

• Encoder: Encodes the input sequence x into an encoded representation

he = [he
1, h

e
1, , ..., h

e
S].

• Decoder: Produce output sequence y, where each output at timestep t

(yt) is conditioned on the output from the previous timestep y1, ..., y<t and

the encoded representation he.
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The encoder-decoder model, however, has difficulty with long sequences be-

cause the decoder has limitations in finding relevant information from he. To

overcome this issue, an attention mechanism [41, 42] was proposed to bridge

the information sharing between encoder and decoder. It enables the decoder

to soft-search for the relevant information in the encoder sequence. Specifi-

cally, when attention mechanism is applied, decoder produces a decoder sequence

hd = [hd
1, h

d
1, , ..., h

d
t ] at the timestep t conditioned on y1, ..., y<t. Then attention

module calculates the alignment scores between he and hd marking the relevance

of each part in the encoder sequence to the current decoder sequence, which scores

are then used to help the current output yt prediction.

In this thesis, two seq2seq frameworks are utilized: seq2seq recurrent neural

network (RNN) and Transformer. These frameworks differ mainly in the network

type and the attention mechanism. In the next section, the detailed mechanisms

applied in the encoder, decoder, and attention modules for each framework are

elaborated.

2.1.1 Sequence-to-sequence RNN

Seq2seq RNN [41] in Fig. 2.1 consists of an encoder and a decoder, each consists of

a stack of RNN layers, with an attention module between them. All components

are optimized jointly during the training process. Given input sequence x, first

encoder generate the encoder sequence he by taking x, expressed as

he = Encoder(x). (2.2)

To predict yt, decoder generates the decoder state hd
t conditioned on the previous

output yt−1, previous decoder state hd
t−1, and the encoder sequence he:

hd
t = Decoder(yt − 1, hd

t−1,h
e). (2.3)

Based on the decoder state, attention module will compute the alignment score

between he
s for s = [1, 2, ..., S] in he and the current decoder state hd

t , written as

at(s) = Align(he
s, h

d
t ),

=
exp(Score(he

s, h
d
t ))

S∑
s=1

exp(Score(he
s, h

d
t ))

, (2.4)
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Figure 2.1: Seq2seq RNN with encoder, decoder, and attention module.

ct =
S∑

s=1

at(s) ∗ he
s, (2.5)

where at(s) is the alignment score between he
s and hd

t . ct is the context information

utilized to predict yt by taking a sum of at(s) for all encoder timestep. In Eq.2.4,

Score is commonly computed using one of the following functions [42]:

Score(he
s, h

d
t ) =


⟨he

s, h
d
t ⟩, dot product

he⊺
s Wsh

d
t , bilinear

V ⊺
s tanh(Ws[h

e
s, h

d
t ]) MLP,

(2.6)
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Figure 2.2: (a) Basic transformer block with (b) multi-head self-attention module

implemented inside.

where Score is a (RUenc × RUdec) → R function, where Uenc is the number of

encoder hidden units and Udec is the number of decoder hidden units. After

the current context ct is obtained, the current output yt can be predicted by

concatenating ct and hd
t and pass it to the output network layer on top of decoder

(Wo),

yt = Wo([ct, h
d
t ]). (2.7)

2.1.2 Transformer

Transformer [43] consists of an encoder and a decoder in stack of transformer

blocks. A basic transformer block, shown in Fig. 2.2 (a), has a multi-head self-

attention layer followed by a feed forward layer with add and normalization layers

on top.

Multi-head self-attention in Fig. 2.2 (b) has a different attention mechanism

to that of the seq2seq RNN. First, self-attention is an attention mechanism that

computes the alignment between different positions in a sequence, or the inner-

alignment. Self-attention computation begins by projecting the transformer block
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input, with the dimension of dmodel, into three matrices: query (Q), key (K), and

value (V ) with the dimensions of dq, dk and dv respectively. These matrices are

then processed through a scaled dot-product attention. The operation consists

of dot product between Q and K, which is then divided by
√
dk, passed through

a softmax function and multiplication to V . It is formally written as

Self-attention(Q,K, V ) = Softmax(
QKT

√
dk

)V. (2.8)

The scaled-dot product attention aims to map Q and a set of K-V pairs to an

output.

Instead of using single attention computation, multi-head self-attention per-

forms the attention computation M times or heads with the different linear pro-

jection weights into dq, dk and dv. For the final attention output, all M attention

heads are concatenated together and projected for the final values:

headm = Self-Attention(QWQ
m , KWK

m , V W V
m ), (2.9)

MultiHead(Q,K, V ) = Concat(head1, ..., headM)WO, (2.10)

where WQ
m ,WK

m , and W V
m are the linear projection network weights for Q, K

and V respectively for the m-th head, and WO is the final projection layer. The

multi-head attention approach allows Transformer to encode several relationships

within the input sequence.

By stacking the transformer blocks in encoder and decoder, Transformer in

Fig. 2.3 is commonly utilized to perform auto-regressive prediction for seq2seq

problem. Similar to the seq2seq RNN, auto-regressive Transformer first encodes

the input sequence x into a latent encoded representation he and then produces

the output step-by-step by decoding he conditioned on the previous output y<t.

Not only the self-attention, here decoder also has a cross attention component to

the encoder sequence. The cross attention is computed in a similar mechanism

as the self-attention but by using the key and value matrices projected from

the encoder sequence and query matrix projected from the decoder self-attention

output below the cross attention component:

Cross-attention(Qdec, Kenc, V enc) = Softmax(
Qdec(Kenc)T√

dk
)V enc. (2.11)
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Figure 2.3: Transformer with encoder, decoder, and multi-head attention module

for seq2seq prediction tasks.

Here, Qdec is the query projected from decoder self-attention output and Kenc

and V enc are the key and value projected from encoder sequence.

Since the transformer block does not contains recurrent network that retains

the input sequence’s positional information, Transformer applies an additional

component in the structure to preserve the positional information, called posi-

tional encoding (PE) component. PE is placed below the encoder and decoder. It

preserve positional information of the input sequence by injecting the positional

information into the input sequence. Commonly, PE applies a sine and cosine
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Figure 2.4: Decoding with teacher-forcing strategy for training.

function:

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)
(2.12)

where pos is the position index in the input sequence and i is the dimension index

of the input. The output of positional encoding is combined to the transformer

block input through summation. From which, the PE-fused input is passed to

the main transformer block.

2.2 Training and Inference

Seq2seq neural network model is commonly trained using a teacher-forcing strat-

egy [44] applied to the decoder. Here, we denote the target output as y =

[y1, ..., yT ] and the output predicted by the model as ŷ = [ŷ1, ..., ŷT ]. Teacher-

forcing strategy in Fig. 2.4 is done to predict ŷt by feeding the decoder the correct

output of the previous timestep yt−1.This strategy allows the model to converge

fast and keeps the model stability during training. A training loss, which is task-

dependent, is computed based on the output probability distribution computed

by the model and the correct output.
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Figure 2.5: Decoding with greedy searching for inference.
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Figure 2.6: Decoding with beam searching with k=2 for inference.
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In inference, decoding is done based on the output predicted by the model

in the prior timestep. There are two searching algorithms that are commonly

implemented in the seq2seq model to find the optimum output sequence during

decoding:

• Greedy search (Fig. 2.5) determines ŷt by choosing the output with the

highest probability in the predicted probability distribution, written as

ŷt = arg max
1≤c≤C

p(ŷt|x, ŷ<t)[c], (2.13)

where C is the output vocabulary or classes. This method excels in speed

and output stability than other method because ŷt is determined at the

corresponding timestep. However, the predicted sequence might not be

best one.

• Beam search (Fig. 2.6) determines the output sequence ŷ by keep track

of k -best output sequences for each decoding timestep t [45]. In the sub-

sequent decoding step t+1, the algorithm generates all possible output se-

quences based on the k-best sequence from t, and then select another k-best

sequences based on the sequence probability score,

Token Sequence Score(ŷ1, ..., ŷt) =
t∑

i=1

log p(ŷi|x, ŷ<i). (2.14)

The newly selected k sequences are then passed to the next decoding timestep

by also repeating the same mechanism. At the end of decoding process, the

final output sequence is chosen based on the sequence with the highest score.

Beam decoder may predict the final output sequence with a better qual-

ity than the greedy decoder. This is because it keep some possible output

sequences with the high score at the same time.

2.3 Neural TTS

Neural TTS performs two tasks: text-to-speech features conversion using seq2seq

framework and speech features-to-waveform or audio using a vocoder. In this

work, we focus on the core text-to-speech features part. In the experiments, our
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vocoder is a CBHG (1-D Convolution Bank + Highway + bidirectional gated

recurrent unit) module with the Griffin-Lim algorithm, similar to the Tacotron

TTS framework [23].

TTS models the conditional probability p(y|x) of the output speech features

y given the input sentence text x. For the rest of the chapters, we refer x =

[x1, ..., xS] as the sequence of text tokens and y = [y1, ..., yT ] as the sequence of

speech features

2.3.1 Input and Output

Windowing

Fourier 
Transform

.

.

.

Mel Filter Bank

Speech waveform

Mel spectrogram

Figure 2.7: Mel-spectrogram extraction.

In this thesis, the TTS input is a text tokenized into character-level tokens.

The character sequences of two words are separated by a whitespace token which

here denoted as <spc>. The sentence is also encapsulated with a beginning-of-

sentence (BOS) symbolized as <s> and end-of-sentence (EOS) tokens symbolized

as </s>. An example of text with character-level tokens from a normal word-level

text is the following:
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Word: hello nice to meet you

Character: <s> h e l l o <spc> n i c e <spc> t o <spc> m e e t <spc>

y o u </s>

The TTS output utilized in this work is the Mel-spectrogram feature of a

framed speech sequence. It represents the speech power spectrum in a Mel-scale

rendering the frequencies in a certain range logarithmically, which mimics the

human perception. In training, Mel-spectrogram feature extration, shown in Fig.

2.7, is done by applying the short-time Fourier transform to the segmented target

speech signal via windowing and then multiplying it to a Mel filter bank.

2.3.2 Structure

2.3.2.1 Sequence-to-sequence RNN-based TTS

One of the commonly used seq2seq RNN-based TTS is Tacotron. In our imple-

mentation in Fig. 2.8 (a), TTS encoder consists of a character embedding module

followed by a feedforward neural network (FNN) layer and CBHG module. The

decoder part consists of FNN pre-net layer, unidirectional long short-term mem-

ory (LSTM) layer, and linear output layers on top for the Mel-spectrogram and

the speech end flag prediction. The speech end flag is represented as a binary value

marking the end of Mel-spectrogram sequence. When the flag is positive, the de-

coding for Mel-spectrogram can be stopped, so it can be passed to the vocoder

to compute the final speech waveform yR = [yR1 , ..., y
R
T ]. Mel-spectrogram and

speech end flag sequences are predicted in parallel.

Based on the multi-speaker TTS utilized in the previous machine speech chain

work [46], a structure modification is done on the decoder to do multi-speaker

speech synthesis, shown in Fig. 2.8 (b). Here, a speaker embedding zSPK that

represents the speaker identity is summed to the decoder pre-net output and also

the Mel-spectrogram linear output layer.
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Figure 2.8: Seq2seq RNN-based TTS for (a) single-speaker and (b) multi-speaker

speech synthesis.

2.3.2.2 Transformer-based TTS

Our Transformer-based TTS is a encoder-decoder Transformer with an autore-

gressive decoder [26, 25], shown in Fig. 2.9 (a) for single-speaker and Fig. 2.9 (b)

for multi-speaker TTS. The structure is based on the Tacotron by replacing the

encoder and decoder into transformer blocks. This framework also output two

sequences: Mel-spectrogram and speech end flag.

Transformer-based TTS encoder consists of an encoder pre-net followed by po-

sitional encoding and stacks of transformer blocks. The encoder pre-net consists
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Figure 2.9: Transformer-based TTS for (a) single-speaker and (b) multi-speaker

speech synthesis.
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of character embedding and the convolutional layers with a batch normalization

layer and ReLU activation.

On top of encoder is a decoder. Decoder contains a decoder pre-net below

the positional encoding and then followed by stack of transformer blocks. The

transformer block in decoder also contains multi-head cross attention that cal-

culate the attention between the encoder and decoder sequence. On the last

transformer block, two parallel linear layers are placed for Mel-spectrogram and

speech end flag predictions respectively. For multi-speaker speech synthesis, a

speaker embedding also injected to the encoder state and the decoder input.

2.3.3 Training

Seq2seq RNN-based and Transformer TTS are commonly trained using the teacher-

forcing strategy. In both of the frameworks, model optimization is done by back-

propagating the loss calculated using L2 function that includes L2 distances for

the speech feature and the speech end flag, expressed as

LossTTS(Y , Ŷ ) =

1

T

T∑
t=1

((yt − ŷt)
2 − (bt log(b̂t) + (1− bt) log(1− b̂t))),

(2.15)

where Y = (y, b) and Ŷ = (ŷ, b̂). Here, y is the target speech feature and

ŷ is the predicted speech feature. b and b̂ are the reference and the predicted

probability of the speech end flag.

2.4 Neural ASR

Neural ASR converts a sequence of speech features into a sequence of text using

a neural network. It models the conditional probability p(x|y) of the output

sentence text x given the input speech features y.

2.4.1 Input and Output

The input and output of ASR are the reverse of TTS. In this thesis, the ASR

input speech features is also the Mel-spectrogram of speech and the output is a
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text with the character-level tokenization. Similar to the TTS text, ASR output

text is also encapsulated with a BOS and an EOS token. The character sequences

of different words are also separated by a whitespace token. From the final char-

acter sequence, the word-level output text can be obtained by concatenating the

characters and separating the words based on the predicted whitespace tokens.

2.4.2 Structure

2.4.2.1 Sequence-to-sequence RNN-based ASR

𝑦 𝑦! 𝑦" 𝑦#
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Decoder

LSTM
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</s>

Mel-spectrogram

Character seq.

Figure 2.10: Seq2seq RNN-based ASR.

In the seq2seq RNN-based ASR, as shown in Fig. 2.10, the encoder encodes
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Figure 2.11: Example of encoder structure with hierarchical sub-sampling.

the whole speech utterance using bidirectional LSTM (BiLSTM) layers and then

the decoder decodes for the output autoregressively using LSTM layers.

In encoder, sequence hierarchical sub-sampling [33, 47, 48] is commonly ap-

plied. Since the length of a framed speech features sequence can be very long,

it can cause the encoder to converge very slow, thus, unable to achieve the op-

timum performance. This is because the relevant information extraction from a

long sequence is difficult. By using speech sequence sub-sampling mechanism, the

sequence’s time resolution will be reduced by a factor as it proceeds to the higher

layer in the encoder. In general, this is done by concatenating some consecutive

outputs in the previous encoder layer to calculate the output of the current layer.

An example of encoder that applies hierarchical sub-sampling with a factor of two

for each layer can be seen in Fig. 2.11. If hierarchical sub-sampling is applied,

for example a sub-sampling by a factor of two for each layer, the i-th output

computation in j-th BiLSTM layer may follow Eq. 2.16.

hj
i = BiLSTM(hj

i−1, [h
j−1
2i−1, h

j−1
2i ]) (2.16)

Decoder predicts the transcription of speech as a sequence of text tokens. This

component can be considered as a ‘speller’. Here, decoding starts with a BOS
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token as the initial input x0 and stops when the decoder predict an EOS token.

2.4.2.2 Transformer-based ASR
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Figure 2.12: Transformer-based ASR.

Similar to the TTS, Transformer-based ASR [34] also performs speech recogni-

tion using encoder and decoder with the transformer blocks as shown in Fig. 2.12.

Here, encoder is a stack of encoder pre-net with positional encoding and trans-

former blocks. The encoder pre-net consist of convolutional layers and a linear

layer. Encoder pre-net also performs sequence sub-sampling through the con-

volutional layers, in which each convolutional layer reduces the sequence time
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resolution by a factor of two. The decoder comprised of decoder pre-net, po-

sitional encoding, transformer blocks, and softmax layer. Decoder pre-net is a

module that contains the character embedding layer that processes the decoder

character input. Decoding steps is done autoregressively by feeding the previous

output to the decoder, in which xs is predicted conditioned on xs−1.

2.4.3 Training

Seq2seq ASR is also generally the teacher-forcing strategy. The model optimiza-

tion is done based on cross-entropy loss function between the target text x and

the predicted text x̂

LossASR(x, x̂) = LossASR(x,px) = − 1

S

S∑
s=1

C∑
c=1

1(xs = c) ∗ log p(x̂s|y, x<s)[c].

(2.17)

C is the number of class or the size output vocabulary
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Chapter 3

Basic Machine Speech Chain

3.1 Overview

The human speech chain shows that the relationship between the speech produc-

tion and perception systems is critical. The development and performance of one

greatly affects another. Despite that, research on TTS and ASR has progressed

more or less independently. Although the general TTS and ASR can achieve high

accuracy by performing independently, this is limited to the models trained on

large data. On the other hand, humans can learn new languages or words and

improve their performance in real-time thanks to the speech chain mechanism.

Motivated by the human speech chain, a machine speech chain framework

[2, 36] in Fig. 3.1 was proposed for semi-supervised seq2seq TTS and ASR con-

struction. This framework connects the TTS and ASR during the training process

through a closed feedback loop. The feedback loop is disconnected during infer-

ence so the system can be used independently.

Feedback connection allows us to train the models using both the labeled

(paired) and unlabeled (unpaired) speech and text data in a semi-supervised

way. To be precise, the semi-supervised training is composed of the supervised

and unsupervised training process as the following:

• Paired speech-text for ASR and TTS training (supervised)

• Speech data only for ASR-to-TTS (unsupervised)

• Text data only for ASR-to-TTS (unsupervised)
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Figure 3.1: Overview of machine speech chain [2] (a). The feedback loop is

unrolled into two processes: ASR-to-TTS (b) and TTS-to-ASR (c).
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Figure 3.2: Overview of machine speech chain with speaker recognition(a). The

feedback loop is unrolled into two processes: ASR-to-TTS with the speaker vector

generated based on ASR speech input (b) and TTS-to-ASR with the speaker

vector by sampling the available speech data (c).

