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Gaussian Process Policy Search
with Latent Variables

in Uncertain Environments∗

Hikaru Sasaki

Abstract

Policy search reinforcement learning has been drawing much attention as a
method for learning robot control. In particular, Gaussian process policy search
(GP-PS) using Gaussian process regression as the policy model can learn optimal
actions from high-dimensional and redundant sensors as input. However, it is dif-
ficult to naively apply such a GP-PS to real-world tasks because such tasks often
involve various uncertainties. This is because the uncertainty of the environment
often requires a very complex state-to-action mapping as a policy to obtain high-
performance actions. To overcome such difficulties, this dissertation incorporates
the concept of latent variable models in supervised/unsupervised learning. A la-
tent variable model is a statistical model that describes the relation of observable
variables to latent variables. If a latent variable model is appropriately designed,
it may be possible to acquire a practical model that captures complex data while
maintaining the simplicity of the learning algorithm. This dissertation proposes
policy search methods to address the following three issues: 1) multiple opti-
mal actions emerging from a reward function with ambiguous specification, 2)
weak observations from the environment that contain little information about
the state, 3) unpredictable fluctuations in the task performance evaluation. For
issues 1) and 2), we designed a policy model for each issue by introducing latent
variables into the Gaussian process and derived the policy update schemes based
on variational Bayesian learning. The performance of the proposed policy search
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method was verified by simulation and a task using a robot manipulator. Finally,
for issue 3), a policy learning framework based on Bayesian optimization (BO)
with latent variables is proposed for application to actual heavy machinery, and
its performance was verified using a real waste crane.

Keywords:

Policy Search, Reinforcement Learning, Gaussian Process, Latent Variable Model,
Variational Bayesian Learning
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不確実な環境下における
潜在変数を持つガウス過程方策探索 ∗

佐々木光

内容梗概

ロボットの制御方策を自律的な試行錯誤から学習する方法として、方策探索型
の強化学習が提案されている．特に，ガウス過程回帰を方策モデルとして用いた
ガウス過程方策探索は，高次元で冗長なセンサー値を入力としたロボットの制御
方策が学習可能である．一方で，ガウス過程方策探索の実世界タスクへの応用は
実世界タスクの環境が持つさまざまな不確実性によって，依然として困難である．
不確実性の高い環境下において性能の高い方策を獲得するためには，方策が状態
から行動への複雑な関数関係を捉える必要がある．しかし，シンプルな方策モデ
ルを仮定してるガウス過程方策探索は複雑な関数を学習できない．このような方
策の学習に対する問題を克服するために，教師あり/教師なし学習における潜在
変数モデルに着目する．潜在変数モデルは，観測可能な変数と観測できない潜在
変数を関連付ける確率モデルで，潜在変数を適切に設計することで，アルゴリズ
ムのシンプルさを維持しながら複雑なデータを捉えるモデルを学習することがで
きる．この博士論文は，不確実な実世界環境で引き起こされる方策学習の困難さ
に対して，ガウス過程方策探索に潜在変数を取り入れるアプローチを探求する．
不確実性をもつ実世界タスクへの方策探索を応用することを目的とし，潜在変数
の推論と方策の学習を同時に行うアルゴリズムを導出する．特に，実世界タスク
が持つ，1)曖昧に設計された報酬関数によって生じる複数の最適行動と 2)環境
の情報が十分に得られない観測の 2つの複雑さ，3)タスク性能の評価に対する予
測できない影響に焦点を当てる．1)と 2)に対して，潜在変数をガウス過程方策
モデルに導入することにより，実世界タスクが持つ複雑さに対する新たなガウス
過程方策モデルを設計し，変分ベイズ学習に基づいて潜在変数付き方策の更新則
を導出する．提案された方策探索手法の性能をシミュレーションとロボットマニ
ピュレータを使用したタスクによって検証した．また，3)に対して，潜在変数を
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導入したベイズ最適化に基づく方策学習フレームワークを提案し，提案法のゴミ
焼却施設のゴミクレーンタスクへの有効性を検証した．

キーワード
方策探索，強化学習，ガウス過程，潜在変数モデル，変分ベイズ学習
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1. Introduction

1.1. Background
Automation of robot tasks requires a control policy to accomplish the tasks
through consecutive action decisions from states observed from an environment.
Reinforcement learning is a promising data-driven approach that acquires a con-
trol policy to accomplish tasks by repeating trial and error using the control policy
and learning of the control policy using trial and error data [1]. Policy search re-
inforcement learning, one of the reinforcement learning methods, directly learns a
robot control policy for performing tasks from trial and error data by a robot [2,3].
In particular, Gaussian process policy search (GP-PS), which employs Gaussian
process regression [4] as a control policy model, can learn continuous robot control
policies without designing a policy model [5–7]. GP-PS learns a control policy as
a function by assuming a function for the state-to-action mapping. Gaussian pro-
cess (GP) is generally used for a prior distribution for a function between input
and output data and regresses the function probabilistically using data. Also,
GP can learn a non-linear function with a small amount of data by implicitly
handling high-dimensional features by kernel tricks. For example, the GP-based
policy successfully used image-related, high-dimensional (800 dim.) features as
inputs [6].

However, it is challenging to naively apply such GP-PS to real-world tasks
like robot control in a factory and heavy machinery control in a vast workspace.
Real-world tasks are often accompanied by the uncertainty of the environment
due to the difficulty of observing the state of various manipulating objects and the
environment-dependent constraints on installing sensors. The uncertainty of the
environment often requires a very complex state-to-action mapping as a policy to
obtain high-performance actions. GP-PS cannot capture this complex mapping

1



due to the poor representability of the policy model.

1.2. Approach
To overcome such difficulties, this dissertation incorporates the concept of latent
variable models in supervised/unsupervised learning to GP-PS. A latent variable
model is a statistical model that describes the relation of observable variables to
latent variables. A typical example of a latent variable model is the Gaussian
mixture model (GMM) [8]. GMM is proposed for multimodal data that is gen-
erated from multiple components. For the uncertainty about components, GMM
employs a latent variable Z that identifies the data points generated by the same
component to capture multimodal data with some Gaussian distributions (Fig.
1.1). If a latent variable model is appropriately designed for data, it may be pos-
sible to acquire a practical model that captures complex data while maintaining
the simplicity of the learning algorithm.

This dissertation explores a latent variable modeling approach in GP-PS to
cope with difficulty caused in uncertain environments (Fig. 1.2). We then derive
an algorithm that simultaneously performs latent variable inference and policy
learning and aims to make policy search applicable to various real-world control
tasks with uncertainty.

1.3. Contribution
This dissertation proposes novel policy search methods to address complex state-
action mapping caused by uncertainty in real-world tasks. Mainly, we focus on the
automation of waste cranes as a real-world control task. A waste crane is a vast
machine that can grasp several tons of waste at a time. The waste crane manages
various garbage collected every day in the vast pit of the waste incineration plant
(Fig. 1.3). The main tasks of the waste crane are to put the garbage into the
incinerator and homogenize the garbage by grabbing and scattering the garbage.
While handling a variety of garbage in a vast environment, the waste crane is only
equipped with a sensor that observes the weight of the grasped garbage due to
the high maintenance cost caused by the pollution of the garbage. Therefore, in

2
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Figure 1.1.: A latent variable modeling approach for complex data. (a) (b) The
Gaussian distribution cannot capture data generated by multiple
components. (c) (d) By introducing a latent variable Z that identifies
the data points generated by the same component, GMM captures
multimodal data with some Gaussian distributions.

order to automate the waste crane, the policy search must learn a control policy
in an environment with high uncertainty by a few sensors. The uncertainty of the
environment due to such a shortage of sensors can also occur in other real-world
tasks.

In particular, this dissertation proposes methods for the following three issues:
1) multiple optimal actions emerging from a reward function with ambiguous
specification, 2) weak observations from the environment that contain little in-
formation about the state, 3) unpredictable fluctuations in the task performance
evaluation.
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Figure 1.2.: Overview of GP-PS with latent variables. (a) GP policy cannot cap-

ture the complexity of trial and error data indicated by the dots. (b)
GP policy with latent variables can capture complex data.

1) Multiple optimal actions emerging from a reward function with
ambiguous specification
In an environment where complete information cannot be observed, it is
difficult to design an evaluation function for the performance of a policy
appropriately. An evaluation function inappropriate for a task generates
multiple optimal actions for any state. Since Gaussian process policy search
assumes one function as a policy model, it is not possible to learn a policy
to select an appropriate action in a task in which multiple optimal actions
exist.
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Figure 1.3.: Garbage grasped by a waste crane

2) Weak observations from the environment that contain little infor-
mation about the state
Generally, the policy acquired by the reinforcement learning method is to
select the optimal action for the observed current state. However, if there
are insufficient sensors to recognize changes in the actual environment, the
control policy cannot select the optimal action.

3) Unpredictable fluctuations in the task performance evaluation
Similar to 1), designing a function that appropriately evaluates a policy’s
performance in a real-world task is challenging. Such an evaluation function
underestimates or overestimates the policy. Inappropriate evaluation of
control policies prevents the learning of optimal control policies because
policies are optimized based on policy evaluation.

For issues 1) and 2), we designed a policy model for each issue by introducing
latent variables into the Gaussian process and derived the policy update schemes
based on variational Bayesian learning. The performance of the proposed policy
search method was verified by simulation and a task using a robot manipulator.
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Finally, for issue 3), a policy learning framework based on Bayesian optimization
(BO) with latent variables is proposed for application to actual heavy machinery,
and its performance was verified using a real waste crane.

1.3.1. Multimodal and Mode-seeking Policy Search for
Multiple Optimal Actions

To alleviate the problem of multiple optimal actions, we propose novel approaches
in a GP-PS with multiple optimal actions and offer two different algorithms: a
multimodal sparse Gaussian process policy search (multimodal SGP-PS) and a
mode-seeking sparse Gaussian process policy search (mode-seeking SGP-PS). We
introduce the following key ideas: 1) multimodality for capturing multiple optimal
actions and 2) mode-seeking for capturing one optimal action by ignoring the
others.

We validated the effectiveness of these algorithms through robotic manipulation
tasks with multiple optimal actions in simulations: 1) hand-posture adjustment
task using a robot simulator, V-REP [9] and 2) table-sweeping task using MuJoCo
simulator [10]. The results of the hand-posture adjustment task demonstrate that
our methods can efficiently learn optimal actions even with multiple optimal ac-
tions that previous methods cannot. The multimodal SGP-PS captures multiple
optimal actions with the multimodal policy model. The mode-seeking SGP-PS
learns an effective unimodal policy by seeking an optimal action. In the table-
sweeping task, we confirmed the performance of our methods for more challenging
situations.

1.3.2. Self-triggered Policy Search for a Weakly
Observable Environment

Human operator’s behavior in a weakly observable environment, such as a garbage
crane, seems different from general sensory feedback control that selects an action
based on sensor values at regular time intervals which is a typical policy model in
policy search and reinforcement learning (e.g., [7,11]). Instead, a human operator
selects an action, and duration based on sensor values creates robust behavior
and stabilizes it even with weak observations. However, these policies need to be
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adjusted according to the garbage’s characteristics. Such thoughts motivated us
to explore a novel policy search framework with a specific type of policy applicable
in weakly observable environments.

For a limitation, we propose GP self-triggered policy search (GPSTPS), which
is a novel GP policy search algorithm with an action duration time as a latent
variable. GPSTPS has two types of control policies: action and duration. The
gating mechanism either maintains the action selected by the action policy for the
duration specified by the duration policy or updates the action and duration by
passing new observations to the policy; therefore, it is described as self-triggered.
GPSTPS simultaneously learns both policies by trial and error based on sparse
GP priors [12] and variational learning [7] to maximize the return. We experi-
mentally verified the performance of our proposed method on a garbage-grasping-
scattering task with a waste crane with weak observations using a simulation and
a robotic waste crane system. Our experimental results suggest that our proposed
method acquired suitable policies to determine the action and duration based on
the garbage’s characteristics.

1.3.3. Multi-task Robust Bayesian Optimization for The
Inhomogeneity of Garbage

Finally, as an application for waste crane automation with a weakly observable
environment, we propose a data-efficient policy learning framework. In a garbage
incineration plant, little information about the garbage characteristics causes
unpredictable fluctuations in the crane’s task performance. As another issue,
obtaining data samples by executing tasks is very costly due to the slow-moving
system (it takes several minutes to execute one task) and limited plant downtime.
Therefore, a large amount of trial and error is infeasible for a large-scale industrial
waste crane, unlike in [13,14].

We propose a robust BO-based policy learning framework to learn a policy
stably for unpredictable performance fluctuations. Although conventional BO
algorithms are sensitive to outliers inevitable, and its performance may dete-
riorate significantly. Therefore, our framework employs a novel BO algorithm,
Multi-Task Robust Bayesian Optimization (MTRBO). The MTRBO has the fol-
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lowing characteristics: (1) outlier robustness against garbage inhomogeneity and
(2) sample reuse from previously solved tasks to enhance the sample efficiency
further. To investigate our framework’s effectiveness, we conducted experiments
on garbage-scattering tasks with a robot waste crane and an actual waste crane.
Experimental results demonstrate that our MTRBO framework robustly opti-
mized the control policies of the garbage cranes, even with a significantly reduced
number of data under the influence of garbage inhomogeneity.

1.4. Organization of Dissertation
The remainder of this dissertation is organized as follows:

Chaper 2
Derivation of sparse GP policy search based on variational Bayesian learning
as the preliminaries.

Chaper 3
Proposal of multimodal SGP-PS and mode-seeking SGP-PS for multiple
optimal actions, and verification of each method by robotics tasks using
simulator.

Chaper 4
Proposal of GPSTPS for a weak observable environment and verification
using a simulator and a robot waste crane system.

Chaper 5
Proposal of MTRBO for unpredictable fluctuation of performance and ver-
ification using a robot waste crane system and an actual waste crane.

Chaper 6
Discussions of this dissertation.

Chapter 7
Conclusions of this dissertation.

Appendix
Details of update laws of each method.
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2. Preliminaries

In this chapter, as a preliminary, we describe two policy learning frameworks,
policy search, and Bayesian optimization-based policy learning. Each method
aims to learn the optimal policy iteratively by repeating execution and updating
policy.

