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Controllable neural conversation model
considering conversation structure and context∗

Seiya Kawano

Abstract

Neural conversation models are end-to-end schemes that generate system re-
sponses from user utterances. However, it is challenging to control their response
generation. A controllable model based on conditional neural conversation mod-
els, which control response generation by conditioning the network on specific
intentions considering conversation structures and conversation phenomena, is a
promising solution to this problem. This dissertation addresses three problems
of conditional neural conversation models.

The first study examines the problem of controllability in conditional neu-
ral conversation models. This study considers a conditional neural conversation
model where model responses can be controlled by specific intentions considering
the conversation structure, such as dialogue acts. By having intentions consid-
ering the conversation structure, the system can effectively generate consistent
responses towards a dialogue goal. However, current conditional neural conversa-
tion models do not sufficiently guarantee to generate high-quality responses that
represent the given intention. Therefore, this study proposes a conditional neu-
ral conversation model with a new label-aware objective function that promotes
generating highly discriminative responses based on the given dialogue acts while
maintaining natural responses. Experimental results confirmed that the proposed
model generated promising responses in terms of controllability and naturalness
compared with those generated from strong conventional models.

∗Doctoral Dissertation, Graduate School of Science and Technology, Nara Institute of Science
and Technology, September 21, 2021.
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The second study incorporates entrainment, an attractive human phenomenon,
into neural conversation models. Entrainment is a well-known conversational phe-
nomenon where conversation participants mutually synchronize about various as-
pects, and is thought to be closely related to human-human conversation quality.
Relationships between conversation quality and entrainment were analyzed us-
ing an automatic entrainment evaluation measure, and entrainment was shown
to improve participant satisfaction in human-human and human-machine conver-
sations. Consequently, a conditional neural conversation model is proposed that
can control response generation using a given entrainment degree as the intention.
Experimental results showed that the proposed entrainable neural conversation
model generated comparable or more natural responses than conventional models,
and satisfactorily controlled generated response entrainment.

The third study examined how to automatically understand how intentions are
expressed and contribute in practical conversation situations. This study focused
on a multi-floor dialogue, i.e., a dialogue that spans multiple conversational floors.
Expanding the research scope to multi-floor dialogues will contribute to build-
ing autonomous dialogue robots capable of solving real-world problems through
multi-floor dialogues. The initial proposed baseline model automatically identi-
fies multi-floor dialogues in an object exploration task in a house. The proposed
model’s performance was experimentally evaluated, and its limitations and future
directions are discussed.

Keywords:

Neural conversation model, conditional response generation, dialogue act, en-
trainment, multi-floor dialogue, dialogue structure parsing
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会話構造と文脈を意識した
制御可能なニューラル会話モデルに関する研究 ∗

河野 誠也

内容梗概

ニューラル会話モデルは、ユーザーの発話からシステムの応答を生成するエン
ドツーエンドモデルとして知られている。しかし、その応答生成を制御すること
は困難を伴う。この問題を解決するためには、会話構造や会話現象を考慮した特
定の意図を条件として応答生成を制御する条件付きニューラル会話モデルの枠組
みが有望である。この論文では、条件付きニューラル会話モデルの 3つの問題に
着目した研究を行った。
一つ目の研究では、条件付きニューラル会話モデルにおける可制御性の問題に

着目した。本研究では、会話構造を考慮した特定の意図によって、ニューラル会
話モデルの応答を制御する条件付きニューラル会話モデルに焦点を当てる。会話
構造を考慮した意図を持つことで、条件付きニューラル会話モデルは会話のゴー
ルに向けて一貫した応答を効果的に生成することが期待できる。しかし、既存の
条件付きニューラル会話モデルでは、与えた意図を適切に表現するような応答を
生成することを十分に保証しない。本研究では、会話構造を考慮した意図として
対話行為に着目し、応答の意図の識別性を考慮した目的関数を備えた条件付き
ニューラル会話モデルを提案した。提案手法は、生成された応答の自然さを維持
しつつ、対話行為の識別性が高い応答の生成を促進する。評価実験の結果、提案
モデルは、従来の強力なモデルと比較して制御性と自然性の点で有望な応答を生
成できることを示した。
二つ目の研究では、人間が行う魅力的な現象であるエントレインメントをニュー

ラル会話モデルに取り入れる方法について検討した。エントレインメントは、会
話における話者間のふるまいが互いに同期する現象であり、人対人における会話
の質と密接に関連することが示唆されている。本研究では、まず、エントレイン
メントを評価するための自動評価指標を用いて、雑談会話における会話の質とエ

∗奈良先端科学技術大学院大学 先端科学技術研究科 博士論文, 2021年 9月 21日.

iii



ントレインメントとの関連を分析した。分析の結果、エントレインメントは、人
対人、人対機械の会話における、会話参加者の満足度を向上させる可能性がある
ということを示した。次に、エントレインメント評価指標を用いた制御要素によっ
て、応答を制御可能な条件付きニューラル会話モデルを提案した。提案モデルは、
生成文におけるエントレインメントの程度を適切に制御するために強化学習によ
る最適化を適用した。評価実験の結果、提案モデルは、通常のニューラル会話モ
デルと比較して、応答のエントレインメント度合いを適切に制御できているだけ
でなく、エントレインメントを考慮することでユーザのシステムに対する満足度
を向上できることを示した。
三つ目の研究では、ニューラル会話モデルを含む対話システムが取り扱う対話

の問題を拡張した。従来の対話システムは、対話が単一のフロアを持つ場合を想
定しており、対話が複数のフロアを持つような場合を想定していない。しかしな
がら、ある対話で発生した意図を別の対話に伝達し、複数の人間が協働して、共
通の目標に従って問題を解決するような状況は我々にとって非常に一般的である。
複数フロアの対話に研究の視野を広げることは、複数の人間と会話を通じて、実
世界の問題を解決するような自律型ロボットを構築することに寄与すると考えら
れる。本研究では、最初の調査として、家屋内における物体調査タスクにおける
マルチフロアの対話を対象に、複数フロアの対話がどのような構造を持つのかを
自動解析するベースラインモデルの提案を行った。評価実験では、提案モデルの
会話構造の解析性能をフロア構造に着目したいくつかの観点から評価し、その限
界と研究の将来の方向性について議論した。

キーワード
ニューラル会話モデル, 条件付き応答生成, 対話行為, エントレインメント, 複数
フロアの対話, 対話構造解析
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1 Introduction

1.1 Background
Language is the mark of both humanity and sentience, and conversation, or di-
alogue, is the most fundamental and specially privileged arena of language [Ju-
rafsky and Martin, 2008]. In the Oxford dictionary, a conversation is defined as
“A talk, especially an informal one, between two or more people, in which news
and ideas are exchanged” Dialogue is defined as “a conversation between two or
more people as a feature of a book, play, or film” or “a discussion between two
or more people or groups, especially one directed towards exploration of a par-
ticular subject or resolution of a problem”. However, dialogue and conversation
are often used interchangeably. People converse for various purposes, including
information exchange, decision-making, and building and maintaining social re-
lationships. A conversation is not just a method for communicating within small
groups; the intentions of individual conversations are intertwined in a compli-
cated fashion and can be organized into larger social groups, such as companies,
armies, and nations. In other words, society strongly depends on many activities
based on conversation. If machines become able to converse with people, they
will contribute to activities based on conversation and thereby enrich societies.

In recent years, advances in speech processing and natural language processing
technology have led to the rapid development of the dialogue system, also called
the conversational agent, which is intended to converse with humans [Weizen-
baum, 1966,Bobrow et al., 1977, Jokinen and McTear, 2009]. Dialogue systems
are composed of user interfaces that accept user utterances as input and gener-
ate responses as output. Many types of dialogue systems have been developed
over the past 50 years, some of which are used worldwide. For example, fa-
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miliar personal assistants such as Siri∗ and Cortana† are pre-installed on many
smartphones and laptops. An increasing number of dialogue systems are avail-
able from other services, such as help desks, airplane ticket booking, and travel
guides [Adam et al., 2020]. Dialogue systems have the potential to replace some
services provided by human workers.

The common direction of dialogue system research is to imitate human conver-
sation. Conversation between humans is an intricate and complex joint activity.
Thus, when we attempt to build a dialogue system that converses with humans,
it is important to understand the attributes of human conversation. The first
attributes to consider are the principles that humans use in conversation. As one
example, this question can be answered by referring to the cooperative princi-
ple, which describes how people achieve effective conversational communication
in common social situations [Grice, 1975, Davies, 2007]; that is, the cooperative
principle describes how listeners and speakers act cooperatively and mutually ac-
cept one another to be understood in a particular way. The cooperative principle
is divided into the following four conversational elements, as conceptualized in
Grice’s maxims:

1. Maxim of quality: Do not say what you believe is false. Do not say that
for which you lack adequate evidence.

2. Maxim of quantity: Make your contribution as informative as is required
(for the current purposes of the exchange). Do not make your contribution
more informative than is required.

3. Maxim of relation: Be relevant.

4. Maxim of manner: Avoid obscurity of expression. Avoid ambiguity. Be
brief (avoid unnecessary prolixity). Be orderly.

These maxims are designed to facilitate basic conversations in common social
situations. In a conversation, humans can follow Grice’s maxims and communi-
cate their intentions naturally, sometimes unconsciously, without being bound by
the literal meaning of words and thereby contribute to the conversation as much

∗https://www.apple.com/siri/
†https://www.microsoft.com/en-us/cortana
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as required. Building a dialogue system that does not violate the principles of
conversation that many humans follow, such as Grice’s maxims, provides a guide
for building a more human-like dialogue system.

The second attribute to consider is how an utterance’s intention is being ex-
pressed and how it contributes to a conversation. It is important to design a
scheme that elucidates how a conversation is structured and how it unfolds, for
realizing a human-like conversation in dialogue systems. In computational linguis-
tics, several studies attempted to represent conversations computationally from
the viewpoints of both semantic and conversation structure. Semantic structure
focuses on the relationship between the meaning of words in an utterance (sen-
tence), such as the predicate-argument structure [Fillmore, 1968]. Over the mean-
ing of words within an utterance, conversation structure focuses on the intentions
represented by the utterance and the relationship between series of intentions,
such as dialogue acts [Searle, 1965, Austin, 1975, Jurafsky, 1997] and discourse
structure [Mann and Thompson, 1988, Prasad and Bunt, 2015]. In particular,
conversation structures have traditionally been used to represent an intention of
action in dialogue systems. There were also attempts to measure human con-
versation phenomena such as emotional expression and entrainment, which are
consciously or unconsciously included in a conversation, and incorporate them as
intentions in dialogue systems [Ball and Breese, 2000, Levitan, 2013, Asai et al.,
2020,Levitan, 2020]. By building a dialogue system based on intention and that
is conscious of conversation structures and conversational phenomena, we can
observe how intentions are expressed and flow through conversations.

The third attribute to consider is how a dialogue system should behave after
observing user utterances associated with its conversation history. This attribute
relates to a central issue in dialogue systems research. Modular-based dialogue
systems, an evolution from frame-based and rule-based systems, are often used by
researchers [Oh and Rudnicky, 2000,Jurafsky and Martin, 2008,Ultes et al., 2017].
This framework has both a system intention and an internal state that abstracts
information about the conversation history with the user. The system updates
that internal state based on the user’s utterances, and based on the current
internal state, the system chooses an intention for the next action and generates
a response. Such pipeline architectures typically include three modules: language
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understanding, dialogue management, and language generation; each module is
built independently using statistical methods and rules. However, building these
models independently and on the basis of internal states requires considerable
effort.

In recent years, an end-to-end approach based on deep learning has been widely
used to construct various types of dialogue systems due to its powerful learning
performance [Vinyals and Le, 2015,Serban et al., 2016]. This approach is known
as the neural conversation model (NCM). NCMs are based on a sequence-to-
sequence model, which learns the mapping between the dialogue history and the
system response. Unlike traditional dialogue systems, NCMs are built using a
single neural network. Thus, they can reduce the cost of feature engineering and
system design compared to traditional systems. Several studies have reported
that NCMs can generate responses comparable to humans in chat-style dialogues
related to a limited situation [Zhang et al., 2020, Roller et al., 2020]. However,
if the system deals with a wide variety of topics or the system have unclear dia-
logue goals, the system will have difficulty generating consistent and appropriate
responses [Gunasekara et al., 2020].

There are also hybrid approaches that combine NCMs with modular-based
approaches, in which the response from the NCM is controlled based on the in-
tention provide by the dialogue model (dialogue manager or human heuristics)
and dialogue context [Balakrishnan et al., 2019, Dušek et al., 2018]. Unlike the
complete end-to-end NCM, such an approach divides the model into the gener-
ation and dialogue models, which determines the dialogue strategy or response
content. In other words, it borrows the idea of module-based approaches that
controlling response generation by specific intentions. In this dissertation, we
call such a hybrid generation approach, which has a response control function,
as controllable NCMs. Among them, those in which the generation network is
extended to accept the dialogue context and specific intentions as their inputs,
we call conditional NCMs. By introducing such an approach, developers can
focus on creating a qualified dialogue model independent of building a gener-
ation model. Furthermore, modeling a high-level decision-making model (such
as a dialogue manager or human heuristics) independent of response generation
may enable useful generalization and personalization for users. Such a hybrid ap-
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proach assures the quality of a neural conversation model. In other words, neural
conversation models with black-box parameters can be controlled by human de-
velopers. In addition, unlike normal NCMs that are entirely end-to-end driven,
the system has the potential to reproduce richer human conversations by leverag-
ing intentions that are carefully designed based on human empirical knowledge to
control response generation. However, there is still room for improvement in con-
ventional approaches when controlling response generation in conditional NCMs
based on specific intentions provided by the dialogue model [Dušek et al., 2018].

This dissertation focus on building controllable NCMs using external condi-
tions. We address three problems associated with constructing conditional NCMs
that are driven by specific intentions considering conversation structures and phe-
nomena: 1) the controllability of response generation, 2) the entrainment of re-
sponse generation, and 3) the understanding of how intentions are expressed and
contribute to conversations in practical situations, such as a multi-floor dialogue.
In the following sections, we first describe fundamental approaches to building
dialogue systems as well as their characteristics. Next, we discuss the three prob-
lems faced by current conditional NCMs. Finally, we summarize the approaches
and contributions of this dissertation to these problems.

1.2 Dialogue system architectures
We can divide dialogue systems into two categories depending on whether the
dialogues they handle assume an explicit goal. In a task-oriented system, the
system assumes explicit goals, such as a flight search or a tourism guide. It me-
diates access to databases in natural languages and proactively presents useful
information while incrementally recognizing the user’s intention through the dia-
logue. In a non-task-oriented system, the system does not assume explicit goals.
The system’s only role is to converse with users for enjoyment. There are also
open-domain dialogue systems that do not assume specific domains and tasks.
Next, we discuss how to construct the dialogue systems described above.
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1.2.1 Rule-based approach

The use of rules is a simple way to build dialogue systems [Weizenbaum, 1966,
Colby et al., 1972]. In general, user utterances are first evaluated based on pre-
defined rules such as keyword dictionaries and if-else conditions, among other
methods. In rule-based systems, the rule with the highest score is selected to
output a pre-prepared response associated with that rule, or a response is gen-
erated using a response template. One of the most famous rule-based dialogue
systems is ELIZA [Weizenbaum, 1966], which first retrieves keywords that appear
in the dialogue history from a hand-crafted dictionary. If a keyword matches, rules
are applied to manipulate and transform the user’s original utterance, which is
then displayed to the user. A few years after the development of ELIZA, another
dialogue system focused on clinical psychology; PARRY was developed to study
schizophrenia [Colby et al., 1972]. In addition to ELIZA-like rules, the PARRY
system included a model of its own mental state, with affect variables for the
agent’s levels of fear and anger; certain topics of conversation might lead PARRY
to become more angry or mistrustful [Jurafsky and Martin, 2008].

ELIZA-style systems [Weizenbaum, 1966, Colby et al., 1972] have been recog-
nized as an important milestone in the development of modern dialogue systems.
However, such simple rule-based systems rely on a pre-defined set of rules, and
as the system becomes more sophisticated, the number of these rules increases
rapidly. Furthermore, simple rule-based systems cannot generate meaningful re-
sponses and are only capable of very superficial conversations.

1.2.2 Frame-based approach

A frame-based system is a classical approach guided by frames that represent dif-
ferent levels of information in the conversation [Bobrow et al., 1977]. The frames
in conversation define the topics of conversation, and the relationships between
frames define the flow of conversation. For example, in a conversation about
booking an airline ticket, the frames include essential aspects “person,” “travel
date,” “destination,” and “time of flight”. The simplest frame-based systems are
finite state machines, which ask the user a series of pre-defined questions based on
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the frames. If the user provides an answer, the system moves on to the next ques-
tion; otherwise, the system ignores that user. Such systems rely on pre-defined
frames, ask the user to fill a slot in the frame, and complete the task when all slots
in the frame are filled. The limitation of frame-based systems is that generating
a response is entirely guided by the information provided by the slots. There is
no ability to determine the progress or state of the conversation; for example,
the system cannot identify whether the user has rejected a suggestion, asked a
question or whether the system now needs to give suggestions or ask questions. In
other words, it cannot account for the progress made so far and take appropriate
action.

1.2.3 Modular-based approach

Modular-based dialogue systems that are more sophisticated versions of simple
rule-based and frame-based systems are emerging [Oh and Rudnicky, 2002,Juraf-
sky and Martin, 2008,Ultes et al., 2017]. Its architecture includes three modules:
natural language understanding (NLU), dialogue management (DM), and natu-
ral language generation (NLG) (Fig. 1.1). When the system assumes speech-form
input and output, automatic speech recognition and speech synthesis modules are
applied to pre-processing and post-processing.

The NLU, DM, and NLG modules maintain two key concepts: the “dialogue
state,” which indicates the current progress of the conversation based on the
frame, and “intention,” which identifies the characteristics or desired outcome of
system action. The NLU module analyzes user utterances and extracts informa-
tion, including dialogue states that the other modules can understand. The DM
module determines the intention of the next system action by considering the
information provided by the NLU module. The NLG module generates a sys-
tem response based on the system intention provided by the DM module using
rules, templates, or other statistical methods [Oh and Rudnicky, 2000, Xu and
Rudnicky, 2000]. Each module utilizes the dialogue history stored as an internal
state when necessary.

The response generation process in a modular-based dialogue system maintains
interpretable intentions for characterizing the system action, not only dialogue
states (frames). For example, the system explicitly considers speech acts (dia-
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Figure 1.1: Overview of modular-based dialogue system

logue acts), discourse structures (discourse relations), emotions, dialogue topics,
and contents words. Alternatively, the system considers a set of slot-value that
integrates such various attributes as a frame. They are mainly used in DM and
function as control factors in modular-based dialogue systems. Some studies
modeled DM, which is the core module of modular-based dialogue systems, by
incorporating such intentions as output and dialogue states (or other representa-
tion of dialogue context) as input, based on statistical methods, such as a partially
observable Markov decision process (POMDP) [Williams et al., 2008,Young et al.,
2010, Meguro et al., 2010, Yoshino and Kawahara, 2015]. When building a dia-
logue system, especially a DM, dialogues must be thoroughly analyzed and char-
acterized. Considering such information as the participant’s intentions and the
purposes behind their utterances, its relationship with them is critical to deter-
mine coherent system actions for addressing goals or sub-goals in dialogues. This
problem is also related to the core issues addressed in such fields as pragmatics,
and we can take advantage of the heuristics known in those fields [Verschueren,
2005]. Speech acts and the discourse structure that are considered conversation
structures described in the next section are useful when addressing this problem.

The advantages of a modular-based system are that the system’s goal is ex-
plicitly defined and that the pre-designed dialogue state and intention provide a
clear guideline for how a conversation should proceed. On the other hand, its
limitation is that building these modules independently depending on the design
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of internal states requires considerable effort.

Speech acts in dialogue

In the philosophy of language and pragmatics, a speech act is known as a type
of act that can be performed by a speaker meaning that one is doing so [Austin,
1975, Searle, 1965]. Another name is a dialogue act, which is a suitable con-
cept for describing any dialogue system communication, not just human-human
communication [Bunt, 2006, Traum, 1999]. In speech act theory, a speech act is
divided into the following three levels:

• A locutionary act: the performance of an utterance and hence of a speech
act.

• An illocutionary act: the active result of an implied request or a meaning
presented by the locutionary act. For example, if the locutionary act in
the interaction is the question Is there any salt?, the implied illocutionary
request is Can someone pass the salt to me?.

• A perlocutionary act: the actual effect of such locutionary and illocutionary
acts as persuading, convincing, scaring, enlightening, inspiring, or otherwise
getting someone to do or realize something, intended or not.