At the earlier stage of framework development, machine speech chain was

initially utilized for single-speaker TTS and ASR training [2] (Fig. 3.1). Then,

this framework progressed for multi-speaker TTS and ASR training by extending

the framework with a speaker recognition system [46] (Fig. 3.2).

Machine speech chain could be an important milestone in spoken language

processing technology because a large amount of labeled data, which is necessary

for neural network model training, is expensive to prepare. The success in learn-

ing from unlabeled data through a feedback loop shows that the integration of

human speech perception and production behaviors improves the human-machine
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interaction systems.

3.2 Architecture

The basic machine speech chain consists of seq2seq TTS and ASR. The details

of the TTS, ASR, and speaker recognition modules inside the framework are

followings.

3.2.1 TTS

TTS architecture follows the seq2seq TTS framework for end-to-end text-to-

speech features generation. The text and speech representations utilized in TTS

are the same as the representations used in ASR. Inside the closed feedback loop,

TTS might synthesize the speech based on the text from the training material

and also the ASR output text. Therefore, data representation uniformity between

TTS and ASR is required to link these components. In multi-speaker condition,

TTS also receives a speaker embedding vector as an auxiliary input in addition

to the text to generate the speech with the speaker-specific characteristic. The

multi-speaker TTS structure and the speaker embedding injection method may

follow the structures showed in Chapter 2.3. In the original machine speech chain

work, multi-speaker TTS structure was based on seq2seq RNN-based Tacotron

extended with a Deep-Speaker module as the speaker recognition module for

speaker embedding generation. Here, speech vocoder is not included in the feed-

back loop and it is trained separately.

3.2.2 ASR

ASR performs end-to-end conversion of speech features sequence into text se-

quence. The ASR input features are the same as TTS output, and the repre-

sentation of ASR output text is also the same as TTS input. Inside the speech

chain, ASR might also perform the recognition based on the features extracted

from natural speech and also the direct TTS output. Unlike the speech synthesis

tasks, speech transcription does not depend on speaker. Therefore, ASR struc-

ture for single-speaker and multi-speaker tasks is the same. In the original work,
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ASR structure followed the seq2seq RNN-based framework.

3.2.3 Speaker Recognition

Conv

ResBlock

Pool

zSPK

Speaker class

Speaker embedding

Mel-spectrogram

L2-norm

Linear

N x

Figure 3.3: Speaker recognition and speaker embedding generation using Deep-

speaker.

The speaker recognition module is implemented in TTS for machine speech

chain training in multi-speaker data condition. It determines the speaker identity

from the speech utterance. In the machine speech chain framework, this module

is based on Deep-Speaker [49] framework that performs the speaker recognition

using a deep learning architecture given the speech features, as shown in Fig.

3.3. Deep-speaker consists of stack of convolutional layers followed by a pooling

operation and output the speaker posterior. The speaker embedding zSPK for

TTS is obtained from Deep-Speaker intermediate output vector. In the machine

speech chain work, Deep-Speaker model configuration followed the same setting

as the Deep-Speaker work.
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3.3 Training Mechanism

The basic machine speech chain framework is trained in a semi-supervised ap-

proach consisting of supervised training and unsupervised training, which are

done based on the paired or unpaired data scenario. The details of the algorithm

can also be found in Alg. 1. From the supervised and unsupervised training

phases, we obtain the cumulative loss and use them to optimize the TTS and

ASR parameters as shown in Alg. 2.

3.3.1 Supervised Training

Supervised training serves as a knowledge initialization phase for TTS and ASR,

which is done before the unsupervised training. These systems are trained inde-

pendently by using the paired speech-text data that is defined as DP = (YP ,X P ),

where YP is speech dataset with the corresponding text pair in X P text dataset.

The amount of the paired data is smaller than the unpaired data that is utilized

in the unsupervised training phase. For example, in the original work [2] that

conducted the experiment on BTEC data [50], the ratio of labeled data and un-

labeled data was 1:4. TTS and ASR optimization is done using the same method

as the standard supervised training (see Chapter 2). Here, given the input, each

model generates the output through teacher-forcing mechanism and the loss is

calculated based on the ground truth label and the model output.

In the multi-speaker tasks, TTS generates the speech by also using a speaker

embedding input. The speaker embedding is extracted from the speech data that

also is used as the TTS output reference.

3.3.2 Unsupervised Training

After the supervised training, ASR and TTS are trained jointly by using the

unlabeled training data. Unlabeled data could be either of speech-only data

(YU) without the transcription or text-only data (X U) without the corresponding

speech utterance. During unsupervised training, ASR and TTS support each

other by doing feedback passing though a loop that connects them. The loop

between ASR and TTS consists of two unrolled processes: ASR-to-TTS and
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Algorithm 1 Speech Chain Algorithm (part 1)

1: Input:Paired speech and text dataset DP , text-only dataset X U , speech-only

dataset YU , supervised loss coefficient α, unsupervised loss coefficient β

2: REPEAT ...

3: A. Supervised training with speech-text data pairs

4: Sample paired speech and text (yP ,xP ) = ([yP1 , .., y
P
TP

], [xP
1 , .., x

P
SP

]) from DP

with speech length TP and text length SP .

5: Generate a text probability vector by ASR using teacher forcing:

6: pxs = p(xs|yP , xP
<s; θASR), ∀s ∈ [1..SP ]

7: Generate best predicted speech by TTS using teacher forcing:

8: ŷPt = p(z|xP , yP<t; θTTS);∀t ∈ [1..TP ]

9: Calculate the loss for ASR and TTS ▷ Eq. 2.15 & 2.17

LossPASR = LossASR(xP ,px; θASR) (3.1)

LossPTTS = LossTTS(yP , ŷP ; θTTS) (3.2)

10: B. Unsupervised training with unpaired speech and text

11: # Unpaired speech data (ASR-to-TTS):

12: Sample speech yU = [yU1 , .., y
U
TU

] from YU

13: Generate text by ASR: ŷU ∼ pASR(·|yU ; θASR)

14: Generate speech by TTS from ASR’s predicted text using teacher forcing:

ŷUt = pTTS(z|yU
<t, x̂

U ; θTTS), ∀t ∈ [1..T ]

15: Calculate the loss between original speech yU and generated speech ŷU

LossUTTS = LossTTS(yU , ŷU ; θTTS) (3.3)

16: # Unpaired text data (TTS-to-ASR):

17: Sample text xU = [xU
1 , .., x

U
SU

] from X U

18: Generate speech by TTS: ŷU ∼ pTTS(·|xU ; θTTS)

19: Generate text probability vector by ASR from TTS’s predicted speech using

teacher forcing: pxs = p(xs|ŷU , xU
<s; θASR), ∀s ∈ [1..SU ]

20: Calculate the loss between original text xU and reconstruction probability px

LossUASR = LossASR(xU ,px; θASR) (3.4)
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Algorithm 2 Speech Chain Algorithm (part 2)

19: # Loss combination:

20: Combine all weighted loss into a single loss variable

LossALL = α ∗ (LossPTTS + LossPASR) + β ∗ (LossUTTS + LossUASR) (3.5)

Calculate TTS and ASR parameters gradient with

21: the derivative of LossALL w.r.t θASR, θTTS

GASR = ∇θASR
Loss (3.6)

GTTS = ∇θTTS
Loss (3.7)

Update TTS and ASR parameters with gradient descent

22: optimization (SGD, Adam, etc)

θASR ← Optim(θASR, GASR) (3.8)

θTTS ← Optim(θTTS, GTTS) (3.9)

23: UNTIL convergence of parameter θTTS, θASR
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TTS-to-ASR, where each process can be considered as auto-encoding process.

3.3.2.1 ASR-to-TTS

ASR-to-TTS process in Fig. 3.1 (b) is done by using speech data only. Here, given

a speech utterance yU from YU , ASR generates the transcription x̂U through

beam or greedy decoding strategy. After that, TTS synthesize a speech ŷU from

x̂U . A speech reconstruction loss between yU and ŷU will be computed using

TTS loss function in Eq. 2.15. In multi-speaker tasks (Fig. 3.2 (b)), speaker

embedding for TTS is generated based on the ASR speech input yU by using the

speaker recognition module.

3.3.2.2 TTS-to-ASR

This process is done by using text data X U only. As shown in Fig. 3.1 (c), first,

TTS synthesize a speech ŷU through greedy decoding strategy given the text

sentence xU from training material X U . From the synthesized speech, ASR is

performed to produce the transcription x̂U . Here the text reconstruction loss is

calculated by comparing the original text xU and ASR output text x̂U through

ASR loss function in Eq. 2.17.

In multi-speaker tasks (Fig. 3.2 (c)), speaker embedding is generated by, first,

sampling a speech from the available speech data set x̃ ∼ (YP
⋃
YU) and generate

a random speaker embedding vector based on the sampled speech x̃.
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Chapter 4

Proposed Incremental Machine

Speech Chain Training

Mechanism

4.1 Overview

Previously, a machine speech chain framework based on the human speech chain

mechanism was proposed. The basic framework enables semi-supervised training

of seq2seq TTS and ASR through a closed feedback connection, in which those

components support each other when learning from the unpaired speech-only or

text-only data. Thus, this loop allows the machine to learn not only to listen or

speak but also to listen while speaking.

Although the machine speech chain was able to improve TTS and ASR perfor-

mances, those components require long latencies to produce the output, similar

to conventional systems. Due to the global attention mechanism inside them,

they have to wait for a complete input sequence to generate the output sequence.

ASR starts recognition after receiving a complete speech utterance from TTS,

and TTS begins its synthesis after receiving a complete sentence from ASR. As

a result, there is a significant delay when encountering long utterances.

Prediction latency could be reduced by replacing the ASR and TTS with

the incremental systems: ISR and ITTS. In their mechanisms, ISR and ITTS

use the segment-by-segment prediction approach. Therefore, their output can
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Figure 4.1: An overview of the comparison between the basic machine speech

chain and the proposed incremental machine speech chain.

be given without waiting for the complete input sequence. However, low-latency

processing could harm the system’s performance because the output has to be

produced based on the short and limited input.

In this chapter, we propose an incremental machine speech chain mechanism

to improve the learning quality of end-to-end ITTS and ISR through a short-

term closed loop, which is shown in Fig. 4.1. The proposed mechanism also

aims to enable real-time feedback generation during inference. Although the

proposed framework only uses the feedback explicitly during training, by enabling

the real-time feedback generation, we can move a step closer to achieving a TTS

or ASR that can adapt simultaneously to the environment unsupervisedly, similar
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to humans.

4.2 Related Works

Previously, several frameworks were proposed for a low-latency ASR and also

TTS. Low-latency ASR can be done using a conventional approach with the

HMM and hybrid systems [51, 52, 53, 54]. However, the HMM-based ASR cannot

perform end-to-end recognition, whereas the current state-of-the-art approach is

deep learning. Recently, end-to-end incremental or streaming ASR with a low

recognition latency has gained attention in the speech community. Jaitly et al.

[55] might be the first group that has proposed a neural transducer framework

that can recognize speech segment-by-segment with a fixed window. Another

study has investigated attention-transfer ISR (AT-ISR) [56, 57], which learns from

attention-based non-incremental ASR for end-to-end speech recognition with a

low latency. Other works have also proposed ISR in neural transducer [58, 59]

and Transformer [58, 60] neural network structures.

Developing ITTS is also very challenging; the standard framework commonly

requires language-dependent contextual linguistics of a full sentence to produce

a natural-sounding speech waveform. Existing ITTS studies have mainly been

conducted on a model based on HMM [61, 62, 63, 64]. The first study that

attempted to synthesize speech in real-time using neural ITTS was proposed by

Yanagita et al. [65]. Recently, another ITTS was proposed based on a prefix-to-

prefix framework [66].

The previously published works were only concerned with ITTS and ISR tasks

individually. By contrast, this thesis investigates the joint incremental learning

between ITTS and ISR that attempts to mimic the human speech chain. The idea

here is to train well-performing low-latency systems by evaluating the short-term

output of a system using another system and jointly improving both of them.

The proposed mechanism is based on the basic machine speech chain shown

in Chapter 3 and the incremental steps during supervised training are learned

through attention transfer [56]. In the experiment, we performed the inference

process with separate ITTS and ISR, and also inference with connected ITTS

and ISR to do feedback generation.
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4.3 Incremental Machine Speech Chain

4.3.1 Architecture

The proposed incremental machine speech chain consists of ITTS and ISR, which

are connected through a feedback loop during training. The structure of ITTS

and ISR are based on the seq2seq RNN framework with the same setting as the

standard TTS and ASR utilized in the basic machine speech chain. Here, the

main difference is that, in the incremental system, the task is done by performing

segment-by-segment processing. To produce a complete input, ITTS or ISR will

first take the first segment of input and then produce a segment of output. The

same process is then repeated on the next input segment to generate the next

output segment, and so on.

4.3.1.1 Incremental ASR (ISR)

We use a block-wise seq2seq ISR that recognizes speech by transcribing it segment-

by-segment with a fixed window length [67, 56]. ISR predicts sentence text x̂ with

length of S from a full speech utterance y with length of T in N recognition steps,

as shown in Fig. 4.2. This is done by first dividing the speech y into N segments,

denoted as y = [y1, ...,yN ], where the length of yn is W frames and W < T . For

this factor, ISR’s latency is equal to W frames.

The recognition procedure for each recognition step n = [1, ..., N ], where

N = T
W

, is below:

1. Encode yn.

2. Decode and predict x̂n, a segment of Kn text tokens from x̂, where 0 ≤ Kn

< S, until an end-of-block token, denoted </m>, is predicted by attending

encoder states from yn.

3. Shift the input window W frames and keep the model states.

The prediction steps are repeated until an EOS token is predicted. We use AT-

ISR in our incremental machine speech chain to limit ISR construction complexity
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Figure 4.2: Incremental speech recognition.

while maintaining the recognition performance. Attention transfer teaches AT-

ISR, a student model, to mimic the alignment from a teacher model or non-

incremental ASR that provides yn-xn pairs based on the attention alignment.

AT-ISR learns xn and an end-of-block token as the output target of yn. All yn

lengths are uniform (W ) in the attention-based alignment, but the length of each

text segment xn can vary.
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Figure 4.3: Incremental speech synthesis.

4.3.1.2 Incremental TTS (ITTS)

Seq2seq ITTS (Fig. 4.3) performs speech generation without waiting for a com-

plete sentence text input [65, 66]. We construct ITTS using attention transfer

from non-incremental ASR, in which ITTS is trained using pairs of speech and

text segments. We apply the same alignment for ITTS and ISR in the incremen-

tal machine speech to reduce incompatibility between ITTS and ISR incremental

units during the joint training. Here, non-incremental ASR provides attention-

based alignment between fixed-size speech segments and variable-length text seg-

ments. ITTS, with the attention transfer from non-incremental ASR, learns how
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Figure 4.4: Supervised ITTS and ISR training via attention transfer.

to process a variable-length token sequence to produce at least W speech frames,

given the length of a speech segment in the attention-based alignment during

training is W . The ITTS output length here is at least W frames because, during

training, we combine subsequent speech segments that did not align with any

token (Kn=0) with the neighboring segment that aligns with an output token.

Speech generation with our ITTS follows the following procedure in each step

n = [1, ..., N ]:

1. Encode xn, a segment of Kn tokens from token sequence x, where 1 ≤ Kn

< S.

2. Decode and predict ŷn, a segment of Wn speech frames from speech utter-

ance ŷ, where W ≤ Wn < T , by attending xn until a stop flag is predicted.

3. Shift the input window Kn tokens and keep the model states.
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4.3.2 Training Mechanism

4.3.2.1 ITTS and ISR Independent Training

ISR and ITTS are trained independently by using paired speech-text data. We

apply the attention transfer training mechanism to train ISR and ITTS with the

non-incremental ASR as the teacher (Fig. 4.4). Both of the incremental systems

are trained using the same training data as the teacher model.

4.3.2.2 ITTS and ISR Joint Training Through Short-term Closed

Feedback Loop

ISR and ITTS support each other to jointly improve themselves by establishing a

short-term closed-loop. Here, each time the first component finishes an incremen-

tal step, it passes the output to the second component. The second component

then processes the passed data in an incremental step. The closed-loop between

ISR and ITTS is unrolled into the following processes:

• ISR-to-ITTS.

In each recognition step n, ISR processes a speech segment yn and gen-

erates a text segment x̂n, which is then encoded by ITTS to generate a

reconstructed speech segment ŷn (Fig. 4.5). Model parameters are updated

using the average ITTS loss from each incremental step, as formulated in

Eq. 4.1.

LossITTS =
1

N

N∑
n=1

LossTTS(yn, ŷn) (4.1)

• ITTS-to-ISR.

For each step n, ITTS firstly synthesizes a speech segment ŷn by taking a

text segment input xn. The ITTS output ŷn is then transcribed by ISR

to reproduce the ITTS input text x̂n (Fig. 4.6). Training loss is calculated

between xn and x̂n pair, and then averaged

LossISR =
1

N

N∑
n=1

LossASR(xn, x̂n). (4.2)
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4.3.2.3 Learning Approach in Supervised and Unsupervised Chain

The basic machine speech chain framework was originally proposed for semi-

supervised learning by combining the supervised and unsupervised training steps.

In the unsupervised training phase with a closed-feedback loop, the intermedi-

ate output in an unrolled feedback loop process is generated through a greedy

decoding mechanism.