2.1. Policy Search
Policy search is an algorithm that acquires a policy that maximizes the expected
return in the environment formulated by the Markov decision process. In this
algorithm, usually, a policy is defined as a function of the state to action. The
policy is optimized by repeating the following two processes as shown in Fig. 2.1:

1. Trial and error of the policy by executing tasks,

2. Policy update using trial and error data.

Episode d = {s1, a1, · · · , sT , aT , sT +1}, which is a series of state st, action at, and
reward r(st, at), is collected in a trial and error fashion by the policy. Here we
assume the following derivation where the action is one-dimensional for clarity
without a loss of generality. Let the initial state probability and the state transi-
tion probability of the environment be p(s1) and p(st+1 | st, at), and express the
probability of episode p(d):

p(d | π) = p(s1)
T∏

t=1
π(at | st)p(st+1 | st, at). (2.1)
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Figure 2.1.: The learning process of policy search. The policy is optimized grad-
ually by repeating trial-and-error and policy updates.

The policy is improved by calculating it to maximize the expected return using
return R(d) = ∑T

t=1 r(st, at) and probability p(d):

π∗ = arg max
π

J(π), (2.2)

J(π) =
∫

R(d)p(d | π) dd. (2.3)

2.2. Sparse Gaussian process policy search
(SGP-PS)

SGP-PS is a policy search method that employs SGP as a policy model to regress a
state-to-action function. We derive a policy search that optimizes the SGP policy
model by maximizing a lower bound on the expected return. We denote a policy
model that determines the action from the state as p(at | st) = N (at | f(st), σ2),
where f is the mean function of the policy. We place a GP prior on mean function
f :

f ∼ GP(0, k(s, s′)), (2.4)

where k(s, s′) is a kernel function.
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As preparation for a policy search, we reduce the computational complexity
by augmenting the prior distribution by introducing common pseudo inputs s̄ =
{s̄l}L

l=1 and corresponding pseudo outputs f̄ = {f̄l}L
l=1 [12, 15]. We place a GP

prior on the pseudo outputs:

p(f̄ | s̄) = N (f̄ | 0, Ks̄), (2.5)

where Ks̄ is the kernel gram matrix computed with s̄. A prior distribution of
ft = f(st) is augmented:

p(ft | f̄ , s̄, st) = N (ft | Kst,s̄K−1
s̄ f̄ , λt), (2.6)

where λt = Kst −Kst,s̄K−1
s̄ Ks̄,st , Ks̄ = k(s̄, s̄), Kst,s̄ = k(st, s̄).

To derive a policy search algorithm, we define the probability of the trajectory
using a SGP policy model:

p(d, f , f̄ | s̄) ≡ p(s1)p(f̄ | s̄)
T∏

t=1
p(at | ft)p(ft | f̄ , s̄, st)p(st+1 | st, at), (2.7)

where f = {ft}T
t=1. For clarity, we omit the conditioning on s and s̄ in the

remainder of this section. The expected return is defined:

J(θ) =
∫

R(d)p(d, f , f̄)dddfdf̄ . (2.8)

The graphical model of SGP-PS is shown in Fig. 2.2.
The goal of a policy search is to find the hyperparameters of policy θ to max-

imize the expected return. However, solving this optimization is difficult due to
the analytical intractability of the integral. We derive the lower bound of expected
return log JL(θ) from Jensen’s inequality by introducing variational distribution
q(d, f , f̄):

log J(θ)
Jold

= log
∫ R(d)

Jold

q(d, f , f̄)
q(d, f , f̄)

p(d, f , f̄)dddfdf̄

≥
∫ R(d)

Jold
q(d, f , f̄) log p(a | f)p(f | f̄)p(f̄)

q(d, f , f̄)
dddfdf̄

≡ log JL(θ, q), (2.9)
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Figure 2.2.: Graphical model of SGP-PS

where Jold is the expected return using sampler pold and pold is a sampler of the
training data using the previous policy. We introduce variational distribution
q(d, f , f̄) = pold(d)p(f | f̄)p(f̄) and apply Monte Carlo approximation regarding
expectation w.r.t. pold(d), and the lower bound becomes:

log JL(θ, q) ≈
∫

p(f | f̄)q(f̄) log p(ã | f)p(f̄)
q(f̄)

dfdf̄ , (2.10)

where p(ã | f) is the following return weighted likelihood using Gaussian dis-
tribution: p(ã | f) = N (ã |Wf , σ2I), W is a weight based on the return express,
W = diag

{√
R(d1)
JoldE

1, · · · ,

√
R(dE)
JoldE

1
}

, de is e-th trajectory, and ã is return weighted
action samples, ã = Wa. The lower bound of the expected return (Eq. 2.10) is
the lower bound of the return weighted marginal likelihood.

We derive an EM-like policy update law that maximizes the lower bound of
expected return JL by alternately optimizing variational distribution q(f̄), pa-
rameters θ by variational Bayesian inference.

The action selection for new state s∗ is determined by the predicted distribution
of the SGP policy model using variational distribution q(f̄) and hyperparameter
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θ:

p(a∗ | s∗) ≈
∫

p(a∗ | f∗)p(f∗ | f̄ , s∗)q(f̄)df∗df̄ . (2.11)

2.3. Bayesian Optimization-based Policy
Learning

Given the control policy with policy parameter w, the objective of optimization
is to find optimal parameter w∗ that maximizes return function R(w):

w∗ ← arg max
w

R(w). (2.12)

We assume that the return function R(w) is unknown due to the difficulty in
modeling, so such optimization is analytically intractable, but sampling the value
of R(w) is possible by executing tasks using the policy with the parameter w.
However, a brute force approach is infeasible for such problems with high sample
cost as waste crane control. Such optimization problems are often called black-
box optimization [16].

Bayesian Optimization (BO) is a sequential design strategy for black-box op-
timization. We employ BO to optimize policy parameter data efficiently. The
policy parameter is optimized by repeating the following two processes as shown
in Fig. 2.3:

1. Evaluation of policy parameter,

2. Determination of next query parameter.

BO utilizes an acquisition function α(w) and alternatively optimizes it to find
next query parameter w′:

w′ ← arg max
w

α(w). (2.13)

The new query is tested to obtain evaluation value y = f(w′), which is then
used to update the acquisition function. These procedures are iteratively and
alternatively executed until the process converges to optimal parameter w∗.
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Figure 2.3.: The overview of policy parameter optimization by Bayesian optimiza-
tion. The policy parameter is explored sequentially by repeating pol-
icy parameter evaluation and determining the next query parameter.

To this end, the evaluation function is learned by Gaussian processes (GP) [4].
GP regression learns the relationship between the parameter and the function
value is yn = fn + εn with Gaussian noise εn ∼ N (0, β) where fn = f(wn). GP
regresses the evaluation function as a predictive distribution using previously eval-
uated parameters w = [w1, · · · , wN ]T and evaluation values Y = [y1, · · · , yN ]T :

p(f(w) | w, Y, w) = N (f(w) | µ(w), σ2(w)), (2.14)
µ(w) = kT

w,∗(Kw + βI)−1Y, (2.15)
σ2(w) = k(w, w)− kT

w,∗(Kw + βI)−1kw,∗, (2.16)

where k(·, ·) is a kernel function that can calculate similarity between data with
kernel parameter θk, Kw is a kernel gram matrix as [Kw]ij = k(wi, wj), kw,∗ is a
kernel vector as [kw,∗]i = k(wi, w), I is an identity matrix. Mean function µ(w)
indicates the mean of the predictive distribution. Variance function σ2(w) is the
prediction variance, and the value of σ2(w) tends to increase in the region where
the data are insufficient due to the prediction’s uncertainty.

The GP predictive distribution can be used to obtain Upper Confidence Bound
(UCB) as an acquisition function a(w) [17] defined as:

a(w) = µ(w) + κσ2(w), (2.17)

14



where κ ≥ 0 is a parameter that controls the trade-off between exploration and
exploitation.
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3. Variational Policy Search for
Multiple Optimal Actions

3.1. Introduction
GP-PS methods implicitly assumed that optimal actions become unique for each
state. This assumption can severely limit to such practical applications as robot
manipulations since designing a reward function that appears only one optimal
action for each state is often complicated for complex tasks. A reward function
that appears multiple optimal actions may lead to poor performance in the previ-
ous methods. Multiple optimal actions may appear at particular states, although
typical non-parametric policies cannot be captured due to their unimodality.

As an illustrative example of a robotic task, we consider a hand-posture ad-
justment task by a robotic arm (Fig. 3.1 (a)). The objective is to grasp the
object by rotating the robot’s wrist. We simply designed the reward function so
that a positive value is given when the robot can grab and lift the object. Such a
reward function appears in multiple optimal actions at each state since the robot
grabs the object from multiple wrist angles. Due to the multiple optimal actions,
previous methods that assume unimodality in their policy model choose incorrect
actions (Fig. 3.1 (b)). Of course, for such simple tasks, we could elaborate the
reward by adding additional terms. However, designing a reward function that
appears only one optimal action is challenging when dealing with more complex
tasks.

To alleviate this limitation, we propose novel approaches in a GP-PS with
multiple optimal actions and offer two different algorithms: a multimodal sparse
Gaussian process policy search (multimodal SGP-PS) and a mode-seeking sparse
Gaussian process policy search (mode-seeking SGP-PS). Both methods employ
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Figure 3.1.: Illustrative example of robotic tasks with multiple optimal actions:
(a) hand-posture adjustment task environment and (b) red solid lines
indicate multiple optimal actions. Blue broken line and region indi-
cate mean and standard deviation of learned policy with a unimodal
policy model, which cannot capture optimal actions.

sparse Gaussian processes [12,15] as a prior of a policy model to determine a robot
action and derive update laws based on variational Bayesian inference [18–20].
We introduce the following key ideas: 1) multimodality for capturing multiple
optimal actions (Fig. 3.2 (a)) and 2) mode-seeking for capturing one optimal
action by ignoring the others (Fig. 3.2 (b)). Multimodal SGP-PS employs a
multimodal policy prior inspired by a recent extension of Gaussian processes [21].
This prior distribution assumes that each component is responsible for a global
function over the common input space. Mode-seeking SGP-PS employs a student-
t distribution with outlier robustness as a likelihood function, which facilitates
the learned policy to capture one of the optimal actions by treating the others
as outliers to be ignored. For deriving reasonable policy update schemes, we use
scale mixture representation to the student-t distribution [22,23].

We validated the effectiveness of these algorithms through robotic manipulation
tasks with multiple optimal actions in simulations: 1) hand-posture adjustment
task using a robot simulator, V-REP [9] and 2) table-sweeping task using MuJoCo
simulator [10]. The results of the hand-posture adjustment task demonstrate that
our methods can efficiently learn optimal actions even with multiple optimal ac-
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Figure 3.2.: Two proposed methods for multiple optimal actions: (a) multimodal
SGP-PS that can capture multimodality in optimal action using mul-
tiple models and (b) mode-seeking SGP-PS that can capture one
optimal action and ignore others

tions that previous methods cannot. The multimodal SGP-PS captures multiple
optimal actions with the multimodal policy model. The mode-seeking SGP-PS
learns an effective unimodal policy by seeking an optimal action. In the table-
sweeping task, we confirmed the performance of our methods for more challenging
situations.

3.2. Related Work
In this section, we describe related works in the following three categories: 1) non-
parametric policy search, 2) multimodal reinforcement learning, and 3) robust
reinforcement learning.

Non-parametric policy search

Non-parametric policy search uses a non-parametric model as a policy model.
Bagnell et al. [24] embedded the function of the policy model in a reproducing
kernel Hilbert space (RKHS) and used the policy gradient method to maximize
the expected return, making it possible to learn non-parametric policies. How-
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ever, that approach can only learn a policy with a discrete action. Therefore, a
method was proposed for learning continuous policies by assuming a Gaussian dis-
tribution in the policy model, embedding the mean function in RKHS, and learn-
ing the policy gradient method [25]. For robot applications, the Cost-regularized
Kernel Regression [5] method was applied to a ball-hitting task in table tennis.
To avoid the difficulty of convergence in a gradient-based policy search, an EM-
inspired non-parametric policy search was applied to a door-opening task [26].
A data-efficient non-parametric policy search was proposed [6] that can learn a
policy with high-dimensional features.

Although the above studies focused on optimizing such policy models with high
representation capability, scant attention was given to the relationship between
the reward function design and the limitations of unimodality in the policy. A
reward function that generates multiple optimal actions may degrade the perfor-
mance in those methods. On the other hand, we focused on this relationship and
developed algorithms that can alleviate the limitations when the tackled task has
multiple optimal actions.

Multimodal reinforcement learning

A multimodal policy search aims to learn a policy that can capture the multi-
modality of optimal actions. Many previous policy search-based methods em-
ploy a hierarchical policy model that consists of low-level policies that determine
robot action and a high-level policy that determines which low-level policy is
used [27–30]. However, the proposed approaches employ such hierarchical para-
metric models as 1) a softmax gating function with linear Gaussian sub-policies
or 2) Gaussian mixture models with a parametric policy model, both of which
require hand-engineered features to cope with a high-dimensional sensor input,
unlike non-parametric methods.

Multimodality in optimal action has also been considered in neural network-
based RL methods. For example, soft Q-learning learns a value function to acquire
diverse behaviors by introducing an entropy term in the Bellman equation that
promotes capturing multimodality in policies [31]. Soft actor-critic (SAC) is an
extension of soft Q-learning; the learning performance is greatly improved [32,33].
In SAC, the value function captures various behaviors, whereas the policy employs
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a unimodal model. Thus, it cannot explicitly capture multimodality in optimal
actions. SAC-GMM with a GMM policy was also explored as an early version of
SAC, but its performance is worse than SAC due to the algorithmic complexity
[34]. Kalashnikov et al. proposed another method that selects an action from an
action-value function using the cross-entropy method [35].

We propose a multimodal SGP-PS that employs a policy model inspired by
the overlapping mixtures of Gaussian processes (OMGP) [21]. Multimodal SGP-
PS learns a policy whose components in the mixture are global and overlapping
in state space, unlike a typical mixture model that dictates the input space for
capturing non-stationarity [36–39]. We incorporate this feature into the policy
search. We also employ a sparse Gaussian process as a prior distribution for each
low-level policy. Such a simpler structure with a non-parametric prior allows us
to derive policy update algorithms that can cope with high-dimensional sensor
input without requiring hand-engineered features.

Robust reinforcement learning

Robust reinforcement learning acquires a robust policy for several kinds of noise.
Recent research has attracted attention by focusing on the errors between sim-
ulations and real environments in sim-to-real domains. Reinforcement learning
(robust to state noise [40]) and robust reinforcement learning (robust to distur-
bances in actual environments) have been proposed [41]. In research that focuses
on reward functions, methods have been proposed that learn reward functions
from human demonstrations and action evaluations [42, 43] and reinforcement
learning robust to noise in rewards [44,45].