In particular, an illocutionary act is an analytical level widely used to analyze
dialogues and develop computational models of dialogue. The analytical level of
illocutionary acts can be easily understood by humans, and their annotation cost
is low. In modular-based dialogue systems, an illocutionary act is known as a
dialog act, and it is the key unit of each module. In particular, DM characterizes
the behavior of dialogue systems at the dialogue act level. It is a central challenge
in modular-based dialogue systems. To address this challenge, much research
has examined how to determine dialogue acts because they can contribute to
the dialogue’s goal in a given dialogue context, in both task-oriented and non-
task-oriented systems [Williams et al., 2008, Young et al., 2010, Meguro et al.,
2010, Yoshino and Kawahara, 2015]. In other words, these studies optimized a
response strategy of dialogue systems at the level of dialogue acts.
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Discourse structure in dialogues

In general, DMs determine system actions by considering the structure of dia-
logues using a concept that abstracts over utterances such as speech acts. Since
a speech act is a concept that focuses on the actions performed by utterances,
it is not easy to explicitly track how each utterance in a dialogue contributes
to its goal. We can also employ the level of discourse structure to consider the
dialogue’s structure. Discourse relations, also called coherence relations or rhetor-
ical relations, are relations (expressed explicitly or implicitly) between situations
mentioned in discourse and are key to a complete understanding of the discourse
(dialogue) beyond the meaning conveyed by sentences (utterances) [Bunt and
Prasad, 2016].

Rhetorical structure theory (RST) is one popular discourse structure theory,
which addresses what relations hold between utterances and how they are linked
to form a connected whole in terms of the speaker’s intentions and effects on the
listener [Mann and Thompson, 1988]. RST is defined by a ternary relationship
among the main element (nucleus), a supporting element (satellite), and their
rhetorical relations. RST is a fundamental concept for describing discourse struc-
tures, and several derivatives have been proposed [Taboada and Mann, 2006].
Discourse structure parsing identifies such ternary relationships, and its parsing
results are utilized in DM. By taking into account the discourse structure, the
DM can logically understand the transitions of the states of dialogues and decide
coherent actions. Discourse structure theories are also often applied to the devel-
opment of various NLP applications, such as summarization, question answering,
and argumentation mining [Uzêda et al., 2010,Verberne et al., 2007].

1.2.4 Non-modular-based approach

We can categorize non-modular-based approaches into retrieval- and generation-
based systems, such as neural conversation models.

Retrieval-based system

A retrieval-based system integrates NLU, DM, and NLG modules into one core
module that functions as a response selection module [Lee et al., 2009,Kim et al.,
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2010]. In general retrieval-based systems, the system response is chosen from
pairs e of query utterance q and response utterance r, constructed from actual
dialogues. When query utterance q is the most similar to the system input (user
utterance) q′ the response utterance r that corresponds to q is selected as system
response r′:

⟨q′, r′⟩ = arg max
⟨q,r⟩∈e

sim(q′, q). (1.1)

The advantages of retrieval-based systems are that the responses are gram-
matically correct and lexically diverse since they are just copied from the set of
context-response pairs. The disadvantages of retrieval-based systems are that the
system’s performance depends on the size of the set of context-response pairs, and
if the set does not contain any pairs with contexts similar to the observed con-
text, the system will not work correctly [Gandhe and Traum, 2010, Song et al.,
2018]. Furthermore, these systems need carefully designed similarity functions
and re-ranking functions to identify subtle semantic differences between different
input contexts.

Generation-based system

In contrast with retrieval-based systems, generation-based systems create re-
sponses word-by-word instead of copying responses from a training set. This
task can be formalized as an input-output mapping problem for which, given a
dialogue history of utterances, the system must output a coherent and meaningful
sequence of words.

To address this problem, early work applied phrase-based machine translation
to response generation [Ritter et al., 2011]. However, phrase-based translation
complicates translating user input and system output since it has many different
components. This problem also applies to machine translation tasks, but it is even
more serious for response generation tasks. Unlike machine translation, in which
there is usually an obvious mapping between the source and target sentences,
the mapping between user inputs and system outputs is less obvious. Therefore,
phrased-based translation is only adept at handling the few cases in which word-
level mapping is obvious; response generation usually generates inconsistent or
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ungrammatical responses when the input sentences’ semantics become complex.

Figure 1.2: Architecture of encoder-decoder model

Recent progress in machine translation emerged from neural language mod-
els [Mikolov et al., 2011] and encoder-decoder models [Sutskever et al., 2014];
this progress led to a neural-based end-to-end response generation model called a
neural conversation model [Vinyals and Le, 2015,Serban et al., 2016]. The NCM,
which is based on the encoder-decoder model, includes both encoder and decoder
networks based on the recurrent neural network (RNN) (Fig. 1.2). The encoder
transforms a user utterance into a contextual representation, which is a fixed-
length vector. The decoder recursively generates the response’s word sequence
using the contextual representation of the user utterance as an initial hidden state
for a decoder RNN. However, since decoders do not consider the dialogue history,
they often generate unnatural responses. To address this problem, several exten-
sions have been proposed to handle contextual dialogue information efficiently.
One study proposed an extended architecture for encoder networks, which uses
a hierarchical encoding strategy that considers both the levels of utterances and
contexts [Serban et al., 2016].Other studies proposed both attention and copying
mechanisms that consider the efficient connection of encoders and decoders based
on the dialogue history [Xing et al., 2018, Eric and Manning, 2017]. Since the
language generation architecture for dialogue systems is also studied from many
other perspectives, it continues to evolve.

NCMs have the potential to generate flexible and tailored responses, which
distinguishes them from retrieval-based systems that just copy from a training
set [Song et al., 2018]. However, NCMs often generate less diverse responses,
in contrast to retrieval-based systems. NCMs and retrieval-based systems both
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suffer from the size of the training set‡. The advantages and disadvantages of
NCMs and retrieval-based systems are complementary to each other, and several
approaches that combine the two approaches have been proposed s [Song et al.,
2018, Yang et al., 2019]. However, both retrieval-based systems and NCMs are
key approaches for building dialogue systems. This dissertation focuses on the
problems faced by NCMs.

1.2.5 Hybrid approach

Dialogue systems can be built by combining both modular- and non-modular-
based architectures [Pichl et al., 2018,Finch et al., 2020,Paranjape et al., 2020].
This combination is often seen, for example, in systems that compete in the Alexa
Prize Challenge§. In this challenge, each team builds a social dialogue system that
talks to volunteers on crowdsourcing services; these systems are then evaluated
based on the conversation length and user ratings. For example, Chirpy Cardinal¶

uses information fed from NLP components such as Wikipedia entity links, user
intent classification, and dialogue act classification to determine the intention of
system action by a high-level decision-making model. The system’s response is
generated from one of a series of response generators (e.g., rules, retrievals, and
neural conversation models, etc.) according to the intentions provided by the
high-level decision-making model. Such modular design allows users to add new
response generators or change the design of high-level decision-making models
without changing large parts of the codebase every time they expand the system’s
coverage.

In this dissertation, we focus on a variant of NCMs that employs a hybrid ap-
proach: conditional neural conversation models (conditional NCMs). Conditional
NCMs control their response generation according to the intention provided by
a high-level decision-making model, not only the dialogue context. In general,
NCMs cannot control the content of generated responses. Conditional NCMs ad-

‡When attempting to build a non-task-oriented dialogue system, we can use a large amount of
data from SNS, such as Twitter and Reddit.

§https://developer.amazon.com/alexaprize
¶https://web.stanford.edu/ jurafsky/slp3/
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dress this problem by extending the generation network to accept interpretable
intentions, not only dialogue contexts as their inputs. For example, dialogue acts,
emotions, personas, and topic information can be explicitly input to the model as
system response characteristics. This process makes it possible to characterize the
system’s response generation direction, improve low response diversity in NCMs,
and enhance models’ interpretability by having human-interpretable intentions.
In addition, unlike normal NCMs that are entirely end-to-end driven, the system
has the potential to reproduce richer human conversations by leveraging inten-
tions that are carefully designed based on human empirical knowledge to control
response generation. Another approach is a conditional neural language model,
which is conditioned by a frame (a set of slots and values) that characterize the
system response characteristics for response generation [Wen et al., 2015b, Wen
et al., 2015a]. It reduces the cost of constructing the pre-defined templates and
rules, which is a weakness of traditional template-based language generation.
However, its training framework requires frames that entirely express the func-
tion and the contents of the target response utterances. The boundary between
the two approaches is unclear, but conditional neural language models based on
the frame focus on task-oriented dialogues. In contrast, conditional NCMs focus
on both task- and non-task-oriented dialogues.

There are NCMs that use not only dialogue contexts but also additional ex-
ternal inputs (such as user’s emotion and background knowledge), although they
do not explicitly control the response by the system’s intention. To avoid con-
fusion, note that “conditional” in this dissertation does not simply mean that
the additional input is used but that the additional input represents the system’s
intention of response. We can also use controllable but not conditional NCM.
For example, we can select the response that best realizes the specified inten-
tion from the candidate responses of an NCM trained with only context-response
pairs. Such an approach can also be applied to conditional NCMs. However, this
is beyond the scope of this dissertation.
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1.3 Problems
In this dissertation, we focus on building a conditional NCM driven by specific
intentions. As mentioned earlier, intentions that account for conversation struc-
ture, such as dialogue acts and discourse structure, which idea of modular-based
dialogue systems, can help the system generate consistent responses. However,
due to the complex structure of natural language, it is still a challenge for a sys-
tem, given such intentions, to express them adequately and produce responses
that are natural to the context. This problem also makes it more difficult to
leverage the intentions provided by the high-level decision-making model or the
human heuristics. It is also difficult to explicitly build a different intention that
considers conversational phenomena that are attractive to humans, such as en-
trainment, into the system. This complexity arises because, in addition to the
problem of response generation controllability, the system is limited in its abil-
ity to exploit context. Furthermore, automatic understanding of how intentions
are expressed and contribute to conversations in practical situations, such as in
multi-floor dialogue, is important for developing high-level decision-making mod-
els and exploring dialogue systems’ future direction, including neural conversation
models.

In this section, we describe three problems in conditional neural conversation
models: 1) the controllability of response generation, 2) the entrainment of re-
sponse generation, and 3) multi-floor dialogue.

1.3.1 Controllability of response generation

Early work with conditional NCMs incorporated a persona into the system to
ensure the NCM’s response consistency [Li et al., 2016b]. Researchers prevented
the system from generating responses that contradicted its personas, including
attributes such as hobby and age. Furthermore, there are several studies on
controlling NCM response generation based on emotions [Huang et al., 2018a,
Zhou et al., 2018]. Their systems create a positive impression on the user by
generating responses based on various emotional expressions. Several studies
attempted to control NCM responses based on the conversation structure, such
as dialogue acts [Wen et al., 2015b,Wen et al., 2015a,Dušek et al., 2018]. These
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approaches aim to enhance the quality of NCMs in terms of discourse coherence
and cohesion as well as make NCMs easier to control. Conditional language
generation based on various intentions is a central issue in recent data-driven
NLG research.

Various sophisticated network architectures were proposed for conditional NCMs.
Several studies enhanced their performance by introducing attention and gating
mechanisms, which usually use training objectives to minimize the cross-entropy
loss of word prediction during the response generation process corresponding to
the given dialogue history [Xing et al., 2017, Zhou et al., 2018]. However, such
training objectives often lead to responses that are biased by frequent words or
phrases in the training data: I don’t know, Me too, and Yes please. These fre-
quent responses are examples of the dull response problem [Li et al., 2016a].
Furthermore, the response does not necessarily represent the semantics of the
given condition, even if it contains words or phrases that represent the character-
istics of a given condition and are relevant to the context. This problem is also
related to conversational implicature (for dialogue acts) and irony (for emotions).
However, this semantic complication is often ignored in existing studies, which
judge results using automatic evaluation based on relevance with references such
as BLEU.

Thus, we must explore a new training objective function for conditional NCMs
that improves both the naturalness and the controllability of response generation.

1.3.2 Entrainment of response generation

Entrainment is a conversational phenomenon in which dialogue participants mu-
tually synchronize various aspects: lexical choice [Brennan and Clark, 1996],
syntax [Reitter and Moore, 2007], style [Niederhoffer and Pennebaker, 2002],
acoustic prosody [Natale, 1975, Ward and Litman, 2007], turn-taking [Campbell
and Scherer, 2010,Beňuš et al., 2014], and dialogue acts [Mizukami et al., 2016].
Entrainment has been studied in various fields and is also known as convergence,
coordination, alignment, or synchrony.

In social psychology, entrainment is related to “convergence” and “divergence”
in speech accommodation theory (SAT), which describes the mechanism of lan-
guage use in terms of whether the speaker wants to approach or distance himself
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from a speech partner [Giles et al., 1987,Giles, 2016]. Convergence refers to the
process through which an individual shifts their speech patterns in an interac-
tion to more closely resemble their conversation partner’s speech patterns. One
individual shifts him/her speech to assimilate to the other; this action can result
in a more favorable appraisal when convergence is perceived positively [Giles,
1979]. In contrast, divergence is a linguistic strategy whereby a speaker accen-
tuates the linguistic differences between himself and his interlocutor [Giles et al.,
1991]. Given that communication features often compose the identity of a group
member, divergence is a crucial tactic for displaying distinctiveness from others.
Divergence is often used to maintain one’s own identity as part of a different
group or maintain autonomy from a group. A speaker’s speech pattern depends
on who they are talking to and how they feel about that person. For example, a
situation in which person A says“ toilet”and person B says“ restroom”could
arise for various reasons: B may have emphasized the difference in dialects to A
(British English and American English) to maintain his identity as a member of
a different group. In the case that A and B belong to the same group, B may
have used a different word to display his authority or identity within that group.
It may simply be that B is familiar with the word“restroom”and used it uncon-
sciously. The motivations for using convergence and divergence are diverse, and
they depend on the speaker’s attributes and relationship to the other speaker.

SAT qualitatively argued that entrainment (convergence) is closely related to
building a rapport with others in conversation. Several studies also analyzed
entrainment from a quantitative perspective and reported that it has a high
correlation with dialogue success, naturalness, and engagement in conversation
[Nenkova et al., 2008,Levitan et al., 2015,Nasir et al., 2019]. These studies suggest
that entrainment has the potential to make dialogue systems more natural and
attractive. However, to the best of our knowledge, no previous studies have
explicitly incorporated such phenomena into NCMs.

Two problems surface when incorporating entrainment into NCMs. The first
problem is that NCMs suffer from dull response issues. In other words, dialogue
systems suffer from using context before generating entrained responses. The
second problem concerns how much of an entrained response should be generated
for the context. The simplest strategy is to trace the user’s conversational style
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and lexical choices completely. However, excessive entrainment leads to nega-
tive user impressions. Furthermore, we also need to consider convergence, which
moves away from the user’s speech pattern, may be necessary in some situations.
Thus, we require a framework that can arbitrarily control the degree to which re-
sponses are entrained, as the intention of system response. By introducing such a
framework, we can use empirical rules to dictate the degree of entrainment or use
the output from a high-level decision-making model that theoretically determines
the degree of entrainment.

1.3.3 Multi-floor dialogue

The floor is defined as the acknowledged what’s-going-on within a psychological
time/space [Edelsky, 1981]. What’s going on can be the development of a topic
or a function (teasing, soliciting a response, etc.) or an interaction of the two.
It can be developed or controlled by one participant at a time or by several si-
multaneously or in quick succession. A floor is also closely related to the concept
of turn-taking, which recognizes who is taking the turn (the right to speak) in
conversation [Sacks, 1992]. Although holding turn and holding floor are some-
times used in similar meaning, the scope of the definition of the floor is usually
discussed as something beyond the turn [Edelsky, 1981]. For example, dialogue
participants might describe a floor thus: “Jack’s telling us about his holidays”
(in which case Jack holds the floor); or “We’re chatting about the film we’ve just
watched” (in which case the floor is jointly produced) [Herring et al., 2013]. In
other words, holding the turn does not necessarily equate to holding the floor. A
dialogue with two or more participants usually requires a single floor to advance.

In contrast, when two or more floors exist in parallel, multiple dialogue floors
are evident [Cherny et al., 1999]. For example, although an internet relay chat
(IRC) has a single message stream, multiple participants might simultaneously
chat about different topics. An individual participant may be involved in more
than one dialogue floor in such a case because the dialogue content is visible to all
participants. However, these situations are particular to modern society, where
the internet has become pervasive.

In this dissertation, we are interested in a case called multi-floor dialogue, in
which a specific intention is realized across multiple floors, and only a subset of
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participants can join different floors [Traum et al., 2018]. A multi-floor dialogue
consists of multiple sets of dialogue participants, each conversing within their own
floor; however, at least one multi-communicating member who is a participant
in multiple floors coordinates with each to achieve a shared dialogue goal. For
example, in a restaurant, a server communicates with customers and takes their
orders in the dining room (one floor); the server also talks with other workers in
the kitchen (another floor). All of the participants work toward the joint goal of
providing the customer with their desired meals. However, in this case, only the
server participates on both floors, conveying orders from customer to kitchen and
perhaps information about item availability or speed from the kitchen back to
the customers. Another example is found in military units; soldiers follow their
commander’s orders, which are decided at headquarters. Such situations are quite
common in the real world, where there are dialogue floors for decision-making and
other floors that implement actions based on those decisions.

Until now, various dialogue systems, including neural conversation models, did
not assume that a dialogue has multiple floors. Although an annotation scheme
that describes the structure of multi-floor dialogues was proposed [Traum et al.,
2018], building a computational model that addresses multi-floor dialogues re-
mains limited. Implementation obstacles stem from the continuing unavailability
of a language understanding model that automatically identifies the structure of
multi-floor dialogues. By building a model that can automatically identify this
structure, we promote the development of language resources and computational
models for cooperative dialogue systems. Such development would also improve
communication protocols through natural language by analyzing how dialogue
intentions are communicated on different floors.

1.4 Approaches and contributions
In this dissertation, we address three problems associated with constructing con-
ditional NCMs that are driven by specific intentions considering conversation
structures and phenomena:

• In the first study (Chapter 3), we examined how to improve the control-
lability of response generation in a conditional NCM that is constrained
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by intentions considering conversation structure. We aimed not only to
reflect the given intentions in the generated responses but also to improve
the naturalness of the generated responses when compared to conventional
methods.

• In the second study (Chapter 4), we explored how to incorporate attractive
attributes of human-human conversations into conditional NCMs. We fo-
cused on entrainment, a well-known conversational phenomenon in which
dialogue participants mutually synchronize various conversational compo-
nents. We then build a conditional NCM that uses the degree of entrainment
as the system’s intention for response generation. We aimed to intentionally
create these attractive phenomena in dialogues so that the system induces
higher user satisfaction.

• In the third study (Chapter 5), we examined automatic understanding of
how intentions are expressed and contributed to practical conversation sit-
uations. We focused on multi-floor dialogue. We aimed to contribute to
a cooperative dialogue system by building a dialogue structure parser that
automatically identifies the structure of multi-floor dialogues.

Our studies borrow the idea of module-based dialogue systems that control
response generation by specific intentions, carefully designed by human empirical
knowledge. In particular, we focused on types of intentions considering conver-
sation structures and phenomena. By considering such intentions in NCMs, they
probably can realize more engaging conversations with users. An overview of this
dissertation is shown in Fig. 1.3‖. Our studies are related to the NLU and NLG
methods in dialogue system architecture. Building a high-level policy decision
model (such as DM module) for deciding system intentions and integrating each
study is a future challenge. The approaches and contributions of each study are
described in the following sections.

‖Note that since our approach borrows ideas from modular-based systems, we have mapped our
contributions to each module of a modular-based system for a brief description.
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Figure 1.3: Dissertation overview

1.4.1 Controllable neural conversation model by given
dialogue acts

This study addressed the problem described in Section 1.3.1. We focused on con-
trolling the responses of NCMs using intentions that consider dialogue structure,
especially the possibility of using dialogue acts as intentions. Dialogue acts are
often used as an interpretable unit that analyzes and models both human-human
and human-machine dialogues. If we can control NCMs using dialogue acts, the
systems can generate consistent responses by considering conversation structure.

We introduced a reinforcement learning framework for conditional response
generation that involves adversarial learning. Our proposed method has a new
label-aware objective that encourages discriminative responses using the given
dialogue act labels while maintaining the naturalness of the generated responses.
We compared the proposed method with conventional methods that generate con-
ditional responses, and the experimental results demonstrated that our proposed
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method has higher controllability even though its naturalness is better than or
comparable to conventional models. Our proposed model has the potential to be
applied to other intentions besides dialogue acts.

1.4.2 Entrainable neural conversation model

This study addressed the problem described in Section 1.3.2. We focused on en-
trainment, a well-known conversational phenomenon in which conversation par-
ticipants mutually synchronize various conversational components. Entrainment
has a high correlation with dialogue success, naturalness, and engagement. In
general, humans consciously and unconsciously create entrainment in conversa-
tion to improve that quality. Incorporating entrainment into neural conversation
models has the potential to create a more human-like system.

In this study, we defined entrainment scores based on word similarities in se-
mantic spaces to evaluate the system’s entrainment. We optimized an NCM’s en-
trainment scores using reinforcement learning to control the system response’s de-
gree of entrainment. In other words, the system’s intention is based on the degree
of the response’s entrainment to context. The experimental results demonstrated
that the proposed entrainable neural conversation model generated comparable
or more natural responses than conventional models and satisfactorily controlled
the degree of entrainment of the generated responses.