In this thesis, as our focus is not on semi-supervised learning, we explore two

approaches for intermediate output generation during joint training via closed-

loop: 1) unsupervised chain via greedy approach and 2) supervised chain via

teacher-forcing approach. In the unsupervised chain approach shown in Fig. 4.7

(a), the intermediate output is generated by the first component through greedy

or beam-decoding decoding based on unpaired data. On the other hand, the

supervised chain in Fig. 4.7 (b) generates the intermediate output using teacher-

forcing decoding. The supervised chain training is done using paired speech-text

data.
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4.3.3 Inference Mechanism

ITTS and ISR inference are done separately without the feedback loop. ITTS

synthesizes speech segment-by-segment by using the procedure in Chapter 4.3.1.2.

Here the decoding is done using greedy searching. In our experiment, the ITTS

input text during inference was segmented based on a text segment dictionary

constructed from the training data. On the other hand, ISR also recognizes

speech segment-by-segment with the procedure in Chapter 4.3.1.1. The size of

the speech segments is fixed, with the same configuration as in the training phase.

Decoding is done using greedy searching to reduce the computational latency and

to keep output consistency.

4.4 Experimental Setup

4.4.1 Dataset

We used the Wall Street Journal (WSJ) [68] dataset for ITTS and ISR construc-

tion with the following settings: SI-84, SI-200, and SI-284 as the training sets,

dev93 as the development set, and eval92 as the test set. The SI-84 set consisted

of 16 hours of speech by 83 speakers, and the SI-200 set consisted of 66 hours of

speech by 200 speakers that did not overlap with SI84 set. The SI-284 set was

a combination of SI-84 and SI-200 sets. The SI-84 and SI-284 were utilized to

train the ITTS and ISR during independent training, while the SI-200 set was

utilized for systems joint training with a closed-loop. All speech utterances had a

sampling rate of 16 kHz. For the ISR input and ITTS output, speech utterances

were represented as 80-dimension Mel-spectrograms, where each feature frame

had a length of 50 ms and was shifted by 12.5 ms from the previous frame. The

text was represented as a sequence of character units.

4.4.2 Model Configuration

4.4.2.1 ITTS

Our TTS followed the TTS structure in previous machine speech chain work [2],

which was a modification of TTS Tacotron [23]. The model hyperparameters
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were generally the same as those in the original Tacotron. The modification was

made by replacing the rectified linear unit (ReLU) function with the leaky ReLU

(LReLU) function. The CBHG module used K = 8 filter banks. The decoder

consisted of two LSTM (256 units) layers. Our TTS generated 4 consecutive

frames for each decoding step, thus reducing the number of total decoding steps.

We allow ITTS to take contextual inputs, which consisted of look-back and

look-ahead blocks [56, 65, 66, 67], which are the blocks before and after the main

segment, respectively, to enrich the information in the main input segment. The

ITTS input segment in an incremental step consisted of the main character block

with two look-back and four look-ahead character blocks. The ITTS main input

size range was between one and four blocks, with an average of two blocks. One

text character block consisted of five characters, the average word length in the

training data.

4.4.2.2 ISR

The seq2seq model structures of non-incremental ASR and ISR were identical.

The encoder consisted of a FNN layer (512 units) that was followed by three

BiLSTM layers (256 units each). Each BiLSTM layer applied hierarchical sub-

sampling [48, 47]. As a result, an encoder state in the encoder’s final layer

represented eight speech frames. Here we defined eight speech frames (0.14 sec) as

a speech block. The ASR decoder consisted of a character embedding layer (256-

dims), an LSTM layer (512 units) with an attention mechanism, and a softmax

layer. We applied an MLP-scoring function that used a previously proposed

multi-scale alignment and contextual history [69] in the attention component.

The text generation during inference was done by greedy-decoding to prevent an

additional delay.

Similar to ITTS, ISR input also included the contextual input blocks. The ISR

input segment for an incremental step consisted of four main speech blocks with

two look-back and four look-ahead blocks, which we decided based on optimum

latency configuration in previous AT-ISR work [56].
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4.4.2.3 Speaker Recognition

Our TTS implemented a speaker recognition component similar to that in pre-

vious machine speech chain work [46]. Here we used a Deep-Speaker model with

the same hyperparameters as in the previous machine speech chain research. The

speaker recognition component was trained using SI-84 set.

4.4.3 Evaluation Metrics

In this experiment, ITTS was evaluated using L2 loss of the Mel-spectrogram and

the ISR was evaluated using character error rate (CER):

• Mel-spectrogram L2 loss

The L2 loss on Mel-spectrogram was used to compare the similarity of

natural y and synthesized ŷ speech utterances with the same transcription

and length. The loss calculation follows

LossL2(y, ŷ) =
1

T

T∑
t=1

((yt − ŷt)
2. (4.3)

• Character error rate

CER is the minimum number of edits in the hypothesis that are required to

make the hypothesis exactly match the reference. CER equals the character-

level edit distance that follows Eq. 4.4.

Edit Distance =
Sub + Del + Ins

Nref

× 100%. (4.4)

In the CER calculation, Sub, Del, and Ins represent the number of char-

acter substitutions, deletions, and insertions required to correct the hy-

pothesis, respectively, and Nref represents the number of characters in the

reference text. The ISR CER was measured by comparing the model’s

complete output sequence against the full reference transcription.
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Table 4.1: Performances of ASR (CER (%)) and TTS (L2-norm2 between ground truth and predicted Mel spec-

trogram).

ASR (CER(%)) TTS (L2-norm2)

Non-incr

(latency: 7.88 sec)

Incr

(latency: 0.84 sec)

Non-incr

(latency: 103 char.)

Incr

(latency: 30 char.)Data

nat-sp syn-sp nat-sp syn-sp nat-txt rec-txt nat-txt rec-txt

ASR and TTS with independent training

indep-trn (SI-84 ) 17.33 27.03 17.81 44.54 0.99 1.02 1.04 3.62

indep-trn (SI-284 ) 7.16 9.60 7.97 19.99 0.75 0.77 0.84 1.31

ASR and TTS with machine speech chain

indep-trn (SI-84 ) + chain-unsup (SI-200 ) 11.21 11.52 14.23 32.43 0.80 0.82 0.86 1.35

indep-trn (SI-84 ) + chain-sup (SI-200 ) 7.27 6.30 9.43 12.78 0.77 0.80 0.79 1.2652



4.5 Experiment Results

Our experiment results can be seen in Table 4.1. In this table, Non-incr denotes

the standard non-incremental system, Incr denotes the incremental systems, nat-

sp denotes natural speech input, nat-txt correct text input, syn-sp denotes TTS

speech as the ASR input, and rec-txt denotes ASR text as TTS input. Here indep-

trn is independent training, chain-unsup is joint training with an unsupervised

chain, and chain-sup is joint training with a supervised chain.

In this experiment, the baselines are ISR and ITTS that were trained inde-

pendently using SI-84 set and the toplines are the systems that were trained

independently with SI-284 set. The machine speech chain mechanism for the

non-incremental systems followed the basic mechanism (see Chapter 3), while

the incremental systems followed the incremental mechanism (see Chapter 4.3).

System evaluation was done based on natural and synthetic inputs. The syn-

thetic input was generated by the target system’s counterpart system, which was

trained under the same training condition by processing a natural input. For the

incremental system, the synthetic input of an incremental step was the output

from the processing of a short segment of natural input. We can consider the out-

put of synthetic input processing as the feedback for the system that produced

the synthetic input.

4.5.1 ITTS Performance

The proposed incremental machine speech chain improved the ITTS performance

on the correct text input. The ITTS model was trained by firstly pre-training

it independently using SI-84 dataset, where the loss in that phase was 1.04.

By using the proposed mechanism, the loss could be decreased to 0.86 using

the unsupervised chain and to 0.79 using the supervised chain. The ITTS with

the supervised chain also outperformed the ITTS trained supervised without the

speech chain using the full SI-284 set. In this case, ITTS performed similarly to

non-incremental TTS too, with the exception that the character-level latency in

ITTS was shorter. An improvement was also observed when the ITTS input was

the ISR output text. This might show that ITTS was able to understand the ISR

output better than the model without the feedback-based training. From this,
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we could expect an improvement as well in the ISR.

4.5.2 ISR Performance

The proposed incremental machine speech chain training improved ISR perfor-

mance as well. CER of the initial ISR (baseline) after it was trained independently

with SI-84 data was 17.81%. Given a natural input, the CER could be reduced

into 14.23% and 9.43% using unsupervised and supervised chains, respectively,

in the incremental speech chain training. But the topline ISR still performed

the best when the input was natural speech. The proposed ISR learned from

synthetic speech input during the joint training, whereas there is a gap between

natural and synthetic speech. Therefore, the proposed method resulted in an im-

provement in synthetic speech recognition, outperforming the baseline and also

the topline ISR.

4.6 Summary

The incremental machine speech chain training framework successfully reduces

the systems latency in the machine speech chain and improves ITTS and ISR

performances. The improvement of ITTS and ISR occurred in both natural and

synthetic input processing. It shows that the short-term feedback loop between

the incremental systems is able to leverage their training quality. We also demon-

strated real-time feedback generation. Although the feedback is not yet utilized

in the inference to improve the system performance, the quality of feedback pro-

cessing and understanding could be critical in the feedback-based inference, which

is our next task. This could be an important step towards achieving a system

that can listen while speaking in real-time. The resulting systems can be used

in incremental processing tasks, for example, ISR and ITTS for a simultaneous

speech translation system.
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Chapter 5

Proposed Self-adaptive Machine

Speech Chain in Noisy

Environment

5.1 Overview

Machine self-adaptation to the real environment requires the machine to be

aware of the situation and their performance. TTS systems have been devel-

oped to mimic human speech production. But unlike the human mechanism,

which considers speech production and perception connections important, TTS

development focuses only on speech production without considering to perceive

and evaluate the synthesized speech and the environment. Under clean condi-

tions, neural TTS successfully synthesizes highly natural speech given only the

text [23, 26, 25, 70]. However, in noisy conditions, TTS speech intelligibility

degrades because most systems have not been designed to handle noisy environ-

ments. Furthermore, since TTS only learns to speak without listening to and

understanding the situation, they cannot adapt to the situation. A widely used

solution for achieving TTS with high intelligibility in noisy places is to adapt the

system offline using Lombard speech from a particular noisy condition [38, 39].

In contrast to machines, humans can improve their speech when it is necessary

during the speech chain process. Particularly in a noisy environment, speakers

tend to change their speaking effort to increase their speech audibility while
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Figure 5.1: (a) Basic machine speech chain semi-supervised training; (b) proposed

machine speech chain for training and dynamically adaptive inference.

simultaneously listening to their speech and the noise [12]. This change, which is

known as the Lombard effect [11], includes not only a change in speech intensity

but also changes in speech pitch and speed [13].

Previously, the basic machine speech chain in Fig. 5.1 (a) for semi-supervised

TTS and ASR training was proposed, which was inspired by the human speech

chain mechanism. However, the basic machine speech chain was only utilized

as a semi-supervised training method for TTS and ASR. During inference, TTS

and ASR are still performed separately as in the conventional manner, so they

could still not adapt based on the actual condition dynamically, unlike the human

speech chain.

In this chapter, we propose an advanced version of a machine speech chain that

utilizes a feedback mechanism not only during training but also during inference.

Simulating the Lombard effect, we implemented a machine speech chain for a

self-adaptive end-to-end neural TTS in noisy environments (Fig. 5.1 (b)) that

enables TTS to speak in Lombard effect in noisy conditions given the auditory

feedback. The auditory feedback for our TTS includes the ASR loss as a speech

intelligibility measurement and the SNR prediction as a power measurement.

Based on feedback, the proposed TTS will generate speech while adapting the

speech prosody, focusing on pitch, intensity, and speed to improve the overall

speech quality.

Machine speech chain inference mechanism can be applied to improve the
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speech of the same text or to make the speech of the next text better than the

current one. In this thesis, we consider two approaches for TTS with an audi-

tory feedback mechanism. As shown in Fig. 5.2 (a), the first approach is non-

incremental TTS with utterance-level feedback in the re-speaking mechanism.

The second approach is the ITTS with short-term feedback for progressive adap-

tation, as shown in Fig. 5.2 (b). This chapter focuses on the first method with

the non-incremental TTS and the utterance-level feedback. ITTS is discussed in

Chapter 6.

The main difference compared to the basic framework in Chapter 3 and also

the proposed framework in Chapter 4 is that, in this chapter, the auditory feed-

back is explicitly utilized as TTS input for self-adaptive speech synthesis. The

proposed self-adaptive TTS process in this chapter is analogous to the TTS-to-

ASR process in the basic framework, in which it starts with inputting the text

into TTS and then calculating the text reconstruction loss based on ASR. The

basic framework uses the reconstruction loss to update the neural network weights

in ASR only. In contrast, the proposed method described in this chapter aims

to improve the TTS intelligibility in noisy situations dynamically using auditory

feedback that includes the ASR loss. We give the ASR loss to TTS as an aux-

iliary input, instead of for ASR optimization, to make TTS aware of how they

perform and estimate how they should change the output speech style. In this

thesis, the proposed self-adaptive TTS does not use the reconstruction loss to

optimize the neural network parameters, so we can focus on the feedback uti-

lization mechanism to change the TTS speech style. The proposed TTS’ neural

network weight is optimized using TTS loss only. The neural network weight is

maintained during inference.

5.2 Related Works

Lombard speech synthesis is designed to produce intelligible speech in the pres-

ence of noise. This system has gained attention within the speech community,

which was reflected in the Hurricane Challenge [71, 72] for speech synthesis and

the evaluation of speech enhancement systems under noisy conditions.
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5.2.1 Lombard TTS with Speech Post Modification

The related works on speech enhancement applied signal processing on speech

to improve the intelligibility in noisy conditions. The earlier works performed

speech modification through a statistical method with fixed parameters based

on known noises. The enhancement operations include modifications of dura-

tion [73], pitch, energy contour, formant sharpness, and intensity [74]. Several

works also proposed other spectral modification approaches, such as spectral tilt,

spectrum contrast enhancement, and harmonic component preservation at in

the low-frequency region to emphasize the speech features that are important

for speech perception [75]. Spectral shaping and a dynamic range compression

method were also studied [76]. Next, AdaptDRC [77] was proposed for speech en-

hancement controlled by the short-term speech intelligibility index. It enhanced

the speech content at high frequencies by also boosting the low-energy speech

content through time- and frequency-dependent dynamic range compression and

frequency-shaping. Another work also proposed a noise-dependent AdaptDRC

with the reverberation-dependent onset enhancement and overlapping masking

reduction [78]. Although the above approaches could be applied to both natural

and synthesized speech, a noise signal separated from the speech was required.

Their experiments were generally carried out by assuming perfect noise was avail-

able. Speech and noise separation in real situations might be challenging, espe-

cially in dynamic noise conditions. In our proposed approach, we use a TTS to

directly synthesize the Lombard speech given the text and feedback based on

synthesized speech with the noise.

5.2.2 Lombard TTS with Offline Fine-tuning

In the conventional approach, Lombard speech synthesis was commonly done us-

ing the parametric model with HMM. GlottHMM [79, 80] applies a glottal inverse

filtering technique in the vocoder of HMM TTS to improve speech intelligibility

in the presence of noise. Speech was synthesized by filtering the glottal excitation

with a vocal tract filter, where the excitation signal was generated from the real

glottal flow extracted from natural speech. A speaking style adaptation approach

has also been studied, in which the HMM TTS system is adapted with a small

amount of Lombard speech after training with normal speech [37, 38]. The per-
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formance of the statistical approach, however, has been limited by poor acoustic

modeling [39].

Recently, the neural network approach has also gained attention for synthesiz-

ing Lombard speech in an end-to-end manner. A recent study proposed Lombard

TTS by tuning a Tacotron model on the Lombard speech data [39]. The model

was first pre-trained on the normal speech data. In another study, a multi-style

Tacotron TTS was proposed with a framework that could synthesize speech in

normal, whispered, and Lombard speech styles [81]. In their experiment, TTS

training was done by including speech spoken in these three styles by a single

speaker in the training material. The TTS generates the styled speech by treat-

ing the three speaking styles as three different speakers, so the output speech

style is decided based on the speaker embedding vector.

5.3 TTS with Auditory Feedback in Machine

Speech Chain Framework

When the environment becomes noisy, the proposed TTS tries to synthesize the

speech with higher intensity, higher pitch, and slower speed than the speech before

the adaptation. In this chapter, the basic TTS is the autoregressive Transformer-

based multi-speaker TTS in a MultiSpeech framework [25]. To achieve dynamic

adaptation, we extended the basic structure with auditory feedback modules

(ASR-loss embedding and SNR embedding) and a variance adaptor. An overview

of this architecture is given in Fig. 5.3 (a). The proposed TTS generates the

speech Mel-spectrogram y = [y1, y2, ..., yT ] with a length of T given the charac-

ter sequence x = [x1, x2, ..., xS] with length S. TTS adapts the speech prosody

attributes by also taking the auditory feedback in SNR embedding (zSNR) and

ASR-loss embedding (zASR) as input. In inference, adaptation is done in sev-

eral feedback iterations until ASR loss converges. The conversion of the Mel-

spectrogram into a waveform is done using a CBHG module and the Griffin-Lim

algorithm, similar to the Tacotron framework. We use a speaker recognition

module implementing the Deep-Speaker framework to generate the speaker em-

bedding vector zSPK for our multi-speaker TTS, following the implementation of

TTS in the basic machine speech chain framework.
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5.3.1 Achitecture

In this thesis, we construct three TTS models with different feedback configura-

tions to investigate the effect of auditory feedback in the machine speech chain

framework. All systems are trained using normal speech and Lombard speech.

The overview of the proposed architecture is shown in Fig. 5.3. The details are

below.