Other methods have been proposed for capturing one optimal action even when
multiple optimal actions exist. Trust region policy optimization (TRPO) can seek
optimal actions by conservatively updating policies [46]. In this method, a con-
servative policy update retards policy updates due to a characteristic of learning
stabilization. A deep deterministic policy gradient (DDPG) also focuses on choos-
ing one optimal action using a deterministic policy model [47]. These methods
are implicit mode-seeking policy search methods. For them, it is commonly nec-
essary to manually design many parameters in such neural network models as
network structure and hyperparameters for each task.
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We propose a mode-seeking SGP-PS, which effectively solves the issue of the
multimodality of optimal actions. Using student-t distribution as a likelihood, a
mode-seeking SGP-PS captures one optimal action. A non-parametric-based pol-
icy model enables efficient policy learning with few task-specific hyperparameters
even with a small number of data samples.

3.3. Proposed Method
In this section, we derive two different GP-PS algorithms: a multimodal SGP-
PS and a mode-seeking SGP-PS. Each method is derived by extending a sparse
Gaussian process policy search (SGP-PS), which is a policy search that uses SGP
as a policy prior.

3.3.1. Multimodal sparse Gaussian process policy search
(multimodal SGP-PS)

We derive the multimodal SGP-PS based on SGP-PS. To capture multiple opti-
mal actions, we consider the following product of M different GPs as a prior of
function f of the control policy:

f ∼ α
M∏

m=1
GP(m)(0, k(m)(s, s′)). (3.1)

We assume a multimodality control policy that uses M GPs and expresses the
lower bound of the return weighted likelihood product of the M lower bounds:

log JL(θM , q) ≈
M∏

m=1

∫
p(f (m) | f̄ (m))q(f̄ (m)) log p(ã | f (m))p(f̄ (m))

q(f̄ (m))
df (m)df̄ (m),

(3.2)

where f̄ (m) and f (m) indicate the pseudo outputs and the function outputs of
the m-th SGP. Optimizing the above lower bound w.r.t. policy parameters is,
however, insufficient to search for multimodal behaviors; all the M GPs tend to
converge to the same solution since all the training data are commonly shared to
train all the GPs. To allow exploration of different solutions for all the GPs, we
introduce another latent variable, the so-called binary indicator matrix Z whose
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Figure 3.3.: Graphical model of multimodal SGP-PS

nm element is a binary variable that is associated with m-th GP [21]. Each row
in Z has one non-zero entry. We assume the prior on binary indicator matrix Z:

p(Z) =
N,M∏

n=1,m=1
[Π][Z]nm

nm , (3.3)

where Π is the N ×M probability matrix and [Π]nm indicates the probability
that an is generated by the m-th GP. Moreover, we extend the return weighted
likelihood function:

p(ã | {f (m)}) =
∫

p(Z)p(ã | {f (m)}, Z)dZ, (3.4)

p(ã | {f (m)}, Z) =
N,M∏

n=1,m=1
N (ãn |Wnnf , σ2)[Z]nm . (3.5)

22



Algorithm 3.1: Multimodal SGP-PS algorithm
Initialize: θM , s̄

1 while reward not converged do
2 # Sample E trajectories
3 for e = 1 : E do
4 Sample trajectory d using policy π

5 end
6 # Policy Improvement
7 while log J ′

L is not converged do
8 # E step
9 while log J ′

L is not converged do
10 Update q({f̄ (m)}) with Eq. (A.2)
11 Update q(Z) with Eq. (A.5)
12 end
13 # M step
14 θM ← arg max

θM

log J ′
L

15 end
16 end

Due to the analytical intractability of the integral of Z, we apply Jensen’s in-
equality:

log J ′
L(θM , q) =

∫
p({f (m)} | {f̄ (m)})q({f̄ (m)})q(Z)·

log p(ã | {f (m)}, Z)p({f̄ (m)})p(Z)
q({f̄ (m)})q(Z)

d{f (m)}d{f̄ (m)}dZ, (3.6)

where q({f̄ (m)}) = ∏M
m=1 q(f̄ (m)), p({f̄ (m)}) = ∏M

m=1 p(f̄ (m)) and p({f (m)} | {f̄ (m)}) =∏M
m=1 p(f (m) | f̄ (m)). The graphical model of multimodal SGP-PS is shown in Fig.

3.3.
Finally, we derive an EM-like iterative optimization scheme. We repeat the E-

step that finds optimal variational distribution q({f̄ (m)}) and q(Z) and the M-step
that finds optimal parameter θM by alternatively maximizing log J ′

L. We describe
the derivation of the analytical update laws of the variational distributions and
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Table 3.1.: Computational complexity of each optimization in multimodal SGP-
PS: N , M , and L are amounts of training data, components, and
pseudo inputs.

q({f̄ (m)}) q(Z) log J ′
L

Multimodal SGP-PS O(MNL2) O(MNL2) O(MNL2)

the analytical form of the objective function in appendix A.1. A summary of the
multimodal SGP-PS is given in Algorithm 3.1. Table 3.1 shows the computational
complexity of each optimization, and the complexity of q({f̄ (m)}) and log J ′

L is
reduced due to the pseudo inputs. Although the computational complexity of
q(Z) is increased, the overall complexity is reduced.

We analytically obtain the M predictive distribution using variational distri-
bution q({f̄ (m)}) and parameter θM variational learning. The m-th predictive
distribution of action a

(m)
∗ corresponds to new state s∗:

p(a(m)
∗ | s∗) ≈

∫
p(a(m)

∗ | f∗)p(f∗ | f̄ (m), s∗)q(f̄ (m))df∗df̄ (m). (3.7)

The analytical solution of the predictive distribution of the multimodal SGP
policy search is described in A.2.

We employ a softmax function that uses the negative variance of the predictive
distribution:

p(m) = exp(−σ
(m)
∗ /β)∑M

m=1 exp(−σ
(m)
∗ /β)

, (3.8)

where p(m) is the probability of using the m-th predictive distribution and β

is a temperature parameter that controls the trade-off between exploration and
exploitation.

3.3.2. Mode-seeking sparse Gaussian process policy
search (mode-seeking SGP-PS)

We derive a mode-seeking sparse Gaussian process policy search based on SGP-
PS. Mode-seeking means that the policy can capture an optimal action at each
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state by ignoring other optimal actions. To capture one optimal action, the mode-
seeking SGP-PS employs student-t distribution as a likelihood and estimates
the reliability of each data to ignore low-reliability data. The following is the
probabilistic density function (PDF) of the student-t distribution:

St(x | µ, a, b) = ba

Γ(a)
√

2π

[
b + (x− µ)2

2

]−a−1/2

Γ(a + 1/2), (3.9)

where Γ(·) is a gamma function. Although the PDF is complicated, it can be
described more simply by a scale mixture representation that uses Gaussian and
gamma distributions:

St(x | µ, a, b) =
∫ ∞

0
N (x | µ, τ−1)Gam(τ | a, b)dτ, (3.10)

Gam(τ | a, b) = ba

Γ(a)
τa−1 exp(−bτ), (3.11)

where τ is the precision of the Gaussian distribution and indicates the data relia-
bility. We use gamma distribution for the precision τ of the Gaussian distribution.

To learn a policy that captures one optimal action, we use the student-t dis-
tribution as the likelihood:

p(ã | f) = St(ã | f)

=
∫

p(ã | f , T)p(T)dT, (3.12)

p(ã | f , T) =
N∏

n=1
N (ãn | fn, τ−1

n ), (3.13)

p(T) =
N∏

n=1
Gam(τn | a, b), (3.14)

where T = diag{τ1, · · · , τN}. The integration w.r.t f in Eq. (2.10) cannot be
solved analytically since the likelihood is complicated. By introducing a scale
mixture representation and variational distribution q(T) of the data reliability,
we derive a new lower bound for the mode-seeking SGP-PS:

log J ′
L(θR, q) =

∫
p(f | f̄)q(f̄)q(T) log p(ã | f , T)p(T)p(f̄)

q(f̄)q(T)
dfdf̄dT. (3.15)

The graphical model of mode-seeking SGP-PS is shown in Fig. 3.4.
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Figure 3.4.: Graphical model of mode-seeking SGP-PS

We assume that q(T) = ∏N
n=1 q(τn). We derive the update laws of q(f̄) and

q(τn) which maximize the lower bound of the expected return based on varia-
tional Bayesian inference. The analytical solution of the update laws and the
lower bound are described in appendix B.1. Alternately updating the variational
distribution and the hyperparameters alternately, the mode-seeking SGP policy
is learned. This method’s algorithm is described in Algorithm 3.2. Table 3.2
shows the computational complexity of each optimization, and the complexity of
q({f̄ (m)}) and log J ′

L is reduced by the pseudo inputs. Although the computation
amount of q(T) increased, the overall complexity was reduced.

We analytically obtained the predictive distribution of the mode-seeking SGP
policy for new state s∗ using variational distribution q(f̄), q(T), and parameters
θR, which are obtained in the learning:

p(a∗ | s∗) ≈
∫

p(a∗ | f∗, τ)p(f∗ | f̄ , s∗)q(f̄)q(τ)df∗df̄dτ. (3.16)

The analytical solution of the predictive distribution of mode-seeking SGP-PS
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Algorithm 3.2: Mode-seeking SGP-PS algorithm
Initialize: θR, s̄

1 while reward not converged do
2 # Sample E trajectories
3 for e = 1 : E do
4 Sample trajectory d using policy π

5 end
6 # Policy Improvement
7 while log J ′

L is not converged do
8 # E step
9 while log J ′

L is not converged do
10 Update q(f̄) with Eq. (B.11)
11 Update q(T) with Eq. (B.10)
12 end
13 # M step
14 θR ← arg max

θR

log J ′
L

15 end
16 end

is described in appendix B.2.

3.4. Experiments
We conducted experiments with two robot control tasks in simulations: hand-
posture adjustment task and table-sweeping task. We investigated the effective-
ness of our proposed methods in the hand-posture adjustment task and demon-

Table 3.2.: Computational complexity of each optimization in mode-seeking SGP-
PS: N and L are amounts of training data and pseudo inputs.

q(f̄ (m)) q(T) log J ′
L

Mode-seeking SGP-PS O(NL2) O(N2) O(N2)
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strated scalability for more challenging situations in the table-sweeping task.

3.4.1. Hand-posture adjustment task

Settings

We experimented with the simple robot task shown in Fig. 3.1 (a) to confirm the
performance of our proposed methods on the task with the multiple optimal ac-
tions. The task’s environment consisted of a UR5 robot arm and a red, 7×12×10
cm3 cube. The robot arm has a two-fingered gripper and can rotate its wrist in
one revolution. The task aims to grasp the red cube by its longer side; due to its
physical constraint, the robot cannot grasp its shorter side. The robot can grasp
the object in two ways: by rotating its wrist left or right. So, the task has two
optimal actions.

The state is the orientation of the red cube. The action is the rotation angle of
the robot wrist between −π rad to π rad. After determining the action, the robot
moves to grasp the object with its wrist angle decided as an action. Since each
episode is terminated in one step, the length of the trajectory is T = 1. Return
function R(d) is binary. R(d) = 100 if the robot grasps the cube, otherwise
R(d) = 0.

We confirm the performances of our methods to the multiple optimal actions
by comparing them with a unimodal SGP-PS that employs a standard SGP as a
policy model. We set the number of components of the multimodal SGP-PS to
two and three to confirm its performance with different numbers of components to
the number of multiple optimal actions. We used an isotropic-squared exponential
kernel in each method. In this experiment, each method explored E = 100
episodes and learned a policy using the data of 100 episodes and the best 80
episodes as sample reuse after exploration. The number of pseudo-inputs of each
method was set: L = 20.

Results

Figure 3.5 shows the mean and the standard deviation of the return over ten
experiments using multimodal SGP-PS with two and three components, mode-
seeking SGP-PS, and unimodal SGP-PS. The policies learned by our proposed
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Figure 3.5.: Learning performance of policy search for hand-posture adjustment
task over ten experiments: Mean value and standard deviations are
shown.

Figure 3.6.: Robot behavior controlled with a policy learned by multimodal SGP-
PS in hand-posture adjustment task

methods indicate higher performance than those obtained by unimodal SGP-PS.
This result suggests that the expansions of a policy model in our proposed meth-
ods are valid for the task with multiple optimal actions. Moreover, multimodal
SGP-PS can learn an appropriate policy even when the number of components is
redundant. Fig. 3.6 shows the robot behavior using a learned multimodal SGP
policy which, can select an appropriate action for the object’s angle. Fig. 3.7
(a) shows a learned policy by multimodal SGP-PS with two components. The
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Figure 3.7.: (a) Learned policy for hand-posture adjustment task by multimodal
SGP-PS with two components. Black dots indicate pseudo input.
(b) and (c) show posterior probability of the data association of each
data point shown in (a).
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Figure 3.8.: (a) Learned policy for hand-posture adjustment task by multimodal

SGP-PS with three components. Black dots indicate pseudo input.
(b), (c), and (d) show posterior probability of data association of
each data point in (a).
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Figure 3.9.: (a) Learned policy for hand-posture adjustment task by mode-seeking
SGP-PS. Black dots indicate pseudo input. (b) the posterior proba-
bility of data association.

learned multimodal SGP policy can capture multiple optimal actions indicated
by the black dotted line by properly estimating data associations. To capture
two optimal actions, component 1 captures two dotted lines, and component 2
captures the middle line. Figs. 3.7 (b) and 3.7 (c) show the optimized poste-
rior distribution of Z, which is the data points assigned to each component. In
the crossing point of the two components, the posterior of the data association
indicates low probability. Fig. 3.8 (a) shows a learned policy by multimodal
SGP-PS with three components. Each component of the learned policy captures
one of three dotted lines. Figs. 3.8 (b), 3.8 (c), and 3.8 (d) show the optimized
posterior distribution of Z. Similar to the case of the multimodal SGP-PS with
two components, the posterior of the data association indicates a low probability
of the two components’ crossing points. Fig. 3.9 (a) shows a learned policy by
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(a) (b) (c)
Figure 3.10.: Table-sweeping task environment with five objects. (a) is an

overview of the table-sweeping task. Green vectors show axes of
the Cartesian coordinate to represent a position of the end-effector
and objects. (b) and (c) indicate two different initial positions of
five objects.

mode-seeking SGP-PS. The policy acquired by it captured one of the optimal
actions at each state, coincidentally in a similar way as with two components in
Fig. 3.7 (a). Fig. 3.9 (b) shows the posterior distribution of reliability T. The
mode-seeking SGP-PS learned a unimodal policy by estimating the reliability of
the data and ignoring low-reliability data.