1.4.3 Dialogue structure parsing on multi-floor dialogues

This study addressed the problem described in Section 1.3.3. Automatically
understanding how intentions are expressed and contribute to conversations in
practical situations such as in multi-floor dialogue is important for developing
high-level decision-making models and for the future direction of dialogue sys-
tems, including neural conversation models. Expanding the research scope to
multi-floor dialogues will contribute to building cooperative dialogue robots that
solve real-world problems by modeling dialogues across multiple floors. We first
automatically identified how participants, including robots, would proceed in a
dialogue related to such domains as urban search and rescue or military recon-
naissance.
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In this study, we proposed a baseline model that automatically identifies the
multi-floor dialogue structure based on multi-task learning and an attention mech-
anism. We used a multi-floor dialogue dataset annotated with a discourse struc-
ture, which was created as part of a long-term project to develop an autonomous
robot by remote human participants. In the experiment, we showed that our
proposed model has a promising identification performance for dialogue struc-
ture and discussed its limitations and the future direction of this study.

1.5 Dissertations organization
The following is the organization of this dissertation. First, we introduce the
general architecture of a neural conversation model and its technical backgrounds
in Chapter 2. In Chapter 3, we describe a conditional neural conversation model
that can control the generated response according to the given dialogue act. In
Chapter 4, we describe a conditional neural conversation model that can control
the entrainment degree of the generated response based on the given entrainment
degree. In Chapter 5, we describe a dialogue structure parser that identifies
the structures of multi-floor dialogues. Finally, we conclude and discuss future
directions in Chapter 6.

24



2 Sequence-to-Sequence model
for response generation

In this chapter, we describe the sequence-to-sequence model, which is a funda-
mental approach for building neural conversation models.

2.1 Neural language model
Recent progress in language generation studies has been based on recurrent neural
network language models (RNNLMs) [Mikolov et al., 2011]. RNNLMs differ from
the previous n-gram based language models in that they use a state vector as a
memory of the past. The state vector is updated at each time-step and thus can
capture an unbounded history, in theory. The RNNLM calculates the occurrence
probability of a given word sequence Y = [y1, y2, · · · , yT ] as:

p(y1:T ) = p(y1, y2, ..., yT )

=
T∏

t=1
p(yt|y1, y2, ..., yt−1) (2.1)

Here, T is the length of Y , yt ∈ V is the output word at time-step t, and V is the
vocabulary. In the RNNLM, the conditional probability p(yt|y1:t−1) is recursively
calculated as:

ht = RNN(yt−1, ht−1) (2.2)
ho

t = Linear(ht) (2.3)
p(yt|y1:t−1) = Softmax(yt, ho

t ) (2.4)

Here, RNN is a nonlinear function with trainable parameters, which can be used
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for various types of recurrent neural networks (RNNs). Linear(·) is a linear trans-
formation function with trainable parameters, which transforms ht ∈ Rhd into a
fixed-size vector ho

t ∈ R|V|. Softmax(·) is a function that calculates the probability
distribution of yt corresponding to a given ho

t .

2.1.1 Recurrent neural networks

The vanilla recurrent neural network (RNN) model is a neural network architec-
ture designed to handle sequential data, such as sentences (word sequences). The
RNN calculates a hidden vector representation ht associated at each time step
t, which can be considered a representation that embeds information of previous
words. ht is calculated using a nonlinear function that combines both the pre-
viously built representation ht−1 and the K-dimensional input vector xt ∈ RK

which is associated with yt−1 as:

ht = σ(Whh · ht−1 + Wxh · xt + bhh + bxh) (2.5)

Here, Whh ∈ Rhd×hd and Wxh ∈ Rhd×K are weight matrixes, and bhh ∈ Rhd and
bxh ∈ Rhd are biases. σ is an activation function, such as sigmoid, tanh, or ReLU.

However, vanilla RNN has a problem called the vanishing gradient problem.
Gradients vanish/explode during back-propagation, and as a result learning does
not go well. This is because sequential data is often long, and the RNN becomes
deep in proportion to the length of the sequential data [Bengio et al., 1994].

2.1.2 Long short-term memory networks

Long short-term memory (LSTM) has been proposed to address the vanishing
gradient problem of RNNs [Hochreiter and Schmidhuber, 1997]. The difference
from a RNN is that LSTM replaces units with memory units, which tune the unit
value ct and the output ht using gating mechanisms (input gate, memory gate,
output gate) over time. The hidden vector ht, which is the output of LSTM, is
calculated as:

26



it = σ(Wi · xt + Ui · ht−1 + bi) (2.6)
ft = σ(Wf · xt + Uf · ht−1 + bf ) (2.7)
ot = σ(Wo · xt + Uo · ht−1 + bo) (2.8)
ct = ft ◦ ct−1 + it ◦ tanh(Wc · xt + Uc · ht−1 + bc) (2.9)
ht = ot · tanh(ct) (2.10)

Here, it ∈ Rhd is the input gate, fi ∈ Rhd is the forget gate, ot ∈ Rhd is the
output gate, and ct ∈ Rhd is the is the memory cell. W ∈ Rhd×K and U ∈ Rhd×hd

are the weight matrixes, and b ∈ Rhd are the biases. Instead of LSTM, other
architectures can be used to address gradient loss problems, such as the gated
recurrent unit (GRU) [Cho et al., 2014].

2.2 Encoder-decoder model
The encoder-decoder model, also called the sequence-to-sequence model, is a
neural network model that learns the transformation of a source sentence X =
[x1, x2, · · · , xT ] into a target sentence Y = [y1, y2, · · · , yT ′ ]. It can be regarded
as a conditional neural language model conditioned by a dialogue context X for
generating a system response Y . The encoder-decoder model usually consists of
three modules: encoder, decoder, and attention mechanism.

2.2.1 Encoder

The encoder encodes the word inputs X = [x1, x2, · · · , xT ] into vector represen-
tations [hx

1 , hx
2 , ·, hx

T ] using a RNN, as:

hx
t = RNN(xt, ht−1) (2.11)

Here, the initial hidden state hx
0 is usually given as a zero-vector. Then the last

hidden state hx
T is fed into the decoder network.

Various forms of input can also be encoded by extending the above encoder
network, for example, the input formed by dialogue history, including several
utterances, based on an encoder that uses a hierarchical encoding strategy, which

27



considers both the levels of utterances and contexts [Serban et al., 2016].

2.2.2 Decoder

The decoder computes a target sentence Y = [y1, y2, · · · , yT ′ ] using the last hidden
state hx

T generated by the encoder, as:

hy
t = RNN(yt−1, hy

t−1) (2.12)
ho

t = Linear(hy
t ) (2.13)

p(yt|y1:t−1) = Softmax(yt, ho
t ) (2.14)

Here, the initial hidden state hy
0 is the last encoder state hx

T , and the first
decoder input y0 is a special token that indicates the start of the target sentence.
The decoder samples yt from the probability distribution p(yt|y1:t−1) to use as the
input for the next step and continues generating until the model outputs a token
that indicates the end of the sentence.

2.2.3 Attention-based decoder

The above decoder network can be extended by using an attention mechanism
for encouraging the use of information in the source sentence [Luong et al., 2015].
The attention mechanism considers all the hidden states of the encoder when
deriving the output vector ho

t for each time-step t, as:

αt(s) = exp(score(hy
t , hx

s))∑
s′ exp(score(hy

t , hx
s′))

(2.15)

ct =
∑

s

αt(s) ∗ hx
s (2.16)

h̃y
t = tanh(Linear([ct; hy

t ])) (2.17)
ho

t = Linear(h̃y
t ) (2.18)

Here, score(·) is any function that calculates the score of both hy
t and each hid-

den vector of the encoder. This step helps the decoder find relevant information
on the encoder side corresponding to the decoder’s current hidden states.
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2.3 Training objectives
Sequence-to-sequence models, such as encoder-decoder models, can be optimized
in several ways. In general, methods based on maximum likelihood estimation
and reinforcement learning are used.

2.3.1 Maximum likelihood estimation

Sequence-to-sequence model training is usually performed using a teacher-forcing
approach. This approach predicts an output by feeding the oracle output from the
previous time-step into the decoder. It does not use the predicted output word
as the decoder input in the next time-step. Teacher forcing allows the training to
converge. The entire network is trained by minimizing the negative log-likelihood
(cross-entropy loss) of predicting each word in the target Y given the source X,
as:

L(θ) = − 1
T ′

T ′∑
t

log[p(yt|y1:t−1, X)] (2.19)

Here, p(yt|y1:t−1) is the output probability of yt at time-step t, calculated by the
softmax function, and yt is the actual word label.

2.3.2 REINFORCE algorithm

For applying reinforcement learning to sequence-to-sequence models, a Markov
Decision Process (MDP) defined by the environment and states, the agent’s ac-
tions, the reward function, and the state’s transition probabilities is used.

The MDP’s action space is the target response’s vocabulary, actions are words,
and the states are the decoder’s hidden vectors. The state’s transition proba-
bilities are implied by the operation from the RNN cell inside the decoder. The
decoder starts the generation with an initial state h0, representing the user input
X computed by the encoder. At any time step t, the decode decides the next
action to take by defining a stochastic policy π(yt|ht−1, X), which takes the pre-
viously hidden state vector ht−1 as input and produces a probability distribution
over all actions that are defined by the words in the target sentence vocabulary.
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The next action yt is chosen either by sampling from this policy or by taking the
argmax. The model computes the next state ht by updating the current state
ht−1 by the action taken yt.

The policy-based approach directly optimizes parameterized πθ to maximize
the expected reward. θ is a neural network parameter of sequence-to-sequence
models. The policy gradient is one of the algorithms that optimize parameterized
policy πθ with respect to the expected reward return, as:

J(θ) = Eŷ1,··· ,ŷT ′ ∼πθ(ŷ1,··· ,ŷT ) [r (ŷ1, · · · , ŷT ′)] (2.20)

θ ← θ + α∇θJ(θ) (2.21)

Here, α denotes the learning rate for stochastic gradient decent.
The major challenge involved in policy gradient methods is obtaining a good

estimate of the policy gradient ∇J(θ). Based on the policy gradient theorem
[Williams, 1992], REINFORCE Algorithm determines the gradient of an objective
function for parameter θ, as:

∇θJ(θ) = E
Ŷ ∼πθ

[
∇θ log πθ(Ŷ )× (r(Ŷ )− b)

]
(2.22)

This method is that the model suffers from high variance, when only one sample
is used for training at each time step. To address this challenge, at each training
step, one can sample M sequences of actions and update the gradient by averaging
over all these M sequences, as:

∇θJ(θ) = 1
M

M∑
i=1

T ′∑
t=1
∇θ log πθ(ŷi,t|ŷi,t−1, hi,t−1)× (r(Ŷi)− b) (2.23)

Here, baseline b can be any arbitrarily chosen scalar, because it does not introduce
bias in the gradient. Suggested values of baseline b include the mean value of
all previously observed rewards, or estimator output from another neural model
[Zaremba and Sutskever, 2015,Ranzato et al., 2015].
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3 Controllable neural
conversation model by given
dialogue acts

In this chapter, we describe a conditional neural conversation model that can
control the generated response by given intention aware of conversation structure.

3.1 Introduction
Neural conversation models (NCMs), which learn a direct mapping between a di-
alogue history and a response utterance based on neural networks, are widely re-
searched as an approach for building non-task-oriented dialogue systems [Vinyals
and Le, 2015,Serban et al., 2016]. However, its response generation process is en-
tirely black-boxed, unlike previous dialogue systems (e.g., modular-based dialogue
systems), making it difficult to interpret why the model generates a response to a
dialogue context. This problem complicates transferring the technology of NCMs
to practical situations, such as introducing a chat-bot into business scenes. In-
troducing a mechanism for controlling the response generation of NCMs by clear
intention helps to solve this problem.

Conventionally, dialogue act labels have been exploited to control the intention
of response generation in both task- and non-task-oriented dialogue systems [Me-
guro et al., 2010,Yoshino and Kawahara, 2015,Shibata et al., 2016] . A dialogue
act is defined as a unit that reveals the functions of associated turns in dia-
logues [Jurafsky, 1997]. Dialogue act labels are unique classes to distinguish the
dialogue acts of given utterances (e.g., “Hello!!” can be abstracted to dialogue
act label “Greeting”) [Boyer et al., 2010, Bunt et al., 2012b]. The dialogue acts
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clarify the roles of utterances in the dialogue context. In pragmatics, a speech
act is also known as a similar classification standard to a dialogue act, an essen-
tial component to analyze and model both human-human and human-machine
dialogues [Alston, 2000]. However, the benefits of dialogue act labels have not
been exploited enough in NCMs, although studies of previous dialogue systems
focus on modeling dialogues based on interpretable units, such as dialogue act
labels. This inability limits the effectiveness of NCMs in several points. First,
having interpretable system intentions by dialogue act labels enables humans to
understand the behavior of dialogue systems. Second, modeling the high-level
decision-making policy apart from response generation will enable the system to
respond with a well-organized and thoughtful response. For example, as shown
in 4.1, the required response to the system is often different even the recent dia-
logue context is the same. In such a case, the high-level decision by the dialogue
manager is important, which uses other information such as user preference.

Figure 3.1: Response generation conditioned by dialogue act label: the NCM
generates responses that represent dialogue act labels determined by
a high-level decision-making model such as a dialogue manager.

Some existing studies have tackled this kind of problem for controlling re-
sponses of NCMs using actual labels (e.g., dialogue acts, emotions, persona);
however, these works still suffer from limitations [Wen et al., 2015b, Li et al.,
2016b, Huang et al., 2018b]. One crucial issue is that they do not have any ex-
plicit training objectives to guarantee that a generation has discriminability∗ to
the given condition. In other words, to enforce the conditional generation of an

∗Note that we use “discriminative” and “discriminability” as terms referring to whether a given
dialogue act label is represented in response utterances.

32



NCM, we have to establish a new training objective which we call a label-aware
objective.

To solve this problem, we introduce an extended framework of sequential gen-
erative adversarial networks [Yu et al., 2017] to improve the controllability of
NCMs, given a dialogue act label as the condition. We propose a label-aware
adversarial learning framework that alternatively trains both a generator, which
creates a response to the given dialogue act label, and a discriminator, whose
objective is to evaluate both the naturalness and the discriminability. The dis-
criminator evaluates the validity of the generated responses by a classification
model: label awareness. The evaluation results are used as a reward of reinforce-
ment learning for training the generator. The method to control the response
generation by adversarial learning is proposed by [Kawano et al., 2019]. We gen-
eralized the method from the viewpoint to control the generator by reinforcement
learning.

In this study, we first describe the task of conditional response generation
by dialogue act labels and existing approaches (Section 3.3). We introduce a
reinforcement learning framework involving adversarial learning to address the
problem of conditional response generation (Section 3.4). In experiments, we
performed automatic and human evaluation of the controllability and natural-
ness of the generated responses (Section 3.5). The experimental results showed
that our proposed model significantly improved the controllability scores in both
automatic and human subjective evaluations, even it achieved better or compara-
ble naturalness to existing methods (Section 3.6). We discuss the challenges for
the advancement of conditional response generation given dialogue act labels in
neural conversation models by analyzing our experimental results (Section 3.7).

3.2 Related work
Dialogue systems that have dialogue management modules determine a dialogue
act or a frame of a system response using statistical methods, such as reinforce-
ment learning [Young et al., 2010, Meguro et al., 2010, Yoshino and Kawahara,
2015, Keizer and Rieser, 2017]. Their response generation modules create re-
sponses according to these dialogue acts or frames based on rules, templates,
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agendas, or other statistical models [Oh and Rudnicky, 2000, Xu and Rudnicky,
2000]. In recent years, neural network-based generation modules have been widely
used for building response generation modules [Dušek et al., 2018]. The control-
lability of neural generation systems is a big research issue.

One work proposed a conditional language model called Semantically Condi-
tioned Long Short-Term Memory (SC-LSTM) [Wen et al., 2015b], which generates
utterances based on dialogue act labels and frames in the domain of restaurant
navigation dialogues using a gating mechanism. Furthermore, several improved
SC-LSTM models are proposed in E2E NLG Challenge [Dušek et al., 2018]. How-
ever, their training framework requires state frames that entirely express the
function and the contents of the target utterances. It is unrealistic to apply this
method to building a non-task-oriented dialogue system. Another work proposed
a neural conversation model (NCM) based on a conditional variational autoen-
coder [Zhao et al., 2017], which generates responses with high diversity at the
discourse-level using latent variables considering dialogue acts. Since this model
focuses on learning well-organized latent variables using dialogue act labels, its
training objective insufficiently guarantees the discriminability of generated re-
sponses by dialogue act labels.

There is another research trend for controlling NCMs with a given condition,
such as persona or emotion labels [Li et al., 2016b, Huang et al., 2018b]. These
NCMs are optimized by softmax cross-entropy loss (SCE-loss), which calculates
losses word-by-word. However, such existing training objectives do not necessarily
guarantee that the generated response has high discriminability to the given class
label. SCE-loss can optimize the word prediction itself, but it cannot evaluate
whether the property of the generated responses belongs to the given classes. To
address this problem, some works incorporate an auxiliary classifier to NCMs
to improve the discriminability of their generated responses [Zhou and Wang,
2018, Shen and Feng, 2020]. However, their generation models must cope with
over-fitting to the auxiliary classifier because the classifier is naively trained from
the training data.

In this study, we introduce an extended framework of sequential generative ad-
versarial networks [Yu et al., 2017,Li et al., 2017a,Tuan and Lee, 2019]. Different
from methods incorporating with static auxiliary classifiers, our framework al-
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ternatively trains both a generator, which creates responses according to a given
dialogue act label and a discriminator, which has an objective to evaluate both
the naturalness and the discriminability of the generated responses by the given
condition. Our architecture prevents the over-fitting problem to the auxiliary
classifier by dynamically updating the discriminator through adversarial learn-
ing. Our architecture also makes it possible to consider the total quality of the
generated responses, unlike SCE-loss, which is optimized for each term.

3.3 Conditional response generation by given
dialogue act labels

In this study, we focus on controlling a conditional neural conversation model
(NCM) using dialogue act labels. We assume a non-task-oriented dialogue as the
target domain. In this section, we first address the conditional response gener-
ation task tackled in this study (Fig. 3.3.1). Then we describe the conventional
architecture of a conditional response generation model based on minimizing soft-
max cross-entropy loss (Section 3.3.2).

3.3.1 Task settings

The task we focus on is building a controllable NCM by a given condition, typ-
ically a dialogue act label. The problem is defined as generating the response
word sequence R̂ = [ŵ1, ŵ2, · · · , ŵT ′ ] given dialogue history M = [M1,

M2, . . . , MN ] and of response dialogue act label d ∈ D. Here N is the length of
the dialogue history, T ′ is the number of words in the response, and D is the set
of dialogue act labels. As shown in 4.1, response R̂ has to satisfy not only the
behavioral characteristics of a given dialogue act label but also appropriateness
in the dialogue context (=history).

We assume that a dialogue act label is decided by a high-level decision-making
model, such as a dialogue manager, built separately from the NCM. This allows
us to connect high-level decision-making models to the NCM freely, and we may
enable to provide a useful generalization and a personalization to users. We only
focus on the problem of whether NCMs can generate responses according to given
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dialogue act labels, since building the decision-making model is beyond the scope
of this study. We use oracle dialogue act labels in a corpus when we evaluate
response generation systems.

3.3.2 General conditional neural conversation model with
dialogue act labels

We introduce a general conditional NCM controlled by given dialogue act labels as
the baseline. We built a conditional NCM based on a hierarchical encoder-decoder
model, which explicitly uses dialogue act labels in its decoding steps (Fig. 3.2).
We adopt vector concatenation between a word vector and a vectorized condition
to feed decoder input as a widely used method of conditional NCMs [Li et al.,
2016b,Huang et al., 2018b].

Figure 3.2: Conditional NCM with dialogue act labels

The encoder network has a hierarchical structure that consists of utterance and
dialogue encoders [Serban et al., 2016]. The utterance encoder receives a word at
each time step using forward RNNs to encode the utterance into a fixed-length
vector:
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hi,t = RNNutterance(hi,t−1, Embed(wi,t)). (3.1)

Here i is the number of turns in the dialogue context, and hi,t is the hidden
vector obtained by inputting each word wi,t in utterance Mi. The embedding
layer (Embed) projects wi,t to a fixed-length word vector to be used as input.