5.3.1.1 TTS with SNR Feedback

TTS synthesizes speech based on text input and SNR feedback as embedding.

The SNR feedback represents the SNR or speech and noise intensity ratio, which

is a measure of how well the TTS speech can be heard in a noisy environment.

Commonly SNR can be calculated by measuring the intensity of the speech and

noise separately. However, separating speech and noise in a real-world situation

could be challenging, for example, because noises might dynamically change. In

our approach, we use machine learning as a neural network to obtain the SNR

directly from a noisy speech where the speech and noise are mixed. Given an

SNR embedding feedback, TTS attempts to re-synthesize speech with a higher

SNR (≥ 20 dB), indicating that the speech is louder than the noise.

We implement the SNR embedding module using convolution network layers

with an average pooling operation in Fig. 5.3 (c). It generates an utterance-level

embedding zSNR from noisy TTS speech features ynoisy:

zSNR = SNR Embedding(ynoisy). (5.1)

Before training the TTS, we pre-train the SNR embedding module (Conv

+ ReLU and ResBlock) as an SNR recognition module so that the TTS can

converge faster. We can initialize the SNR recognition model as a classification

or a regression model. The SNR recognition model recognizes the average SNR

in an utterance. In SNR classification, we first define several SNR classes. It

generates SNR embedding vectors by learning to classify the SNR given noisy

speech utterances. Model optimization is done by minimizing the cross-entropy

loss:
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LossSNR−CLS(l, pl) = −
Cl∑

cl=1

1(l = cl) ∗ log pl[cl], (5.2)

where l is the reference SNR label, pl is the predicted SNR probability, and Cl is

the number of SNR classes.

On the other hand, the SNR regression model is trained to estimate the av-

erage SNR of an utterance as a real value. It is optimized using L2 loss:

LossSNR−REG(l, l̂) = (l − l̂)2, (5.3)

where l̂ is the predicted SNR at the utterance level.

Inside the TTS encoder side, SNR embedding vector zSNR is integrated with

the TTS encoder transformer output he
trm and speaker embedding zSPK to obtain

the final TTS encoder output he, written as

he = he
trm + zSPK + zSNR. (5.4)

On the decoder side, embedding vectors zSPK and zSNR are also combined with

the decoder pre-net output and the positional encoding PE to obtain the decoder

intermediate input yit−1:

yit−1 = prenet(yt−1) + zSPK + zSNR + PE. (5.5)

Following this, the decoder multi-head attention query, key, and value are the

encoder output and decoder input that have been embedded with the auditory

feedback. TTS model optimization is done based on the standard seq2seq TTS

loss function in Eq. 2.15.

5.3.1.2 TTS with ASR Loss and SNR Feedback

TTS generates speech based on text input and auditory feedback in SNR and

ASR-loss embedding. The ASR-loss embedding, shown in Fig. 5.3 (b), repre-

sents the speech intelligibility measurement of how well the noisy TTS speech

can be recognized by an ASR. ASR-loss embedding vector zASR is generated by

transcribing a noisy TTS speech using an ASR, which written as

px = p(x|ynoisy), (5.6)
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where px is the ASR posterior, and then calculating the loss between the ASR

hypothesis and the TTS input text. The ASR loss embedding module, which is a

stack of convolutional layers with average pooling, produces zASR as an utterance-

level embedding by taking LossASR(x,px) that is a sequence of character-level

loss in a sentence:

zASR = ASR Loss Embedding(LossASR(x,px)), (5.7)

Here suppose a sentence text x consists of S characters, the s-th character (xs)

loss is calculated by

LossASR(xs, pxs) = −
C∑
c=1

1(xs = c) ∗ log pxs [c], (5.8)

where LossASR(xs, pxs) is the character-level loss and C is the size of ASR output

vocabulary. ASR text decoding is done by teacher-forcing mechanism based on

the TTS text input.

Inside the main part of TTS, ASR-loss embedding is combined with the TTS

encoder output and the decoder input along with the speaker and the SNR em-

bedding vectors:

he = he
trm + zSPK + zSNR + zASR, (5.9)

yit−1 = prenet(yt−1) + zSPK + zSNR + zASR + PE. (5.10)

In TTS training and inference, we use a pre-trained ASR to transcribe TTS

speech. The ASR-loss embedding module is trained directly during TTS training

without a pre-training step. TTS optimization is done by minimizing the TTS

loss in Eq. 2.15.

5.3.1.3 TTS with ASR Loss and SNR Feedback and Variance Adaptor

In addition to the SNR and ASR-loss embedding feedback, we implement a vari-

ance adaptor module in the proposed TTS with a similar approach to FastSpeech2

[3]. The variance adaptor is intended to guide the prosody adaptation by pre-

dicting the prosody attributes from the encoded text input and the auditory

feedback. The variance adaptor, shown in Fig. 5.3 (d), consists of three compo-

nents: a pitch predictor, an intensity predictor, and a duration predictor. This
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module is applied in the TTS encoder and provides the following output:

he = Var Adaptor(he
trm + zSPK + zSNR + zASR). (5.11)

The decoder input follows Eq. 5.10. In our duration predictor, instead of predict-

ing the token duration as an integer to regulate the encoder output length like

in the original FastSpeech2 framework, it estimates the duration as a real value

similar to the other predictors. The encoder output length in our model follows

the standard autoregressive transformer TTS.

The proposed TTS with variance adaptor is trained with the standard TTS

loss function combined with the variance predictor losses. The variance predictor

loss is calculated by the MSE loss function:

Losspred(v, v̂) =
1

S

S∑
s=1

(vs − v̂s)
2, (5.12)

where vs is the normalized reference value for the predictors inside the variance

adaptor and v̂s is the predictor output at timestep s. The reference intensity,

pitch, and duration are estimated from the TTS reference output speech. The

TTS training loss function becomes

LossTTS(Y , Ŷ ) =

1

T

T∑
t=1

((yt − ŷt)
2 − (bt log(b̂t) + (1− bt) log(1− b̂t)))+

Losspred(v
P , v̂P ) + Losspred(v

G, v̂G) + Losspred(v
D, v̂D),

(5.13)

where Y = [y, b,vP ,vG,vD] and Ŷ = [ŷ, b̂, v̂P , v̂G, v̂D]. Here, vP , vG, and vD

are the reference pitch, the intensity, and the duration, and v̂P , v̂G, and v̂D are

the pitch, the intensity, and the duration predicted by the predictor.

5.3.2 Training Method

The proposed TTS training method is illustrated in Fig. 5.4. To enable dy-

namic adaptation, we train the proposed TTS using inputs, consisting of text and

auditory feedback embedding vectors, and an output target, which is reference

speech representing the speech after adaptation. Auditory feedback represents

65



TTS𝐿𝑜𝑠𝑠!"#

Clean normal 
speech

text

Normal speech
Loop 1 Loop 2

𝒚

"𝒚"𝒚

𝐿𝑜𝑠𝑠$$"

text

Noisy normal 
speech

Lombard speech
𝒚

"𝒚"𝒚

𝐿𝑜𝑠𝑠$$"

A. Clean condition

B. Noisy condition

Training data

Training data

𝒙𝒙
text

𝒙

𝐿𝑜𝑠𝑠!"#

text
𝒙

TTS

TTS

ASR

ASR

SNR 
Emb

SNR 
Emb

ASR-loss 
Emb

ASR-loss 
Emb TTS

Figure 5.4: Proposed TTS training in two feedback loops based on clean and

noisy conditions.

the speech condition before it is adapted into the target speech. In training, the

SNR embedding is pre-computed from clean or noisy normal speech in the train-

ing data, while ASR-loss embedding is computed from TTS speech generated

during training. Therefore, the speech data required for training are the clean

normal speech, the normal speech with additive noise (noisy normal speech), and

the clean Lombard speech.

For speech synthesis and adaptation with the re-speaking mechanism, we

trained the proposed TTS in one or two feedback loops based on the type of

architecture:

1. TTS training with SNR feedback: For the proposed TTS without

the ASR-loss embedding module, we apply one-loop training using pre-

computed SNR embedding and text based on the training data.

2. TTS training with SNR-ASR feedback: For the proposed TTS with

the ASR-loss embedding module, we generate speech in two feedback loops.
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The SNR embedding vector is calculated in the first loop based on the train-

ing data, and we use the same vector in the second loop. The ASR-loss

embedding is calculated in the second loop based on the TTS speech gener-

ated in the first loop, thus, the TTS can learn the ASR-loss pattern based

on the synthesized speech for a more realistic ASR feedback processing.

We consider two target conditions: clean and noisy. In the clean condition,

the proposed TTS produces normal speech without the Lombard effect. In the

noisy condition, the proposed TTS produces Lombard speech. We apply batch

training to train the proposed TTS in which a batch consists of a mix of speech

samples for clean and noisy conditions. The details of the training mechanism are

described below with two feedback loops based on the type of target condition:

1. TTS training in clean condition: Speech generation is learned using text

and clean normal speech data. Normal speech is speech which is uttered

in a clean condition without the Lombard effect. It has a lower intensity,

a lower pitch, and a faster speaking rate than Lombard speech. In the

training, the SNR embedding and the output speech reference are based

on clean normal speech. Therefore, before starting the training, we first

compute the SNR embedding from clean normal speech. In the first feed-

back loop, TTS generates normal speech by taking the text, pre-computed

SNR embedding, and ASR-loss embedding in a zero vector as the input. In

the second feedback loop, we repeat the same process but use the ASR-loss

embedding computed from the TTS speech features predicted in the first

loop.

2. TTS training in noisy condition: Speech generation is learned using

text, noisy normal speech, and clean Lombard speech with high SNR and

low ASR loss in the corresponding noisy condition. Clean Lombard speech

is a speech under the Lombard effect but without noise in the audio. In

our experiment, the clean Lombard speech is a synthetic Lombard speech

generated by modifying the prosody of normal speech (intensity, pitch, du-

ration) into Lombard speech using SoX audio manipulation toolkit [82, 83].

Noises were not included in the resulting audio. The detail is discussed

in Chapter 5.4.1.1. In the training loop, we use SNR embedding generated
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from noisy normal speech in the training data and the text as the input and

the Lombard speech as the target. The ASR-loss embedding generation and

utilization method are the same as those in the clean condition case. In the

first loop, ASR-loss embedding is a zero vector. In the second loop, the

ASR-loss embedding is generated from TTS speech features generated in

the previous loop.

5.3.3 Inference Mechanism

The proposed TTS in the machine speech chain mechanism synthesizes the speech

using feedback loop, which unrolled loop is shown in Fig. 5.5. In the first iteration

in the loop, TTS synthesizes the speech only from the text input, the same as

in standard TTS. The synthesized speech is then combined with the noises, from

which the noisy speech is passed to the auditory feedback modules to generate

the auditory feedback vectors. In the second loop iteration, TTS once again syn-

thesizes the speech from the same text by also taking the auditory feedback from

the first loop as an input. Here, TTS will try to improve the speech intelligibility

considering the feedback that it has received. Further speech improvement can

be made by repeating the same feedback mechanism for the third loop and so on.

68



5.4 Experimental Setup

5.4.1 Dataset

Our systems are constructed using normal speech, normal speech with additive

noise, and Lombard speech datasets. Since the availability of Lombard speech

data is limited, we constructed a synthetic Lombard speech dataset by observing

the natural Lombard speech and modifying the normal speech into Lombard

speech.

Our experiment was based on WSJ corpus. TTS training was done based

on three static noise conditions containing noises from 1) clean, 2) SNR 0 dB,

and 3) SNR -10 dB conditions, where SNR is relative to normal speech of 44.44

dB in WSJ. The proposed TTS with a variance adaptor was also trained using

the character-level prosody attribute labels. These labels were generated by first

extracting a character-level speech timing using Montreal forced-alignment toolkit

[84]. The details of the data we constructed from WSJ and then utilized for model

training are given below.

5.4.1.1 WSJ Corpus

Natural Normal Speech The WSJ dataset consists of multi-speaker English

speeches recorded by reading news text in a clean condition, sampled at 16 kHz.

We utilized the SI-284, dev93, and eval92 sets as the training, development, and

evaluation sets. The SI-284 set consists of 81 hours of speech. The average speech

intensity in WSJ utterances was 44.44 dB. A speech utterance length is 7.88 sec

and 17 words on average.

Normal Speech with Additive Noise We combined the WSJ normal speech

with noisy sounds to train our system. The noises were white1 and restaurant

babble2 noises with SNR levels of 0 dB and -10 dB relative to the WSJ speech.

This dataset was mainly utilized to train the SNR recognition model and ASR.

1Generated using white-noise-generator toolkit (https://github.com/jannispinter/white-

noise-generator)
2From the noise sounds in AURORA-2 corpus [85]
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5.4.1.2 Lombard Speech Dataset Construction

Natural Lombard Speech To learn how human vocalization changes in noisy

conditions, we recorded natural Lombard speech with a single male speaker who

read the WSJ dev93 and eval92 set transcriptions in noisy conditions. The

noises in the recording were the same noises generated for our normal speech

dataset with additive noise. The noise level is considered constant within an

utterance. Given only the noise signals, the speaker read aloud the WSJ text as

if it were aimed at someone in a noisy condition. Then, we estimated prosody

attributes from the normal and the Lombard speech in phoneme-level detail, and

the averages of these values can be seen in Table 5.1. For comparison, we also

conducted the recording in both clean and dynamic noise environments from the

same speaker.

Table 5.1: Statistic of the natural Lombard speech spoken by a single male speaker

Noise

source

condition

Noise

Intensity

(dB)

Speech

Intensity

(dB)

Pitch

(Hz)

Speaking rate

(words/sec)

Clean - 56.92 124.63 2.05

SNR0 44.44 59.73 132.56 1.99

SNR-10 54.44 63.68 143.23 1.93

Synthetic Lombard Speech Next, based on the prosody attribute changes

observed in the recorded Lombard speech, we constructed synthetic Lombard

speech of a full set of WSJ data. Synthetic Lombard speech was made by modify-

ing the original WSJ speech pitch, duration, and intensity3. First, since the WSJ

speech consists of multi-speaker data, to maintain the speaker characteristics, we

modified the speech pitch and duration based on the attribute shift between the

clean and noisy conditions as shown in Table 5.1. The modification was done by,

first, aligning the Lombard speech and the normal speech in our recording data,

and then estimating the attribute shifts at phoneme-levels. Next, we estimate

the pitch and duration of normal WSJ speech at phoneme-level. Then, based on

3The speech pitch, duration, and intensity were modified using the SoundExchange (SoX)

toolkit (http://sox.sourceforge.net/).
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the database of prosody shifts in the recording data, the target noise, and the

prosody level of the WSJ normal speech, we estimate the target pitch and dura-

tion and modify the corresponding normal speech using SoX commands. After

that, we modified the speech intensity into a target SNR of 20 dB relative to the

noise level. The maximum intensity of the resulting Lombard speech was 75 dB

to avoid clipping. This dataset was utilized as the target Lombard speech in the

TTS training.

5.5 Experiment

5.5.1 Model Configuration

5.5.1.1 TTS

Our TTS model consists of a transformer-based encoder and autoregressive de-

coder. The TTS input was the character sequence, and the output was the 80

dimensions of the Mel-spectrogram. The encoder character embedding layer con-

sists of 256 units, followed by an encoder pre-net that consists of three convolution

layers. In the decoder part, the decoder pre-net consists of three linear layers. For

both the encoder and decoder, the transformer module consists of six transformer

blocks with a dimension of 512, eight attention heads, and a feed-forward inner

dimension size of 2048.

5.5.1.2 ASR

Our ASR takes a sequence of speech Mel-spectrogram input to predict its char-

acter level transcription. The model configuration follows a similar configuration

to the big model proposed in Speech-Transformer [34]. It consisted of twelve

encoder layers and six decoder layers. The transformer dimension was 512 with

the feed-forward inner dimension of 2048. The attention module consisted of

multi-head self-attention with four heads.

We prepared two non-incremental ASR systems which were trained on the

WSJ dataset to evaluate the TTS in the ASR objective measure. The first system

was a clean-condition ASR, which was trained using speech utterances in clean
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conditions. The second system was a multi-condition ASR that was trained using

speech in both clean and noisy conditions. For the proposed TTS, we used the

multi-condition ASR to generate the ASR feedback.

5.5.1.3 SNR Recognition

The SNR recognition model consisted of four stacks of convolution and residual

blocks and a linear layer, which was trained with a learning rate of 1e-4. As men-

tioned earlier, we experimented on two SNR recognition tasks: classification and

regression. The difference between those models lies in the output layer size. The

SNR classification model output layer dimension was three based on the number

of SNR classes: SNR 0 dB, SNR -10 dB, and clean (no noise). SNR classification

model was specifically designed for the use case in static noise conditions. It was

trained using normal speech with static noises. Next, the SNR regression model

output layer dimension was set to one, and the SNR level was output as a real

number scaled in the range of -1 to 1. This model was designed for more precise

SNR prediction in the static and dynamic noise conditions (see the details in

Chapter 6), and it was trained using the normal speech added with static and

dynamic noises. SNR recognition models were trained to recognize the average

SNR of a noisy speech utterance.

5.5.1.4 Speaker Recognition

The speaker recognition module was based on Deep-Speaker framework with the

same configuration as the one implemented in the basic machine speech chain

work [46]. The speaker recognition component was trained using SI-284 set

consisting of 282 speakers.

5.5.2 Evaluation Metrics

We focus on evaluating TTS speech intelligibility. The speech intelligibility was

measured through two metrics: ASR CER and the short-term objective intelligi-

bility (STOI) measure:

• Character error rate

CER is estimated by transcribing a noisy TTS speech using ASR. The error
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calculation is done using Eq. 4.4 with the TTS input text as the reference

text.