In summary, the simulation results in the hand-posture adjustment task suggest
the effectiveness of our proposed methods for learning a policy in tasks with
multiple optimal actions.

3.4.2. Table-sweeping task

Settings

The aim of the table-sweeping task is to have the fetch robot sweep the five objects
on the table individually by robot’s end-effector in the environment shown in Fig.
3.10. In this task, we learned an individual action policy based on the number
of objects by exploiting the fact that this task can be naturally decomposed into
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subtasks according to the number of objects. Thus, five individual policies are
learned. We constructed the table-sweeping task environment based on the fetch
environment proposed in [48] and implemented it as a learning environment in
OpenAI Gym. The table-sweeping task is more challenging than the hand-posture
adjustment task for the following reasons:

1. The number of optimal actions is up to five.

2. Multiple steps are required to accomplish the task.

3. The state space has a higher dimension.

The task environment consists of the fetch robotic arm, a 40-cm diameter ta-
ble, and five cylindrical objects with diameters of 7 cm, and heights of 2.5 cm.
The state consists of the two-dimensional Cartesian position of the end-effector
and five objects, and the two-dimensional Cartesian relative position of the five
objects related to the position of the end-effector. Each axis of the Cartesian
coordinate is shown in Fig. 3.10 (a). Therefore, a state is represented by a 22-
dimensional vector consisting of positions of the end-effector and five objects and
relative positions of five objects. The definition of a state is relied on [48]. We
set that the position and the relative position in a state corresponding to swept
objects are assigned 0. An action is a two-dimensional vector and each dimen-
sion specifies the desired end-effector movement in each axis of two-dimensional
Cartesian coordinates on the table. The absolute value of each dimension of ac-
tion is limited to 4 cm or less so that even an optimal policy takes multiple steps
to achieve the task. Return function R(d) rewards the trajectory data with 10
when an object is swept and punishes 0.1× T for the length of the episode T .

We set that the end-effector’s position is initialized to the center of the table
after sweeping an object. The positions of the five objects are initialized by
uniformly sampling from two patterns shown in Fig. 3.10. The five objects are
arranged at 72-degree intervals on a circle with a diameter of 12 cm around the
z-axis, but there is 32-degree difference between the two patterns. The task is
terminated when an object is swept or when the length of the trajectory has
reached to T = 20. After the robot swept an object, the end-effector moves to
the center of the table to execute the next task.
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To compare our methods, we employed unimodal SGP-PS, SAC [32], and
TRPO [46]. SAC and TRPO are state-of-the-art reinforcement learning methods
that learn neural-network policies for continuous action space. The hyperparam-
eters of SAC and TRPO are described in Tables C.1 and C.2.

We used a squared exponential kernel with automatic relevance determination
in the SGP-based methods. The number of pseudo-inputs of each method is set to
L = 20. We set the number of objects on the table as the number of components
of the multimodal SGP-PS. For a fair comparison, the SGP-based methods and
the NN-based methods as TRPO and SAC commonly update their policies using
every 1000 steps worth of exploration episodes.

Results

Figure 3.11 shows the mean and standard deviation of the total reward over ten
experiments using multimodal SGP-PS, mode-seeking SGP-PS, unimodal SGP-
PS, SAC, and TRPO. The learning experiment was conducted individually for
each number of objects. In the task with one object, the performance of uni-
modal SGP-PS is comparable multimodal SGP-PS and mode-seeking SGP-PS.
However, as the number of objects increases, multimodal SGP-PS and mode-
seeking SGP-PS outperform unimodal SGP-PS by effectively handling multiple
optimal actions.

In the SAC algorithm, although the value function captured multiple optimal
actions, the policy employs a unimodal model. Then it needs to seek one of
the optimal actions among multiple ones. The policy’s performance may become
unstable because mode-seeking is not stable at the beginning of learning. Even
though TRPO improves the policy monotonically; however, the performance is
inadequate. It needs more data to learn a suitable policy in tasks with multiple
optimal actions may be due to neural-network-based policies with many param-
eters. This result resembles one that was previously reported [6].

Fig. 3.12 shows the behavior of a policy learned by the multimodal SGP-PS.
For each object, our methods can learn a policy to sweep an object by deciding
action multiple steps.

Fig. 3.13 shows five trajectories generated by the policy learned by multi-
modal SGP-PS, mode-seeking SGP-PS, and unimodal SGP-PS on the task with

35



Steps

Re
tu
rn

(a) One object
Steps

Re
tu
rn

(b) Two objects

Steps

Re
tu
rn

(c) Three objects

Re
tu
rn

Steps
(d) Four objects

Steps

Re
tu
rn

(e) Five objects

Multimodal
Mode-seeking
Unimodal
SAC
TRPO

(f) Legends of each figure
Figure 3.11.: Learning performances of multimodal SGP-PS, mode-seeking SGP-

PS, unimodal SGP-PS, SAC, TRPO in table-sweeping task with
one to five objects: Each curve is averaged over ten experiments.
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Initial position Trajectory

(a) Five objects
Initial position Trajectory

(b) Four objects

Initial position Trajectory

(c) Three objects
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(d) Two objects

Initial position Trajectory

(e) One object
Figure 3.12.: Behaviors of policies learned by multimodal SGP-PS in table-

sweeping task
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(a) Multimodal SGP policy

(b) Mode-seeking SGP policy

(c) Unimodal SGP policy
Figure 3.13.: Five trajectories of the end-effector by learned policy by Multimodal

SGP-PS, Mode-seeking SGP-PS, and Unimodal SGP-PS. The left
and right figures have different initial positions of five objects. The
colored circles indicate the initial positions of five objects on the
table. Black lines indicate trajectories by the learned policy.
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five objects. The multimodal SGP policy learned the multiple optimal actions
for sweeping an object in each initial state by the nature of multimodality. How-
ever, it could learn two or three optimal actions out of five due to limited data
explored. The mode-seeking SGP policy learned one of the optimal actions by
ignoring others successfully, while the unimodal SGP policy could not learn any
optimal actions properly. We confirmed that each learned policy obtained differ-
ent optimal actions according to the initial positions of objects.

In summary, all of our simulation results in the table-sweep task suggest the
effectiveness of our methods for learning policies with multiple optimal actions.
We confirmed that our methods more effectively learn a policy than SAC and
TRPO in a task environment with a small number of samples and multiple opti-
mal actions.

3.5. Summary of Chapter 3
We proposed a multimodal SGP-PS and a mode-seeking SGP-PS, which are GP-
PS methods for a task with multiple optimal actions. The multimodal SGP-PS
employs a multimodal policy prior inspired by OMGP to learn a policy that can
capture multiple optimal actions. The mode-seeking SGP-PS learns a unimodal
policy that captures one optimal action by employing an outlier-robust likelihood
function. We derived the updating laws of both methods based on variational
Bayesian inference.

To investigate the performance of our methods, we conducted two manipulation
tasks: 1) a hand-posture adjustment task and 2) a table-sweeping task. We
confirmed that our methods can learn suitable policies in an environment with
multiple optimal actions.
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4. Gaussian Process
Self-triggered Policy Search
for Weakly Observable
Environment

4.1. Introduction
GP-PS is difficult for automating real-world tasks such as heavy industrial ma-
chinery in actual workplaces. Their control systems still have to rely on compli-
cated system-specific models created by humans [49]. In particular, two major
challenges must be tackled in GP-PS for industrial machines: 1) obtaining trial
and error data by a large and heavy industrial machine is very costly, and 2)
since the environments of industrial machines are weakly observable, little infor-
mation about the state is contained in observations due to technical difficulties
or maintenance costs.

More specifically, a waste crane, remotely controlled by a skilled operator at a
waste incineration plant, does not have sensors that collect information about the
garbage’s state, although its characteristics have diversity and changing trends
that depend on the day of the week and the season (size and hardness of each
element, moisture content, viscosity, etc.) [50–53]. The crane is only equipped
with a sensor that weighs the garbage grasped by the bucket. Although the
operators can roughly see the whole garbage pit from the control room, due
to severe occlusion they generally cannot see the garbage around the bucket,
especially when it lands the waste and executes a grasping motion.

With such scant information about the environmental state, skilled operators
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Figure 4.1.: Garbage grasping by an actual waste crane by a human operator

can control such machines and achieve high performance. Their behavior seems
different from general sensory feedback control that selects an action based on
sensor values at regular time intervals (Fig. 4.1), which is a typical policy model
in policy search and reinforcement learning (e.g., [7,11]). This situation can be at-
tributed to the weakness of the observations; if the value of the weight sensor does
not change significantly, the operator will not be able to select a different action.
Instead, selecting a predetermined control strategy (e.g., grasping or scattering)
and a duration based on sensor values creates robust behavior and stabilizes it
even with weak observations. Such an approach can reduce the dependency of the
policy on sensor values and the frequency of references. However, these policies
need to be adjusted according to the garbage’s characteristics. Such thoughts
motivated us to explore a novel policy search framework with a specific type of
policy applicable in weakly observable environments in a sample efficient way.

In this chapter, we propose GP self-triggered policy search (GPSTPS), which
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Figure 4.2.: Self-triggered policy search with GP policy model

is a novel GP-PS algorithm (Fig. 4.2). GPSTPS has two types of control policies:
action and duration. The gating mechanism either maintains the action selected
by the action policy for the duration specified by the duration policy or updates
the action and duration by passing new observations to the policy; therefore, it is
described as self-triggered. GPSTPS simultaneously learns both policies by trial
and error based on sparse GP priors [12] and variational learning [7] to maximize
the return. We experimentally verified the performance of our proposed method
on garbage-grasping-scattering task with a waste crane with weak observations
using a simulation and a robotic waste crane system. Our experimental results
suggest that our proposed method acquired suitable policies to determine the
action and duration based on the garbage’s characteristics.

The following are the contributions of this chapter:

1. Our GPSTPS formulation incorporates self-triggered control into a GP-PS.

2. It derives a learning algorithm for GPSTPS based on variational learning.

3. Experimental verification used simulations and a robotic waste crane.
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4.2. Related Work

4.2.1. Crane and Bucket Automation

Crane automation is conventionally implemented with a complicated model of a
crane system [49]. Robust control over disturbances has also been explored by
modeling such as wind [54] and waves [55,56]. For such difficult-to-model objects
as soil, previous work designed robust movements for an excavator [57, 58]. In a
data-driven approach, learning methods were proposed that are predictive models
for excavation performance [59,60] and imitation learning methods for wheel load-
ers [61]. Such works designed elaborate models and learned models with much
sensor information; however, such approaches may not be suitable in environ-
ments that have weak observations like waste cranes. In this paper, we propose
a data-driven method for policy learning in weakly observable environments.

4.2.2. Self-triggered Control

Self-triggered control is known as a method of controlling a system while reducing
communication costs by determining the duration until the next communication
in the networked control system in which controllers, sensors, and actuators are
connected by a network [62, 63]. Previous works proposed self-triggered control
methods for linear systems [64–66]. Self-triggered control has been applied to
a multi-agent system [67] and a quadcopter [68]. A data-driven method that
combines model-based reinforcement learning into self-triggered control has been
proposed [69]. Self-triggered control has been widely studied based on model-
based control. In this chapter, we combine self-triggered control with GP policy
search to learn policies in a model-free manner in a problem setting that is dif-
ferent from networked control.

4.2.3. Reinforcement Learning on Semi-Markov Decision
Process

The framework of reinforcement learning methods built on the semi-Markov de-
cision process can perform long-term and complex tasks by temporal abstraction
called an option [70]. In the option framework, a policy model consists of an
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option transition model, sub-policies, and an option termination model. By se-
lecting an option from the state and executing the sub-policy associated with
the option until it is terminated, complex and long-term tasks are divided and
simplified. Daniel et al. [71] hypothesized options and their termination as latent
variables and derived a learning algorithm based on the EM algorithm. In recent
years, the option framework has made it possible to learn complex policies using
a large amount of data in combination with deep reinforcement learning [72–74].
A data-efficient method for robot applications was also proposed [75]. The option
framework updates options in an event-triggered manner since it assumes a fully
observable environment. Our GPSTPS, on the other hand, updates actions in a
self-triggered manner to manage weakly observable environments.

4.3. Gaussian Process Self-triggered Policy
Search

In this section, we propose self-triggered policy search with GP as a policy model.
This policy model consists of the action and duration policies and gating mech-
anism. The action policy selects an action strategy for the state as an action,
and the duration policy determines the execution time. The gating mechanism
either maintains the action selected by the action policy for the duration spec-
ified by the duration policy or updates the action and duration by passing new
observations to the policy. An action and duration selection by the self-triggered
policy in task execution is indicated in Alg. 4.1. We derive the policy update low
based on variational policy search [7] by formulating the expected return as the
return-weighted marginal likelihood.