Utterance vectors are given to the dialogue encoder:

ci = RNNcontext(ci−1, hi,Ti
). (3.2)

Here Ti is the number of words in the utterance Mi, and hi,Ti
is a hidden vector

obtained at the last step of the utterance encoder. Resultant vector cN is fed to
the decoder and used as initial hidden state h′

0 to generate a response sentence.
In the decoder, hidden state h′

t of the decoder and the output probability of word
pt are calculated:

h′
t = RNNdec(h′

t−1, [Embed(ŵt−1); Embedda(d)]), (3.3)
pt = Softmax(Linearproj(h

′

t)). (3.4)

Here Linearproj is a projection layer, which maps h′
t to a vector of vocabulary size

|V|. Embedda is a linear transformation layer that converts target dialogue act
label d into a fixed-length vector. ŵt is sampled from a probabilistic distribution
pt ∈ R|V| obtained by Softmax function from the output of projection layer, and
used as a part of the input of the next time step.

In this decoding architecture, we expect the decoding result to correspond to
both the given dialogue act label and the dialogue history by inputting dialogue
act label d in addition to the already generated words. d is encoded to a fixed-
length vector using an embedding layer (Embedda) as input.

In general, such NCMs are trained by minimizing the softmax cross-entropy
loss (SCE-loss):

LSCE = −
T∑

t=1
log pt(wt). (3.5)

Here T is the number of words in the ground-truth response R = [w1, w2, · · · , wT ],
and pt(wt) denotes the value that corresponds to the ground-truth word wt in the
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probabilistic distribution pt obtained from Softmax function from the output of
projection layer.

SCE-loss optimizes the word prediction at each decoding step. However, it
does not explicitly consider the given dialogue act label in the loss calculation
during training. It only considers the likelihood of ground-truth words. Related
to this, the NCM optimized by SCE often generates biased responses that contain
frequently used words [Li et al., 2016a]. This problem will be critical in situations
where the NCM must strictly represent a given dialogue act label. It is because
dialogue acts of individual utterances change depending on dialogue context even
if they have the same literal meaning (or contain frequent words representing the
given dialogue act’s characteristics). Due to such complexity of human language,
SCE-Loss, which not considering the whole structure of the generated response,
may not handle the differences in dialogue acts appropriately. In the following
section, we address this problem by introducing an explicit training objective
based on reinforcement learning involving adversarial learning for generating well-
controlled responses by dialogue act labels.

3.4 Enhancing conditional response generation
based on reinforcement learning

Conditional generation based on SCE-loss does not guarantee that the generation
result follows a given condition. We introduce an objective function based on
a framework of reinforcement learning (RL) that enhances the performance of
the conditional response generation. This is because RL-based systems have
the advantage of high flexibility in the design of reward functions, including the
auxiliary classifier compared to other approaches [Hu et al., 2017]. Our RL-
based system optimizes the conditional NCM by maximizing the reward, which
evaluates whether the generated response obeys the given dialogue act label. In
other words, we optimize the conditional NCM with guarantees that responses
are generated according to a given dialogue act label. In the most current system,
the auxiliary classifier is used to give rewards [Zhou and Wang, 2018]. However,
since using a static classifier caused an over-fitting problem of the generator,
we prevent this problem by introducing adversarial learning, which dynamically
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changes the classifier based on the generation results from the generator.
In this section, we explore different types of approaches for optimizing condi-

tional NCMs. We first formulate a conventional optimization framework for a
case with a static dialogue act classifier for RL and address its problem (Sec-
tion 3.4.1 and Section 3.4.2). We extend this optimization framework based on
the sequential generative adversarial network (SeqGAN) [Yu et al., 2017,Li et al.,
2017a], including a different classifier and a dynamically changed classifier named
a discriminator, for improving both the controllability and the naturalness of the
conditional response generation (Section 3.4.3).

3.4.1 REINFORCE algorithm for conditional response
generation

We introduce a policy gradient (REINFORCE Algorithm) [Williams, 1992], which
is a direct differentiation of the reinforcement learning (RL) objective. The prob-
lem of response generation in NCMs is defined as generating response word se-
quence R̂ = [ŵ1, ŵ2, · · · , ŵT ′ ] given dialogue context M . Such a word selection
process is defined as a word-selecting action sequence, which is generated by an
actual policy in a Markov decision process (MDP) [Ranzato et al., 2016,Li et al.,
2017a]. We define a reward function based on the classifier to evaluate the valid-
ity of conditional response generation in NCMs. The evaluation score is fed as a
reward to optimize the generator ’s policy by maximizing the expected reward
of the generated responses. The gradient of the objective function is defined†:

∇JRL(θ) ≃ 1
T ′

T ′∑
t=1

∑
ŵt∈V

QGθ
Dϕ

(R̂1:t−1, ŵt, d)

· ∇θGθ(ŵt|R̂1:t−1, d) (3.6)

= 1
T ′

T ′∑
t=1

Eŵt∼Gθ
[QGθ

Dϕ
(R̂1:t−1, ŵt, d)

· ∇θ log pθ(ŵt|R̂1:t−1, d)]. (3.7)

Here θ is the parameters of the policy. V is a vocabulary, R̂1:t−1 indicates the al-

†Note that we followed the derivation and notations shown in [Yu et al., 2017].
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ready generated word sequence, and d is the dialogue act label used as a condition
(state in MDP). pθ(ŵt|R̂1:t−1) = Gθ(ŵt|R̂1:t−1, d) is the generative probability of
word ŵt ∈ V (action in MDP) in the decoder. QGθ

Dϕ
(R̂1:t−1, ŵt, dt) is an action-

value function that gives an expected future reward of word-generating action ŵt

given the state: already generated word sequence R̂1:t−1 and dialogue act label d.
The expectation E[·] can be approximated by sampling.

To evaluate the action-values for intermediate states, the Monte Carlo search
under the policy of Gθ is applied to sample the future words. Each search ends
until the end of word of response is sampled, or the sampled response reaches the
maximum length. To obtain a stable reward and reduce the variance, we use an
N -time Monte Carlo search‡ [Yu et al., 2017] as:

{R̂1
1:T1 , · · · , R̂N

1:TN
} = MCGθ(R̂1:t, d; N). (3.8)

Here Tn denotes the number of words in the response sampled by the n-th Monte
Carlo search. (R̂1:t, d) is the current state and {R̂1

1:T1 , · · · , R̂N
1:TN
} are sampled

from the policy Gθ. The reward function provides N rewards for the sampled N

responses, respectively. The final reward for the intermediate state is calculated
as the average of the N rewards. Therefore, we calculate the reward in time-step
t for the generated response with the length T ′, as:

QGθ
Dϕ

(R̂1:t−1, ŵt, d) = (3.9)
1
N

∑N
n=1 Dϕ(R̂n

1:Tn
, M, d) for t < T ′

Dϕ(R̂1:T , M, d) for t = T ′.

Here Dϕ(·) is a reward function given by a classifier, which has a parameter
ϕ. The classifier evaluates the validity of the generated responses to the given
condition d. We introduce different classifiers to update the response generation
model.

‡We set N = 5. However, since the computation cost of the Monte Carlo search is high when
training the large model, we can also adopt an approach for speeding up the training, such as
REGS [Li et al., 2017a].
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3.4.2 Static reward function based on dialogue act
classifier

We first introduce a naive reward function using a static dialogue act classifier.
This is inspired by previous works that introduced an auxiliary classifier to en-
courage conditional generation [Zhou and Wang, 2018,Shen and Feng, 2020]. The
auxiliary classifier predicts whether the generated responses follow the given con-
dition with a multi-class classifier. In other words, it forces NCM ’s response
generation to follow a given condition, such as the dialogue act label. We built
classifier Dϕ based on a hierarchical encoder to predict the dialogue act label of
generated response R̂ (Fig. 3.3).

Figure 3.3: Dialogue act classifier with hierarchical encoder

Dialogue history M and generated responses R̂ are encoded to contextual rep-
resentation c by the hierarchical encoder. We use the same encoder structure of
the conditional NCM formulated in Eqs. (3.1)-(3.2) for encoding the dialogue
history and the generated response. Contextual representation c is fed into a
fully connected layer to classify the dialogue act of response R̂:
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hda = MLP(c), (3.10)
pda = Softmax(Linearda(hda)). (3.11)

Here MLP is a multi-layer perceptron that applies the Relu function to each
hidden layer, and Linearda is a linear transformation layer, which transforms hda

to a vector of a number of unique dialogue act labels. pda is the classification
probability of the dialogue act of R̂ to class d.

We use posterior probability pda(d|R̂, M) estimated by the classifier as the
reward of the generator. It gives higher rewards if the posterior probability to
given dialogue class d is high. We expect that this classifier will encourage training
the generator to make controlled responses according to the given dialogue act
labels. However, it may cause a problem where the generator is over-fitted to the
dialogue act classifier; when using a classifier that is naively trained by maximum
likelihood estimation, the conditional NCM invariably learns a “lazy” policy and
chooses the easiest way to represent a given dialogue act. This choice will improve
the controllability, but it will not lead to natural responses. To prevent such
problems, optimization based on SCE-loss as pre-training must be incorporated.

3.4.3 SeqGAN for conditional response generation with
dialogue acts

We introduce the extended framework of the sequential generative adversarial
network (SeqGAN) [Yu et al., 2017]. SeqGAN uses a discriminator instead of
a classifier, which dynamically updates the evaluation system of the generation
results. Our framework alternatively trains both the generator, which gener-
ates a response according to a given dialogue act label, and the discriminator,
which has an objective that evaluates both the naturalness and the discriminabil-
ity of a generated response for a given dialogue act label. A benefit of such a
training strategy is that the system can dynamically update the parameters for
further iteratively improving the generative model while avoiding any over-fitting
to evaluation system; discriminator Dϕ. It can penalize a response that is unnat-
ural or typical, even if the generated response represents the given dialogue act
label. [Kawano et al., 2019] proposed this system to use adversarial learning for
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controlling the generator. We regard the system as an extension of a framework
based on a static reward function described in the previous section.

In our framework, we incorporated dialogue act labels in the discriminator in
a general SeqGAN (Fig. 3.4). We propose two discriminators for incorporating
dialogue act label information in the discriminator: implicit and explicit. We also
propose an ensemble approach that integrates both discriminators. Each method
is described below in respective sections.

Figure 3.4: Implicit & explicit-discriminator

Binary objective: implicit-discriminator

We first propose an implementation of the discriminator that incorporates dia-
logue acts in its additional feature vectors. We use the same structure of the
dialogue act classifier described in Section 3.4.2 and apply a concatenated vector
between contextual representation c and the embedding vector of the dialogue
act label as the MLP input. We also change the dimension of the output layer to
2. We call this architecture “implicit” and define its objective function:
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min
ϕ
−ER∼pdata(·|M,d)[log Dϕ(R, M, d)]

−ER̂∼Gθ(·|M,d)[log(1−Dϕ(R̂, M, d))]. (3.12)

Here pdata is the probability distribution of actual response R on the training data.
Dϕ(R̂, M, d) is the probability of response R̂ belonging to the binary classes: an
actual response in the training data (real) or a generated response (fake).

We expect that the implicit discriminator will use the information of the dia-
logue acts as a feature and discriminate the generated results as fakes if they do
not follow a given dialogue act label (Fig. 3.4, upper-right). Some works have
similar approaches in emotional response generation [Sun et al., 2018,Kong et al.,
2019]. However, this discriminator remains a simple extension of the standard
discriminator, which classifies responses in two classes. In other words, since the
objective is not changed, it probably struggles to distinguish the class (dialogue
act label) of the responses. We introduce another discriminator to solve this
problem in the next section.

Multi-class objective: explicit-discriminator

We propose an approach that extends the classification problem of the discrimi-
nator from the binary classification of fake/real to multi-class classification that
distinguishes target dialogue act classes (Fig. 3.4 lower-right). It also applies
an additional class to the static dialogue act classifier. This discriminator has
a multi-class objective for |D| + 1 class classification. Here |D| is the number
of unique dialogue act labels; another one is a fake class for categorizing the re-
sponses as generated. We call this architecture “explicit” and define its objective
function:

min
ϕ
−

|D|∑
i=1

ER∼pdata(·|M,d)[log Dϕ(d = i|R, M)]

−ER̂∼Gθ(·|M,d)[log Dϕ(dfake|R̂, M)]. (3.13)

We used posterior probability Dϕ(d|R̂, M) estimated by the discriminator as
the generator ’s reward. We expect that this discriminator will encourage gen-
erator training to provide discriminative sentences with dialogue acts because
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the generation results are penalized if they are not natural and fail to follow the
manners of the given dialogue acts. Similar approaches, which use multi-class
objectives in GAN, have been proposed for image generation [Odena, 2016,Sali-
mans et al., 2016]. These works suggested that multi-class objectives are useful
for stable training on a small amount of training data.

Ensemble objective: ensemble-discriminator

[Kawano et al., 2019] indicated that the implicit-discriminator generally focuses
more strictly on classifying real or fake, whereas the explicit-discriminator tends
to focus on classifying dialogue act labels. However, the explicit-discriminator ’
s properties resemble those of the static dialogue act classifier if the training is
over-fitted. The explicit discriminator will cause the same over-fitting problem
to the classifier, if it always provides a fixed amount of fake probability.

Thus, we propose an ensemble approach that combines the properties of both
the implicit-discriminator and the explicit-discriminator (Dϕimp and Dϕexp) for
stable training. We define the reward function using the harmonic-mean:

Dϕimp,ϕexp(R̂, M, d) = 2 · Dϕimp(R̂, M, d) ·Dϕexp(d|R̂, M)
Dϕimp(R̂, M, d) + Dϕexp(d|R̂, M)

.

(3.14)

This reward function Dϕimp,ϕexp simultaneously optimizes both (3.12)-(3.13).
This is expected to ensure that the NCM does not learn the biased policy by the
characteristics of one or the other discriminator. By introducing such a harmonic
mean, unlike a simple additive mean, a higher reward can be given when the
scores of both discriminators are in a high state.

Training procedure

The training procedure of a conditional NCM with SeqGAN is shown in Algorithm
1.

First, we pre-train the conditional NCM by minimizing the SCE-loss (LSCE).
Then we apply alternate training between the generator and the discriminator.
In G-steps for updating the generator, we sample generated response R̂ with
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Algorithm 1 Training procedure
Require: Generator policy Gθ; roll-out policy G′

θ; discriminator Dϕ

1: Initialize Gθ with random weights θ
2: Pretrain Gθ to minimize LSCE
3: for Number of iterations do
4: G′

θ ← Gθ

5: for Number of G-steps do
6: Sample (M, R, d) from training data
7: Generate response R̂ using G′

θ on (M, d)
8: Compute QGθ

Dϕ
for (M, R̂, d) using G′

θ

9: Update Gθ based on ∇JRL(θ)
10: end for
11: for Number of D-steps do
12: Sample (M, R, d) from training data
13: Generate response R̂ using Gθ on (M, d)
14: Update Dϕ using (M, R̂, d) and (M, R, d)
15: end for
16: end for

dialogue history M and dialogue act label d then calculate QGθ
Dϕ

by discriminator
Dϕ. We update the parameters of Gθ using the calculated QGθ

Dϕ
. Here we perform

the update by LCE after updating by RL to stabilize the training. This approach
works as teacher-forcing and prevents the collapse of policies due to the model ’
s inability to access the reference response [Li et al., 2017a]. In D-steps for
updating the discriminator, we sample real response R, given dialogue history M

and dialogue act label d from the training data, and then sample fake response R̂

from generator Gθ. We update the parameters of discriminator Dϕ using the real
and fake samples. Note that when we apply the naive RL-based method presented
in Section 3.4.2, the system does not use D-steps. Instead, a pre-trained classifier
of dialogue act classes is used as the discriminator.

3.5 Experimental settings
We experimentally investigated the advantages of the proposed controlled re-
sponse generation system of both its controllability and naturalness. We per-
formed both automatic and human evaluations. In this section, we describe their
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experimental settings.

3.5.1 Dataset

We used the DailyDialog corpus [Li et al., 2017b] and the Switchboard dialogue
act corpus [Jurafsky, 1997] for the evaluations. The DailyDialog corpus consists
of ten categories from a wide variety of topics. We used training/validation/test
sets of the DailyDialog (Table 3.1). This corpus is annotated with four dialogue
act labels for each utterance: inform, questions, directives, and commissive.

Table 3.1: Number of dialogues/utterances in DailyDialog
Dialogues Utterances

Train 11,118 76,052
Validation 1,000 7,069

Test 1,000 7,740

The switchboard dialogue act corpus (SWBD), which is a large-scale corpus
containing telephone speech [Stolcke et al., 2000, Jurafsky, 1997], is annotated
with the SWBD-DAMSL tag-set, which consists of 42 dialogue act labels (Ta-
ble 3.2). We also used this dataset for the evaluations. Since SWBD is a conver-
sation with more than one utterance per turn, unlike the DailyDialog, we added
to the suffix special symbols that indicate the type of conversation floor in each
utterance [Zhao et al., 2017].

Table 3.2: Number of dialogues/utterances in SWBD
Dialogues Utterances

Train 2,316 20,788
Validation 60 5,255

Test 62 5,481

3.5.2 Competing models

We compare the different kind of training objectives and neural conversation
models.
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Model settings

Based on a hierarchical encoder, we used the following types of NCMs as baselines:

• ASEQ2SEQ: a standard neural conversation model that encodes a previ-
ous utterance as a query for decoding a response with an attention mecha-
nism (general-attention) [Luong et al., 2015].

• HED: a hierarchical encoder-decoder model [Serban et al., 2016] without
conditioning to a decoder described in Section 3.3.2.

• CHED: a HED model with a conditioning mechanism. We gave the con-
dition (dialogue act labels) described in Section 3.3.2.

We can also use other advanced networks for neural conversation generation [Zhou
et al., 2018,Peng et al., 2019]. However, note that we focus on training objectives
to enhance the generation performance of the NCMs.

Training objectives

We trained these NCMs with the following training objectives:

• w/ SCE: optimization by minimizing the softmax cross-entropy loss (SCE-
loss) described in Section 3.3.2.

• w/ KgCVAE: optimization by knowledge-guided conditional variational
autoencoder (KgCVAE) [Zhao et al., 2017]. We used CHED for the basic
network, and we did not use any meta-features except for dialogue acts. The
generation performance depends “heavily” on randomness due to sampling
from a latent variable, thus we calculate the average results of five trials
when we input an target dialogue act.

• w/ AC: joint optimization with auxiliary classifier. Unlike RL-based ap-
proaches, we use sampling from a multinomial distribution parametrized by
softmax function for receiving the feed-back from auxiliary classifier. We
basically follow the algorithm described in [Hu et al., 2017]. We use CHED
as the generator network, and the dialogue act classifier described in Sec-
tion 3.4.2 as the auxiliary classifier. Here, we removed objective function
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and network related to VAE according to their official implementation§,
since the training of latent variable is not the scope of this study.

• w/ RL: optimization by the static reward function based on the dialogue
act classifier described in Section 3.4.2.

• w/ IMPLICIT: optimization by SeqGAN with the implicit-discriminator
described in Section 3.4.3.

• w/ EXPLICIT: optimization by SeqGAN with the implicit-discriminator
described in Section 3.4.3.

• w/ ENSEMBLE: optimization by SeqGAN with the implicit and explicit-
discriminator described in Section 3.4.3.

Training settings

We used the same hyper-parameter settings in these NCMs and classifiers. The
vocabulary size was 15000, the word embedding size was 300, the dialogue act
embedding size was 50, and the hidden vector size was 300. We used a two-
layer Gated Recurrent Unit (GRU) [Cho et al., 2014] as an RNN. In training,
we used a mini-batch size of 64, a G-step of 1, a D-step of 5, and an Adam
optimizer [Kingma and Ba, 2014] with a learning rate of 1e-5. We used teacher-
forcing in the training process [Vinyals and Le, 2015]. We used the model with
the highest controllability for the generated response and the deterioration of the
perplexity within 1.0 points from the pre-training model on the validation set.

3.5.3 Automatic evaluation metrics

We automatically evaluated the generation results using references in the test
set. We used a beam search (a beam-width of 5) for generating examples for
evaluation ¶. For automatic evaluations, we used the following seven metrics:

• Perplexity (PPL) is a general metric for evaluating a language model per-
formance. The model likelihoods of the reference responses are calculated.

§https://github.com/asyml/texar/tree/master/examples/text_style_transfer
¶We used the top-1 response from the beam search candidates.
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Note that the perplexity scores do not directly reflect the generation quality;
for example, dull responses also have good perplexity scores.

• ROUGE, which is a popular automatic evaluation metric of language gen-
eration tasks, calculates the similarity between references and generated
responses [Lin and Och, 2004] based on n-gram recall. We used ROUGE-L,
which is a variant of ROUGE. ROUGE-L compares the references and the
generated responses based on the longest common sub-sequences between
them.

• Vector Pooling calculates the cosine similarity between the reference and
generated response vectors [Tao et al., 2017]. Each sentence vector is cal-
culated by concatenating both the max and the min-pooling vectors of the
word vectors in a sentence. This is a simple extension of vector extrema [Liu
et al., 2016], which is widely used in dialogue evaluations.

• NN Scorer is a neural network-based scorer that measures the related-
ness between the generated response and its dialogue context [Tao et al.,
2017]. The scorer is trained by the negative samples of response pairs and
randomly selected contexts as well as the positive samples of the real pairs
of a response and its context. Note that it does not refer to ground-truth
responses during the evaluations.