• Short-term objective intelligibility

STOI [86] estimates the temporal envelope correlation between the speech

signal disturbed by noise (noisy) and the reference speech signal before

being disturbed (clean). A higher correlation indicates a higher speech

signal intelligibility. STOI score is represented as a scalar −1 ≤ d ≤ 1

denoting the envelope loss L of the entire speech signal, formally written as

d =
1

J(M −N + 1)

J∑
j=1

M∑
m=N

L(aj,m, âj,m), (5.14)

L(aj,m, âj,m) =

(
aj,m − µaj,m

)T (
âj,m − µâj,m

)
∥∥∥aj,m − µaj,m

∥∥∥ ∥∥∥âj,m − µâj,m

∥∥∥ , (5.15)

where ∥·∥ denotes the Euclidean L2-norm and µaj,m
and µaj,m

denote the

sample means of aj,m and âj,m, respectively. Here aj,m is the short-time

temporal envelope vector of the reference speech from the (m−N + 1)-th

frame to m-th frame:

aj,m = [aj(m−N + 1), aj(m−N + 2), . . . , aj(m)]T (5.16)

aj(m) =

√√√√ k2(j)∑
k=k1(j)

a(k,m)2, (5.17)

where a is the reference speech magnitude spectrum, and k1(j) and k2(j)

denote the first and last STFT bin index, respectively, of the jth one-third

octave band. In Eq. 5.14, âj,m are those of the noise-disturbed speech.

In the experiment, the reference speech is the TTS speech before combined

with noise and the noise-disturbed speech is the TTS speech combined with

noise signal.
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Table 5.2: Average TTS speech intelligibility (CER %) at different SNR levels

in babble- and white-noise conditions evaluated using clean- and multi-condition

training ASR. SNR levels denote the SNR condition before adaptation was per-

formed.

System
Clean-condition WSJ ASR Multi-condition WSJ ASR

Clean SNR 0 SNR -10 Clean SNR 0 SNR -10

Baseline TTS

Std. TTS (Clean) 18.92 118.72 106.25 18.32 70.54 77.07

+ Rule-based modification 18.92 102.96 104.69 18.32 43.25 55.79

+ Fine-tuning (SNR 0 + SNR -10) 13.58 68.53 94.75 14.82 21.99 37.41

Std. TTS (Clean+SNR 0+SNR -10) 11.04 114.36 102.83 12.89 56.57 70.41

Proposed TTS

TTS in speech chain framework 11.04 114.36 102.83 12.89 56.57 70.41

+ SNR (cls) 10.21 83.15 101.41 11.58 22.82 42.00

+ SNR (cls) + ASR 10.76 52.51 87.72 12.55 16.11 25.62

+ SNR (cls) + ASR + var. adaptor 10.47 55.70 92.75 11.99 14.70 24.96

+ SNR (reg) + ASR + var. adaptor 12.63 66.84 86.41 13.52 18.57 31.19

Topline (human natural speech)

Normal speech 5.77 92.56 98.98 7.43 22.17 58.81

+ Rule-based modification 5.77 58.40 67.78 7.43 13.24 15.15

Lombard speech 5.77 25.38 59.25 7.43 11.46 20.46

5.6 Experiment Results

5.6.1 Speech Intelligibility in Character Error Rate

In this study, we focused on improving TTS speech intelligibility in noisy condi-

tions. The TTS speech intelligibility measured in ASR CER is shown in Table

5.2. In this experiment, CER was calculated by firstly transcribing TTS speech

using a clean-condition or a multi-condition ASR model that was trained on the

WSJ dataset. The ASR feedback for all proposed TTS systems was generated

using the multi-condition ASR. All TTS systems generated speech using speaker

embedding extracted from the normal natural speech in our recording data. The

clean condition testing was done using TTS speech without noise, and the noisy

condition testing was done using noise signals of the corresponding SNR con-

dition. SNR levels here are the initial SNR conditions before adaptation. The
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proposed TTS with ‘SNR (cls)’ generated SNR feedback based on SNR classi-

fication, while the system with ‘SNR (reg)’ was based on SNR regression. We

allow the proposed TTS to refine the speech in five feedback iterations at most,

and we present the speech that achieved the lowest ASR loss.

We compared our proposed systems with several baselines: 1) the standard

TTS denoted as ‘Std. TTS ’ trained using normal speech from a clean condition,

in which the speech in noisy testing was merged with the noise without any

modification; 2) the rule-based modification into the Lombard speech, in which

the original output of the standard TTS was modified by the same method as that

used in the synthetic Lombard WSJ speech construction; 3) the standard TTS

that was fine-tuned to Lombard speech [39]; and 4) the standard TTS trained

on normal and Lombard speech. Note that these systems did not have feedback

components and were also trained based on static noise conditions. The topline

speech is the natural clean and Lombard speech produced by a human. We also

included synthetic modifications from the natural human speech.

From the baseline results, we found that the speech CER of the standard TTS

from clean condition training could be reduced by post-processing the speech

prosody into Lombard speech-like. We also obtained further improvement by

fine-tuning the standard model using Lombard speech data. Next, the proposed

models with SNR and ASR feedback were able to outperform the fine-tuned

baseline models and more closely approached the CER of topline human speech.

In this experiment, the best TTS performance was achieved by a TTS with SNR

classification-based feedback (‘SNR (cls)’), ASR-loss feedback, and a variance

adaptor.

In overall, TTS with SNR classification feedback and the TTS with SNR

regression feedback show different results. The performance difference between

them might be caused by the SNR recognition performance and the complexity

of SNR embedding. First, SNR classification accuracy on noisy natural nor-

mal speech was 100%. This model achieved high accuracy because the number

of classes was small (three classes) and the training data was sufficiently large.

On the other hand, the SNR regression prediction error was 0.90 dB. The SNR

embedding generated by the regression model might be more complex than the

embedding based on the classification model. This is because the embedding from
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SNR regression represents a real value, while SNR classification represents a dis-

crete class based on three classes only. This might affect the TTS convergence,

in which TTS with SNR classification-based feedback was easier to converge and

resulted in higher speech intelligibility than with the SNR regression-based feed-

back in the static noise conditions.

5.6.1.1 The Impact of Auditory Feedback

C
ER
(%
)
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25

45

ASR coeff.
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Figure 5.6: Effect of auditory feedback on the TTS speech intelligibility based on

the embedding coefficients.

Using the best proposed system, we analyzed how the SNR and ASR-loss

embedding affected the TTS performance. To clarify this, we experimented on

the various embedding coefficients to scale the SNR and ASR-loss embedding

when they were combined into TTS encoder output he and the decoder’s first

transformer layer input yit−1. From the results shown in Fig. 5.6, SNR feed-

back alone is shown to be sufficient to improve the speech intelligibility in noise,

but it did not result in the best performance in our setting. Using only ASR

feedback could result in the best TTS speech when the condition is clean. This

shows that ASR feedback also contributed to speech enhancement. But when the

environment becomes noisy, SNR feedback becomes critical to the system. The
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Table 5.3: ASR performance on natural speech and the corresponding TTS speech

intelligibility in SNR -10 dB condition. (*: CER assessed using multi-condition

WSJ ASR. ASR feedback was based on the ASR model in the same row.)

ASR

training data

ASR CER (%) on natural speech *TTS intelligibility

(CER %)Noisy

Lombard speech

Noisy

normal speech

TTS + SNR (cls)

No ASR - - 42.00

TTS + SNR (cls) + ASR + variance adaptor

Clean-condition WSJ 73.33 103.35 25.01

Multi-condition WSJ 11.85 41.85 24.96

Multi-condition WSJ+Hurricane 11.81 40.89 24.47

optimum performance is when the SNR embedding and ASR-loss feedback em-

bedding coefficients are equal to one, indicating that both feedbacks are crucial

to the Lombard effect by TTS.

5.6.1.2 The Impact of Auditory Feedback Module Performance

The effect of ASR and SNR recognition performance on the proposed TTS was

investigated. The details are below.

ASR Our experiment results in Table 5.3 show that TTS speech intelligibility

tends to be better as the ASR performance becomes higher. In this experiment,

we experimented with the proposed TTS using feedback from three ASR models

with different training data in clean and noisy conditions based on WSJ and

also the Hurricane dataset (see Chapter 6.4.1.2). The highest performance was

achieved when the ASR feedback was generated based on the multi-condition

ASR trained using the WSJ and Hurricane datasets, which was our best ASR.

The tendency in this experiment’s result was similar to the previous experiment

in Chapter 5.6.1.1 with the embedding coefficient, where TTS intelligibility with

the SNR embedding coefficient of one also tends to be higher when using the

higher ASR-loss embedding coefficient.

Although different ASR performances led to different TTS performances, the

difference was not significant. This might be affected by the ASR loss generation
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Table 5.4: SNR recognition accuracy and the corresponding TTS speech intelli-

gibility in SNR -10 dB condition.

SNR model/input
SNR accuracy

(%)

TTS intelligibility

(CER%)

Model A/natural speech 100 23.32

Model A/synthesized speech 97.69 24.96

Model B/synthesized speech 96.85 26.30

method, which was based on teacher-forcing decoding. ASR performance has a

small effect on TTS intelligibility, but rather, it is largely affected by whether

the ASR feedback module is implemented in the proposed TTS or not. In our

experiment results, the TTS model with SNR feedback only had the lowest per-

formance among other TTS systems that used SNR and ASR feedback together.

This might suggest that ASR-loss embedding as the auxiliary input feature im-

proved the proposed TTS convergence during training and the TTS performance.

SNR Recognition Higher TTS speech intelligibility was influenced by higher

SNR recognition accuracy. We investigated the TTS performance difference be-

tween the different SNR recognition models and inputs, which is shown in Table

5.4. ‘Model A’ in this table was an SNR classification model trained with a learn-

ing rate of 1e-4, whereas ‘Model B’ was trained with a learning rate of 1e-3. In

this table, SNR accuracy with the natural speech input was evaluated using noisy

natural speech at SNR -10 dB, while the accuracy with synthesized speech input

was based on the normal TTS speech added with SNR -10 dB noise. The ‘Model

A’, which was also our default SNR classification model, predicted the SNR more

accurately than ‘Model B’ and the TTS produced more intelligible speech. Then,

we further investigated the effects of different input for the SNR model on the

TTS speech intelligibility: natural and synthesized speech. In the first experi-

ment with natural speech as the SNR model input, we first extracted the SNR

embedding from a noisy natural normal speech sample, and then we used the

same SNR embedding throughout the TTS feedback loop. Its SNR recognition

accuracy was 100%. As shown in Fig. 5.7, it resulted in a consistently degrading

ASR loss in the loop and the best final TTS speech intelligibility (Table 5.4).
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Figure 5.7: The comparison of the SNR prediction result and ASR loss between

TTS feedback loops based on (a) constant SNR embedding based on natural

speech and (b) updated SNR embedding based on synthesized speech in the loop.

The noise intensity was 54.44 dB (SNR -10 dB).

Then, in the second experiment, we fed the proposed TTS with the SNR embed-

ding updated based on synthesized speech. Here, the SNR embedding input in

the first loop was based on clean natural normal speech, and the SNR embedding

was updated accordingly based on the TTS output in the loop. It resulted in

more fluctuated SNR prediction output than in the first experiment, but with an

ASR loss that also tended to degrade.

5.6.1.3 The Impact of Feedback Loop

The number of feedback loop iterations also affected our system. Interestingly, the

training loop only consisted of two iterations but, in inference, a higher number of

loops resulted in better speech intelligibility as shown in Fig. 5.8. Here for each

inference iteration, TTS continuously received zASR and zSNR from the speech

that needs to be improved, from which the TTS obtained the current intelligibility

information, leading to a better speech performance along with the increased loop

number. In comparison to humans, during conversation humans might speak with

the Lombard effect in several trials so that the speech could be heard over the
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Figure 5.8: Proposed TTS speech intelligibility in different numbers of feedback

loop iterations.

noise. Our results reveal that a machine can also dynamically adapt in several

loops iteration acted similarly to re-speaking attempt.

5.6.2 Speech Intelligibility in Short-term Objective Intel-

ligibility Measure

Next, we evaluated our TTS speech intelligibility based STOI as shown in Table

5.5. As expected, the standard TTS has the lowest STOI because it could only

synthesize normal speech. Similar to CER results, this STOI results show that

TTS trained using standard normal data could not perform in noisy situation.

Therefore, fine-tuning is necessary to improve the system under such condition.

Here the proposed system with SNR-ASR feedback and variance adaptor achieved

the higher score than baselines system, showing that the TTS speech signal cor-

relation before and after disturbed by speech is high.

5.6.3 Analysis on Speech Prosody Adaptation

We analyzed the improvement in speech prosody attributes in the proposed Lom-

bard TTS as well as human Lombard speech. Here, we focus on improving speech
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Table 5.5: STOI scores (%).

System SNR 0 SNR-10

Baseline TTS

Standard TTS (Clean) 49.69 38.07

+ Fine-tuning (SNR0 + SNR-10) 83.56 71.07

Proposed TTS

TTS + SNR(cls) 81.18 65.66

TTS + SNR(cls) + ASR + var. adaptor 91.09 80.10

TTS + SNR (reg) + ASR + var. adaptor 87.57 76.08

Topline (human natural speech)

Normal speech 60.31 47.57

+ Rule-based modification 90.48 86.99

intensity, pitch, and duration. First we analyze the TTS speech intensity level,

which is shown in 5.6 with a visualized example in Fig. 5.9. Here the proposed

TTS intensity changed in the different SNR conditions, where the speech inten-

sity was higher in the noisy condition. The systems with SNR and ASR feedback

show a higher improvement than the system with SNR feedback only. Here TTS

with ‘SNR (reg)’ resulted in more dynamic intensity than the TTS with ‘SNR

(cls)’. This could be related to the model output precision in representing the

SNR. In Table 5.2, TTS with ‘SNR (cls)’, ASR feedback and variance adaptor

shown higher intelligibility because its Lombard speech was louder than those

from TTS with the similar auditory feedback using ‘SNR (reg)’. Next, we ana-

lyzed the TTS speech duration in Table 5.7 and speech pitch in Table 5.8, which

also illustrated in Fig. 5.10. The proposed TTS adaptation also followed by a

shift in the pitch level and also slower speaking rate. The F0 mean squared-error

(MSE) evaluation between TTS and human speech in Table 5.9 also shows that

the synthesized Lombard speech made the pitch closer to human Lombard speech.
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Table 5.6: Average TTS speech intensity level (dB).

System Clean SNR 0 SNR -10

Baseline TTS

Std. TTS (Clean) 43.58

+ Fine-tuning (SNR 0 + SNR -10) 66.30

Proposed TTS

TTS + SNR (cls) 45.59 61.01 61.10

TTS + SNR (cls) + ASR + var. adaptor 43.77 67.28 67.37

TTS + SNR (reg) + ASR + var. adaptor 54.32 62.65 64.20

Topline (human natural speech)

Normal/Lombard speech 56.92 59.73 63.68

Table 5.7: Average TTS speaking rate (words/sec).

System Clean SNR 0 SNR -10

Baseline TTS

Std. TTS (Clean) 3.37

+ Fine-tuning (SNR 0 + SNR -10) 3.05

Proposed TTS

TTS + SNR (cls) 3.14 3.07 3.07

TTS + SNR (cls) + ASR + var. adaptor 3.35 2.99 3.00

TTS + SNR (reg) + ASR + var. adaptor 2.93 2.80 2.79

Topline (human natural speech)

Normal/Lombard speech 2.05 1.99 1.93

Table 5.8: Average TTS speech pitch level (Hz).

System Clean SNR 0 SNR -10

Baseline TTS

Std. TTS (Clean) 120.98

+ Fine-tuning (SNR 0 + SNR -10) 122.62

Proposed TTS

TTS + SNR (cls) 123.79 123.31 123.09

TTS + SNR (cls) + ASR + var. adaptor 116.80 123.69 123.86

TTS + SNR (reg) + ASR + var. adaptor 122.81 124.88 125.15

Topline (human natural speech)

Normal/Lombard speech 124.63 132.56 143.23
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Figure 5.9: Intensities of the normal speech and Lombard speech produced by human and TTS in the babble-noise

condition. The speech transcription is the same.
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Figure 5.10: Normal and Lombard speech pitch of the word ”ruling” produced

by human and TTS. The Lombard speech was produced in a babble noise with

an intensity of 60.35 dB. Natural speech was spoken by a male speaker. TTS

speech was generated using a speaker embedding of the same speaker.

Table 5.9: F0 MSE between TTS speech and natural speech.

System Clean SNR 0 SNR -10

Baseline TTS

Std. TTS (Clean) 0.231 0.283 0.380

+ Fine-tuning (SNR 0 + SNR -10) 0.216 0.278 0.368

Proposed TTS

TTS + SNR(cls) 0.256 0.318 0.406

TTS + SNR(cls) + ASR + var. adaptor 0.239 0.296 0.369

TTS + SNR(reg) + ASR + var. adaptor 0.214 0.266 0.367

Interestingly, our proposed TTS Lombard speech was louder than the human

Lombard speech, but human speech had better intelligibility. Here human spoke

more slowly with a higher pitch than TTS. This shows that the simultaneous

enhancement of these three attributes is necessary. Our proposed TTS speech

was shorter than human speech, perhaps due to the speaking rate difference

between the speech in WSJ training materials and our natural Lombard speech

data. In natural speech, the Lombard effect is not simply a temporal envelope

expansion from normal speech, in which it is not limited to intensity, pitch, and

duration enhancement. For example, amplitude modulations in Lombard speech

are more pronounced than the normal speech [87]. This might also be the reason
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for the performance difference between human and TTS speech, since our TTS

was trained using Lombard speech with a focus on prosody improvement. Speech

naturalness might have also contributed to intelligibility.