4.3.1. Problem Formulation

Self-triggered policy search has an execution duration of τt, which indicates the
time to continue action at, and binary gating variable ot, which indicates when
the action and its duration time are updated by the policy at time t. The action
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Algorithm 4.1: Task execution by self-triggered policy
Input : Action policy πa, Duration policy πτ

Initialization: Binary gating variable o1 = 1, Initial state s1 ∼ p(s1)
1 for t = 1 to T do
2 // Action and duration selection
3 if ot == 1 then
4 at ∼ πa(at | st) // Update action and duration
5 τt ∼ πτ (τt | st)
6 else
7 Reuse action at = at−1

8 Decrement duration τt = τt−1 − 1
9 end

10 // Update binary gating variable
11 if τt == 1 then
12 ot+1 = 1
13 else
14 ot+1 = 0
15 end
16 st+1 ∼ p(st+1 | st, at) // Execute action
17 end

and duration at each time are modeled:

p(at | st, ot, at−1, πa) =

πa(at | st) if ot = 1

δ(at − at−1) else
, (4.1)

p(τt | st, ot, τt−1, πτ ) =

πτ (τt | st) if ot = 1

δ(τt − τt−1 + 1) else
. (4.2)

These two distributions include action policy πa and duration policy πτ . Gating
variable ot indicates action update or maintenance, and when ot = 1, the action
and the duration are updated by each policy. When ot = 0, the previous action
is continued and the duration is decremented. Duration time τt indicates the
remaining execution duration of action at. Gating variable ot is determined by

45



duration τt−1:

p(ot | τt−1) =

δ(ot − 1) if τt−1 = 1

δ(ot) else
. (4.3)

The gating variable becomes ot = 1 when the duration is τt−1 = 1.
These distributions extend the episode’s probabilities:

ds = {s1, a1, τ1, o1, · · · , sT , aT , τT , oT , sT +1}, (4.4)

p(ds | πa, πτ ) = p(s1)
T∏

t=1
p(at | st, ot, at−1, πa)·

p(τt | st, ot, τt−1, πτ )p(ot | τt−1)p(st+1 | st, at). (4.5)

Self-triggered policy search uses the episode’s probability to calculate the expected
return and learns action policy πa and duration policy πτ :

J(πa, πτ ) =
∫

R(ds)p(ds | πa, πτ )dd, (4.6)

π∗
a, π∗

τ = arg max
πa,πτ

J(πa, πτ ). (4.7)

4.3.2. Sparse Gaussian Process Policy Models

GPs are employed as a policy model in this chapter. The nonlinear functions of
the action and duration policies are defined as f and g, and GPs are set as their
priors:

f ∼ GP(mf , k(s, s′)), (4.8)
g ∼ GP(mg, k(s, s′)), (4.9)

where k(·, ·) is a kernel function and mf and mg are mean of each GP. We assume
a Gaussian distribution for the action and duration:

p(at | ft) = N (at | ft, σ2
f ), (4.10)

p(τt | gt) = N (τt | gt, σ2
g), (4.11)

where ft = f(st), gt = g(st), σ2
f and σ2

g are the variances of each Gaussian
distribution.
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To reduce the computational complexity of GPs used as the prior distribution
of the nonlinear function, pseudo outputs f̄ and ḡ corresponding to pseudo input
s̄ [12] are introduced and the prior distributions are set:

p(f̄ | s̄) = N (f̄ | mf1, Ks̄), (4.12)
p(ḡ | s̄) = N (ḡ | mg1, Ks̄), (4.13)

where Ks̄ = k(s̄, s̄) is the kernel gram matrix of pseudo input s̄. The distributions
of nonlinear function outputs ft and gt are represented by the following Gaussian
distributions as the GP regression of the distribution of the pseudo outputs:

p(ft | st, f̄) = N (ft | kst,s̄K−1
s̄ (f̄ −mf ) + mf , λt), (4.14)

p(gt | st, ḡ) = N (gt | kst,s̄K−1
s̄ (ḡ−mg) + mg, λt), (4.15)

where λt = kst − kst,s̄K−1
s̄ kT

st,s̄, kst = k(st, st), and kst,s̄ = k(st, s̄).
The probability of an episode of self-triggered policy search using GPs as a

policy model is calculated as follows:

p(ds, f , g, | f̄ , ḡ) = p(s1)
T∏

t=1
p(at | ft, ot, at−1)p(ft | st, f̄)·

p(τt | gt, ot, τt−1)p(gt | st, ḡ)p(ot | τt−1)p(st+1 | st, at), (4.16)

where f = {ft}T
t=1 and g = {gt}T

t=1. A graphical model of a GPSTPS is shown in
Fig. 4.3.

4.3.3. Variational Learning for Policy Improvement

GPSTPS is formulated as a return-weighted marginal likelihood maximization
problem. The posterior distribution of the nonlinear functions in the two pol-
icy models, kernel parameters θ, and pseudo inputs f̄ and ḡ are optimized by
variational learning.

With the episode’s probability using the GP policy model in (4.16), the ex-
pected return is calculated:

J =
∫

R(ds)p(ds, f , g | f̄ , ḡ)p(f̄)p(ḡ)ddsdfdf̄dgdḡ. (4.17)
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Figure 4.3.: Graphical model of GP self-triggered policy search: st is a state, at is
an action, τt is an execution duration, ot is a binary gating variable,
ft and gt are outputs of functions f and g, and f̄ and ḡ are pseudo
outputs of GPs.

This equation cannot be analytically solved due to the complexity of ds, f̄ , and
ḡ. Therefore, by introducing the distribution of the data sample pold(ds), expected
return Jold by that distribution, and variation distribution q(ds, f , f̄ , g, ḡ) = pold(ds)p(f |
f̄)q(f̄)p(g | ḡ)q(ḡ), the lower bound of expected return log JL is derived:

log J(θ)
Jold

≥
∫ R(ds)

Jold
q(ds, f , f̄ , g, ḡ) log p(ds | f̄ , ḡ)p(f̄)p(ḡ)

q(ds, f , f̄ , g, ḡ)
ddsdfdgdf̄dḡ

=
∫ R(ds)

Jold
pold(ds)p(f | f̄)q(f̄) log p(a | f)p(f̄)

q(f̄)
ddsdfdf̄

+
∫ R(ds)

Jold
pold(ds)p(g | ḡ)q(ḡ) log p(τ | g)p(ḡ)

q(ḡ)
ddsdgdḡ

= log JL(θ, q), (4.18)

where a = {at}T
t=1 and τ = {τt}T

t=1. The expectation of pold(d) is solved by Monte
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Carlo approximation using trial and error data. The lower bound of the expected
return can be expressed:

log JL(θ, q) ≈
∫

p(f | f̄)q(f̄) log p(ã | f)p(f̄)
q(f̄)

dfdf̄

+
∫

p(g | ḡ)q(ḡ) log p(τ̃ | g)p(ḡ)
q(ḡ)

dgdḡ + C, (4.19)

where p(ã | f) = N (ã | Wf , σ2
fI) and p(τ̃ | g) = N (τ̃ | Wg, σ2

gI). W =

diag
{√

R(d(1)
s )

JoldE
1 · · ·

√
R(d(E)

s )
JoldE

1
}

is weight based on return, ã = Wa, and τ̃ = Wτ .

Eq. (4.19) is the lower bound of the return-weighted marginal likelihood.
The variational learning update policy repeats the E-step and M-step, like the

EM algorithm. In the E-step, the variational distributions of q(f̄) and q(ḡ) are
optimized alternately. In the M-step, kernel parameter θ and pseudo input s̄ are
optimized by a gradient-based method. Optimal variational distributions approx-
imate the true posterior. Using learned variational distribution, the predictive
distribution of any action a∗ and any duration τ∗ according to any state s∗ can
be analytically obtained. The update law of the variational distributions and the
predictive distribution are derived based on previous research [7]. Each predictive
distribution is derived to determine the action and execution durations according
to the policy.

4.4. EXPERIMENT
We applied GPSTPS to a garbage-grasping-scattering task by simulation and
a robotic waste crane system to investigate its effectiveness. We verified that
GPSTPS appropriately learned the action and duration policies based on the
garbage’s characteristics.

4.4.1. Garbage-grasping-scattering Task

The garbage-grasping-scattering task aims to evenly and widely scatter a large
amount of garbage in a short time (Fig. 4.4). The grasping strategy generates
a motion that lowers the bucket onto the garbage’s surface and closes the claws
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Execution duration
(a) Grasping

Execution duration
(b) Scattering

Figure 4.4.: Garbage-grasping-scattering task

while raising the bucket. The scattering strategy generates a motion where some
of the garbage in the bucket falls by opening and closing it. To efficiently scatter
a large amount of garbage, we need to switch between appropriate grasping and
scattering, as well as their execution duration based on the garbage’s character-
istics.

In this task, state st is defined as the weight of the grasped garbage. The action
is defined as binary at = {0, 1}, which indicates either grasping or scattering
strategies. Execution duration τt indicates the number of execution steps for
each strategy. The reward function is defined:

rt =

0 (at = 0)

ra × rτ (at = 1)
. (4.20)

ra is the action reward for the scattering performance, and rτ is the reward re-
lated to a scattering’s duration. Each episode terminates when the crane finishes
scattering the garbage grasped by the bucket.
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Table 4.1.: Amount of garbage grasped with respect to grasping durations in sim-
ulation experiment: ϵ is sampled by N (0, 0.7).

Grasping durations 1 2 3 later
Setting 1 (soft) 3+ϵ 3+ϵ 3+ϵ 3+ϵ

Setting 2 (hard) 2+ϵ 3+ϵ 5+ϵ 5+ϵ

4.4.2. Simulation

Experimental settings

We simulated garbage grasping and scattering and verified the GPSTPS per-
formance. The amount of garbage grasped by the waste crane depends on its
characteristics. Thus, in this simulation, we prepared the two garbage character-
istics shown in Table 4.1. Settings 1 and 2 indicate soft and hard garbage that
requires different execution durations. Hard garbage’s grasping strategy requires
a longer duration since it cannot be loosened by being grasped. We assumed that
for one execution duration step, a grasping strategy takes ten seconds and that
a scattering strategy takes five seconds.

We defined the action and time rewards:

ra = min(st, τt)− αsim∥st − τt∥, (4.21)
rτ = exp{−βsim(uact − umin)2}, (4.22)

where αsim = 1.5, βsim = 0.004, and umin = 30 are the parameters of the reward
function and uact is the seconds required during garbage scattering. The action
reward is high when the execution durations are similar to a state and a large
amount of garbage is scattered. Time reward rτ increases as the execution time
is shortened.

The task begins without no grasped garbage in the bucket, and an episode
terminates when the crane has scattered all of the grasped garbage. The action
policy is modeled by a binary sparse GP classification model with mf = 0.5. Since
the classification model directly regresses the probability of the action selection,
we ignore the uncertainty of the predictive model. The duration policy is sparse
GP regression model with mg = 0. The maximum execution duration of GPSTPS
is set to six steps. For comparison, we employed GP policy search (GPPS) with a
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fixed duration from one to six steps. Pseudo inputs of sparse GP in each method
are set M = 5. Also, we implemented a neural network (NN) based STPS, which
employs NNs with three full-connect layers for both action and duration policies.
We set multiple numbers of units in a hidden layer in NN as 10, 100, and 300.
STPS with NN uses return weight likelihood in (4.19) as the objective function
and learns each NN policy by Adam optimizer.

Result

Figs. 4.5 and 4.6 show the experimental result. Fig. 4.5 (a), 4.5 (b), 4.6 (a),
and 4.6 (b) compares learning curves of GPSTPS, GPPS with a fixed duration,
and GPSTPS with NN policy in each setting. Fig. 4.5 (c) shows that the action
policy appropriately selected the grasping and scattering strategies based on the
state. In Fig. 4.5 (d), the duration policy selected a short duration (a one- or
two-step grasping strategy) since the amount of grasped garbage was not changed
by the execution duration. The duration policy selected a similar execution time
step as a state for the scattering strategy. The action policy learned by GPSTPS
appropriately selected the action based on the state (Fig. 4.6 (c)). The learned
duration policy selected a longer two- or three-step execution duration than the
duration policy in setting 1 as its grasping strategy (Fig. 4.6 (d)). For the
scattering strategy, this duration policy resembles the duration policy learned in
setting 1.

In the learning curve of GPPS with a fixed duration in both settings shown
in Figs. 4.5 (a) and 4.6 (a), we found different duration needs for each setting.
Our GPSTPS outperformed the fixed duration method by learning a suitable
duration for each setting. In comparison with the NN policy model, the per-
formance of STPS with the NN policy model largely depends on the number of
units in hidden layers. If we could appropriately set it (100 units), it would re-
sult in high performance; if we set too many (300 units) or too few (10 units),
the performance will be severely degraded. On the other hand, our GPSTPS
achieved comparable performance to that by NN policy models with appropriate
settings without explicitly setting the number of units in hidden layers due to
non-parametric characteristics of GPs.

In summary, these simulation results confirmed that GPSTPS can learn appro-
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(a) Learning curve (b) Learning curve

(c) Action policy (d) Duration policy
Figure 4.5.: Result of simulation experiments in setting 1. (a) the mean and stan-

dard deviation of the learning curve of ten experiments by GPSTPS
and GPPS with a fixed duration. (b) mean and standard deviation
of the learning curve of ten experiments by GPSTPS and STPS with
NN. (c) learned action policies by GPSTPS. (d) learned duration
policy by GPSTPS.
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(a) Learning curve (b) Learning curve

(c) Action policy (d) Duration policy
Figure 4.6.: Result of simulation experiments in setting 2. (a) the mean and stan-

dard deviation of the learning curve of ten experiments by GPSTPS
and GPPS with a fixed duration. (b) mean and standard deviation
of the learning curve of ten experiments by GPSTPS and STPS with
NN. (c) learned action policies by GPSTPS. (d) learned duration
policy by GPSTPS.

54



(a)

(b)

(c) (d)
Figure 4.7.: Environment of robot experiment: (a) overview, (b) bucket, (c), and

(d) garbage with different characteristics.

priate action and execution duration policies that maximize the return, depending
on the garbage’s characteristics.

4.4.3. Robot Experiment

Robotic waste crane

We conducted an experiment with a robotic waste crane in an environment that
resembles an actual waste crane using a manipulator (Fig. 4.7 (a)). The crane
part consists of a robot manipulator Universal Robot 5 and a force sensor Robotiq
FT-300. The manipulator moves the bucket and weighs the grasped garbage by a
force sensor. The bucket consists of four servo motors (ROBOTIS DYNAMIXEL
XM430-W350-T) and four claws made by a 3D printer (Fig. 5.3 (b)). The bucket
and the robot arm are connected by string. The four claws are moved by the same
movement by servo motors to reproduce the movements of the actual bucket. The
waste crane moves in a 511-mm long, 820-mm wide mock garbage pit.
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Algorithm 4.2: Grasping strategy
Input: Execution duration: τt

1 Bucket is lowered with open claws until it lands on garbage
2 for i = 1 to τt do
3 for n_close = 1 to 4 do
4 Bucket’s claws are closed until they stop
5 Bucket is raised for tlift

6 end
7 end

Experimental settings

We conducted an experiment with a robotic waste crane to verify GPSTPS’s
effectiveness. We used two types of garbage (Figs. 4.7 (c) and 4.7 (d)) to verify
the performance with different garbage characteristics. Fig. 4.7 (c) shows paper-
based garbage that consists of shredded paper and rubber balls with 17 and 30 mm
diameters. Since this garbage is soft with a small particle size，it resembles dry
and non-sticky garbage like plastic. The bucket can grasp paper-based garbage
with a short duration and the grasped garbage falls from a small gap between
the claws. The magnet-based garbage in Fig. 4.7 (d) is composed of 27-mm
diameter capsules containing magnets and iron balls. This garbage has a large
particle size, and the magnets attract each other. It resembles wet and easily
aggregated garbage that is collected on rainy days. The bucket needs a longer
grasp duration because the garbage falls from the bucket during the aggregation.
The initial positions of the robotic crane in the grasping and scattering strategies
are randomly selected in the mock garbage pit and automatically moved to the
initial position. The crane’s moving distance in the scattering strategy is set to
30 cm. Each predetermined strategy is defined in Algorithms 4.2 and 4.3. The
parameters in each algorithm are set to tlift = 0.8 s, wfall = 7 g, and tclose = 2 s.