• RUBER is a blending metric between the referenced (Vector Pooling) and
the unreferenced metric (NN Scorer) [Tao et al., 2017]. It outperforms
the embedding-based and word-overlap-based metrics in many cases [Tao
et al., 2017]. We followed the setting in a previous work [Tao et al., 2017] for
training the NN scorer and inferring the score. We used both DailyDialog
and SWBD to train the model.

• Entropy (Ent) is a diversity metric [Zhang et al., 2018] that reflects the
evenness of the empirical n-gram distribution for the given responses:
Ent = 1∑

w∈V C(w)
∑

w∈V C(w) log C(w)∑
w′∈V C(w′) ,

where V is a set of all n-grams in the given responses and C(w) denotes the
frequency of n-gram w. We set the 4-gram for evaluation.
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• Controllability is the classification accuracy of the pre-trained dialogue
act classifier determined using the training set‖ described in Section 3.4.2.
We used the same dialogue act classifier. Any generated sentences are
labeled by the classifier and compared with the given condition label to
calculate the precision, recall, and f1.

3.5.4 Human subjective evaluation metrics

Since automatic evaluation scores suffer from a lack of correlation with human
subjective evaluation results [Liu et al., 2016], We also examined models with a
human subjective evaluation to confirm the naturalness and controllability of the
generated responses on DailyDialog.

Naturalness evaluation

We used a 3-point scale in accordance with an existing work [Xing et al., 2017] and
randomly selected 240 generated responses from the test set. Human annotators
added their evaluation scores for each sample by looking at the dialogue contexts.
A detailed description follows:

• +2: This response is not only relevant and natural but also informative
and interesting.

• +1: This response can be used as a response in the context, although it is
universal, like “Yes, I see,” “Me too,” or “I don ’t know.”

• 0: This response cannot be used in this context. It is either semantically
irrelevant or disfluent.

Three annotators evaluated each sample, and their final score was decided by
a simple majority. If all three evaluators completely disagreed (0, +1, and +2),
the example was scored as 1.

‖The accuracy of the classifiers was 81.59% (DailyDialog) and 87.27% (SWBD) in the test sets.
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Controllability evaluation

We manually evaluated whether the generated responses follow the given dia-
logue act labels. An expert annotator with three years of experience in dialogue
act annotation categorized the dialogue acts for the generated responses. The
annotator was trained using the training data of the DailyDialog corpus before
the evaluation.
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Table 3.3: Automatic evaluation results for each neural conversation model. Coherence and controllability scores
are displayed on a scale from 0 to 100.

Coherence Controllability
Dataset Models PPL Ent ROUGE-L Vector Pooling NN Scorer RUBER Prec. Rec.
DailyDialog ASEQ2SEQ 34.97 10.90 15.31 84.04 46.46 42.52 48.41 50.98

HED 33.03 9.59 13.79 83.87 47.12 43.08 46.90 48.83
CHED w/ SCE 32.11 10.16 16.66 83.94 46.11 42.40 86.65 86.01
CHED w/ KgCVAE 31.56 9.57 15.49 84.47 38.64 35.60 86.31 85.50
CHED w/ AC 32.74 10.07 17.03 83.97 47.03 43.09 87.72 87.86
CHED w/ RL 32.52 9.10 18.32 84.44 47.81 43.96 94.22 94.38
CHED w/ IMPLICIT 32.12 10.09 17.90 84.09 48.52 44.45 86.77 86.20
CHED w/ EXPLICIT 32.27 10.14 17.76 83.51 47.94 43.89 89.17 89.18
CHED w/ ENSEMBLE 32.30 10.31 17.98 83.53 48.39 44.32 90.51 90.52

SWBD ASEQ2SEQ 44.86 2.97 14.01 57.67 51.61 42.10 26.69 22.80
HED 44.30 3.32 16.17 59.18 54.86 44.17 46.62 31.31
CHED w/ SCE 41.18 4.92 26.20 71.78 51.22 45.59 92.14 74.82
CHED w/ KgCVAE 42.22 3.42 25.47 69.14 53.46 47.59 92.58 65.63
CHED w/ AC 44.05 4.81 25.22 70.33 54.77 48.01 93.87 74.95
CHED w/ RL 41.37 3.40 26.82 74.18 53.66 47.44 96.78 97.41
CHED w/ IMPLICIT 41.22 6.67 26.55 72.76 53.09 46.95 89.50 79.60
CHED w/ EXPLICIT 41.27 6.75 27.08 74.51 61.86 54.03 93.55 94.13
CHED w/ ENSEMBLE 41.29 5.70 26.97 74.21 62.41 54.46 95.20 95.79
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3.6 Experimental results

3.6.1 Automatic evaluation results

Overall results

Table 3.3 shows the results of the automatic evaluation. We compared our pro-
posed models based on SeqGANs ( w/ IMPLICIT, w/ EXPLICIT, w/ EN-
SEMBLE) with the baseline models ( w/ SCE, w/ KgCVAE, w/ AC, w/ RL).
Prec. and Rec. are the weighted averages∗∗ of the precision/recall of each label of
dialogue act.

For coherence, we confirmed that the models conditioned by the dialogue act
labels (w/ SCE, w/ AC, w/ RL, w/ IMPLICIT, w/ EXPLICIT, w/ ENSEMBLE)
improved the coherence scores (ROUGE-L, NN Scorer, and RUBER) compared
to the models without conditions. In addition, the CHED models based on RL
and SeqGANs achieved consistent improvement for each score compared with
CHED w/ SCE. This result suggests that dialogue act conditions are a potential
training constraint to improve the quality of the generated responses.

For controllability, CHED models based on RL and SeqGANs showed the im-
provement in controllability scores, although PPL was not worse than CHED w/
SCE. In particular, CHED w/ RL and CHED w/ ENSEMBLE showed the high-
est and second-highest improvement (over 90% Prec. and Rec.). This advantage
is more critical when using other decoding methods (e.g., random sampling and
diverse beam search [Ippolito et al., 2018]). On the other hand, CHED w/ IM-
PLICIT ’s improvement was limited by a lack of explicit objectives to identify
dialogue acts, unlike w/ RL, w/ EXPLICIT, and w/ ENSEMBLE. CHED w/
KgCVAE did not show the improvement of controllability than CHED w/ SCE.
This result is probably caused by the generation process of KgCVAE, which
strongly depends on sampling from latent variables. In other words, depending
on the state of the hidden vectors sampled from the encoder network to generate
the response, the discriminability of that generated response can vary greatly.
CHED w/ AC showed higher controllability than CHED w/ SCE; however, the
controllability was less than RL and SeqGAN-based models. This is probably

∗∗we use frequencies of each dialogue act label as weights.
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because of the sparsity of error signals from the discriminator when both the dis-
criminator and generator over-fit the training data. Note that discriminability of
CHED w/ KgCVAE and w/ AC, can be enhanced by applying our SeqGAN-based
methods to decoder networks in fine-tuning after their training.

For diversity, the CHED models based on SeqGANs showed comparable or
slight improvement compared to CHED w/ SCE. However, CHED w/ RL did
not improve diversity, which especially decreased on SWBD. This suggests that
CHED w/ RL generated responses that contain specific vocabulary or typical
phrases.

Controllability results

We evaluated the case where the model was always given a fixed dialogue act as
a condition, not only oracle. Table 3.6 shows the controllability score, diversity
score, and NNScorer (unrefereed metric) score calculated for responses, which
is generated by using all combinations of dialogue context and dialogue acts in
the test set. Here, the table also includes results for cases where low-frequency
dialogue act labels were excluded to eliminate the influence of dialogue act labels
that rarely appear in the test set. For controllability, the model w/ RL showed
the best performance. However, while the model w/ RL has achieved the desired
dialog acts with high accuracy, the diversity of its responses has shown the lowest
results compared to the models based on SeqGAN. The models w/ EXPLICIT
and w/ ENSEMBLE have better controllability overall, other than the model
w/ RL.　 Furthermore, when we evaluated the model by focusing only on the
frequent dialogue acts, we confirmed that the models w/ RL, w/ EXPLICIT,
and w/ ENSEMBLE more greatly improved the controllability than the model
w/ SCE.　The results of the NN Scorer showed comparable performance for all
models.

For a detailed analysis of the controllability of the response generation, we
show the controllability score of CHED w/ ENSEMBLE for each oracle dialogue
act label in Table 3.5 (DailyDialog) and Table 3.6 (SWBD). The tables show
the precision, recall, and the harmonic mean (F1) of each dialogue act and the
improvement from the score of CHED w/ SCE, which achieved the best control-
lability in the baselines (improv.).
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Our proposed CHED w/ ENSEMBLE improved the controllability of most
classes, even if the target dialogue act labels have similar characteristics (e.g.,
“Directives” and “Commissive”). CHED w/ RL and CHED w/ EXPLICIT also
showed a very similar improvement trend in the scores. However, we still must
improve the controlled response generation based on minority dialogue act labels.
We should not strongly accept the evaluation results from the dialogue act clas-
sifier, because annotating dialogue acts requires a great deal of expertise. Thus,
a human expert annotator also evaluated the controllability of each model.

We should not strongly accept the evaluation results from the dialogue act
classifier, because annotating dialogue acts requires a great deal of expertise.
Thus, a human expert annotator also evaluated the controllability of each model
in the next section.

3.6.2 Results of human subjective evaluation

Table 3.7 and Table 3.8 show the human evaluation results for DailyDialog ’
s naturalness and controllability. Regarding the naturalness of the generated
responses (Table 3.7), models based on SeqGANs generated more acceptable re-
sponses to the dialogue context. In particular, CHED w/ IMPLICIT achieved
the highest performance, followed by CHED w/ ENSEMBLE. In contrast, HED
w/ RL showed a slight decrease in overall naturalness despite being comparable
to models based on SeqGANs in the automatic evaluations.

Regarding the controllability of the generated responses (Table 3.8), CHED w/
EXPLICIT and CHED w/ ENSEMBLE achieved the highest and second-highest
performances. CHED w/ RL showed slightly inferior or comparable performance
to CHED w/ EXPLICIT and CHED w/ ENSEMBLE, although CHED w/ RL
remarkably improved controllability compared with the other models in the au-
tomatic evaluation. This is because the evaluation result of the dialogue act
classifier used as a reward function on RL does not always agree with human
evaluations. In other words, the CHED w/ RL model may be over-fitted to the
dialogue act classifier. It learns strategies that is over-fitted to the dialogue act
classifier, and the naturalness of the generated responses is only considered by
the SCE-loss used as an auxiliary objective. In contrast, our models using the
explicit-discriminator, which is dynamically updated by adversarial learning, have
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the potential to generate more natural and discriminable responses.
These results suggest that the implicit-discriminator improves the natural-

ness, and the explicit-discriminator improves the controllability in our adversarial
learning. Furthermore, the ensemble approach, which combines both discrimina-
tors, has the potential to produce better naturalness and controllability results.

3.6.3 Dialogue examples

We show examples generated by our models in Table 4.7. Our proposed CHED
w/ ENSEMBLE generated a comparable or slightly natural response compared to
other models, even though their responses represent the characteristics of dialogue
act labels when given during response generation. Here, note that the output of
the listed models is very similar in some cases (e.g., first and second examples).
This is because CHED w/ SCE is shared as the pre-trained model for each model.
Hence, if the possible responses that CHED w/ SCE might generate for a given
context are already appropriate, or if enough search in RL is not performed, the
response generation’s tendency may not vary significantly in case.

3.7 Conclusion
We introduced an extended framework of sequential generative adversarial net-
works to improve the controllability of neural conversation models (NCMs) un-
der the constraint of a given dialogue act label. We propose a different kind
of adversarial approach, including a new label-aware objective to encourage the
generation of discriminative responses by given dialogue act labels. Experimental
results showed that our proposed method, which is based on an ensemble reward-
ing strategy, has higher controllability for dialogue acts even though it has higher
or comparable naturalness to existing methods.

However, the response quality of our proposal still has room for improvement.
According to the human evaluation results, 70% of the generated responses did
not cause dialogue breakdowns. However, their responses remain inadequate to
satisfy the user. It is difficult to continue multi-turn conversations due to the
limitation of the training data in the available dataset, such as DailyDialog and
SWBD corpus. Thus, we need to explore an approach to address this problem.
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Exploring a method to control the response of NCMs based on BERT [Devlin
et al., 2019] or DialoGPT [Zhang et al., 2020], which are pre-trained on massive
dialogue corpora, is one promising direction. Furthermore, we will integrate the
optimization of natural language understanding and dialogue management into
our framework while focusing on different types of labels and intentions (e.g.,
emotions, persona, convergence and divergence, etc.) for building a more user-
satisfied conditional NCM.
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Table 3.4: Automatic evaluation results of response generation on all combination
of dialogue act and dialogue context in test set.

Models Prec. Rec. Ent NN Scorer
DailyDialog CHED w/ SCE 72.74 68.55 10.41 44.40

CHED w/ KgCVAE 72.05 66.13 9.56 36.07
CHED w/ AC 74.54 70.17 10.42 45.92
CHED w/ RL 84.67 82.25 9.54 46.69
CHED w/ IMPLICIT 72.85 66.87 10.37 47.80
CHED w/ EXPLICIT 76.38 72.20 10.49 46.61
CHED w/ ENSEMBLE 78.45 74.70 10.45 46.67

SWBD CHED w/ SCE 34.78 31.18 5.89 48.95
CHED w/ KgCVAE 36.58 33.78 6.06 47.18
CHED w/ AC 26.76 31.11 4.28 48.53
CHED w/ RL 33.68 33.92 4.68 51.92
CHED w/ IMPLICIT 32.58 31.19 7.56 49.71
CHED w/ EXPLICIT 32.51 33.34 8.80 50.63
CHED w/ ENSEMBLE 33.52 33.10 7.23 50.01

SWBD CHED w/ SCE 59.48 49.22 6.52 50.47
(freq. of DA > 5) CHED w/ KgCVAE 61.41 50.37 5.79 48.95

CHED w/ AC 57.91 52.23 3.81 47.11
CHED w/ RL 59.57 54.63 5.46 51.63
CHED w/ IMPLICIT 59.21 49.33 7.82 51.14
CHED w/ EXPLICIT 57.31 52.94 8.53 49.53
CHED w/ ENSEMBLE 58.64 52.87 7.41 50.57

SWBD CHED w/ SCE 79.55 74.85 5.79 50.28
(freq. of DA > 20) CHED w/ KgCVAE 78.62 77.21 4.77 48.80

CHED w/ AC 83.66 80.41 4.80 47.77
CHED w/ RL 87.94 85.79 4.87 50.32
CHED w/ IMPLICIT 79.49 76.02 7.56 49.71
CHED w/ EXPLICIT 85.50 83.25 7.26 49.42
CHED w/ ENSEMBLE 86.17 82.86 7.41 49.71

Table 3.5: Controllability for each dialogue act (DA) label on DailyDialog (CHED
w/ ENSEMBLE vs. CHED w/ SCE)

DA Prec. Rec. F1 (improv.) Freq.
Inform 89.62 93.06 91.31 (+3.75) 3257
Questions 98.89 99.24 99.07 (+1.18) 1713
Directives 94.71 85.17 89.69 (+8.84) 1052
Commissive 68.40 66.02 67.19 (+7.96) 718
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Table 3.6: Controllability for each dialogue act (DA) label on SWBD (CHED w/
ENSEMBLE vs. CHED w/ SCE). This table shows only dialogue act
labels with a frequency of 5 or more.

DA Prec. Rec. F1 (improv.) Freq.
statement non opinion 95.14 99.22 97.13 (+0.97) 2169
acknowledgements
(backchannel)

97.17 98.88 98.02 (+0.96) 1250

statement opinion 97.88 86.94 92.08 (+8.45) 689
abandoned or turned
exit/uninterpretable

99.41 100.00 99.70 (+0.44) 674

yes/no question 93.96 97.90 95.89 (+18.76) 143
appreciation 96.40 100.00 98.17 (−0.34) 134
agree/accept 84.69 80.58 82.59 (+71.24) 103
yes answers 89.47 65.38 75.56 (+3.65) 52
wh question 78.46 100.00 87.93 (−8.14) 51
backchannel in question
form

100.00 100.00 100.00 (+1.15) 43

conventional closing 97.56 100.00 98.77 (+3.65) 40
response acknowledgement 94.74 100.00 97.30 (+37.30) 18
open question 66.67 100.00 80.00 (+5.00) 18
no answers 78.57 73.33 75.86 (+16.40) 15
declarative yes/no ques-
tion

100.00 10.00 18.18 (+0.00) 10

affirmative non-yes an-
swers

50.00 75.00 60.00 (+22.15) 8

rhetorical questions 0.00 0.00 0.00 (+0.00) 8
summarize or reformulate 100.00 25.00 40.00 (+40.00) 8
action directive 0.00 0.00 0.00 (−60.00) 7
other 100.00 33.33 50.00 (+5.56) 6

Table 3.7: Response quality of each model with different objective functions in
human evaluations. This table shows percentages for each score. Avg
is weighted by percentage of scores.

Models +2 +1 +0 Avg
HED w/ SCE 23.33 38.33 38.33 0.85
CHED w/ SCE 25.00 38.75 36.25 0.88
CHED w/ RL 24.58 36.66 38.75 0.85
CHED w/ IMPLICIT 27.91 43.33 28.75 0.99
CHED w/ EXPLICIT 25.41 39.58 35.00 0.90
CHED w/ ENSEMBLE 27.91 41.25 30.83 0.97
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Table 3.8: Controllability of response generation: We calculated agreement (Co-
hen’s κ) with automatic annotation results by dialogue act classifier.
Table shows the filtered results of contradicted responses. Ratio is the
proportion of the acceptable response that was properly controlled by
dialogue acts.

Models Accuracy Agreement Ratio
CHED w/ SCE 85.14 0.68 54.27
CHED w/ RL 91.54 0.82 56.06
CHED w/ IMPLICIT 87.84 0.72 62.58
CHED w/ EXPLICIT 93.06 0.69 60.48
CHED w/ ENSEMBLE 92.68 0.81 64.12
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Table 3.9: Generated responses from models given a dialogue history and a di-
alogue act. A and B denote system and user. Reference utterances
for dialogue context sampled from test set shown after the context.
Generation results in contexts from models are shown after references.
Before generation results, given dialogue acts are indicated by round
brackets.

A (Commissive) yes of course . this is a really good one actually .
B (Questions) how much does it cost ?
A: Human (Inform) this one is 1500 yuan .
A: HED (Inform) want to take a look at it .
A: CHED (Inform) $ 200 , please .
A: CHED w/ RL (Inform) $ 800 per month .
A: CHED w/ IMPLICIT (Inform) $ 200 , please .
A: CHED w/ EXPLICIT (Inform) $ 200 .
A: CHED w/ ENSEM-
BLE

(Inform) $ 200 , please .

A (Questions) what ’s the problem , nada ? you look down in the dumps .
B (Inform) i don ’t know . my life is a big mess . everything is so complicated .
A: Human (Questions) come on , nothing can be that bad ?
A: HED (Questions) what do you think is the most important thing for you ?
A: CHED (Questions) what do you mean ?
A: CHED w/ RL (Questions) what do you think of the most important thing in the city ?
A: CHED w/ IMPLICIT (Questions) what do you mean ?
A: CHED w/ EXPLICIT (Questions) what do you mean ?
A: CHED w/ ENSEM-
BLE

(Questions) what do you think is the most important thing for you to do ?

A (Inform) it ’s getting late . i really have to go .
B (Directives) i hope we ’ll get together again soon .
A: Human (Commissive) i hope so . a good journey to you !
A: HED (Commissive) i don ’t know what to do .
A: CHED (Commissive) i don ’t think so .
A: CHED w/ RL (Commissive) ok . let ’s go .
A: CHED w/ IMPLICIT (Commissive) ok . let ’s go .
A: CHED w/ EXPLICIT (Commissive) i will . thank you for your help .
A: CHED w/ ENSEM-
BLE

(Commissive) i think so

A (Directives) i’d like to make an appointment with dr . cooper . could you arrange
it for me ?

B: Human (Directives) yes . would tomorrow morning be all right with you ?
B: HED (Directives) what about this one ?
B: CHED (Directives) i need to make a reservation for me , please .
B: CHED w/ RL (Directives) i need to check out this form . can you give me a call , please ?
B: CHED w/ IMPLICIT (Directives) sure . would you please fill out this form , please ?
B: CHED w/ EXPLICIT (Directives) well , i would like to buy a ticket .
B: CHED w/ ENSEM-
BLE

(Directives) you need to check out this form . would you like to go with me ?
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4 Entrainable neural
conversation model

In this chapter, we describe how to incorporate entrainment, an attractive human
phenomenon, into neural conversation models.