5.7 Summary

We constructed a dynamically adaptive machine speech chain inference frame-

work to support TTS in noisy conditions. One key for a machine to adapt to the

situation is by understanding the situation and performance, which is represented

as an auditory feedback mechanism in the proposed TTS. Our proposed system

with auditory feedback and a variance adaptor successfully produced highly in-

telligible speech that outperformed the standard TTS with a fine-tuning method.

These results reveal that dynamic adaptation with auditory feedback is critical

not only for human speech production mechanisms but also in speech generation

by machines.

The proposed TTS in the machine speech chain framework successfully im-

proved speech intelligibility in noisy conditions. However, a high adaptation delay

still occurs because feedback is processed at the utterance level. Thus, if the en-

vironment becomes noisier in the middle of an utterance, TTS has to wait for

the utterance to finish to begin the adaptation. In the next Chapter 6, we focus

on ITTS with a machine speech chain mechanism to start the adaptation with a

short latency, i.e., approximately one sec, or three words in our setting.

85



Chapter 6

Proposed Self-adaptive and

Incremental Machine Speech

Chain in Noisy Environment

6.1 Overview

Machine self-adaptation to the real environment not only requires the system

to understand the situation but also cope with the environmental changes im-

mediately. The machine speech chain inference mechanism in Chapter 5 has

enabled TTS with a dynamic adaptation based on the environmental noises. It

mimics the human speech chain mechanism with the Lombard effect, in which

humans adjust their speaking efforts when they speak in a noisy place. Humans

perform the adjustment in real-time by listening to their speech and also the

noises simultaneously. A high adaptation delay could cause speaking issues, such

as stuttering and the degraded speech intelligibility when noise changes. Several

studies reported a response time of about 90-287 ms in the human Lombard effect

[16, 17, 18].

One of the challenges for Lombard TTS is that the system has to adapt to

static and dynamic noise conditions fast. Most studies on the Lombard TTS

[38, 39], including the proposed TTS in Chapter 5, only discuss speech synthesis

in static noise conditions. However, noises in reality are dynamic, such as the noise

intensity pattern examples shown in Fig. 6.1. Here, noise intensity could change
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Figure 6.2: Unrolled feedback loops of the proposed the machine speech chain

inference mechanism in noisy conditions for ITTS.

suddenly with a switch-like transition (dynamic-switch noise) or change gradually

with a smooth transition (dynamic-smooth noise). Although the proposed non-

incremental TTS with a machine speech chain inference mechanism could adapt

to environmental noises, it requires a long delay to begin the adaptation due to

the utterance-level feedback. This implies that, in dynamic noise conditions, TTS

needs to wait for the previous utterance to finish before doing the adaptation. In

such a situation, the unadapted speech part at the noise transition point might

have low intelligibility. Therefore, a dynamic and low-latency or online adaptation

is required.

87



In this chapter, we address the adaptation problem in the dynamic noise con-

dition by focusing on intelligibility and latency. One way to reduce adaptation

latency is by reducing the output latency and feedback latency. Therefore, we

propose an ITTS in machine speech chain inference, as shown in Fig. 6.2, for

incremental speech generation and adaptation. The proposed ITTS works with

a short-term feedback mechanism based on short-term output without sacrificing

significant performance. It incrementally synthesizes the speech by progressively

taking a short text segment and providing feedback based on the current speech

segment to the next incremental step. By using short-term feedback, ITTS im-

mediately adapts to environmental changes, thus improving speech intelligibility.

In the experiments, we perform the speech synthesis evaluation in both the static

and dynamic noise conditions.

6.2 Related Works

To the best of our knowledge, this might be the first deep learning framework for

ITTS that mimics the human Lombard speech mechanism in a noisy environment.

Similar to the general TTS system, ITTS is commonly constructed using speech

data from a clean condition and synthesizes speech by only taking text input. The

main difference to the non-incremental TTS is that ITTS performs the speech

synthesis incrementally using a partial text sequence, which usually consists of

several words, step-by-step to produce the output at low latency. Several ITTS

systems in the seq2seq RNN [65, 66] and also Transformer [88] frameworks have

been proposed previously. Unfortunately, ITTS in noisy conditions as well as

dynamic adaptation have not been investigated yet in previous works.

Previously, in Chapter 4, an incremental machine speech chain for ITTS and

ISR training was proposed to support the construction of ITTS and ISR jointly

using a short-term auditory feedback loop [89]. However, the feedback loop is

disconnected during the inference, so the systems do the task separately. For this

reason, the previous framework could still not adapt to environmental conditions.

In this thesis, we investigate neural ITTS with short-term input and auditory

feedback to dynamically adapt to the environment at a low latency.
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6.3 ITTS with Short-term Auditory Feedback

in Machine Speech Chain Framework

The proposed ITTS in the machine speech chain framework synthesizes the speech

incrementally with the auditory feedback, as shown in Fig. 6.2(b). The proposed

ITTS incremental unit is based on fixed words, in which the text segment length

in an incremental step is W words. Incrementally synthesizing a well-performed

speech based on short text could be a complex task because ITTS has to decide

on the output based on a short information sequence. Meanwhile, speech has a

continuous representation and heavily depends on context. A general approach

to improving the performance is by introducing contextual look-back words and

look-ahead words in the input text window [66, 90, 88], which is also applied in

the proposed ITTS.

6.3.1 Architecture

The proposed ITTS architecture is based on the autoregressive Transformer TTS.

The configuration is similar to the proposed non-incremental TTS in Chapter 5

but with a modification based on how the system treats the intensity-based con-

text. Speech intensity or power context might be required for ITTS because ITTS

does not only have to speak louder when noises come but also keep speaking loud

while the noise still exists. To keep the Lombard speech prosody in such con-

dition, a feature that represents the speech prosody state based on past speech

is necessary. The SNR information, which includes environmental information,

only tells the ratio of speech intensity to noise intensity and might be insufficient

to keep ITTS speaking loud. Therefore, we propose to do incremental speech

synthesis by preserving power context information, which contains the speech

intensity from the past output. Using this feature, ITTS will decide whether to

keep speaking in Lombard effect or not by also considering the environmental sit-

uation. Here, we propose and investigate two ITTS structures accordingly: 1) the

power context independent ITTS (PCI-ITTS) that does not consider the power

context and 2) the power context dependent ITTS (PCD-ITTS) that considers

the power context information.
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6.3.1.1 Power Context Independent ITTS (PCI-ITTS)

The PCI-ITTS architecture is the same as the proposed non-incremental TTS

with the SNR embedding, the ASR-loss embedding, and the variance adaptor (see

Chapter 5.3.1.3). PCI-ITTS reduces the latency of the proposed non-incremental

TTS without considering the power context. Here, the SNR and ASR-loss em-

bedding vectors are also generated from the noisy speech segment in the previous

step. Those embeddings are utilized as the feedback to generate the speech seg-

ment in the current step.

6.3.1.2 Power Context Dependent ITTS (PCD-ITTS)

The PCD-ITTS architecture, shown in Fig. 6.3 (a), is based on the non-incremental

TTS structure with SNR embedding, ASR-loss embedding, and variance adap-

tor (see Chapter 5.3.1.3) with a modification. PCD-ITTS synthesizes speech by

also using additional features that preserve the power context. For that reason,

in addition to SNR and ASR-loss embeddings, ITTS also takes a power context

embedding (Fig. 6.3 (b)) that contains the intensity information of the previous

speech output. In our framework, the intensity cues along with the auditory

feedback are used to help ITTS control the speech better. It not only helps to

control the intensity but also the Lombard speech in general.

Power context embedding (zPOW ) is generated by using a neural network

model with clean speech input. It takes ITTS speech generated in the previous

incremental step and then produces an embedding vector representing the input

speech’s intensity, written as

zPOW = Power Context Embedding(y). (6.1)

where y is the clean speech segment generated in the previous incremental step.

The power context embedding module consists of the convolution network layers.

Before training the ITTS, the power context embedding module could be pre-

trained for a speech intensity recognition task.

Inside the ITTS, feedback embeddings are utilized to compute the encoder

output he, written as

z = zSPK + zSNR + zASR, (6.2)
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bedding module.
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he = Var Adaptor(FNN([he
trm + z, zPOW ])), (6.3)

and also the decoder first transformer layer input

yit−1 = FNN([prenet(yt−1) + PE + z, zPOW ]), (6.4)

where zPOW is the power context embedding vector. To produce accurate em-

bedding, we pre-train all feedback components for incremental tasks.

6.3.2 Training Mechanism

The proposed ITTS is trained with a similar method as the proposed non-

incremental TTS, with the exception that the training is done by using pairs

of speech and text segments instead of utterances. ITTS training is done through

one feedback loop iteration, in which the SNR and power context embeddings

were pre-computed from the training samples and the ASR-loss embedding was

based on ITTS speech in the earlier incremental step. ITTS is also trained with

batch training, where a batch consists of samples from clean conditions and also

noisy conditions.

The speech synthesis in noisy conditions is learned through two cases. The

first case is to learn how to change the speech prosody attributes from normal

to Lombard speech. This is done by first generating the pre-computed auditory

feedback from normal speech with additive noise. The training method is the

same as the non-incremental version. The second case is to learn how to maintain

the Lombard speech prosody attributes. The training is done using the pre-

computed auditory feedback generated from noisy Lombard speech. In this case,

the noise condition inside the auditory feedback and the target condition is the

same.

6.3.3 Inference Mechanism

6.3.3.1 Basic Inference

Incremental speech synthesis and adaptation are done by generating and utiliz-

ing auditory feedback incrementally or progressively, which is illustrated in Fig.

6.2 (b). In the first incremental step, ITTS synthesizes W words speech. In
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Figure 6.4: An example of delayed adaptation in the proposed ITTS with the

basic inference mechanism in a dynamic noise condition.

the second incremental step, we compute the feedback embedding from the first

incremental step’s speech and use it to synthesize the next W words speech. For

the third incremental step and so on, we repeat the same process by taking the

previous step’s output as the feedback.

The adaptation latency of the proposed ITTS is still high during the basic

inference, as shown in Fig. 6.4. ITTS synthesizes a speech segment in an in-

cremental step by looking at the speech generated in the previous step. This

implies the adaptation is delayed by one incremental step. In an environment

with increasing noise, the unadapted speech segment could have low audibility.

6.3.3.2 Inference with Short-term Intensity Post-adaptation

To address the issue of adaptation latency, we use a simple additional incremental

power or intensity modification after the ITTS synthesizes the speech segment.

The speech intensity is modified also incrementally on the M ms unit for each

ITTS incremental step (Fig. 6.5). The system first plays the M ms speech

segment and then estimates the SNR of that segment, which has been fused with

noise. The SNR of the most recent M ms speech segment is then used to improve

the next M ms speech segment, and so on. Intensity modification is done when

the SNR is below a pre-defined threshold.
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Figure 6.5: ITTS speech intensity post-adaptation in a noisy condition. The

process is done incrementally with an M ms unit.

6.4 Experimental Setup

6.4.1 Dataset

6.4.1.1 WSJ Corpus

We trained the proposed ITTS using the same WSJ dataset shown in Chapter 5

for the self-adaptive non-incremental TTS. However, as our ITTS works with a

word-level segment, all speech utterances were divided into word segments before

starting the training. The speech word segmentation was done by cutting the

speech utterance using the list of word timing in the speech. The word timings

were extracted by applying a forced-alignment mechanism from the Montreal
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forced-alignment toolkit.

6.4.1.2 Hurricane Corpus

In addition to the WSJ dataset, we also conducted experiments using natural

Lombard speech data in the Hurricane natural speech corpus [91]. The Hurri-

cane corpus consists of normal and Lombard speech recorded from single male

native British-English speaker. The first data, normal speech, was recorded while

the speaker reading a transcription in clean environments, which resulted in 2.3

hours of recorded speech consisting of 3034 utterances. The average speech ut-

terance length was 2.67 sec and 7.32 words. The average speech intensity was

65.27 dB. For TTS training, we partitioned the data into 2842 utterances, 72

utterances, and 120 utterances as the training set, development set, and evalua-

tion set, respectively. The second data, Lombard speech, was recorded while the

speaker listening to a single static noise via headphones and reading a text. The

noise sound was a speech-shaped noise. The Lombard speech audio only contains

the speech utterance without the noise recorded. Here, the transcriptions were

a subset of the transcription list utilized in the normal speech recording. The

Lombard speech data amount was 0.7 hours of speech, which consists of 1020

utterances. The average speech intensity was 70.19 dB. For TTS training, we

partitioned the data into 800 utterances as the training set, 100 utterances as the

development set, and 120 utterances as the evaluation set, respectively. Here, the

speech transcription in the evaluation set for normal and Lombard speech is the

same. All speech data was sampled at 16 kHz.

In addition, we also created noisy speech by combining noise sounds with

normal speech. Since the noise audio utilized in the original recording was not

publicly available, we used the same noise sounds (babble noise and white noise)

and SNR (0 dB and -10 dB) as our WSJ data to generate the noisy speech. The

SNR here is relative to the normal speech intensity in the Hurricane data. Aside

from noise addition, no speech modification was performed on the Hurricane data.
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6.4.2 Model Configuration

6.4.2.1 ITTS

The ITTS model configuration, as well as the feedback component architecture,

was the same as for the non-incremental TTS. The ITTS incremental unit was

three words, with the previous ten words as the look-back input and the next two

words as the look-ahead input. In the training material, the average speech seg-

ment length in an incremental unit was 1.40 sec. A word sequence was converted

into a character sequence before being given to the ITTS.

6.4.2.2 ISR

The ISR architecture is the same as the one used in the previous experiment on

non-incremental TTS. In the ITTS, we utilized the ISR trained on short speech

segments in which we treat a speech segment as an utterance. The segment length

in ASR training was randomized in a range from one to five words.

6.4.2.3 SNR Recognition

The model setting is the same as the one utilized in the previous non-incremental

TTS experiment. For the ITTS, we also trained the model on short speech

segments. Here, the speech segment length was randomized among lengths of

one to five words.

6.4.2.4 Power Recognition

The speech power or intensity recognition model was first trained for the intensity

regression task. It consisted of four stacks of convolution and residual blocks and

a linear layer. Before ITTS training, this module was trained to do short-speech

intensity recognition, where the speech length was randomized among lengths of

one to five words. The training label was the speech intensity scaled in the range

of -1 to 1.
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6.4.2.5 Speaker Recognition

The speaker recognition model to generate speaker embedding has the same ar-

chitecture and training setting as the model utilized in the non-incremental TTS

in Chapter 5. Speaker embedding for ITTS was pre-computed from the target

speaker’s full-utterance speech.

6.4.3 Intensity Post-adaptation

The power or intensity post-adaptation incremental unit was 200 ms. We modified

the speech intensity to reach SNR 20 dB in noisy conditions using the SoX toolkit.

SNR estimation was done using the SNR regression model trained on short speech

segments, which model is the same model utilized as the SNR embedding module

in the proposed ITTS. In this thesis, we do not take computation time into

account in the speech performance evaluation.

6.4.4 Evaluation Metrics

We evaluated the proposed systems through objective and subjective evaluation.

The objective evaluation is done based on the CER and STOI measures. On the

other hand, the subjective evaluation was performed by asking human evaluators

to evaluate the TTS speech. The speech aspects evaluated in the subjective

evaluation were speech naturalness and speech intelligibility.

• Subjective speech intelligibility test

A speech intelligibility test was carried out by asking the human listener to

write a transcription of noisy speech. In this test, we used a semantically

unpredictable sentence (SUS) [92] as the TTS input text. SUS is a syntac-

tically correct but semantically unpredictable sentence. This ensures that

the listener does not guess the unintelligible speech based on the sentence

context.

• Subjective speech naturalness test

A speech-naturalness evaluation was done through a mean opinion score

(MOS) test by asking the listener to score the speech naturalness on a scale

of 1-5 points. The speech signals were also mixed with noises. The sentences
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used in the MOS test were the normal sentences obtained from the WSJ

evaluation set.

6.5 Experiment Results

We evaluated our systems under static noise and two types of dynamic noise

conditions as shown in Fig. 6.1 : 1) switch noise and 2) smooth noise, as well

as in the static-noise condition. In switch noise condition, the noise intensity

changed without transition, while in smooth noise conditions the noise intensity

changed gradually.

6.5.1 WSJ

In this section, we discuss the experiment results with TTS models that were

trained on WSJ data. The evaluated systems were the baseline TTS model shown

in Chapter 5, the proposed non-incremental self-adaptive TTS in Chapter 5, and

the proposed ITTS in this chapter.

6.5.1.1 Speech Intelligibility in Character Error Rate

The TTS intelligibility measured in ASR CER are shown in Table 6.1. CER was

measured by transcribing the synthesized speech using non-incremental multi-

condition WSJ ASR. The ASR feedback for the proposed non-incremental TTS

was generated with the same method in Chapter 5.6.1 with the multi-condition

ASR, while the ASR feedback for ITTS was generated using the same ISR in

Chapter 6.4.2.2. In this experiment, the proposed ITTS synthesized the speech

with the basic inference mechanism by default. The synthesis with the intensity

post-adaptation mechanism is shown in the row with ‘+intensity post-adaptation’

below the corresponding model.
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Table 6.1: Average TTS speech intelligibility (CER%) on WSJ data in babble- and white-noise conditions evaluated

using multi-condition WSJ ASR. SNR embedding in the proposed systems was generated using SNR classification

(cls) or regression (reg).