In the robot experiment, action reward function ra and time reward function
rτ are defined:

ra = wmaxexp{−γRMS(m−mI)}, (4.23)
rτ = exp{−βrobot(uact − umin)2}, (4.24)
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Algorithm 4.3: Scattering strategy
Input: Execution duration: τt

1 Move to initial position
2 Set crane speed vcrane using the execution time τt

3 for n_scatter = 1 to τt do
4 Bucket’s claws are opened until they detect the fall of wfall of garbage
5 Bucket’s claws are closed for tclose

6 end
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Figure 4.8.: Illustration of RMS between actual and ideal grasped-weight se-
quences in garbage-scattering

where βrobot = 2.5 × 10−4, γ = 7, umin = 30, and uact is the execution time
of an episode. umin means minimum execution time of grasping and scattering.
The purpose of this task is to scatter a lot of garbage in a shorter time evenly.
The action reward function evaluates scattering performance using RMS between
sequence of grasped weight m and ideal weight mI that decreases weight linearly.
The actual and ideal grasped weight sequences are shown in Fig 5.2. The time
reward function evaluates the shortness of scattering.

The policy is learned with the same experimental settings as in the simulation
experiment. The initial action policy selects the grasping strategy when the
grasped weight is 0 g and the scattering strategy at other times.
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Result

Figs. 4.9 and 4.10 show the experimental result of the robotic experiment. Figs.
4.9 (a) and 4.9 (b) show that GPSTPS outperformed GPPS with each fixed
duration. The paired t-test result shows that GPSTPS’s return has a significant
difference against all the compared methods. Figs. 4.9 (c) and 4.9 (d) indicate the
learned policies. Figs. 4.11 (a) show the robotic waste crane trajectory by the
policies learned by GPSTPS. The learned action policy appropriately selected
a control strategy. The learned duration policy selected two and five steps of
execution duration for grasping and scattering. This result indicates that the
duration policy captured the paper-based garbage’s easy-to-grasp and gradually
falling characteristics from a small gap between the claws.

Figs. 4.10 (a) and 4.10 (b) show that GPSTPS outperformed GPPS with
each fixed duration. The paired t-test result shows that GPSTPS’s return has a
significant difference against all the compared methods except GPPS with a fixed
four duration. GPSTPS and GPPS with such a duration do not have a significant
difference, although GPSTPS obtained higher returns than GPPS with the fixed
four duration. Figs. 4.10 (c) and 4.10 (d) show the learned policies. Fig. 4.11 (b)
and the robotic waste crane trajectory by the policy learned by GPSTPS. The
learned duration policy selected three duration steps for grasping the garbage and
four for scattering it by capturing the characteristic of the magnet-based garbage
of the difficult-to-grasp and falling together. In the robotics experiment, running
each episode took about two to three minutes. One learning experiment took
three hours.

Table 4.2 shows the performance of initial and learned policies by GPSTPS
in terms of RMS weight sequence and task execution time. We confirmed that
learned policy by GPSTPS significantly improved the evenness of scattering and
execution time by t-test.

In summary, we developed a robotic waste crane system that imitates an actual
one and conducted experiments on a garbage-grasping-scattering task using two
different kinds of mock garbage. We confirmed that GPSTPS properly learned
the action and duration policies based on the garbage’s characteristics.
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(a) Learning curve

＊
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＊
＊

＊

＊

(b) Return by learned policies

(c) Action policy (d) Duration policy
Figure 4.9.: Result of robot experiment with paper-based garbage: (a) mean and

standard deviation of return of three experiments. (b) test perfor-
mance of learned policies where * denotes p < 0.05 on paired t-test.
(c) and (d) action and duration policies learned by each method.
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(a) Learning curve

＊
＊

＊
＊

＊

(b) Return by learned policies

(c) Action policy (d) Duration policy
Figure 4.10.: Result of robot experiment with magnet-based garbage: (a) mean

and standard deviation of return of three experiments. (b) test
performance of learned policies where * denotes p < 0.05 on paired
t-test. (c) and (d) action and duration policies learned by each
method.
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(a) Paper-based garbage

(b) Magnet-based garbage
Figure 4.11.: Robot trajectory by policy learned by GPSTPS
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Table 4.2.: Comparison of the performance of initial and learned policy by GP-
STPS. Each policy is compared in terms of RMS weight sequence and
the execution time of an episode. Values indicate mean and standard
deviation of reward by 20 times of execution of the garbage-grasping-
scattering task with paper- and magnet-based garbage. * and ** de-
note p < 0.05 and p < 0.01 on paired t-test, respectively.

Policy Paper garbage Magnet garbage
RMS of Initial 1.17± 0.992* 1.74± 1.33**

weight seq. Learned 0.516± 0.354* 0.629± 0.694**
Execution Initial 64.0± 19.5* 59.4± 14.2*

time Learned 50.9± 18.4* 50.8± 8.91*

4.5. Summary of Chapter 4
This study aimed to automate machines in weakly observable environments in
an industrial work place and proposed GPSTPS that can learn both action and
duration policies to repeatedly perform the same action to overcome uncertainty.
Its effectiveness was experimentally verified with simulations and a robotic waste
crane system.
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5. Multi-task Robust Bayesian
Optimization for
Unpredictable Fluctuation of
Performance

5.1. Introduction
Automatic control of large industrial cranes is an attractive alternative to the
use of human workers in high repetition and high-risk environments. Manual,
repetitive control of heavy-duty construction machinery is a heavy-labor task, so
accidents at worksites remain high [76]. Therefore, integrating automatic control
policies in such environments as waste incineration plants [50–52] is particularly
desirable.

However, automated crane and bucket control remains a challenging task, due
to the difficulty in modeling their kinematic and dynamic characteristics, as often
requires sophisticated non-linear controllers specific to the system [49]. Even
a well-designed model of both the mechanism and controller suffers from the
inherent operational problem of inhomogeneous loading material, and as such,
traditional load estimation techniques [77] rely on the assumption of static loads
that fall within expected shape and weight constraints.

In the context of waste incineration plants, garbage bags have mixed sizes,
weights in addition to material properties such as hardness and wetness. These
environmental uncertainties are a crucial issue limiting innovation in automated
control of cranes and buckets [49]. While external factors such as wind [54],
waves [55,56], or soil properties in automated excavation [57,59] have been inves-
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tigated in different contexts, they often rely on assumptions on the underlying
distribution of uncertainty (such as the repetitive nature of waves); such assump-
tions are not valid for the garbages. Therefore, there is little research on the issue
of automated crane and bucket control handling such inhomogeneous garbage in
an industrial environment.

As a solution to these uncertainties, an alternative is to use data-driven meth-
ods from the field of machine learning to automatically build a model of the task
environment or a control policy, solely from data collected during operation in
that environment. There is no requirement for a priori description of the de-
formable material properties or complex analytical models of the plant. Such
automated skill acquisition methods have previously been applied to overcom-
ing payload uncertainties in small-scale robotic control systems, such as learning
and training policies from user demonstrations [14], using reinforcement learning
to manipulate objects in industrial assembly lines [78] or front-end loaders [61],
vision-based deep learning with uncertainty in grip pose [79] or with regards to
deformable soft objects [11], or policy optimization [80].

For a large-scale industrial waste crane, however, obtaining data samples by ex-
ecuting tasks is very costly, due to the slow-moving system (takes several minutes
for executing one task) and limited plant downtime. Therefore, a large amount of
trial and error is infeasible, unlike in [13,14]. Another issue is that no sensors are
available that can observe the state of the grasped flammable waste composed
of various materials with different degrees of hardness and wetness. Therefore,
the inhomogeneity of waste causes unpredictable fluctuations in the crane’s task
performance. Therefore, to our knowledge, such a framework that can optimize
control policies of an actual garbage crane handling inhomogeneous waste has not
been established so far.

The objective of this study is to develop a framework that can optimize control
policies of a waste crane at a waste incineration plant through an autonomous
trial and error manner based on a sample-efficient black-box optimization scheme
so-called Bayesian optimization (BO) [17, 81, 82]. Although conventional BO al-
gorithms utilize standard Gaussian process regression to learn a surrogate model
of task performance from data samples [81], however, it is sensitive to outliers in-
evitable in waste cranes, and its performance may deteriorate significantly. There-
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fore, our framework employs a novel BO algorithm, Multi-Task Robust Bayesian
Optimization (MTRBO). The MTRBO has the following characteristics: (1) out-
lier robustness against garbage inhomogeneity and (2) sample reuse from previ-
ously solved tasks to enhance the sample efficiency further. To investigate our
framework’s effectiveness, we conducted experiments on garbage-scattering tasks
with (i) a robot waste crane with pseudo-garbage and (ii) an actual waste crane at
a waste incineration plant. Experimental results demonstrate that our MTRBO
framework robustly optimized the control policies of the garbage cranes, even
with a significantly reduced number of data under the influence of garbage inho-
mogeneity.

The following are the contributions of this chapter

1. Proposed a control policy optimization framework for a waste crane;

2. Derived the MTRBO algorithm based on MTRGP with variational Bayesian
inference;

3. Verified its effectiveness through experiments with both a robot waste crane
and an actual waste crane.

5.2. Related Work
Black-box optimization-based policy search has been proposed as a data-efficient
policy learning method. It is possible to obtain the optimal policy with a small
number of trials by formulating policy parameter optimization as a black-box op-
timization problem. Especially, Bayesian optimization (BO) is applied to control
policy optimization of various robot tasks, for example, the gait of snake robot
in different environments [83], pick-up operation of care support robot using user
feedback [82], the gait of biped robot operation [17]. Various methods of ex-
tending BO to acquire control policy for the robot were proposed as follows, a
method of acquiring optimal and safe parameters by focusing on the sensitivity of
robot movement parameters [84], optimization of parameter by robot safety [85],
a method to efficiently obtain high-dimensional policy parameter by designing
the features of motion sequences from simulation data [86, 87]. In this chapter,
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we propose BO with robustness and multi-task for policy learning of waste cranes
worked in a weakly observable environment.

5.3. Multi-task Robust Bayesian Optimization
MTRBO uses Multi-Task Robust Gaussian Processes (MTRGP) to learn the eval-
uation function instead of standard Gaussian processes. We present a variational
Bayesian inference procedure that optimizes the parameters and the posterior
distribution of the MTRGP model alternatively in an EM-like scheme with trial
and error data. The resulted predictive mean and variance from MTRGP are
then used in the acquisition function of BO to form MTRBO.

5.3.1. MTRGP model

The critical ingredient of MTRBO is Multi-Task Robust Gaussian Process re-
gression (MTRGP), which is a novel combination of robust Gaussian process
regression [23] with multi-task Gaussian process regression [88,89].

Outlier Robustness To robustly learn the evaluation functions for the outliers
caused by garbage inhomogeneity, MTRGP uses student-t distribution [8], as the
likelihood function instead of typical Gaussian distribution. Student-t distribu-
tion has heavier tails than Gaussian distribution, and the distribution means are
robust to outliers. The student-t likelihood function is represented as follows:

p(yn | fn) = St(yn | fn, a, b)

= ba

Γ(a)
√

2π

(
b + (yn − fn)2

2

)−a−1/2

Γ(a + 1/2), (5.1)

where Γ(·) is gamma function, a and b are parameters of student-t distribution.

Sample Reuse Mechanism MTRGP incorporates a multi-task GP (MTGP)
model [88] that enables efficient learning of the evaluation function of the current
task by reusing the data of previously optimized M−1 tasks. MTRGP treats pre-
viously optimized task data by associating latent task labels tm. t1 indicates the
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current task label, and the others t2, · · · , tM indicate reused task labels. MTRGP
learns evaluation functions which are modeled as ym

n = f(wm
n , tm) + εn where ym

n

is m-th task’s evaluation value that corresponds to policy parameter wm
n and tm is

task label of m-th task. We assume the following GP prior to the latent function
fmulti = [f 1

1 , · · · , fm
n , · · · , fM

N ]T , fm
n = f(wm

n , tm) using the evaluated parameters
wmulti = [w1

1, · · · , wm
n , · · · , wM

N ]T and the task labels l = [t1, · · · , tM ]T :

p(fmulti | wmulti, l) = N (fmulti | 0, Kmulti), (5.2)

where Kmulti is multi-task kernel gram matrix as [Kmulti]ij = kmulti((wm
i , tm), (wm′

j , tm′)),
kmulti(·, ·) is the multi-task kernel function. The multi-task kernel function is de-
fined as follow [88]:

kmulti((wm
i , tm), (wm′

j , tm′)) = k(wm
i , wm′

j ) kt(tm, tm′), (5.3)

where kt(·, ·) is a task kernel function that calculates the similarity between each
task defined as: kt(tm, tm′) = [Kt]mm′ , where, Kt is a kernel gram matrix between
tasks. Kt must be a positive semi-definite matrix for the task kernel function
kt(·, ·) to be a proper kernel function that calculates inner product of associated
features based on task labels implicitly. A matrix decomposed Kt by Cholesky
decomposition is defined as a task kernel parameter θt [88].

5.3.2. Model Training Procedure

To learn the MTRGP model from the data, we apply variational Bayesian infer-
ence. To make it tractable, we utilize the scale-mixture representation of student-t
distribution [23]:

St(ym
n | fm

n ) =
∫

p(ym
n | fm

n , τn)p(τn) dτn, (5.4)

p(ym
n | fm

n , τn) = N (ym
n | fn, τ−1

n ), (5.5)
p(τn) = Gam(τn | a, b), (5.6)

where τn is the precision of the Gaussian distribution for the n-th data, indi-
cating the reliability of the data, and a and b are the parameters of the gamma
distribution.
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Then, we follow the standard variational Bayesian inference procedure [8]: a
lower bound of marginal likelihood Fv is derived by applying the Jensen’s in-
equality as follows:

log p(Ymulti | wmulti, l)

= log
∫

p(Ymulti | fmulti, T)p(fmulti | wmulti, l)p(T) dfmultidT

≥
∫

q(fmulti, T) log p(Ymulti, fmulti, T | wmulti, l)
q(fmulti, T)

dfmultidT

= Fv, (5.7)

where evaluation values Ymulti = [y1
1, · · · , ym

n , · · · , yM
N ]T , T = diag{τn}N

n=1 is a
diagonal matrix whose elements are τn, p(Ymulti | fmulti, T) = ∏N

n=1 p(ym
n | fm

n , τn)
is a likelihood, and p(T) = ∏N

n=1 p(τn) is a prior distribution of τn, q(fmulti, T)
is a variational distribution. We assume the independence of fmulti and T and
decompose the variational distribution q(fmulti, T) = q(fmulti)

∏N
n=1 q(τn) . The

variational distributions that maximize the lower bound Fv approximate the true
posterior distribution [8].