4.1 Introduction
Entrainment is a well-known conversational phenomenon in which dialogue par-
ticipants mutually synchronize with regards to various aspects: lexical choice
[Brennan and Clark, 1996], syntax [Reitter and Moore, 2007], style [Niederhof-
fer and Pennebaker, 2002], acoustic prosody [Natale, 1975, Ward and Litman,
2007], turn-taking [Campbell and Scherer, 2010, Beňuš et al., 2014], and dia-
logue acts [Mizukami et al., 2016]. Entrainment has a high correlation with dia-
logue success, naturalness, and engagement [Nenkova et al., 2008,Levitan et al.,
2015,Nasir et al., 2019]. Some existing works evaluated the dialogue quality and
the performance of dialogue systems through entrainment analysis [Weiss, 2020].
Although phenomena related to entrainment suggest that the quality of human-
human and human-machine dialogues can be improved, it remains challenging to
build a dialogue system that can explicitly consider the entrainment phenomena
in the framework of a neural conversation model, which has been actively studied
in recent years [Vinyals and Le, 2015,Serban et al., 2016].

In this study, we incorporate entrainment phenomena into a neural conversa-
tion model for building a more natural and user-satisfied dialogue system. We
construct a neural conversation model that can control the degree of entrainment
as intention of generated responses based on a framework of reinforcement learn-
ing (RL) [Williams, 1992]. We define the automatic entrainment scores based
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on the local interpersonal distance [Nasir et al., 2019], which focuses on lexical
entrainment. We use this score to optimize a neural conversation model by RL.

In Section 4.3, we describe our task of entrainable conversation modeling (Sec-
tion 4.3.1), a conditional generation model based on conventional architecture
(Section 4.3.2), and our proposed model optimized to entrainment scores by RL
(Section 4.3.3). In experiments, we performed a preliminary analysis using the
defined entrainment scores to clarify the relationship between user assessment
and entrainment phenomena in a chit-chat dialogue domain (Section 4.4). Ex-
perimental results showed that our entrainment scores correlated with human as-
sessment in human-human and human-machine dialogues in the chit-chat domain
(Section 4.5). As a model evaluation, we conducted subjective and objective eval-
uations (Section 4.6). Our proposed model generated comparable or more natural
responses compared with general neural conversation models, which optimized by
word prediction based on cross-entropy loss, and controlled well the degree of en-
trainment of the generated responses (Section 4.7). We discuss the challenges for
the advancement of entrained response generation in neural conversation models
by analyzing our experimental results (Section 4.8).

4.2 Related work
Many studies have analyzed entrainment in dialogues and shown that we can
observe the phenomena in dialogues from various aspects: lexical choice [Bren-
nan and Clark, 1996], syntax [Reitter and Moore, 2007], style [Niederhoffer and
Pennebaker, 2002], acoustic prosody [Natale, 1975], turn-taking [Campbell and
Scherer, 2010], and dialogue acts [Mizukami et al., 2016]. Furthermore, automatic
entrainment scores have been proposed that focuses on these aspects. These en-
trainment scores were highly correlated with dialogue success, naturalness, and
engagement [Nenkova et al., 2008,Levitan et al., 2015,Nasir et al., 2019].

Some studies used the knowledge obtained by analyzing the entrainment to
the dialogue system. One work [Campbell and Scherer, 2010] predicted the user’s
turn-taking behavior by considering entrainment. Another work [Fandrianto and
Eskenazi, 2012] modeled a dialogue strategy to intentionally increase the accuracy
of the automatic speech recognition using entrainment, and another [Levitan,
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2013] unified these works. Although these studies were conducted on modeling
and predicting the entrainment of the user’s behaviors, it remains challenging
problem to build a dialogue system that can make entrainment to users to improve
the dialogue system’s response quality. In other words, insufficient studies have
positively affected users through entrainment by the system.

On the other hand, recent neural conversation models focus on the efficient use
and encoding of dialogue history [Serban et al., 2016,Tian et al., 2017]. However,
they do not directly handle entrainment phenomena because they are achieved by
minimizing the cross-entropy loss of word prediction in decoder networks. Both
the model networks that consider the dialogue context and the objective function
of the model itself must be improved to achieve entrainable response generation.

In this study, we introduce a reinforcement learning (RL) framework [Williams,
1992,Ranzato et al., 2015] to optimize a neural conversation model for automatic
entrainment scores. Entrainment scores are given as RL rewards that enable neu-
ral conversation models to generate appropriately entrained responses for their
dialogue contexts. Existing studies have already described the correlation be-
tween human assessments and automatic entrainment scores. We performed a
follow-up analysis using chit-chat dialogue corpora to confirm that we can use
the scores as an objective function. By optimizing the model to maximizing
these scores, we expect that our neural conversation model can generate more
natural responses.

4.3 Entrainable neural conversation model
In this study, we focus on lexical entrainment, which is related to lexical choice
in dialogues. We are particularly interested in semantic entrainment, which is a
variant of lexical entrainment, that considers the similarity of words in semantic
space, not only the surface agreement of selected words. We introduce an
entrainment score based on the similarity in semantic spaces in word-distributed
representation [Kusner et al., 2015,Nasir et al., 2019] to capture local entrainment
trends for each turn in the dialogue. We optimize the neural conversation model
using RL to maximize the entrainment scores of the generated responses. We
formulate the problem as conditional neural conversation modeling, which uses
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the degree of entrainment of the response as a condition, because generating a
highly entrained response is not always appropriate even though the model has
to control the degree of entrainment based on the dialogue contexts.

In this section, we first describe an overview of the response generation task
tackled in this study (Section 4.3.1). Then we describe the architecture of a condi-
tional neural conversation model given the degree of entrainment (Section 4.3.2).
Finally, we describe a method that optimizes the conditional neural conversation
model using RL to fit the given degree of entrainment (Section 4.3.3).

4.3.1 Task definition

We formally define the task of entrainable conversation modeling as a response
generation task given a dialogue context and a degree of entrainment to the
dialogue context. Define generated response word sequence R = [w1, w2, · · · , wT ],
given dialogue context H = [H1, H2, . . . , HN ] and degree of entrainment of target
response rtarget ∈ R. N is the dialogue length, and T is the number of words in
an utterance.

Figure 4.1: Task of entrainable conversation generation

In this setting, response R is required to satisfy not only the appropriateness to
the dialogue context but also the degree of entrainment to the dialogue context
(Fig. 4.1). In other words, the neural conversation model enforces entrainment
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degree rgenerated ∈ R of the actual generated response to be closer to indicated en-
trainment degree rtarget. This optimization is achieved by minimizing the relative
error of both entrainment degrees:

minimize
rgenerated∈R

relative_error(rtarget, rgenerated). (4.1)

As an approach to building such neural conversation models controllable by a
given condition, such as the entrainment degree, vector concatenation is widely
used between a word vector and the vectorized condition to feed a decoder input
[Li et al., 2016b, Huang et al., 2018a]. Some other works proposed to extend
models [Peng et al., 2019,Zhou et al., 2019] for conditional generation according
to given emotion labels in the task of the emotional dialogue generation.

4.3.2 Neural conversation model based on entrainment
degree

We introduce a conditional neural conversation model based on a hierarchical
encoder-decoder model [Serban et al., 2016] with a context attention mechanism,
which explicitly gives an embedded vector of entrainment degree to the decoder
(Fig. 4.2). We apply the vector concatenation as a widely used method for con-
ditioning the decoder.

The encoder network has a hierarchical structure that consists of utterance and
context encoders. The utterance encoder receives a word at each time step using
forward RNNs to encode an utterance into a fixed-length vector:

hi,t = RNNutterance(hi,t−1, Embed(wi,t)). (4.2)

Here i is the number of turns in the dialogue context, and hi,t is the hidden vector
obtained by inputting each word wi,t in utterance Hi. Each word wi,t, which is
encoded to a fixed-length vector using an embedding layer, is used as input.

In the context encoder, utterance vectors are input to encode the dialogue
history:

ci = RNNcontext(ci−1, hi,T ). (4.3)
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Figure 4.2: Neural conversation model with entrainment degree as a condition

Here hi,T is a hidden vector obtained at the last step in the encoding for each
utterance. Resultant vector cN is fed into the decoder to generate a response
sentence as initial hidden state h′

0. In the decoder, hidden state h′
t of the decoder

and the output probability of word pt are calculated:

h′
t = RNNdec(h′

t−1, [Embed(wt−1); Linearent(rtarget)]), (4.4)
pt = softmax(Linearproj(h

′

t)). (4.5)

Here Linearproj is a projection layer, which maps h′
t to a vector of vocabulary size

|V|. Linearent is a linear transformation layer that embeds target entrainment
degree rtarget into a fixed-length vector. wi,t is sampled from pt and used as a
part of the input for the next step. In this decoding architecture, we expect
the decoder to generate a response with an appropriate degree of entrainment
for the dialogue history by also inputting entrainment degree rtarget in addition
to already generated words. Note that we used teacher-forcing in the training
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process [Vinyals and Le, 2015].
We also introduce a simple attention mechanism to the above decoder for effi-

ciently handling the information from the encoded dialogue context. Specifically,
let c1:N be a sequence of vectors obtained by the context encoder, and let h′

t be
the hidden states of the decoder in the t step. We compute the alignment weights
based on general-attention [Luong et al., 2015] for each hidden state and obtain
context vector h̄t:

αj = exp(score(cj, h′
t))∑N

j̃=1 exp(score(cj̃, h′
t)

, (4.6)

h̄t =
N∑

j̃=1

αj̃ · cj̃. (4.7)

The output words in step t are predicted using computed context vector h̄t:

ĥt = tanh(Linearattn([h̄t; h′
t])), (4.8)

pt = softmax(Linearproj(ĥt)). (4.9)

In general, training the neural conversation model is based on minimizing the
cross-entropy:

LCE = −
T∑

t=1
log exp(xt,e)∑|V|

k exp(xt,k)
. (4.10)

Here |V| denotes the vocabulary size, xt ∈ R|V| denotes the output of the pro-
jection layer in the decoding steps, and xt,e ∈ R|V| denotes the e-th element that
correspond to target word wt.

However, perhaps models based on minimizing cross-entropy loss do not effi-
ciently use the information in the dialogue context [Sankar et al., 2019]. Further-
more, since cross-entropy loss is not designed to handle entrainment phenomena,
we have to define a new objective function for building a neural conversation
model that is optimized to entrainment scores.
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4.3.3 Model optimization to entrainment degree based on
reinforcement learning

Our final goal is to build an entrainable neural conversational model based on the
given entrainment degree. However, model optimization based on existing cross-
entropy loss does not satisfactorily control the generation because the optimiza-
tion is calculated word-by-word. In contrast, optimization based on reinforce-
ment learning has the potential to train such a controllable response generation
model [Kawano et al., 2019]. Thus, we introduce the REINFORCE algorithm,
which is based on reinforcement learning [Williams, 1992,Ranzato et al., 2015].

In this section, we describe the objective function and its optimization method
using the REINFORCE algorithm (Section 4.3.3). We introduce a reward func-
tion using an automatic entrainment score to optimize the model (Section 4.3.3)
and scrutinize the training procedure for our neural conversation model based on
reinforcement learning (Section 4.3.3).

REINFORCE algorithm

The generation process in the neural conversation model is formalized as a Markov
decision process (MDP) and optimized with reinforcement learning (RL) [Li et al.,
2017a]. The problem of response generation in the neural conversation model is
generating response word sequence R = [w1, w2, · · · , wT ] that corresponds to
given dialogue history H and target entrainment degree rtarget. Formally the
generation process is defined as choosing an action to generate word wt given a
state, already generated words [w1, w2, · · · , wt−1], in time-step t [Yu et al., 2017].
Such a word selection process in the generation is defined as an action sequence,
which is generated by an actual policy in MDP.

We define a reward function based on entrainment scores to encourage the
model to generate entrained responses. The entrainment’s evaluation score is
fed as a reward to update the generator’s policy in the RL. We use a policy
gradient (REINFORCE algorithm) [Williams, 1992,Ranzato et al., 2015] to train
the policy. The gradient of objective function is defined:
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∇JRL(θ) ≃ 1
T

T∑
t=1

∑
wt∈V

QGθ(w1:t−1, wt)

· ∇θGθ(wt|w1:t−1) (4.11)

= 1
T

T∑
t=1

Ewt∼Gθ
[QGθ(w1:t−1, wt)

· ∇θ log p(wt|w1:t−1)]. (4.12)

Here θ is a parameter of the policy. V is a vocabulary, w1:t−1 indicates the al-
ready generated word sequence (state in MDP), and p(wt|w1:t−1) = Gθ(wt|w1:t−1)
is the generative probability of word wt ∈ V (action in MDP) in the decoder.
QGθ(w1:t−1, wt) is an action-value function that gives an expected future reward
when the system generates word wt given the state: already generated word se-
quence w1:t−1. The expectation E[·] can be approximated by sampling.

The action-value function for each step is approximately calculated using a
Monte Carlo tree search (MCTS) [Browne et al., 2012,Yu et al., 2017] under the
current policy and its parameter θ:

QGθ(R1:t−1, wt) = (4.13)
1
N

∑N
n=1 r(H, Rn

1:t, Rref, rtarget) for t < T ,

r(H, R1:t, Rref, rtarget) for t = T .

Here r(·) is a reward function that evaluates the entrainment degree of response
R1:T = {w1, w2, · · · , wT}. Rn

1:t is the generated response using a roll-out [Yu et al.,
2017] from partial-generated response R1:t using parameter θ. Rref is a reference
response, and n is the number of roll-outs∗. This reward function calculates
the reward based on the relative error between a given entrainment degree and
the entrainment degree of the actual generated response to allow it to control
the entrainment degree of the generated response. Note that we can use an
arbitrary score in this formulation. We use a reliable entrainment score based on
the similarity of the semantic space of the words to feed the entrainment degree
(score) as the reward.

∗We set the number of roll-outs to 5. However, since the computation cost of MCTS is high
when training the large model, we can also adopt an approach for speeding up the training,
such as REGS [Li et al., 2017a], instead of MCTS.
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Reward function for evaluating entrainment degree

We construct a reward function based on the idea of a local interpersonal distance
(LID), which is a previously proposed turn-level entrainment score [Nasir et al.,
2019]. LID uses a predefined number of turns (context lengths) in response to the
utterances of the primary speaker (anchor). The anchor utterance and response
pair that has a minimum distance is chosen to calculate LID. This calculation
is based on local entrainment, which is not always observed in the immediate
response to the primary speaker’s turn. It might be sustained and exhibited after
a few turns [Pickering and Garrod, 2006]. In this study, unlike the LID’s original
definition [Nasir et al., 2019], we calculate the similarity between the anchor
utterance and each past contextual utterance by another speaker and choose an
anchor and contextual utterance pair with minimum distance. However, note
that there is no difference in the nature of both scores.

To calculate the distance between two utterances, we use Word Mover’s Dis-
tance (WMD) [Kusner et al., 2015], which is calculated from the distributed
vector representations of words in a document. WMD targets both semantic and
syntactic information to get a distance between text documents. WMD calculates
the Earth Mover’s Distance [Rubner et al., 1998] between sets of word vectors
that are contained in the target sentences (documents). This calculation is based
on the minimum travel distance. Specifically, let ei ∈ Rd represents i-th word, as
defined by word-embedding E ∈ Rd×n for vocabulary of n words. We also define
a and b are n-dimensional normalized vectors, which consist of bag-of-words of
two sentences. ai indicates the count of the word i in the sentence†. The WMD
introduces an transport matrix T ∈ Rn×n, such that Ti,j indicates how much of
ai should be transported to bj. Formally, the WMD learns T to minimize:

WMD(a, b) = min
T ≥0

n∑
i=1

n∑
j=1

Tij||ei − ej|| (4.14)

subject to
n∑

j=1
Tij = ai ∀i,

and
n∑

i=1
Tij = bj ∀j.

†Note that ai is normalized over all words in a.
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To solve this minimization problem, we used the efficient implementations [Pele
and Werman, 2008,Pele and M.Werman, 2009,Kusner et al., 2015]‡. In this study,
we calculate WMD using all words within the utterance because we intended
to consider the words related to speaking style, not only content words within
utterance in the similarity calculation. The similarity evaluation is closed within
the two utterances, and the properties of the words are only considered in a word
embedding. However, according to various entrainment purposes, we may need to
evaluate the word similarity considering various aspects, such as the importance
of co-occurrence of proper nouns or rare words. In such a case, our method can
replace WMD with another specially designed similarity function consider word
importance.

We define target entrainment degree rtarget based on the idea of LID:

sim(x, y) = e−WMD(bow(x),bow(y))2
, (4.15)

rtarget = rtarget(H, Rref) = max
Hother

j ∈Hother⊂H
sim(Hother

j , Rref). (4.16)

Here the sim(·) function normalizes the calculation results of WMD as the sim-
ilarities between utterances (x and y). e is a natural logarithm, and bow(·) is a
function to convert the given sentence to bag-of-words representation. Rref is the
reference response corresponding to dialogue history H, and Hother ⊂ H is a set
consisting of the most recent k utterances from the dialogue history H, excluding
the primary speaker’s utterances. rtarget is assumed to be a similarity that takes
values from 0 to 1.

Next we define entrainment degree rgenerated of the actual generated response:

utarget = utarget(H, Rref) = arg max
Hother

j ∈Hother⊂H

sim(Hother
j , Rref), (4.17)

rgenerated = rgenerated(H, Rref, R) = sim(R, utarget). (4.18)

Here utarget is a target utterance to make entrainment by system generation, which
has the maximum similarity of every pair formed by the anchor utterance of the

‡https://github.com/RaRe-Technologies/gensim
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reference and a context utterance. Thus, rgenerated is calculated as the similarity
between the generated response and the target.

The reward given to the generated response is calculated from the relative error
between rtarget and rgenerated:

r = r(H, R, Rref, rtarget) = 1− |rtarget − rgenerated|
max(rtarget, 1− rtarget)

. (4.19)

This reward function gives more reward when the relative error between the en-
trainment degree of the generated response and the indicated entrainment degree
is small. In other words, it gives penalty if the generated utterance is over or
under-entrained compared with the reference.

We used different functions for rtaget and rgenerated because using the same func-
tion will lead to learning a lazy policy that always refers to the previous utterance.

Model training based on REINFORCE algorithm

The training procedure of a neural conversation model with RL is shown in Al-
gorithm 2.

Algorithm 2 Training Procedure
Require: generator policy Gθ; roll-out policy G′

θ

1: Initialize Gθ with random weights θ
2: Pretrain Gθ to minimize LCE ▷ (4.10)
3: for number of iterations do
4: G′

θ ← Gθ

5: for number of steps do
6: sample (H, Rref, rtarget) from training data
7: generate response R using G′

θ on H and rtarget
8: compute QGθ for (H, R, rtarget) using G′

θ ▷ (4.13)
9: update Gθ based on JRL(θ) ▷ (4.12)

10: end for
11: end for

First, we pre-train the neural conversation model by minimizing cross-entropy
loss LCE. Then we train it to maximize objective function JRL(θ) using reinforce-
ment learning and add LCE to the loss to stabilize the training. This approach
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works as a teacher forcing and prevents the collapse of policies due to the model’s
inability to access the reference response [Li et al., 2017a]. The policy used to
calculate QGθ is updated every 20 steps. We use the model with the highest
reward sum for the generated response and the deterioration of perplexity within
1.0 points in the validation set for the evaluation.

4.4 Entrainment analysis setting
LID, which is used as a reward in this study, probably correlates with human
assessment (therapeutic outcomes and affective behaviors) in the dialogues of
clinical psychology and psychotherapy [Nasir et al., 2019]. On the other hand, no
examination has focused on chit-chat dialogues, which are the main focus of this
study. Therefore, we performed a preliminary analysis to clarify the relationship
between user assessment and entrainment in chit-chat dialogues.

We used Spearman’s rank correlation coefficient to evaluate the relationship
between the Conversational Linguistic Distance (CLiD) [Nasir et al., 2019], a
dialogue session-level entrainment score calculated by the mean of the LIDs, and
the user assessment assigned to each dialogue. CLiD is defined:

CLiD(D) =
∑

(H,Rref)∈D rtarget(H, Rref)
|D|

. (4.20)

We applied (4.16) to each turn of the dialogues and averaged the results as the
dialogue level entrainment scores. Here, (H, Rref) ∈ D is a context and response
pair for each turn in the dialogue. Note that the definition changes from the
original CLiD to fit our problem.

For the entrainment analysis, we used the following chit-chat dialogue corpora
(Table 4.1):

• ConvAI2-wild-evaluation: Dialogues between a human and a system
that participated in the ConvAI2 competition§. Each dialogue was evalu-
ated by human participants on a five-point scale.

• NTT-chit-chat : Dialogues between human participants that covered as
§http://convai.io/data
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wide range of topics [Arimoto et al., 2019]. Participants in each dialogue
evaluated it from the following three viewpoints on a seven-point Likert
scale: 1) strongly disagree; 2) disagree; 3) slightly disagree; 4) neither; 5)
slightly agree; 6) agree; 7) strongly agree.　

– Q1: “I am satisfied with the current dialogue. I’d like to have such a
dialogue again.”