System
Static Noise Dyn. Switch Noise Dyn. Smooth Noise

Clean SNR 0 SNR -10

Clean,

SNR 0,

SNR -10

SNR 0,

Clean,

SNR -10

Clean,

SNR 0,

SNR -10

SNR 0,

Clean,

SNR -10

Baseline Non-incremental TTS

Standard TTS (Clean) 18.32 70.54 77.07 53.64 49.77 47.39 45.11

+ Fine-tuning 14.82 21.99 37.41 20.30 20.33 19.41 18.74

Proposed Non-incremental TTS + SNR + ASR + var.adaptor

TTS + SNR (cls) (speak 5x) 11.99 14.70 24.96 61.94 70.98 28.09 17.88

TTS + SNR (reg) (speak 1x) 14.76 32.91 56.42 27.88 26.60 28.48 28.22

+ intensity post-adaptation 14.76 21.43 27.23 20.32 20.57 20.22 19.70

TTS + SNR (reg) (speak 5x) 13.52 18.57 31.19 16.95 18.70 18.00 17.57

+ intensity post-adaptation 13.52 16.16 22.37 14.54 14.62 13.94 12.97

Proposed Incremental TTS (ITTS) + SNR (reg) + ASR + var.adaptor

PCI-ITTS (speak 1x) 18.96 38.26 60.64 34.90 32.00 34.02 33.69

PCD-ITTS (speak 1x) 14.42 23.32 41.89 26.96 28.13 23.48 22.53

+ intensity post-adaptation 14.42 20.59 31.05 20.64 17.30 20.10 20.99

Topline (human natural speech)

Normal speech 7.43 22.17 58.81 32.10 32.93 15.04 14.97

+ Rule-based modification 7.43 13.24 15.15 22.41 23.25 12.37 12.60

Lombard speech 7.43 11.46 20.46 22.92 17.77 - -
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First, we evaluated the non-incremental TTS intelligibility. We ran our pro-

posed TTS to speak five times at most, assuming that the noise conditions in

all re-speaking attempts were the same. The evaluated model was the same as

the model presented in Chapter 5. Then, we evaluated the proposed ITTS with

one-time speaking. The details of system performance in each environment are

below.

Static Noise Condition The non-incremental system performance reported

in this experiment is the same as the one reported in the Table 5.2 in Chapter

5 with the multi-condition ASR. The TTS intelligibility improved with a higher

number of re-speaking attempts and intensity post-adaptation.

In incremental speech synthesis, given that intensity post-adaptation was not

applied, PCD-ITTS in static noises performed closely to or better than the pro-

posed non-incremental TTS that spoke only once. PCD-ITTS produced more

intelligible speech than the PCI-ITTS. This indicates that power context em-

bedding in PCD-ITTS is critical to maintaining speech intelligibility. When we

manually inspect the utterances made under the static noise conditions, we hear

an intensity fluctuation in the PCI-ITTS speech. For example, PCI-ITTS speaks

with a Lombard effect at the initial incremental step, louder than the noise. In

the next step, it produces a speech segment with a reduced intensity since the

SNR might suggest a less noisy condition. Meanwhile, the PCD-ITTS tracks the

previous speech intensity so that the system has better control of the speech.

When intensity post-adaptation was applied, PCD-ITTS was able to perform

closely to the non-incremental TTS that require a full sentence input and also

synthesize the speech through several re-speaking attempts.

Dynamic Noise Condition In dynamic noise, the proposed non-incremental

TTS with SNR regression outperformed TTS with SNR classification. As men-

tioned in Chapter 5.5.1.3, the SNR regression model was trained using speech

with static and dynamic noise added for a more accurate and flexible SNR recog-

nition model. The SNR regression error in dynamic noise with natural speech was

2.1 dB. On the other hand, TTS with SNR classification focused on the use case

in static conditions with static noise training data. In dynamic noise conditions,

the SNR classification performance degraded, notably in dynamic switch noise
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Figure 6.6: PCD-ITTS speech intensity with and without the intensity post-

adaptation with a 200-ms incremental unit in the dynamic switch noise condition.

conditions. In that condition, SNR classification accuracy was 0%, in which the

SNR class was constantly predicted as ‘clean’ in our experiment. We analyzed

that this is related to the portion of clean speech in the noisy speech. In our

experiment, one-third of the dynamic switch noisy speech was clean speech. On

the other hand, in dynamic smooth noise, the SNR was classified as ‘SNR 0’ be-

cause the clean speech part was shorter than the dynamic switch noise due to the

gradual noise transition. The SNR classification performance, as well as the cor-

responding proposed TTS, in dynamic switch noise conditions could be improved

by including the dynamic switch noise in the SNR classification training data

101



(see Appendix A). The SNR classification model, however, is less customizable

than the regression model because we have to train the model each time the SNR

class changes, meanwhile SNR is a real value. In further experiments, we focus

on systems with SNR regression feedback only.

In dynamic switch and smooth noise conditions, PCD-ITTS outperformed

the PCI-ITTS. However, PCD-ITTS with the basic inference mechanism had an

adaptation latency issue, where the adaptation was delayed by one incremental

step (Fig. 6.6). The average speech segment length produced by our system in

an incremental step was 1.11 sec on average. Here, PCD-ITTS with the basic

inference shows a lower intensity than the noise in the undapted part, which oc-

curs when the noise intensity changes, so ITTS could not catch up with those

changes. After ITTS obtained the auditory feedback based on the unadapted

part, ITTS could improve the intelligibility in the subsequent incremental steps.

But by applying an intensity post-adaptation, we were able to reduce the adap-

tation latency, which was from 1.11 sec on average to 200 msec, and improve the

PCD-ITTS intelligibility.

6.5.1.2 Speech Intelligibility in Short-term Objective Intelligibility

Measure

Table 6.2 shows the STOI measurement of our system’s Lombard speech under

noisy conditions. Interestingly, PCD-ITTS had a better STOI than the non-

incremental TTS, but for intelligibility in ASR CER, this relationship was re-

versed. Our analysis suggests that this is related to speech intelligibility as a

signal and sentence. PCD-ITTS speech signals before and after disturbance with

noises show a high correlation, implying the speech signal is audible in noises,

for example, because the speech is very loud. But its comprehensibility as a sen-

tence is not as high as the non-incremental TTS. This is because the proposed

non-incremental TTS was allowed to synthesize the speech by using a complete

sentence’s text with the complete context and sentence-level feedback with the

re-speaking. But then PCD-ITTS with intensity post-adaptation achieved a close

ASR CER and higher STOI to the non-incremental TTS, although PCD-ITTS did

not perform re-speaking. This illustrates how speech adaptation within a short

time frame improved the speech intelligibility in incremental speech synthesis.
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Table 6.2: STOI scores (%) on WSJ

Static

Noise
System

SNR0 SNR-10

Dynamic

Switch

Noise

Dynamic

Smooth

Noise

Baseline Non-incremental TTS

Standard TTS(Clean) 49.69 38.07 65.13 71.93

+ Fine-tuning (SNR0 + SNR -10) 83.56 71.07 89.97 92.10

Proposed TTS + SNR (reg) + ASR + variance adaptor

Non-incremental TTS 87.57 76.08 91.76 92.17

Incremental TTS (PCI-ITTS) 82.62 65.87 79.00 76.44

Incremental TTS (PCD-ITTS) 89.95 77.04 84.31 82.71

+ intensity post-adaptation 93.00 82.85 94.46 94.58

Topline (human natural speech)

Normal speech 60.31 47.57 76.06 88.88

+ Rule-based modification 90.48 86.99 84.34 93.84

6.5.1.3 Subjective Evaluation

In the next experiment, we evaluated our system through a subjective evaluation

of speech intelligibility and naturalness. The SUS intelligibility and MOS tests

were done through crowd-sourcing, with 61 participants for the intelligibility test

and 138 participants for the MOS test. All participants were located in the United

States.

In this work, we mainly focused on improving TTS speech intelligibility. In

related work, it has been suggested that speech intelligibility and naturalness do

not always imply each other [93], and thus improvement in intelligibility might

not necessarily improve naturalness. Overall, our subjective evaluation results

also revealed that the proposed systems achieved a significant improvement in

speech intelligibility while preserving speech naturalness. The details are below.

Speech intelligibility The SUS intelligibility test results in CER are shown

in Table 6.3, and they are also visualized in Fig. 6.7. We conducted a statistical

t-test to show the significance of the improvement in the proposed system by
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Table 6.3: SUS intelligibility evaluation results in CER (%) ( ⋆ : statistically

different from the baseline in the same environment)

System Noise
Objective

(ASR)

Subjective

(Human)

Baseline Non-incremental TTS

Fine-tuning (SNR 0 + SNR -10)

Clean 21.76 6.74

Static 35.31 10.80

Dynamic 27.69 7.44

Proposed TTS + SNR (reg) + ASR + variance adaptor

Non-incremental TTS

Clean 14.72 4.94 ⋆

Static 16.94 5.78 ⋆

Dynamic 14.29 4.94 ⋆

Clean 17.73 6.05

Incremental TTS Static 26.26 8.58 ⋆

(PCD-ITTS + intensity post-adaptation) Dynamic 24.14 7.92

comparing this system to the fine-tuned baseline system in the same environment.

The significance level was 0.05. In Table 6.3, the systems with a statistically

different result against the baseline are marked with a star “⋆”. TTS speech was

generated based on three noisy conditions: 1) clean, 2) static noise from the SNR -

10 dB condition, and 3) dynamic smooth noise consisting of noise transitions from

clean, SNR 0 dB, and then SNR -10 dB noises. We also present the ASR CER

as the objective measure. Here, the PCD-ITTS was applied with intensity post-

adaptation to shorten the adaptation latency. We did not use the intensity post-

adaptation in the non-incremental system to see how our basic framework would

perform, with the speech improvement solely done within the TTS. Based on the

evaluation results, in the clean condition, the proposed non-incremental TTS was

more intelligible than the other systems, while the PCD-ITTS and the baseline

TTS performed similarly. In the static noise condition, all proposed systems

were also more intelligible than the baseline. In the dynamic noise condition, the

proposed non-incremental TTS showed the best intelligibility performance.

105



Table 6.4: MOS evaluation results ( ⋆ : statistically different from the baseline

in the same environment)

System Noise MOS

Baseline Non-incremental TTS

Fine-tuning (SNR 0 + SNR -10)

Clean 3.80

Static 3.56

Dynamic 3.74

Proposed TTS + SNR (reg) + ASR + variance adaptor

Non-incremental TTS

Clean 3.82

Static 3.70

Dynamic 3.74

Clean 3.69

Incremental TTS Static 3.61

(PCD-ITTS + intensity post-adaptation) Dynamic 3.75

Speech naturalness The MOS scores are shown in Table 6.4 and in Fig. 6.7.

We performed a Mann-Whitney U statistical test whose results show that the

presented systems have statistically similar MOS scores, indicating that they

preserved naturalness. Here, the proposed non-incremental TTS achieved the

highest average score in general. PCD-ITTS naturalness was lower than that

of the proposed non-incremental TTS. When we inspected the audio, the nat-

uralness degradation was mostly caused by speech discontinuities in the ITTS

speech, which often occur in incremental speech synthesis. But by incorporating

feedback into the system, our ITTS achieved higher average scores under noisy

conditions than did the non-incremental baseline system, which also spoke once

and loudly. This also demonstrates that auditory feedback has a positive impact

on incremental speech synthesis.

6.5.2 Hurricane

In this section, we show the TTS performance trained on the Hurricane dataset.

Since the data was too small, we trained the TTS model by initializing the model

parameters using the WSJ-based model in the same system framework.
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6.5.2.1 Speech Intelligibility in Character Error Rate

Table 6.5: Average TTS speech intelligibility (CER%) on Hurricane data in

babble- and white-noise conditions based on multi-condition training ASR.

System
Static Noise Dyn. Switch Noise Dyn. Smooth Noise

Clean SNR 0 SNR -10

Clean,

SNR 0,

SNR -10

SNR 0,

Clean,

SNR -10

Clean,

SNR 0,

SNR -10

SNR 0,

Clean,

SNR -10

Baseline Non-incremental TTS

Standard TTS + Fine-tuning 8.95 24.94 40.76 34.18 30.77 24.32 27.57

Proposed TTS + SNR (reg) + ASR + var.adaptor

Non-incremental TTS 10.53 19.18 30.63 24.78 26.07 20.70 22.22

Incremental TTS (PCD-ITTS) 13.77 24.82 37.23 50.52 35.52 37.66 26.02

+ intensity post-adaptation 13.77 23.79 33.85 40.83 33.15 32.34 24.15

Topline (human natural speech)

Normal/Lombard speech 6.85 15.40 29.16 22.17 22.90 15.61 16.49

The overall TTS speech intelligibility scores in CER are shown in Table 6.5.

CER was measured by using a non-incremental multi-condition ASR trained on

WSJ and Hurricane data.

The best intelligibility was achieved by the proposed non-incremental TTS. In

noisy conditions, it showed close intelligibility to natural speech and outperformed

the baseline. But in clean conditions, its performance was slightly behind the

baseline model. This was because the baseline always produced Lombard speech,

while the proposed TTS spoke with a normal style without the Lombard effect

in the clean conditions, like humans do. Naturally, Lombard speech is more

intelligible than normal speech when noises are removed [87]. However, in the

previous WSJ results, the proposed TTS in clean conditions was better than the

baseline. It could be affected by the multi-speaker data condition in WSJ, which

is more challenging than the single-speaker. The Hurricane data only consisted of

single-speaker speech, and it resulted in higher baseline performance. Here, the

proposed non-incremental TTS was able to produce more intelligible Lombard

speech and also produce normal speech with close intelligibility to the baseline

Lombard speech.

PCD-ITTS aided with the intensity post-adaptation was also able to improve

the incremental speech synthesis performance on the Hurricane data. In the
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dynamic noise experiments, PCD-ITTS without the intensity post-adaptation

could not achieve a CER as low as the CER in the WSJ results because the

sentence length in the Hurricane data was too short. The average sentence length

was 7 words, while the PCD-ITTS incremental step was 3 words. Therefore, the

speech might have ended before the adaptation could start. Adding the intensity

post-adaptation mechanism sufficiently improved the PCD-ITTS performance.

6.5.2.2 Speech Intelligibility in Short-term Objective Intelligibility

Measure

Table 6.6: STOI scores (%) on Hurricane data.

Static

Noise
System

SNR0 SNR-10

Dynamic

Switch

Noise

Dynamic

Smooth

Noise

Baseline Non-incremental TTS

Standard TTS + Fine-tuning 81.61 64.63 85.92 88.21

Proposed TTS + SNR (reg) + ASR + variance adaptor

Non-incremental TTS 88.68 75.91 91.70 93.73

Incremental TTS (PCD-ITTS) 87.15 71.68 79.25 84.73

+ intensity post-adaptation 87.27 72.55 80.20 85.86

Topline (human natural speech)

Normal/Lombard speech 83.36 63.98 85.02 88.68

TTS STOI scores are shown in Table 6.6. In the static noise conditions, all

proposed systems resulted in a higher STOI than the baseline and the topline.

This shows that the speech signal correlation before and after being disturbed

by noise was high. In this condition, PCD-ITTS with intensity post-adaptation

achieved a close STOI to the proposed non-incremental TTS. The proposed non-

incremental TTS required re-speaking to adapt the speech, while PCD-ITTS

only spoke once and adapted the speech in one attempt. In the dynamic noise

conditions, the proposed non-incremental TTS achieved the highest STOI scores.

The low STOI on PCD-ITTS in dynamic noise conditions could be affected by
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the utterance length as stated previously. The noise changed quicker than the

noises in the WSJ experiments, and it was more challenging for the incremental

speech synthesis. Here, intensity post-adaptation also successfully improved the

PCD-ITTS STOI.

6.6 Summary

Low-latency adaptation and environmental understanding are important keys for

a machine’s self-adaptation in a real environment. In this chapter, we showed

a machine speech chain inference mechanism for ITTS for low-latency speech

adaptation in noisy conditions. The speech synthesis and adaptation were done

progressively by using the past output as feedback. Here, the best ITTS was

achieved by a system that used SNR, ASR-loss, and intensity context as the

feedback, along with intensity post-adaptation. Although incremental speech

synthesis was challenging, the proposed ITTS was able to perform without sig-

nificant performance loss to non-incremental TTS even though the latency was

shorter. The proposed ITTS was able to produce highly intelligible speech by

performing dynamic adaptations according to environmental changes at low la-

tency, thus enabling the TTS to more closely resemble the human speech chain

mechanism and improve speech quality. Our experimental results reveal that dy-

namic adaptation with auditory feedback could be an essential tool for optimal

speech generation by machines.
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Chapter 7

Conclusions and Future Direction

In this chapter, we conclude our thesis and discuss future directions for the pro-

posed framework.

7.1 Problem Reiteration

In human spoken communication, speaking and listening are inseparable tasks.

The connection between them, which is reflected in a speech chain mechanism,

plays an important role in language acquisition and speech production. The de-

velopment and performance of one component affects the other. The concept of

speech chain shows that, during a conversation, humans can improve and adapt

their speech by listening to their speech and also by considering other factors, for

example, environmental noises. Despite its importance in the human communica-

tion system and its potential, the relationship between machine speech production

(TTS) and machine speech perception (ASR) systems gets less attention in the

research community. The general TTS and ASR perform the task separately.

Although they can perform well, it is only limited to systems trained using a

large amount of paired speech-text data and performing under ideal conditions.

The current systems cannot grasp environmental changes, causing performance

degradation in realistic conditions, such as in noisy places.

Among many TTS and ASR works, the basic machine speech chain was pro-

posed for TTS and ASR joint development using an auditory feedback connection.

It was motivated by the human speech chain mechanism. This framework allows
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TTS and ASR to be trained using unpaired speech and text data through a closed

feedback loop mechanism, in which it successfully improves the components’ per-

formance in semi-supervised training conditions. However, the feedback connec-

tion is discarded in inference. Therefore, TTS and ASR still perform separately

and leave the self-adaptation problem to remain.

7.2 Conclusions

In this section, we review our work from the perspective of theoretical, applica-

tion, and experimental issues.