At the end, our learning procedure for MTRGP follows an EM-like scheme. In
E-step, the variational distributions are updated alternately. The update formula
for variational distribution q(fmulti) = N (fmulti | µf , Σf ) and q(τn) = Gam(τn |
an, bn) are described in (D.13) and (D.17) in Appendix. In M-step, input kernel
parameter θk, task kernel parameter θt, and the parameters of student-t distri-
bution, a and b, are optimized by gradient-based optimization with Fv, which is
described in (D.20), as the objective function.

5.3.3. Find next query parameter by MTRBO

The mean and variance functions of predictive distribution of MTRGP are cal-
culated using the posterior distribution:

p(f(w, t1) | w, t1, Ymulti, wmulti, l)
= N (f(w, t1) | µ(w, t1), σ2(w, t1)), (5.8)

µ(w, t1) = kT
wmulti,∗K

−1
multiµf , (5.9)

σ2(w, t1) = kmulti − kT
wm,∗(Kmulti + T̂−1)−1kwm,∗, (5.10)
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Algorithm 5.1: MTRBO
Input : Previously evaluated data: D = {wmulti, Ymulti, l}
Output: Next query parameter w′

1 initialization θk, θt, a, b

2 while Fv is not converged do
3 E-step: Optimize variational distribution q(f) and q(T) alternatively

(Appendix D.1)
4 M-step: Optimize model parameters θ∗k, θ∗t , a∗, b∗ ← arg max

θk,θt,a,b
Fv

(Appendix D.2)
5 end
6 Find next query parameter by w′ ← arg max

w
a(w)

where kmulti = kmulti((w, t1), (w, t1)) is a kernel value of the input of predictive
distribution, kwm,∗ is a kernel vector as [kwm,∗]i = kmulti((wm

i , tm)(w, t1)), T̂ =
Eq[T] is the expected value by variational distribution. We determine the next
parameter to evaluate by UCB (2.17) using mean function µ(w, t1) and variance
function σ2(w, t1). The algorithm 5.1summarizes the detailed process of how to
find the next query parameter by MTRBO.

5.4. Experiments
To investigate the effectiveness of our framework, we applied our framework to a
garbage-scattering task with a robot waste crane and an actual waste crane. The
experiments with an actual crane are limited to system downtime of the plant
at maintenance, so evaluation experiments cannot be performed multiple times.
To evaluate the effectiveness of the proposed method with a sufficient amount of
trials prior to that with the actual crane, we built a robot crane that mimics an
actual waste crane and conducted experiments each to verify the reproducibility
of the results.
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quences in scattering task

5.4.1. Garbage-Scattering Task

The daily work of human operators at waste incineration plants is garbage-
scattering tasks to homogenize garbage and stabilize the incineration process.
The waste crane homogenizes garbage in the pit by first grasping a sufficient
amount and dropping it at a constant pace (Fig. 5.1). We designed a finite
state machine policy as a control policy model for the garbage-scattering task
(Algorithm 5.2). Note that the policy’s behavior strongly depends on the moving
distance. Therefore, each task is conditioned by the targeted moving distance.
The policy parameter is evaluated using the transition of the grasped weight of
the bucket during the garbage-scattering task. We evaluated the policy param-
eter with a normalized sequence of grasped weight m(w) observed by a weight
sensor in one scattering of garbage. Evaluation function f is designed using root
mean square (RMS) between a sequence of grasped weight m(w) and an ideal

70



Algorithm 5.2: State-machine policy for garbage-scattering task: tclose

indicates the time that policy is in a close state and wopen indicates the
weight of fallen waste when the policy is in an open state. v is the rating
velocity of the bucket’s actuator.
Input: Policy parameter: w = {w1, w2}

1 state = “open”
2 while now scattering do
3 if state == “open” then
4 Set bucket’s actuator velocity v to continue opening up to the limit
5 if w1 < wopen then
6 state = “close”
7 end
8 else if state == “close” then
9 Set bucket’s actuator velocity −v to continue closing up to the limit

10 if w2 < tclose then
11 state = “open”
12 end
13 end
14 end

sequence of grasped weight mI (Fig. 5.2):

f(w) = p− q × RMS(m(w)−mI), (5.11)

where we set p = 5 and q = 10 in subsequent experiments. Due to garbage’s
inhomogeneity, the sequence of grasped weight m(w) may vary considerably even
with identical parameters and conditions (i.e., scattering distance and garbage
weight), causing outliers in evaluation values.

5.4.2. Policy Optimization with Robot Waste Crane

Robot Waste Crane

We developed a robot waste crane system (Fig. 5.3 (a)) to verify our proposed
framework. The crane moves using a robot manipulator (UR5), measures weight
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Figure 5.3.: Robot waste crane

with a force sensor (Robotiq FT-300), and grasps garbage using a self-made
bucket with four servo motors (ROBOTIS AX-18A) and 3D printed pawls (Fig.
5.3 (b)). The bucket is suspended from the robot manipulator by a wire. Instead
of actual garbage, we used a mixture of shredded paper and rubber balls with an
18 mm diameter as pseudo-garbage with inhomogeneity.

Experimental Settings

We applied our framework to three garbage-scattering tasks with different dis-
tances: 20, 30, and 40 cm. The optimal parameter w∗ is acquired when the
next query parameter w′ converges to a point. Human operators executed the
task initialization, and we set the amount of pseudo-garbage in each grasp to
around 120 to 300 g based on existing garbage-scattering systems for the actual
waste crane. First, we experimented with a 30 cm scattering task and applied
BO and our framework without reuse to confirm the effectiveness of the robust-
ness. Second, we experimented with a 40 cm scattering task and applied our
framework to confirm the effectiveness of the data reuse by reusing the data from
the 30 cm task. Finally, we conducted a 20 cm task by reusing the data from
the previous two tasks. Each experiment was executed three times. We evaluate
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Figure 5.4.: Results of policy optimization with the robot waste crane. (a) Mean
and standard deviation of evaluation of ten executions by the optimal
policy learned by each method. (b) Mean and standard deviation of
the number of trials to optimize policy parameters by each method
in three experiments.

the performance of MTRBO by comparing the evaluation value of the optimized
parameters and the number of trials for the optimization with BO and MTRBO
without reuse. Moreover, we analyze the optimization process and the learned
kernel gram matrix of task kernel in detail through visualization to show the
effectiveness of robustness and sample-reuse of MTRBO.

Results

Our experimental results are summarized in Fig. 5.4. In the 30 cm scattering task,
BO and our framework obtained comparable high-evaluation policies. However, it
optimized the policy with fewer trials than BO. In the 40 cm task, our framework
further reduced the trials without degrading the performance and optimized the
policy by reusing the previous task data. With the 20 cm task, our framework
further reduced the trials without degrading the performance by reusing more
previous task data.

Figs. 5.5 and 5.6show the transition of the mean function in the optimization
with our framework without reuse and BO. By inferring the data’s reliability, our
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Figure 5.5.: Transition of mean function of our framework during 30 cm, garbage-

scattering. Marker × indicates detected outlier in data.

framework treats data with greatly different trends as outliers and optimizes the
parameter with fewer trials. Markers × in Fig. 5.5 indicate the outliers detected
by our framework when we considered the data with reliability Eq[τn] < 0.2 as
outliers. Our framework detected four outliers out of 22 points of sample data.
BO requires more trials for optimization since the target function becomes steeper
due to the effect of such outliers.

Fig. 5.7 shows the task kernel. In Fig. 5.7 (a), the non-diagonal elements
have high values, which suggest that the 40 cm task effectively reused the data
collected in the 30 cm task. This is consistent with the results in Fig. 5.4. A
similar trend was also observed in Fig. 5.7 (b).
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Figure 5.6.: Transition of mean function of GP in BO during experiment of 30
cm, garbage-scattering task.

Fig. 5.8 indicates garbage-scattering behaviors and sequences of the grasped
garbage weight using the initial and optimized policy for the 30 cm task by the
robot waste crane. Garbage scattering with the initial policy dropped almost
all the garbage at the beginning. On the other hand, the behaviors with the
optimized policy obtained a high evaluation by dropping the garbage three times.

In summary, all the experimental results with the robot waste crane demon-
strated the effectiveness of the outlier robustness and the sample-reuse of our
framework for waste crane policy optimization. Our framework efficiently ac-
quired a high-performance policy sample.
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Figure 5.7.: Learned task kernel function with robot waste crane: (a) Optimiza-

tion of 40 cm scattering task by reusing 30 cm task data. (b) Op-
timization of 20 cm scattering task by reusing 30 and 40 cm task
data.
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(c) Weight sequences in garbage-scattering task
Figure 5.8.: Garbage-scattering behavior for 30 cm task with robot waste crane
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(a) A bucket (b) Garbage pit
Figure 5.9.: Actual waste crane

5.4.3. Policy Optimization with Actual Waste Crane

Actual Waste Crane

We experimented with a waste crane from an operational waste incineration plant
in a city in Japan. Fig. 5.9 shows the plant’s pit and the bucket. The crane’s
rated load is 2.45 t. The bucket has four hydraulically driven pawls that can
be opened/closed or stopped. The operator can observe the hoist’s position, the
bucket’s height, and the weight of the garbage grabbed by the bucket.

Experimental Settings

We applied our framework to three garbage-scattering tasks with different dis-
tances: 5, 7, and 10 m. An automatic control system executed the task initializa-
tion and grasps actual garbage in an amount to around 1.05 to 2.35 t. First, we
experimented with a 5 m scattering task and applied BO and our framework with-
out reuse to confirm the effectiveness of its robustness. Second, we experimented
with a 10 m task and applied our framework to confirm the effectiveness of the
data reuse by reusing the 7 m data. Finally, we applied our framework to the 5
m task by reusing the previous data of the two tasks. In the actual waste crane
experiments, each experiment was executed one time due to limitation to system
downtime of the plant at maintenance. We evaluate the performance of MTRBO
as in the experiment with the robot waste crane. We compare the performance
of the optimized policy with the performance of the operator by t-test.
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Figure 5.10.: Results of policy optimization with the actual waste crane. (a) Mean

and standard deviation of evaluation of the optimal policy learned
by each method. Learned policy optimized by BO-based method
executed the task 10 times for evaluation. The existing system and
human operator executed the task 38 and 25 times, respectively. (b)
Mean and standard deviation of the number of trials to optimize
policy parameters by each method in one experiment.

Results

Fig. 5.10 summarizes all the experiments with moving distances of 5, 7, and
10 m using the actual waste crane by BO and our framework without reuse.
Even in experiments using the actual waste crane, our framework optimized the
policies with fewer trials than BO. Our framework without reuse detected two
outliers out of 25 points of 7 m sample data when we considered the data with
reliability Eq[τn] < 0.2 as outliers. In addition, the optimized policy acquired by
our framework obtained a higher evaluation value than the existing systems used
in the waste incineration plant. By verifying the evaluation value of the garbage-
scattering behavior by the operator and the optimized policy acquired by our
framework by the paired t-test, no significant difference was found (p = 0.174 >

0.05). As a result of verifying the evaluation value of the garbage-scattering
behavior by the existing system and the policy acquired by our framework by the
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Figure 5.11.: Learned task kernel function with actual waste crane: (a) Opti-
mization of 10 m scattering task by reusing 7 m task data. (b)
Optimization of 5 m scattering task by reusing 7 and 10 m task
data.

paired t-test, a significant difference was recognized (p = 0.0212 < 0.05).
We conducted two experiments that optimized a policy by reusing data with

different moving distances and compared the effectiveness of reuse, although the
moving distances of the garbage-scattering task were different. As a result of the
garbage-scattering task with a 10 m moving distance, the number of trials was
reduced, as was the optimized policy’s performance. As a result of the garbage-
scattering task with a 5 m moving distance, the number of trials was not reduced,
but the optimized policy’s performance was high. Fig. 5.11 shows a task kernel
that indicates the similarity of each task learned by our framework with reuse,
which is also consistent with the trends in the number of trials (Fig. 5.10).

Fig. 5.12 indicates the garbage-scattering behaviors and sequences of the
grasped garbage weight using the initial and optimized policy for the 7 m task
by the actual waste crane. Almost all the garbage was dropped from the crane’s
grasp at the start of the task. On the other hand, the optimized policy obtained
a high evaluation by effectively dropping the garbage three times.

Our experimental results with an actual waste crane demonstrated that our
framework sample efficiently and robustly acquired a human-level policy for garbage-
scattering tasks by an actual waste crane task.
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Figure 5.12.: Garbage-scattering behavior for 7 m task with actual waste crane

5.5. Summary of Chapter 5
We proposed a framework of policy optimization for a waste crane from trial and
error. Our framework employed MTRBO, whose characteristics include outlier
robustness and sample reuse. Our framework’s effectiveness was demonstrated by
applying its proposed framework to a garbage-scattering task by a robot waste
crane. Our experiments optimized the policy for garbage-scattering tasks with an
actual waste crane and confirmed that our proposed framework learned a policy
with the same performance as a human operator.
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6. Discussion

This dissertation proposed GP-PS methods that are introduced latent variables
to capture the complex mapping between states and optimal actions caused by
environmental uncertainties in real-world tasks. Each proposed method is intro-
duced latent variables to the policy model and derives the learning law of policies
based on variable inference. The effectiveness of the proposed methods has been
verified in simulation and robot experiments. In this chapter, we will discuss the
proposed methods and their limitations.

6.1. Variational Policy Search for Multiple
Optimal Actions

In chapter 3, multimodal SGP-PS and mode-seeking SGP-PS are derived. A
learned policy by multimodal SGP-PS earned a higher return in simulations.
However, it needs to decide the number of components affecting the performance
before learning. Therefore, we could select a suitable one from the multimodal
SGP-PS and the mode-seeking SGP-PS depending on whether the number of mul-
timodalities of the function is known. The multimodal SGP-PS needs to decide
the number of components since we use overlapping mixtures of GPs inspired by
previous work [21]. We can also infer the number of components by incorporating
the stick-breaking Dirichlet process model into the policy model [90].

In a mode-seeking SGP-PS, if there is a clear difference in the size of data
among multiple optimal actions in the training data, learning tends to proceed
faster since it fits the model. If the multiple optimal actions are observed almost
evenly, the mode-seeking SGP-PS may struggle to capture one among them; in
that case, the multimodal SGP-PS tends to be faster and more stable than the
mode-seeking SGP-PS. Our experimental results may support the above discus-
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sion: For the table-sweeping task with more than three objects, the multimodal
SGP-PS converged learning faster than the mode-seeking SGP-PS. For the table-
sweeping task with one or two objects, the mode-seeking SGP-PS outperformed
the multimodal SGP-PS.