– Q2: “I found myself interested in the topic of the current dialogue.”

– Q3: “In the current dialogue, I spoke positively on my own.”

Table 4.1: Number of dialogues/utterances in each corpus
Corpus Dialogues Utterances

ConvAI2-wild-evaluation 2,483 41,415
NTT-chit-chat 3,483 56,566

4.5 Entrainment analysis results
We performed a correlation analysis of ConvAI2-wild-evaluation, as shown in
Table 4.2. Here ρ is the correlation calculated by Spearman’s rank correlation
analysis, and the p-value is the probability of the null hypothesis. We calculated
the CLiD for two types based on their attributes because the speaker has dis-
tinctly different attributes: “Human → System” shows the human responses to
the system, and “System→ Human” shows the system responses to the humans.

Table 4.2: Entrainment analysis results for ConvAI2-wild-evaluation
k = 1 k = 2 k = 3

Types ρ p-value ρ p-value ρ p-value
Human→ System 0.19 6.25× 10−22 0.24 2.83× 10−33 0.26 3.03× 10−41

System→Human 0.22 9.22× 10−31 0.23 5.51× 10−31 0.23 2.90× 10−33

As shown in Table 4.2, we confirmed that CLiD has a positive correlation with
human scores, regardless of any setting used to calculate it. This result indicates
that the entrainment degree is critical for improving the quality of human-machine
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dialogues. Since many systems based on a neural network are not able to handle
the dialogue context [Sankar et al., 2019], this result might be deeply related
not only to entrainment but also to whether the system can generate a context-
relevant response. To compare cases using different values of k, we confirmed a
stronger correlation in the case of k = 2 and k = 3. In fact, humans often respond
with an awareness of both the previous utterances but also deeper utterances from
the past in a dialogue history [Pickering and Garrod, 2006].

We also performed a correlation analysis between average assessments by two
participants and CLiD in an NTT-chit-chat (Table 4.3).

Table 4.3: Entrainment analysis results for NTT-chit-chat
k = 1 k = 2

Question ρ p-value ρ p-value
Q1 0.13 2.45× 10−15 0.10 7.13× 10−10

Q2 0.11 6.30× 10−12 0.08 4.11× 10−7

Q3 0.09 4.19× 10−8 0.07 2.66× 10−5

Table 4.3 shows a moderately positive correlation between the user assessments
corresponding to these questions and the CLiD. This result suggests that using
entrainment in dialogues is an effective strategy to improve user satisfaction in
chit-chat dialogues. As stronger correlation is observed in k = 1 than in k = 2.
This is probably because NTT-chit-chat has multiple utterances per turn. In
other words, when we apply CLiD to dialogues that contain a lot of information
in one turn, it is difficult to find strong correlations between CLiD and human
scores, because LIDs, which are CLiD components, will be biased by the number
of words in the utterances.

These results indicate that CLiD, which is calculated by LID averages, is a
useful and strict score to evaluate dialogues in the chit-chat domain, if their
utterance length is limited. In other words, these results support our hypothesis:
maximizing the LIDs in dialogues increases dialogue quality.
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4.6 Evaluation setting for response generation
We confirmed that improving LID scores is important in human-machine dialogue
setting as well, which is a basic hypothesis of our entrainable dialogue modeling.
In this section, we describe the experimental settings to confirm the effect of our
proposed entrainable neural conversation model.

4.6.1 Dataset

We used the dataset provided at the ConvAI2 competition, which was also used
to train the system in the ConvAI2-wild-evaluation described in Section 4.4. This
dataset was divided into train, validation, and test sets (Table 4.4). We divided
the original development data into validation and test sets¶.

Table 4.4: Number of dialogues/utterances in ConvAI2 dataset
Dialogues Utterances

Train 17,876 262,862
Validation 498 7,798

Test 499 7,788

4.6.2 Competing models

We compared the following different types of neural conversation models in our
evaluations:

• ASEQ2SEQ: a standard neural conversation model that encodes a previ-
ous utterance as a query for decoding a response with an attention mecha-
nism (general-attention) [Luong et al., 2015].

• HED: a hierarchical encoder-decoder model [Serban et al., 2016] without
an attention mechanism and conditioning to a decoder.

• AHED: a model that combines an attention mechanism with the HED
model.

¶Note that the original test set in ConvAI2 dataset are private.
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• C-ASEQ2SEQ: a model with conditioning based on ASEQ2SEQ. We gave
the condition (degree of entrainment) as described in Section 4.3.2.

• C-HED: a HED model with a conditioning mechanism. We gave the con-
dition (degree of entrainment) as described in Section 4.3.2.

• C-AHED: an AHED model with conditioning. We gave the condition
(degree of entrainment) as described in Section 4.3.2.

We trained these neural conversation models using conventional cross-entropy
loss (+CE) and our proposed optimization based on reinforcement learning
(+RL). We used the entrainment scores as a condition given to the decoder and
explored the case with different k ∈ {1, 2, 3} for score calculation. When k = 1,
the entrainment score is calculated using only the previous utterance; when k = 2,
it is calculated using the two most recent utterances by a non-primary speaker.
Since the dialogue is performed alternately by two speakers, the neural conver-
sation model needs to handle at most four utterances in a dialogue history when
k = 2. However, the subjective evaluation is limited to k = 1 and k = 2 in this
experiment because k = 3 did not show much difference compared with the other
k settings.

4.6.3 Hyper-parameter settings

We used the same hyper-parameter settings in these models. The vocabulary
size was 15000, the word embedding size was 300, the entrainment embedding
size was 50, the hidden-size was 500. We used a two-layer Gated Recurrent Unit
(GRU) [Cho et al., 2014] as an RNN. In the training, we used a mini-batch size of
128, and an Adam optimizer [Kingma and Ba, 2014] with a learning rate of 1e-4.
For the WMD calculation, we used pre-trained, word-distributed vectors‖, which
normalized the norm to 1 for each. We set the maximum length of the dialogue
history to 4.

‖For English data: http://nlp.stanford.edu/projects/glove/
and for Japanese data: http://www.worksap.co.jp/nlp-activity/word-vector/
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4.6.4 Automatic evaluations

We automatically evaluated the generation results using references in the test
set. We used a beam search (a beam width of 5) for generating examples to be
evaluated. For automatic evaluation, we used the following five different metrics:

• Perplexity (PPL) is a general metric for evaluating a language model per-
formance. The model Likelihoods of the reference responses are calculated.
Note that the perplexity scores do not directly reflect the quality of gener-
ation; for example, dull responses also have good perplexity scores.

• BLEU, which is the most popular automatic evaluation metric of language
generation tasks, calculates the similarity between references and gener-
ated responses [Papineni et al., 2002] based on n-gram precision. We used
BLEU2, which considers uni-grams and bi-grams because matches in higher-
order n-grams are rarely observed response generation tasks.

• WMD is the average similarity between the references and the generated
responses for each case in the test set. The similarity is calculated based
on (4.15).　The score is multiplied by 100 and displayed in a range of 0 to
100.

• r is an average reward calculated from (4.19) to each generation. When
this score is high, the entrainment degree of the generated response shows
a similar degree to the reference. In other words, it shows that the neu-
ral conversation model controlled the response content well based on the
entrainment degree. We sorted the test sets by the entertainment scores
of the references and divided them into four parts to calculate r for each
(r0∼25%, r25∼50%, r50∼75%, r75∼100%). For example, r0∼25% shows the aver-
age reward of examples that have less entrainment scores in the references.
These scores are multiplied by 100 and displayed in a range of 0 to 100.

• Entropy (Ent) is a diversity metric [Zhang et al., 2018] that reflects the
evenness of the empirical n-gram distribution for the given responses: Ent =

1∑
w∈V C(w)

∑
w∈V C(w) log C(w)∑

w′∈V C(w′) , where, V is the set of all n-grams in
the given responses, and C(w) denotes the frequency of n-gram w. We set
the uni-gram for evaluation.
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4.6.5 Human subjective evaluations

Automatic evaluation scores still have a problem since they do not have high
correlation with human subjective evaluation results [Liu et al., 2016]. Thus, we
also examined models with a human subjective evaluation to confirm the natu-
ralness of the generated responses. In the evaluation of naturalness, we used a
3-point scale in accordance with an existing work [Xing et al., 2017]. 240 gener-
ated responses were randomly selected from the test set, and human annotators
added their evaluation scores for each sample by looking at the dialogue contexts.
Detailed descriptions follow.

• +2: This response is not only relevant and natural, but also informative
and interesting.

• +1: This response can be used as a response to the context, although it is
universal, like “Yes, I see,” “Me too,” or “I don’t know.”

• 0: This response cannot be used as a response to this context. It is either
semantically irrelevant or dis-fluent.

Three annotators evaluated each sample, and the final score was decided by a
simple majority. If the evaluation was completely disagreed (0, +1, and +2), the
example was scored as 1.
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Table 4.5: Automatic evaluation results for each neural conversation model
Models (k = 1) PPL BLEU2 WMD r0∼25% r25∼50% r50∼75% r75∼100% r Ent
ASEQ2SEQ+CE 40.80 7.82 38.77 91.22 88.24 82.80 62.35 81.15 5.03
HED+CE 37.53 6.62 36.40 90.72 89.21 83.79 63.06 81.69 5.21
AHED+CE 39.11 6.71 38.16 91.04 88.44 82.40 62.11 81.00 5.11
C-ASEQ2SEQ+CE 40.05 3.69 38.77 90.90 88.08 84.19 68.82 83.01 5.33
C-HED+CE 37.12 6.56 39.17 91.41 88.52 84.25 70.04 83.55 5.20
C-AHED+CE 39.91 6.64 38.84 91.58 89.25 85.00 70.02 83.96 5.11
C-ASEQ2SEQ+RL 41.41 7.28 39.59 91.60 89.36 86.12 72.65 84.93 5.59
C-HED+RL 37.54 6.69 40.57 91.72 90.51 88.01 74.53 86.19 5.97
C-AHED+RL 40.01 7.42 39.96 91.84 90.53 86.36 72.75 85.37 5.52
Models (k = 2) PPL BLEU2 WMD r0∼25% r25∼50% r50∼75% r75∼100% r Ent
HED+CE 37.53 6.62 36.40 87.99 86.69 82.45 62.74 79.97 5.21
AHED+CE 39.11 6.71 38.16 88.11 86.21 81.14 61.86 79.33 5.11
C-HED+CE 37.01 7.28 39.89 90.79 88.84 84.77 70.15 83.64 5.17
C-AHED+CE 38.76 5.17 38.43 89.49 87.64 84.44 67.54 82.27 5.18
C-HED+RL 37.24 6.39 40.67 90.25 89.49 86.91 74.18 85.21 5.62
C-AHED+RL 40.79 7.30 40.48 90.93 91.24 87.14 72.63 85.49 5.87
Models (k = 3) PPL BLEU2 WMD r0∼25% r25∼50% r50∼75% r75∼100% r Ent
HED+CE 37.53 6.62 36.40 88.59 87.97 79.29 60.88 79.25 5.21
AHED+CE 39.11 6.71 38.16 88.87 86.74 78.16 60.71 78.62 5.11
C-HED+CE 36.93 6.96 39.52 90.01 88.11 84.03 69.89 82.52 5.17
C-AHED+CE 38.21 5.39 38.23 89.12 87.15 85.87 67.24 81.92 5.35
C-HED+RL 37.21 6.80 40.99 91.48 90.82 86.32 72.23 85.21 5.96
C-AHED+RL 40.05 6.85 40.53 92.30 90.34 85.82 72.80 85.31 5.73
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4.7 Experimental results on entrained response
generation

4.7.1 Automatic evaluation results

We show the automatic evaluation results of response generation models in Ta-
ble 4.5. Our proposed models using the target entrainment degree as a condition
showed improvement on r from the baseline models and achieved comparable
performance on other metrics. Our proposed models controlled the generation at
a high level, based on the indicated entrainment degree. In particular, we con-
firmed a remarkable improvement in models that applied reinforcement learning
(C-HED+RL and C-AHED+RL). C-AHED+RL showed the best performance in
k = 2, 3, indicating that the attention mechanism for context works well when
the model uses longer contexts. However, we still have a problem with generation
performance r75∼100%, which gives very high entrainment scores as a condition. In
other words, generating highly entrained responses is more challenging. Further-
more, our proposed models based on reinforcement learning showed a consistent
improvement of WMD and Ent, and BLEU was comparable to the baseline mod-
els. For k = 2 and k = 3, there was no significant difference between them
regarding the relevance of the responses. The model based on hierarchical en-
coders used in this experiment is not specialized to handle long contexts, thus
setting a large k-value may not be worth the training cost of the model it incurs.

Then we traced the changes in the generation performance when we gave dif-
ferent fixed examples of rtarget as a condition for the generation models instead of
the oracle. The results are shown in Fig. 4.3. Here the vertical dashed line is the
median of oracle rtarget. Our proposed models, which are optimized by reinforce-
ment learning, showed consistent improvement compared with the other models.
For r, we confirmed the highest performance around the median of oracle rtarget.
Lower scores on high rtarget were probably caused by a lack of training samples
of high rtarget. For WMD and Ent, we confirmed increasing trends in both scores
when we give a high rtarget. On the other hand, both scores are low in the range
of low rtarget. This result was caused by dull responses, which have small diversity
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and little relevance to the references. In some cases, our models outperformed
the results of giving the oracle conditions. This indicates that our models are
robust even if the condition given to the model is different from the oracle.
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(a) Performance comparison when k = 1

(b) Performance comparison when k = 2

Figure 4.3: Changes in generation performance when given a fixed rtarget
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4.7.2 Human subjective evaluation results

Table 4.6 shows the human evaluation results for the naturalness of the generated
responses in each model. We used the oracle entrainment degrees as the given
conditions. Our proposed models, based on reinforcement learning, generated a
more acceptable response to the dialogue context than the baseline models under
the oracle condition. C-AHED+RL (k = 2) showed the highest performance.
However, C-HED+RL (k = 2) did not improve the score compared with C-
HED+RL (k = 1). This indicates that C-HED model, which has no attention
mechanism, can not take enough advantage of reward signals that considering
the more past context.

We also evaluated the relationship between human evaluation scores and en-
trainment scores based on LID∗∗. Fig. 4.4 shows the box-plots for human evalu-
ation scores and entrainment scores of three models (no-conditioned models and
C-HEDs, C-AHEDs). Here the horizontal axis indicates the human evaluation
scores and the vertical axis indicates the entrainment scores. Note that C-HEDs
and C-AHEDs are including both results of cases in +CE and +RL. We calcu-
lated the polyserial correlation ρ [Olsson et al., 1982] between human scores and
entrainment scores instead of Spearman’s rank correlation since there is only a
3-point scale for human scores. We identified significant positive correlations be-
tween human scores and entrainment scores for all of the groups regardless of the
k settings. This result is consistent with the results of the preliminary analysis
in Section 4.5. Note that we can not compare the magnitude of the correlations
in each group. This is due to the correlations will be small for groups with a low
frequency of score 0 since the nature of the evaluation score based on the 3-point
scale.

∗∗The LID was calculated based on (4.16).
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(a) Box-plots for entrainment scores and human scores when k = 1

(b) Box-plots for entrainment scores and human scores when k = 2

Figure 4.4: Relationships between human scores and entrainment scores
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Table 4.6: Frequency of each subjective evaluation score. Weighted-Avg is a
weighted average by frequency of scores.

Models 2 1 0 Weighted-Avg
HED+CE 44 85 111 0.72

AHED+CE 33 119 88 0.77
C-HED+CE (k = 1) 43 88 109 0.73
C-HED+CE (k = 2) 40 103 97 0.76
C-HED+RL (k = 1) 49 105 86 0.85
C-HED+RL (k = 2) 45 106 89 0.82

C-AHED+CE (k = 1) 45 105 90 0.81
C-AHED+CE (k = 2) 44 110 86 0.83
C-AHED+RL (k = 1) 38 123 79 0.83
C-AHED+RL (k = 2) 47 126 67 0.92

Table 4.7 shows the generation examples of the compared models based on
AHED in k = 2. Their naturalness seems at least comparable; even our proposed
models generated more entrained responses. Note that it is difficult to find using
the same words because our proposed method is based on WMD that calculates
the semantic similarity in semantic spaces.

4.8 Conclusion
We proposed a neural conversation model that can control the entrainment degree
of generated responses according to the given entrainment degree. We applied
reinforcement learning to optimize our model for automatic entrainment scores
that incorporate local interpersonal distance as a reward. Experimental results
showed the entrainment scores correlated with human assessments in both human-
human and human-machine dialogues in a chit-chat domain. Our proposed model
also generated comparable or more natural responses than conventional models
based on the minimization of cross-entropy loss, while the degree of entrainment
of the generated responses is well controlled.

Although our method outperformed the existing method based on cross-entropy
loss, the entrainment degree of generated response can still be improved. This
is because our method does not have any mechanism to explicitly access the
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vocabulary used in the dialogue context on its decoding process. Hierarchical at-
tention [Xing et al., 2018] or a copying mechanism [Gu et al., 2016] may explicitly
solve this problem based on the word information in dialogue contexts.

The entrainment induced by our system was shown to be significantly corre-
lated with the user assessment. However, it is not sufficient to conclude that
response generation based on high entrainment always induces a high user as-
sessment. Because our entrainment score only considers a minimal aspect of
the entrainment phenomenon. A phenomenon where synchronization with each
other in a dialogue, such as an entrainment, is strongly related to the attributes
of the dialogue participants and the relationships between them [Giles et al.,
1987]. Therefore, by focusing on personality and individuality, we will redefine
entrainment from various theoretical levels (e.g., convergence and divergence) and
achieve more fine-tuned control of response generation for building a more user-
satisfied system. Of course, entrainment is not a universal phenomenon that can
improve the dialogue system. Thus we will also be looking for ways to incorporate
phenomena other than entrainment into the dialogue system.

89



Table 4.7: Generated responses from models given a dialogue history and a target
entrainment degree: A and B denote system and user. One utterance
of each speaker is given as a history in the example. Generation results
of each model are shown after the context. Before generation results,
given target entrainment degrees and rewards bestowed on generated
responses are indicated by brackets.

A hi there ! how is your day ?
B: AHED+CE i am doing well . how are you ?
B: C-AHED+CE (rtarget = 0.51, r = 0.79) i am doing well . just got back from the gym . how

are you ?.
B: C-AHED+RL (rtarget = 0.51, r = 0.98) hello , i am good thanks . how are you ?
B: REFERENCE (rtarget = 0.51, r = 1.0) i am doing great out here
A have you thought about finding another job ?
B i want to leave the job but my parents make me stay
A maybe if you found a better one before leaving .
B yeah but i’ll move out my parents soon .
A very cool ! i loved it when my kids left .
B i’ll love it when i leave then i can do as i like
A: AHED+CE i am sorry to hear that . do you have any pets ?
A: C-AHED+CE (rtarget = 0.62, r = 0.72) i am sorry to hear that . do you have any pets ?
A: C-AHED+RL (rtarget = 0.62, r = 0.83) i hope so too ! what else do you like to do in your

spare time ?
A: REFERENCE (rtarget = 0.62, r = 1.0) it does not always work out that way
A uh , i guess that is cool , so you like food ?
B yup love it . i also survived cancer though .
A bet that was pretty rough’ 　
B yes it was hard . i love to run . how about you ?
A i spend a lot of time trying to cook , i’m not super good .
B that is fine . i also like preparing for marathons .
A: AHED+CE i love to cook , but i do not have a job , but i do not like it
A: C-AHED+CE (rtarget = 0.73, r = 0.45 ) i am sorry to hear that . do you have any pets ?
A: C-AHED+RL (rtarget = 0.73, r = 0.55) that is awesome , what kind of music do you like ?
A: REFERENCE (rtarget = 0.73, r = 1.0) is that super hard work ?
A i used to paint and would need to stop taking my meds to do a big job .
B i understand . i like the city .
A i am currently a cleaning lady and do alot of work in the city .
B that sounds fun and interesting .
A it is . what do you do ?
B i work on construction right now .
A: AHED+CE that sounds like a lot of fun . do you have any hobbies ?
A: C-AHED+CE (rtarget = 0.23, r = 0.95) that sounds like a lot of fun . do you have any

hobbies ?
A: C-AHED+RL (rtarget = 0.23, r = 0.84) that is cool . i am a professional person .
A: REFERENCE (rtarget = 0.23, r = 1.0) do you have any hobbies ?
A that’s great , i am a grad student
B do you have any hobbies ? i really love sky diving , rollercoasters and cooking

shows !
A kayaking and reading psychology books
B i’d go kayaking but i’m really not good at swimming so i’d be scared
A i love it , i’m an awesome swimmer
B do you like hummus ? it is a great alternative as a vegan , i love it !
A: AHED+CE i do not have any pets , i do not have any pets
A: C-AHED+CE (rtarget = 0.28, r = 0.93) i like to go to the beach , do you have any hobbies

?
A: C-AHED+RL (rtarget = 0.28, r = 0.95) i like to go to the park and listen to music
A: REFERENCE (rtarget = 0.28, r = 1.0) not really a fan , i am a meats kind of guy
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5 Dialogue structure parsing on
multi-floor dialogue

In this chapter, we studied how to automatically understanding how the inten-
tions are expressed and contributed to practical conversation situations, such as
multi-floor dialogue. We describe a dialogue structure parser that identifies the
structures of multi-floor dialogues.