7.2.1 Theoretical Issues

We take advantage of the relationship between speech production and perception

in humans to develop a spoken language processing system that can do self-

adaptation. We generalized the idea of a self-adaptive and incremental machine

speech chain by connecting TTS, ASR, and another listening component, which

was an SNR recognition system in this thesis. The proposed self-adaptive frame-

work aims to synthesize speech by dynamically adapting to noise in the inference

environment. It follows a similar mechanism in the human Lombard effect, in

which humans adjust their speaking effort to increase their speech intelligibility

in a noisy place based on the auditory feedback.

7.2.2 Application Issues

We showed some proof-of-concept of our proposed self-adaptive and incremental

machine speech chain, starting from the previously proposed basic machine speech

chain by Tjandra et al. [2, 36] for non-incremental TTS and ASR semi-supervised

training. First, we reduced the components’ latency in the basic framework by

using ITTS and ISR as the machine speech chain components. Second, we showed

a machine speech chain mechanism for non-incremental TTS inference to improve

TTS intelligibility in a noisy environment. The system performs self-adaptation

based on environmental noise by using auditory feedback consisting of SNR and

ASR loss information. Lastly, we developed a self-adaptive ITTS with a machine
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speech chain inference mechanism, in which the system successfully performed

incremental speech synthesis and noise-adaptation at a low latency.

7.2.3 Experimental Issues

We verified the proposed approaches in speech synthesis and recognition tasks

in clean and noisy environments. In Chapter 4, we reported ITTS improvement

from a Mel L2 loss of 1.04 into 0.86 and 0.79 using the unsupervised chain and

supervised chain, respectively, in the incremental machine speech chain training.

Here, the ITTS incremental unit was 30 characters, and it was able to perform

closely to non-incremental TTS with the 103 characters latency. ISR performance

also improved from CER 17.81% into 14.23% using the unsupervised chain and

9.43% with the supervised chain. ISR latency was 0.84 sec and its performance

approached those of non-incremental ASR with a 7.88 sec latency. Then, in

Chapter 5, our TTS with the machine speech chain inference achieved speech

intelligibility of 14.70% and 24.96% CER in SNR 0 dB and SNR -10 dB conditions,

outperforming the baseline with the offline fine-tuning. Finally, in Chapter 6,

our self-adaptive PCD-ITTS with intensity post-adaptation was able to adapt to

the noises with a latency below 1 sec, achieving a speech intelligibility of 6.05%,

8.58%, and 7.92% in CER, evaluated by humans in the clean, static, and dynamic

noise conditions. Here, the self-adaptive non-incremental TTS with a latency of

7 sec performed with a CER of 4.94%, 5.78%, and 4.94% in clean, static, and

dynamic noise conditions through re-speaking attempts.

7.3 Summary of Contribution

The original contributions of this thesis are listed as follows:

• A new framework for incremental TTS and incremental ASR con-

struction with a short-term closed feedback loop (in Chapter 4)

We showed that ITTS and ISR systems could jointly improve during train-

ing by establishing a short-term closed feedback loop between them. These

systems have shorter latency than the standard systems. Therefore, the

waiting time required when taking a long sequence input is not long. The
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proposed framework not only improved over the natural speech and text

inputs, but also synthetic inputs generated by the machine. This shows

that the feedback loop has widened the input domain from natural only to

natural and synthetic, which could be important in feedback-based systems.

• Synthetic multi-speaker Lombard data construction (Chapter 5)

Since the availability of Lombard speech data is limited, we constructed

a multi-speaker Lombard speech dataset by modifying normal speech into

Lombard speech. This was done by first observing natural speech intensity,

pitch, and duration differences between normal and Lombard speech.

• A new machine speech chain training and inference framework for

self-adaptive TTS in noisy condition based on auditory feedback

(Chapter 5)

We showed that TTS speech dynamic adaptation in noisy conditions could

be done through a speech chain mechanism. The proposed TTS synthesizes

speech by not only taking the text input but also the auditory feedback

representing the environmental noise information. With that, TTS is able

to decide the characteristics of speech by itself to improve the intelligibility

in noisy situations.

• ASR-loss and SNR embedding for TTS feedback (Chapter 5)

ASR loss and SNR embeddings have proven to be effective in supporting

TTS self-adaptation in noisy conditions. The ASR loss embedding denotes

the TTS speech intelligibility, while the SNR embedding represents the noise

situations. These embeddings are estimated from the noisy TTS speech in

an end-to-end manner without the complicated mechanism.

• Machine speech chain training and inference mechanism with ITTS

for low-latency adaptation (Chapter 6)

The proposed ITTS in machine speech chain inference mechanism performs

speech synthesis and adaptation with a low latency. Since environmental

noises are often dynamic, a low-latency adaptation is necessary to catch up

with the dynamic changes. Our experiment shows that the proposed ITTS

was able to perform adaptation in 1 sec.
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• ITTS post-intensity adaptation method for a faster adaptation

(Chapter 6)

We enabled a faster adaptation in the self-adaptive ITTS by applying post-

intensity adaptation to the synthesized speech segment. In the basic self-

adaptive ITTS inference, an adaptation latency of 1 sec affected the speech

intelligibility, in which the unadapted segment performed poorly. The post-

intensity adaptation method measures the SNR of a 200 ms speech segment

and uses the result to convert the next speech intensity to an appropriate

level incrementally, and results in intelligibility improvement.

7.4 Future Directions

The reference point for our self-adaptive TTS system in noisy conditions is the

human Lombard effect. The human Lombard effect does not increase the vocal

effort uniformly throughout the utterance, but it depends on the content and

context of speech and the environment in a broader context than just noise. Hu-

man Lombard speech is a result of two kinds of speech adjustment mechanisms:

private loop and public loop [11]. Private loop is a mechanism to regulate the vo-

calization and the speech fluidity based on the speaker’s own hearing or auditory

feedback, which occurs involuntarily. In the Lombard effect, the private loop is

manifested as a reflex to speak louder in regards to the noise intensity. On the

other hand, the public loop is a vocal regulation mechanism at a higher cognitive

level, which is based on the observation on the audience or the context. For ex-

ample, the Lombard effect has more influence on the words that are important

for the audience to understand the speaker. More generally, public loop is also

associated with the paralanguage or emotion expressed in the speech in order

to engage the audience. Inevitably, public loop affects the private loop. Private

and public loops are performed simultaneously based on the real-time conditions.

Therefore, humans can quickly adjust their speech according to the situation and

their purpose to communicate effectively.

In this thesis, the proposed system still has a gap compared to the reference

in respect of mechanism and output performance. First, for the mechanism, the

proposed systems currently only use the analogy of the private loop mechanism
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for self-adaptive speech synthesis by considering only the SNR and ASR feed-

back and improving the synthesized speech signal intelligibility in general. The

proposed system has not considered other factors yet, for example, the speech

content and cognitive-level factors similar to the public loop in the human Lom-

bard effect. Second, for the output quality, we are currently focused on improv-

ing speech intelligibility and lowering the speech synthesis and adaptation latency

with the baseline of standard TTS. Although the proposed systems outperformed

the baseline, they are still behind the quality of human speech. To make the sys-

tem output quality closer to the reference point, we also have to improve the

naturalness and prosodic patterns (e.g., intonation, co-articulation) with regard

to the speech content and environments in a broader context. The more similar

the natural and synthesized Lombard speech are with respect to the subjective

evaluation by humans (intelligibility, naturalness, latency, intonation), the more

it indicates that the machine has become closer to the reference point in terms

of performance.

In the future, we can improve the proposed system to make it perform more

closely to the reference point and also expand the applicability of the concept of

machine speech chain in more broader tasks.

7.4.1 Short-term Future Works

In the short-term future works, we may improve the proposed TTS’ Lombard

speech quality without changing the main part of the proposed framework.

• Synthetic Lombard speech data construction with spectral modi-

fication

The current synthetic Lombard speech data was constructed only by mod-

ifying the speech prosody attributes (intensity, pitch, and duration). How-

ever, the human Lombard effect does not only affect those prosody at-

tributes but also includes spectral modifications, for example, spectral tilt,

amplitude modulations, format shift, and energy shift from low frequency

bands to higher bands. In the next work, we can improve the synthetic

Lombard speech data construction by applying spectral modification oper-

ations.
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• Multi-speaker natural Lombard speech data collection

Lombard effect is speaker- and gender-dependent [94]. Therefore, we would

like to do multi-speaker natural Lombard speech data collection for a better

Lombard speech analysis in the synthetic Lombard speech construction.

Furthermore, we intend to consider a better speech modification approach

than the current prosody modification with SoX. We also intend to carry

out TTS training using the multi-speaker natural Lombard speech data.

• Speech generation with neural vocoder

We currently generate the Mel-spectrogram using the proposed TTS with

the Griffin-Lim vocoder. Therefore, we could also expect more improvement

using an advanced neural vocoder, such as WaveRNN [95] or HiFi-GAN [96],

which we plan to investigate in future work.

7.4.2 Long-term Future Works

In the long-term future, we go deeper on the machine speech chain mechanism

(Fig. 7.1). We address several things the current proposed framework cannot do,

such as:

• Flexible latency

The proposed ITTS synthesizes the speech based on the fixed incremental

unit (in word unit) learned during the training. We have to train the system

each time we change the incremental unit, for example, into a shorter unit

to decrease the delay or into a longer unit to improve the speech quality. In

the next work, we can consider self-adaptive ITTS with robust incremental

units, such as changing the incremental unit based on the user requirements

flexibly or adjusting the incremental unit based on the textual content and

the environmental situations.

• Self-adaptive speech synthesis based on cognitive-level feedback

and public loop

One of the possible improvements that we can make for the proposed self-

adaptive system to perform closer to our reference point is by expanding

the “awareness” of the machine into broader contexts of environments. We
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Figure 7.1: Long-term research direction.

may extend the current system with modules that provide cognitive-level

information by using the analogy of the public loop in the human speech

production mechanism. For example, we can implement new modules that

analyze the speech content to improve the speech signal with regard to

the important words by considering the situation and the target audience.

We may also use a speech emotion feedback module to regulate the speech

prosody based on the target emotion, considering the purpose of the speech,

the target audience, and situation. We can also implement a module that

captures the audience’s response, such as an audio response or visual re-
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sponse, so the system can regulate the speech vocalization by understanding

the target audience and their response better.

• Self-adaptation with an online learning approach

The proposed self-adaptive system is trained only through supervised train-

ing. Under unseen conditions, the performance might degrade (see Ap-

pendix A and Appendix B). But in reality, noises vary in type and in-

tensity. Moreover, the dynamics of the environment can be extreme and

unpredictable, and we could not cover all conditions in the labeled training

data. On the other hand, humans can adapt to the situation robustly in

various kinds of conditions. This is enabled by humans’ life-long learning,

in which, for the speaking skills, they learn at the same time as speech

adaptation so they can behave similarly or better when speaking in similar

conditions in the future. In the next task, we are interested in implementing

a machine speech chain framework to improve the system’s robustness and

adaptability by adding an online learning mechanism to the framework. For

example, we can combine the concept of the basic machine speech chain for

unsupervised training (Chapter 3 and Chapter 4) and the proposed self-

adaptive machine speech chain inference (Chapter 5 and Chapter 6).

• A proof-of-concept on other kinds of task

This thesis focuses on a self-adaptive machine speech chain inference specifi-

cally for speech synthesis in noisy situations. We may also apply the concept

of the framework to other speech synthesis cases by modifying the feedback

modules. For example, we can use it for an expressive speech synthesis

by replacing the SNR feedback module in the current framework with an

emotion feedback module based on the emotion recognition task. We might

also apply the concept of a feedback mechanism to a self-adaptive ASR, for

example, speech recognition in noisy conditions. Humans might adapt their

focus to listen to the target speech when having a conversation in a place

with multiple sounds, such as noise or speech from other people. This is also

known as the cocktail party effect. To realize this in the machine, we can

connect the ASR with feedback modules such as TTS, SNR recognition, or

speaker recognition. Also in another example, we can build a self-adaptive
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ASR for code-switching speech by connecting the ASR with a TTS feedback

module and a language identification feedback module that compares the

language information that is identified based on the input speech and the

output text. Another task that could benefit from the concept of auditory

feedback mechanism is signal enhancement, such as noise removal using the

ASR output difference between the original and enhanced audio.
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Appendix A

Further analysis on SNR

recognition

A.1 SNR Recognition Model Training Data

The SNR recognition model (classification and regression) was trained using nor-

mal speech in the WSJ dataset with additive noise. The noise types were babble-

and white-noise. The SNR classification model’s class consisted of clean, SNR 0

dB, and SNR -10 dB. The SNR regression output value range was -1 to 1 (nor-

malized SNR). This experiment compares TTS intelligibility based on the SNR

recognition model training condition.

• Static noise only: The SNR recognition model was trained using clean

speech and noisy speech with static noise. The SNR of noisy speech was

SNR 0 dB or SNR -10 dB. The data size was 60 hours for clean conditions

and 120 hours each for SNR 0 dB and SNR -10 dB.

• Static noise and dynamic noise: The SNR recognition model was

trained using clean speech, noisy speech in static noise (SNR 0 dB and

SNR -10 dB), and noisy speech in dynamic-switch noise. The dynamic-

switch noise patterns (8 patterns) were:

– SNR -10 dB → SNR 0 dB → clean

– SNR -10 dB → clean
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– SNR 0 dB → SNR -10 dB

– SNR 0 dB → clean

– SNR 0 dB → SNR -10 dB

– Clean → SNR -10 dB

– Clean → SNR 0 dB

– Clean → SNR 0 dB → SNR -10 dB

The SNR values in the patterns above are relative to the normal speech intensity

in WSJ. In the SNR classification model, we keep the SNR class member as in

the static noise classifier. The SNR class label was based on the initial SNR in

the pattern. For example, a noisy speech with the pattern of “clean → SNR 0

dB → SNR -10 dB” was labeled as a “clean” class. On the other hand, the SNR

regression label was based on the average SNR value in an utterance. The data

amount for each dynamic-switch noise pattern was 15 hours, making a total of

120 hours for 8 dynamic-switch noise conditions. The data amounts for clean

speech and static noisy speech were the same as training data based on static

noise only.

A.2 SNR recognition performance

We evaluated the SNR recognition performance, which is shown in Table A.1.

The details are below.

A.2.1 Static noise only training

Both of the SNR classification and regression models performed well on input

in static noise conditions but could not correctly recognize the SNR in dynamic

noise conditions. First, the SNR classification model constantly classified the

input with the dynamic noise as “clean”. Similarly, SNR regression outputted an

SNR value that was close to the SNR in the clean condition.
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Table A.1: SNR classification and SNR regression output based on natural speech

with additive static and dynamic noises.

SNR recognition

model and

training condition

Static Dynamic-switch

SNR 0 SNR -10

Clean, SNR 0,

SNR -10

(ground truth: -5.16 dB)

SNR0, Clean

SNR -10

(ground truth: -3.02 dB)

SNR (cls) - chance rate

Static noise SNR 0: 100% SNR-10: 100%

Clean: 100%

SNR 0: 0%

SNR -10: 0%

Clean: 100%

SNR 0: 0%

SNR -10: 0%

Static + dynamic noise SNR 0: 100% SNR -10: 100%

Clean: 70.57%

SNR 0: 29.28%

SNR -10: 0.15%

Clean: 88.59%

SNR 0: 10.81%

SNR -10: 0.60%

SNR (reg) - average SNR output

Static noise -1.11 dB -11.21 dB 39.98 dB 37.07 dB

Static + dynamic noise -0.52 dB -10.95 dB -5.51 dB -6.89 dB

A.2.2 Static and dynamic noises training

The SNR recognition model trained on static and also dynamic noises improved

the model’s performance on dynamic noisy speech input. In the SNR classifica-

tion, the chance for dynamic noisy speech to be predicted as non-clean speech

was increased. This might lead to the resulting SNR embedding helping the pro-

posed TTS produce a Lombard speech in dynamic noise conditions. The SNR

regression performance on dynamic noisy speech also improved significantly, in

which the predicted SNR was close to the actual SNR value.

A.3 TTS performance

Table A.2 compares TTS intelligibility using the SNR recognition models shown

in Table A.1. In this experiment, the TTS model was trained based on clean and

static noise conditions only.

As expected, TTS that was connected to an SNR recognition model trained

in static condition only could not perform well in the dynamic noise conditions

because the speech condition was constantly predicted as a clean condition. Then,

the SNR recognition models trained on static and dynamic noises successfully

improved the TTS intelligibility in dynamic noise conditions. This experiment

result shows that expanding the domain of the SNR recognition model could make
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the TTS perform well in dynamic noise conditions, although those conditions were

not learned explicitly during the TTS training.

Table A.2: Comparison of TTS intelligibility in CER (%) between the proposed

TTS + SNR feedback + ASR feedback + variance adaptor with the different

SNR recognition models.

SNR recognition model and

training condition

Static Dynamic-switch

SNR 0 SNR -10

Clean,

SNR 0,

SNR -10

SNR 0,

Clean,

SNR -10

SNR (cls)

Static noise 14.70 24.96 61.94 70.98

Static + dynamic noise 11.88 24.74 26.36 21.88

SNR (reg)

Static noise 16.05 29.65 66.03 64.34

Static + dynamic noise 18.57 31.19 16.95 18.70

124



Appendix B

TTS speech intelligibility in

unseen SNR

We evaluated the proposed TTS in several SNR conditions. The TTS systems

were trained based on clean, SNR 0 dB, and SNR -10 dB. The proposed TTS (non-

incremental and PCD-ITTS) maintained speech intelligibility in noisy conditions

with the same or higher SNR than those included in the training data, as shown

in Figure B.1 for the WSJ-based models and Figure B.2 for the Hurricane-based

model.
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Figure B.1: WSJ TTS intelligibility at different SNR level.
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Figure B.2: Hurricane TTS intelligibility at different SNR level.
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[12] Maëva Garnier, Nathalie Henrich, and Danièle Dubois. Influence of sound
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