6.2. Gaussian Process Self-triggered Policy
Search for Weakly Observable Environment

In chapter 4, GPSTPS is derived and applied to a garbage-grasping-scattering
task by simulation and a robotic waste crane and confirmed that it effectively
incorporated the action execution duration. The limitation of GPSTPS is that
such control strategies as grasping and scattering must be designed in advance.
Applying STPGPS to more practical tasks may require multiple control strategies.
The action policy should employ a multi-class GP classification model [91]. If the
applied task has multimodal state transitions, its policy model can be extended
by multimodality or robustness [7].

A future task is indispensable that experimentally verifies the possibility of
applications with an actual waste crane. We must also verify the effectiveness of
actual cranes/buckets in other weakly observable environments.

6.3. Multi-task Robust Bayesian Optimization
for Unpredictable Fluctuation of
Performance

In chapter 5, MTRBO is proposed to optimize control policy robustly and effi-
ciently against unpredictable return fluctuation. The limitation of MTRBO is
pre-design a parametric and task-specific policy model. The design of the pol-
icy model also affects the safety of the task execution by the policy. It may be
essential to guarantee the safety of task execution by adding constraints when
determining the next query parameter [92,93].

In this dissertation, verification is performed only with two-dimensional policy
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parameters, but optimization efficiency may decrease when the policy parameters
become higher-dimensional. In order to apply this method to more challenging
tasks, it is necessary to extend it for optimizing high-dimensional parameters
[94,95].

6.4. Bias in Domain Knowledge
This dissertation has proposed a policy learning method that introduces latent
variables as domain knowledge for the uncertainty of the environment of real-
world tasks. Generally, domain knowledge is often biased and can adversely
affect the learning of control policies. Since the proposed method assumes the
prior distribution of latent variables and calculates the posterior distribution in
the framework of Bayesian estimation, If the prior distribution is inappropriate
for the task, the influence of the prior distribution decreases as the training data
increases. Also, If the latent variable is improperly designed, posterior distribu-
tions that have little effect on learning are learned. However, the introduction of
latent variables has the disadvantage of increasing the computational complexity
of learning and prediction.

6.5. Open Issues

6.5.1. GP-based Policy Model

Our methods can compute the predictive distribution to determine action at any
state since they employ GP-based policy models. Our methods explore state-
action space by sampling the action using the predictive distribution, i.e., on-
policy learning. In the multimodal SGP-PS, which has multiple components, a
softmax function with the uncertainties of all the predictive distributions com-
putes the probability of the component selection.

Although GP provides several advantages for our method, it has limitations in
computational complexity. For tasks that require handling huge amounts of data,
our methods require much computational complexity of learning and predictive
distribution. Perhaps our methods are unsuitable for long-horizon tasks.
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6.5.2. Kernel Function

In this dissertation, we have used only the Gaussian kernel function, one of the
popular kernel functions. This kernel function is used widely domain, however,
the Gaussian kernel function cannot handle raw images often used as input in
reinforcement learning. In order to handle various data such as images as input of
GP policies, it is necessary to consider the use of kernel functions other than the
Gaussian kernel. As one of the solutions, a kernel function that incorporates the
structure of convolutional neural networks and deep learning technology special-
izing in image processing was proposed [96]. Also, a method using deep learning
as a kernel function has also been proposed [97,98].

6.5.3. Designing safe control strategies and parametric
policy model

Our proposed methods, GPST-PS and MTRBO, need task-specific and pre-
designed control strategies or parametric policy models. Machines operated by
humans daily, such as garbage cranes, can easily collect demonstration data. Since
human operators can operate machines and robots safely, control strategies and
parametric policy models can be designed to guarantee safety into consideration
by using operation data. Imitation learning method with option proposed in [71]
and motion segmentation methods [99, 100] is helpful to learn control strategies
using demonstration data. In addition, it may be possible to design a parametric
policy model suitable for the task by extracting the features from the demonstra-
tion data. They may be helpful for a wide range of applications.
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7. Conclusion

In this dissertation, we aimed to automate real-world tasks by applying a non-
parametric policy search method and proposed a novel policy search method
that extends the policy model with latent variables to solve the problems of the
conventional policy search method. Especially, we proposed methods focusing on
1) a reward function that appears multiple optimal actions for real-world tasks
and 2) observations from an environment that contain little information about
the state.

For the problem of multiple optimal actions, we proposed a multimodal SGP-
PS and a mode-seeking SGP-PS that have different algorithm design concepts.
The multimodal SGP-PS employs a multimodal policy prior inspired by OMGP to
learn a policy that can capture multiple optimal actions. The mode-seeking SGP-
PS learns a unimodal policy that captures one optimal action by employing an
outlier-robust likelihood function. We derived the updating laws of both methods
based on variational Bayesian inference.

To investigate the performance of multimodal SGP-PS and mode-seeking SGP-
PS, we conducted two manipulation tasks: 1) a hand-posture adjustment task
and 2) a table-sweeping task. We confirmed that our methods could learn suitable
policies in an environment with multiple optimal actions.

For a little information of observation, we aimed to automate machines in
weakly observable environments in an industrial workplace and proposed GP-
STPS that can learn both action and duration policies to repeatedly perform the
same action to overcome uncertainty. Its effectiveness was experimentally verified
with simulations and a robotic waste crane system.

Finally, we proposed a framework of policy learning for an actual waste crane
from trial and error. Our framework employed MTRBO, whose characteristics
include outlier robustness and sample reuse. Our framework’s effectiveness was
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demonstrated by applying its proposed framework to a garbage-scattering task by
a robot waste crane. Our experiments optimized the policy for garbage-scattering
tasks with an actual waste crane. They confirmed that our proposed framework
learned a policy with the same performance as a human operator. Future work
will investigate the effectiveness of our framework in other tasks with an actual
waste crane.
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Appendix

A. Multimodal SGP-PS

A.1. Derivation of analytical solutions

The analytical solution of variational distribution q(f̄ (m)) is obtained by solving
the following equation:

log q(f (m)) =
∫ {

log p(ã | {f (m)}, Z)p({f (m) | {f̄ (m)})p(Z) ·

p({f̄ (m)})
}

q({f̄ (i\m)})q(Z)d{f̄ (i\m)}dZ + C (A.1)

Here {f̄ (i\m)} indicates all the pseudo outputs without f̄ (m). The following is the
analytical solution of q(f̄ (m)):

q(f̄ (m)) = N (f̄ (m) | µ(m), Σ(m)),

µ(m) = K(m)
s̄ Q(m)−1

L K(m)
s̄,s WB(m)Wa,

Σ(m) = K(m)
s̄ Q(m)−1

L K(m)
s̄ ,

Q(m)
L = K(m)

s̄ + K(m)
s̄,s WB(m)WK(m)

s,s̄ , (A.2)

B(m) = diag
{

Π̂nm

λ
(m)
n + σ2

}
. (A.3)

The analytical solution of variational distribution q(Z) is obtained by solving
the following equation:

log q(Z) =
∫ {

log p(ã | {f (m)}, Z)p({f̄ (m) | f (m))p(Z) ·

p({f̄ (m)})
}

q({f̄ (m)})d{f̄ (m)}+ C. (A.4)
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The following is the analytical solution of q(Z):

q(Z) =
N,M∏

n=1,m=1
Π̂Znm

nm , (A.5)

Π̂nm = Πnm exp(bnm),

bnm = −1
2

log 2π(λ(m)
n + σ2)−

(
Wnnan −WnnK(m)

sn,s̄K
(m)−1

s̄ µ(m)
)2

2(λ(m)
n + σ2)

−

(
WnnK(m)

sn,s̄Q
(m)−1

L K(m)
s̄,sn

Wnn

)
2(λ(m)

n + σ2)
.

The lower bound of the marginal likelihood is also obtained analytically:

log J ′
L =

M∑
m=1
−1

2
aT W

(
B(m)−1 + WK(m)

s,s̄ K(m)−1

s̄ K(m)
s̄,s W

)−1
Wa

+
N,M∑

n=1,m=1
log[R(m)]nn −KL(q(Z) || p(Z))

− 1
2

N,M∑
n=1,m=1

[Π̂]nm log 2π(λ(m)
n + σ2), (A.6)

R(m) = chol
(
I + B(m)−1/2WK(m)

s,s̄ K(m)−1

s̄ K(m)
s̄,s WB(m)−1/2)

. (A.7)

A.2. Predictive distribution

Compute the predictive distribution using the variational distribution instead of
the true posterior distribution:

p(a(m)
∗ | s∗) ≈

∫
p(a(m)

∗ | f̄ (m)s∗)q(f̄ (m))df̄ (m)

= N
(
a(m)

∗ | µ(m)
∗ , σ(m)

∗

)
, (A.8)

µ(m)
∗ = K(m)

s∗,s̄Q
(m)−1

L K(m)
s̄,s WB(m)Wa,

σ(m)
∗ = K(m)

s∗ −K(m)
s∗,s̄(K

(m)−1

s̄ −Q(m)−1

L )K(m)
s̄,s∗ + σ2.

88



B. Mode-seeking SGP-PS

B.1. Derivation of analytical solutions

The analytical solution of variational distribution q(τn) is obtained by solving the
following equation:

log q(τn) =
∫ {

log p(ã | f , T)p(f | f̄)p(T)p(f̄)
}
·

q({τi\n})q(f̄)d{τi\n}df̄ + C, (B.9)

where {τi\n} indicates all precision variables without τn. The following is the
analytical solution of q(τn):

q(τn) = Gam(τn | an, bn), (B.10)

an = ν + 1
2

,

bn = W2
nn(an −Anµ)2

2
+ tr(AT

n W2
nnAnC)

2

+ W2
nnλn + νσ2

2
,

A = Ks,s̄K−1
s̄ .

The analytical solution of variational distribution q(f̄) is obtained by solving
the following equation:

q(f̄) = N (f̄ | µ, C), (B.11)
µ = Ks̄Σ−1Ks̄,sWT̂Wa,

C = Ks̄Σ−1Ks̄,

Σ = Ks̄,sWT̂WKs,s̄ + Ks̄,

T̂ = diag{an/bn}.

The lower bound of the marginal likelihood is also obtained analytically:

log J ′
L =− N

2
log 2π − 1

2
log |T̂−1|

− 1
2

(a −Aµ)T WT̂W(a −Aµ)− 1
2

tr(AT WT̂WAC)

−KL(q(f̄) || p(f̄))−KL(q(T) || p(T))− 1
2

tr(WT̂WΛ).
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B.2. Predictive distribution

Compute the predictive distribution using the variational distribution instead of
the true posterior distribution:

p(a∗ | s∗) ≈
∫

p(a∗ | f , τ)p(f | f̄)q(f̄)q(τ)dfdf̄dτ

= N (y∗ | µ∗, σ2
∗), (B.12)

µ∗ = Ks∗,s̄Σ−1Ks̄,sWT̂Wa,

σ2
∗ = K∗ −Ks∗,s̄K−1

s̄ Ks̄,s∗ + Ks∗,s̄Σ−1Ks̄,s∗ + σ2.

C. Hyperparameters of SAC and TRPO in the
table-sweeping task

This section describes the hyperparameters of SAC and TRPO.

Table C.1.: SAC hyperparameters
Parameter Value
optimizer Adam

learning rate 3× 10−4

discount (γ) 0.99
replay buffer size 106

number of
hidden layers

2

number of
hidden units per layer

128

number of
sample per minibatch

256

nonlinearity ReLU

Table C.2.: TRPO hyperparameters
Parameter Value
optimizer Adam

learning rate 1× 10−3

discount (γ) 0.995
replay buffer size 106

number of
hidden layers

2

number of
hidden units per layer

64

number of
sample per minibatch

256

nonlinearity Tanh
Stepsize (KL) 0.01
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D. Multi-task Robust Bayesian Optimization

D.1. E-step: Optimize Variational Distributions

E-step optimizes variational distributions q(fmulti) and q(τn) which maximize the
lower bound Fv by updating the variational distribution alternatively. Update
formula of variational distribution q(fmulti) is follow:

q(fmulti) = N (fmulti | µf , Σf ), (D.13)
µf = Σf T̂Ymulti, (D.14)
Σf = (K−1

multi + T̂)−1, (D.15)
T̂ = diag{a1/b1, · · · , an/bn}. (D.16)

Update formula of variational distribution q(τn) is follow:

q(τn) = Gam(τn | an, bn), (D.17)
an = a + 1/2, (D.18)

bn = b + 1
2
(
(yn − [µf ]n)2 − [Σf ]nn

)
. (D.19)

D.2. M-step: Optimize Model Parameters

M-step optimizes model distributions which maximize the lower bound Fv. The
lower bound of the marginal likelihood is obtained analytically:

Fv = −N

2
log 2π − 1

2
log

∣∣∣T̂−1
∣∣∣− 1

2
(Ymulti − µf )T T̂(Ymulti − µf )

− 1
2

Tr(T̂Σf )−
N∑

n=1
KL(q(τn) || p(τn))−KL(q(fmulti) || p(fmulti | wmulti, l)),

(D.20)

where KL(· || ·) is a Kullback-Leibler divergence.
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E. Gaussian Process Self-triggered Policy
Search

The predictive distribution of action policy and duration policy from any state
s∗ by the GPSTPS is shown as:

p(a∗ | s∗) =
∫

p(a∗ | f∗)p(f∗ | s∗, f̄)p(f̄ | ã) df∗df̄

≈
∫

p(a∗ | f∗)p(f∗ | s∗, f̄)q(f̄) df∗df̄

= N (a∗ | µ̂f , σ̂2
f ), (E.21)

µ̂f = Ks∗,s̄Q−1Ks̄,sWσ2
fIW(a −mf1) + mf , (E.22)

σ̂2
f = Ks∗ −Ks∗,s̄(K−1

s̄ −Q−1
f )Ks̄,s∗ + σ2

g , (E.23)
Qf = KS̄,SWσ2

fIWKS,S̄ + KS̄, (E.24)

p(τ∗ | s∗) =
∫

p(τ∗ | g∗)p(g∗ | ḡ)p(ḡ | τ̃ ) dg∗dḡ

≈
∫

p(τ∗ | g∗)p(g∗ | ḡ)q(ḡ) dg∗dḡ

= N (τ∗ | µ̂g, σ̂2
g), (E.25)

µ̂g = Ks∗,s̄Q−1Ks̄,sWσ2
gIW(τ −mg1) + mg, (E.26)

σ̂2
g = Ks∗ −Ks∗,s̄(K−1

s̄ −Q−1
g )Ks̄,s∗ + σ2

g , (E.27)
Qg = KS̄,SWσ2

gIWKS,S̄ + KS̄. (E.28)
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