5.1 Introduction
In single-floor dialogues, each participant can access any of the dialogue contents.
For example, two people talking face to face, or an online conference involving
participants from different places is a single-floor dialogue because each partici-
pant can access all of the dialogue contents. By contrast, a multi-floor dialogue
consists of multiple sets of dialogue participants, each conversing within their own
floor, but also at least one multi-communicating member who is a participant of
multiple floors and coordinating each to achieve a shared dialogue goal [Traum
et al., 2018]. For example, in a restaurant, a server communicates with customers
to take their orders in the dining room (one floor) and talks with other workers
in the kitchen (another floor) who prepare the customer’s food. All the partic-
ipants work toward the joint goal of providing the customer with their desired
meals, however in this case, only the server participates in both floors, conveying
orders from customer to kitchen and perhaps information about item availability
or speed from kitchen back to customers. Another example is in military units,
where soldiers follow their commander’s orders, which are decided at headquar-
ters. Such situations are quite common in the real world, where we have different
dialogue floors for decision-making and actions based on decisions.
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Identifying aspects of multi-floor dialogue structure can be critical for build-
ing cooperative applications that have to participate in multi-floor dialogues,
for example collaborative navigation robots [Lukin et al., 2018, Bonial et al.,
2018]. However, most existing studies on dialogue structure parsing addressed
only single-floor dialogues. There are standard annotation schemes for both dia-
logue acts [Bunt et al., 2012a] and discourse relations [Prasad and Bunt, 2015] in
single-floor dialogues. Some proposed models have parsed the dialogue structure.
However, these schemes do not fully address the issues of dialogue structure in
multi-floor dialogues. A previous work proposed an annotation scheme of dialogue
structure on multi-floor dialogues [Traum et al., 2018]. This scheme is based on
two important aspects of dialogue structure: transaction units and the relations
between utterances. A transaction unit clusters utterances from multiple partici-
pants and floors that contribute to achieving the initiating participant’s intention.
Relations link utterances to antecedents within the unit. However, there is no
previous work on automatic dialogue structure parsing for multi-floor dialogue.

In this study, we propose a first neural dialogue structure parser for multi-floor
dialogue structure. Our proposed parser has an attention mechanism to predict
structure across different floors. In the following sections, we describe the dialogue
structure parsing task on multi-floor dialogue, an annotation scheme, and our
target domain (Section 5.2). We describe our proposed system based on the end-
to-end approach, which automatically identifies the dialogue structure of multi-
floor dialogues by recurrent neural networks. The definitions of transaction units,
antecedents, and relation-types are closely related to each other. We applied the
attention mechanism and multi-task learning to improve the overall performance
of the dialogue structure parser considering their characteristics (Section 5.3).
We experimentally evaluated the dialogue structure parsing performance of our
model using automatic metrics that focus on micro- and meso-level structures
[Traum and Nakatani, 1999] in dialogues (Section 5.4). Our proposed model
using multi-task learning improved the overall performance compared to models
trained on single-task settings (Section 5.5). Finally, we conclude by describing
the performance of our proposed model and discussing possible future directions
(Section 5.6).
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Table 5.1: Dialogue example of multi-floor dialogue
Left Floor Right Floor Annotations

# Commander DM→Commander DM→RN RN TU Ant Rel
1 move to where you see

the first cone
1

2 I’m not sure which ob-
ject you are referring
to. Can you describe
it in another way, us-
ing color or its loca-
tion?

1 1 request-clarification

3 move to the cone on
the right a red cone on
the right

1 2 clarification-repair

4 move to face
the cone on
the right

1 3 translation-r

5 executing... 1 3 ack-doing
6 take another picture 2
7 done 1 4 ack-done
8 done 1 7 translation-l
9 image 2 6 translation-r
10 image sent 2 9 ack-done
11 sent 2 10 translation-l
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5.2 Dialogue structure in multi-floor dialogue
For our initial investigations, we use a dataset of multi-floor dialogue structure,
created as part of a long-term project to develop an autonomous robot [Marge
et al., 2016,Lukin et al., 2018,Gervits et al., 2019], which is commanded by remote
human participants. The robot is in an unfamiliar physical environment, where
it performs object searches through natural language interaction. The dataset
consists of “Wizard of Oz” dialogues where two wizards control the robot and
communicate with the human commander. The dialogue manager wizard (DM)
communicates directly with the commander in natural language and handles clar-
ifications or misconceptions that might not be applicable given the environment
and robot capabilities. A robot navigator wizard (RN) controls the robot with
a joystick controller, but communicates only with the DM. There are thus two
separate floors - one between commander and “robot” (actually the DM), and
one between the two wizards. These floors are called “left” and “right”, for con-
venience. Table 5.1 shows an example of an actual dialogue excerpt, including
two floors and four distinct message streams. The commander gives its intention
to the DM on their dialogue floor (left floor). The DM talks with the commander
(when necessary) to clarify the commander’s intention. After completely under-
standing the commander’s intention, the DM moves to another dialogue floor
(right floor) to transfer the commander’s intention to the RN, which operates
the robot based on the given intention and reports the result to the DM. The
DM returns to the first floor to feedback the result to the commander. Note
that the DM can communicate with any participants by moving among several
dialogue floors to transfer the information as a multi-communicator [Reinsch Jr
et al., 2008]; but the RN and the commander cannot directly communicate.

Previous work defined an annotation scheme for such multi-floor dialogues to
specify their characteristics [Traum et al., 2018]. To capture the information
update process of the dialogue participants, this scheme focused on the intentional
structure [Grosz and Sidner, 1986], which consists of units of multiple consecutive
utterances, and the relations between pairs of utterances within the unit. They
defined an annotation scheme for (1) transaction units, (2) antecedents, and (3)
relation-types, and the dataset includes human-annotated data. In this study, we
explore a model that automatically identifies these structures. Below we describe
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the annotation scheme in [Traum et al., 2018].

5.2.1 Transaction unit

A transaction unit (TU) is a basic unit of intentional structure in a multi-floor
interaction. It consists of the initial utterance that expresses the intention of
the speakers and every subsequent utterance across all the floors to achieve the
original speaker’s intention. Each utterance belongs to a transaction unit, which is
defined by a set of utterances. The “TU” column of Table 5.1 shows an numerical
identifier for the unit which is the same for all utterances that are part of the
TU.

In some cases, multiple transactions are “active” at the same time, in that
they have been initiated but not terminated. For example, Table 5.1 shows a
case where two transaction units are included in the dialogue: TU1 is about
moving somewhere, while TU2 is about taking a picture. TU2 is initiated in
utterance #6, before TU1 is completed in utterance #8. Both transactions are
thus running in parallel during this part of the dialogue.

5.2.2 Antecedent and relation-type

In [Traum et al., 2018], relations are annotated between utterances in the same
TU, using antecedents and relation-types. Any utterances after the first utterance
in the transaction unit have antecedents, shown in the “Ant” column of Table 5.1,
as the utterance ID of the antecedent utterance. Relation types are summarized
in Table 5.2. These relations are categorized first as to whether they are from the
same participant (expansions), from different participants in the same floor, or
across floors. Each of these categories has a set of specific relations and in some
cases sub-types. Relation types are indicated in the “Rel” column in Table 5.1.

The set of relations within a transaction define a tree structure, where the first
utterance is the root node, which has no relation-type or antecedent annotations.
In the example in Table 5.1, #1 and #6 are the root nodes of the two transaction
units.
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Figure 5.1: Overview of proposed neural dialogue structure parser

5.3 Neural dialogue structure parser for
multi-floor dialogue

In this section, we introduce a neural dialogue structure parser for the annotation
scheme proposed by [Traum et al., 2018]. A dialogue structure parser based on
end-to-end neural networks improved the parsing performance more than legacy
models using hand-crafted features [Afantenos et al., 2015,Shi and Huang, 2019].
Thus, we built an end-to-end neural dialogue structure parser model with avail-
able data and explored its limitations.

In our dialogue structure parsing task on multi-floor dialogues, three tasks are
closely related: transaction units, antecedents, and relation-type identifications.
We expect that multi-task learning will improve the overall parsing performance
more than single models. The attention mechanism can explicitly represent their
relations. Thus, our model is based on a recurrent neural network that has
both soft- and hard-attention mechanisms with multi-task learning. The hard-
attention employs the idea of MST parser based on biaffine attention [Dozat
and Manning, 2016], a powerful previous approach to resolving relations between
words, and captures the links between utterances beyond the relation within
words. The soft attention has different parameters than hard attention, and it is
expected to extract not only link relation of utterances but other implicit features
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that enhance the entire parsing results. Our proposed model (Fig. 5.1) mainly
includes four networks:

• Hierarchical encoder has utterance and context encoders for encoding
each dialogue context in different dialogue levels.

• The antecedent predictor estimates the antecedent that corresponds to
each utterance.

• The transaction-unit predictor estimates the type of transaction bound-
aries of each utterance.

• The relation-type predictor estimates the relation-type of each utter-
ance and its antecedent.

The transaction-unit and relation-type predictors share the prediction results
of the antecedent predictor as attention weights, because their prediction results
are related to the potential tree structures decided by the antecedent predictor
model. Such a two-stage approach, which predicts the dependency structure of
the utterances and its relation-types, resembles previous work [Shi and Huang,
2019]. However, that model targets single-floor dialogue structure parsing, and
our model predicts the dialogue structure of multi-floor dialogues and clusters
the utterances in different floors as one transaction unit.

5.3.1 Hierarchical encoder

Our hierarchical encoder consists of utterance and context encoders. The ut-
terance encoder receives a word at each time step using forward and backward
GRUs [Cho et al., 2014] to encode each utterance into a fixed-length vector:

−→
ht,i =

−−−→
GRUutt(

−−−→
ht,i−1, Embedding(wt,i)), (5.1)

←−
ht,i =

←−−−
GRUutt(

←−−−
ht,i+1, Embedding(wt,i)), (5.2)

ht,i = [
−→
ht,i;
←−
ht,i], (5.3)

ht = 1
|Ut|

|Ut|∑
i=1

ht,i. (5.4)
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Here t is the utterance numbers in the dialogue context and i is the word order
in the utterance. ht,i is the hidden vector calculated from each word wt,i and the
hidden vector in previous time-step ht,i−1 in utterance Ut = {wt,1, wt,2, · · · , wt,N}.
Each word wt,i is converted to a fixed-length vector using an embedding layer
before calculating the hidden vector. In each utterance, we added a special sym-
bol, which indicates the types of floors, to prefixes and suffixes of utterance and
trained the embedding rule as done with words.

In the context encoder, utterance vectors are input to encode the dialogue
history to get context-level vector representation h′

t for each utterance in the
dialogue contexts:

−→
h′

t =
−−−→
GRUhist(

−−→
h′

t−1, ht)), (5.5)
←−
h′

t =
←−−−
GRUhist(

←−−
h′

t+1, ht), (5.6)

h′
t = [
−→
h′

t ;
←−
h′

t ]. (5.7)

We introduce a soft-attention mechanism [Luong et al., 2015] for dialogue con-
texts to compute contextual representation h̄attn

t for each utterance Ut:

attention(h′
t−j, h′

t) = h′T
t−jWanth

′
t, (5.8)

αj =
exp(attention(h′

t−j, h′
t))∑k

j=1 exp(attention(h′
t−j, h′

t)
, (5.9)

h̄attn
t =

k∑
j=1

αj · h′
t−j. (5.10)

Here k is the number of previous utterances considered in the calculation of
attention, Wattn is a trainable weight-matrix, and αj ∈ [0, 1]k.

In addition, we introduce a hard-attention mechanism for explicitly considering
the antecedent, which corresponds to each turn t:

h̄ant
t =

k∑
j=1

βj · h′
t−j (5.11)

Here βj takes 1 if utterance Ut−j is the antecedent of utterance Ut and 0 in other
cases (βj ∈ {0, 1}k).
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Attention vectors h̄attn
t and h̄ant

t , which are calculated on the basis of the hard
and soft-attention mechanisms, are combined:

ĥfc
t = tanh(Linearattn([h̄attn

t ; h̄ant
t ; h′

t]). (5.12)

Here Linearattn is a linear transformation layer, which includes a bias term. ĥfc
t

is a shared vector for predicting the transaction units and relation-types. Note
that gold antecedent β is used in training; however, in the inference, the model
uses predicted distribution of h̄ant

t by the antecedent predictor.

5.3.2 Antecedent predictor

As shown in Table 5.1, each utterance has an annotation of the corresponding
antecedent as its utterance ID (#). To predict the antecedents for each utterance
Ut, we calculated the scores between each utterance and the contextual utterances:

antecedent(h′
t−j, h′

t) = h′T
t−jWanth

′
t, (5.13)

β̂j =
exp(antecedent(h′

t−j, h′
t))∑k

j=1 exp(antecedent(h′
t−j, h′

t)
. (5.14)

Here, k is the number of preceding utterances that can be the antecedent, Want

is a trainable weight-matrix, and β̂j ∈ [0, 1]k. By calculating the position of
antecedent from the weights of attention, we can carry this knowledge forward to
other predictions in the rater step: transaction-unit prediction and relation-types
prediction.

We set the cross-entropy loss between predicted distribution β̂ and actual an-
tecedent label β as a loss function that enforces that the contextual utterance
has the highest score when it is the antecedent of Ut:

Lt,ant = −
k∑

j=1
βj log(β̂j). (5.15)

Note that we also calculate the attention weight corresponding to the case where
the utterance does not have any antecedent using the trainable vector and the
hidden vector h′

t.
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5.3.3 Transaction-unit predictor

We formulate the problem of transaction unit prediction as a sentence classifica-
tion problem that determines the boundaries of the transaction units in dialogues.
The transaction-unit predictor classifies each utterance into the following three
classes:

• Start: the utterance is the beginning of a transaction unit.

• Continue: the utterance belongs to the same transaction unit as the pre-
vious utterance.

• Other: the utterance cannot be categorized into either of the above classes.

Other indicates that the utterance belongs to an already open transaction that
is different from the one the previous utterance belongs to, such as utterance #7
and #9 in Table 5.1. We predict transaction boundaries using ĥfc

t , derived from
the calculation results of soft and hard-attentions to the context:

p̂tu
t = softmax(Lineartu_pred(ĥfc

t )). (5.16)

Here Lineartu_pred is a linear transformation layer that includes a bias term, and
p̂tu

t is the predicted distribution of the transaction boundaries.
We used the cross-entropy loss as the loss function:

Lt,tu = −
|ptu

t |∑
j=1

ptu
j log(p̂tu

t,j). (5.17)

Here ptu
t is a three-dimensional vector corresponding to the type of target trans-

action boundaries.

5.3.4 Relation-type predictor

We used ĥfc
t as well as the transaction-unit predictor to predict the relation-type

of each utterance with its antecedent:

p̂rel
t = softmax(Linearrel_pred(ĥfc

t )). (5.18)
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Here Linearrel_pred is a linear transformation layer that includes the bias term and
p̂rel

t is the predicted distribution of the relation-types.
We used the cross-entropy loss for the training:

Lt,rel = −
|prel

j |∑
j=1

prel
j log(p̂rel

t,j ). (5.19)

Here prel
t is a vector, whose dimensions correspond to a relation label defined in

Table 5.2.

5.3.5 Objective function

We have to optimize the above three models not only to a single model but also
to the other two models because these tasks are closely related. In this study, we
introduce a multi-task loss, which combines each prediction loss of the antecedent,
the transaction-unit, and the relation-type predictor. In multi-task learning, we
interpolate the loss functions of three tasks:

L = 1
N

N∑
t=1

(γantLt,ant + γtuLt,tu + γrelLt,rel). (5.20)

Here N is the dialogue length. γant, γtu, and γrel are the weights for adjusting the
importance of each predictor in the loss calculation.

5.4 Experimental settings
In our experiment, we evaluated the dialogue structure parsing performance of
our proposed model. In this section, we describe the dataset for the training and
evaluation, the setting of the model training, and the evaluation metrics.

5.4.1 Dataset

We used a dataset [Traum et al., 2018] that contains Exp. 1 and Exp. 2 data∗.
The dialogues were annotated based on a previously described scheme [Traum

∗The annotation for Exp. 3 is still in progress.
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et al., 2018], which was specifically designed to handle multiple conversational
floors. As shown in Table 5.3, these dialogue data consist of 48 dialogues (1829
transactions) executed by several different commanders.

To evaluate the parsing performance of the proposed model, we randomly di-
vided all of the dialogues in Exp. 1 and Exp. 2 into six subsets and applied double
cross-validation [Mosier, 1951]. We used a single subset for validation and a test-
set for each, and the remaining subset was used as training data. We evaluated
every possible combination of training, validation, and test-set and the final per-
formance by a majority vote on the prediction results of the models, which share
the same test-set.
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Table 5.2: Relation-types in a multi-floor dialogue
Type Sub-types
Expansions relate utterances that are produced by the same partic-

ipant within the same floor.
continue
link-next
correction
summarization

Responses relate utterances by different participants within the
same floor.
acknowledgment

done
doing
wilco
understand
try
unsure
can’t

clarification
req-clar
clar-repair
missing info
nack
repeat

processing
question-response

answer
non-answer

other
3rd turn feedback
reciprocal response

Translations relate utterances in different floors.
transalation-l
transalation-r
comment
quotation
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Table 5.3: Numbers of dialogues, utterances, and transactions
Dialogues Utterances Transactions

Exp. 1 24 4527 780
Exp. 2 24 6994 1049
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Table 5.4: Prediction performances of transaction units, antecedents, and relation-types
TU Ant Rel

Models Prec. Rec. F1 TuAcc Prec. Rec. F1 TreeAcc Prec. Rec. F1 TreeAcc w/ rel
Majority 55.71 74.64 63.80 - 23.59 48.57 31.76 - 8.54 29.22 13.21 -
Single-Online 95.43 95.46 95.44 81.19 93.92 90.89 92.34 68.12 92.38 92.84 92.53 63.80
Single-Online w/o floor emb 94.41 94.46 94.43 77.41 93.61 90.18 91.81 67.57 91.70 92.09 91.79 60.30
Multi-Online 95.99 95.99 95.99 84.25 93.93 90.84 92.33 70.09 93.69 94.11 93.80 66.81

(96.26) (96.27) (96.26) (85.34) - - - - (94.75) (94.94) (94.77) (67.74)
Multi-Online w/o floor emb 94.62 94.63 94.62 78.18 92.58 89.20 90.81 66.86 91.24 91.97 91.58 63.31
Single-Offline 95.31 95.35 95.33 81.46 94.26 90.70 92.40 68.83 94.86 93.22 92.91 64.62
Single-Offline w/o floor emb 94.54 94.62 94.57 77.96 91.20 91.60 91.31 65.99 92.37 88.68 90.43 62.38
Multi-Offline 96.05 96.07 96.06 84.52 94.58 91.95 93.21 71.35 93.75 94.26 93.90 69.05

(96.30) (96.31) (96.30) (85.51) - - - - (94.68) (94.95) (94.69) (69.92)
Multi-Offline w/o floor emb 94.92 94.96 94.93 78.73 93.63 90.68 92.08 69.21 92.14 92.41 92.16 65.39
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5.4.2 Model settings

We evaluated the dialogue structure parsing performance of the proposed model in
multi-floor dialogues by comparing the dialogue structure parsing performances of
the proposed model with the multi-task loss (Multi) and the models individually
trained for each task (Single). We also compared the cases based on both the
Offline and Online models. The proposed model described in Section 3 uses bi-
directional GRUs in the context encoder to make predictions for each utterance
Ut; this means the model cannot start parsing during the dialogue. We call
this setting Offline. In contrast, we also considered a model that only uses
previous contexts without subsequent contexts in the prediction for each utterance
Ut. We call this setting Online. The online model is important for real-time
dialogue robot processing, which can only use the observed information based on
the interaction sequence. We built the online model only using forward-GRUs
instead of bidirectional-GRUs in the context encoder. We also compared the case
where the model does or does not consider the floor information when calculating
the embedding vectors of utterances. In other words, we compared the case where
a multi-floor dialogue is considered as just a multi-party dialogue with the case
where the floor structure of the dialogue is considered.

We used the same hyper-parameter settings in each model. The vocabulary size
was 500, the word embedding size was 100, and the hidden size was 300. We used
byte pair encoding (BPE) for tokenization [Sennrich et al., 2016]. In training,
we used a mini-batch size of 64 and an Adam optimizer [Kingma and Ba, 2014]
with a learning rate of 1e-4. We set γant, γtu, and γrel to 1. In the relation-type
prediction, we integrated the ‘acknowledgement,” “clarification,” and “question-
response” sub-types into these classes because some sub-types rarely appeared in
the dataset. In addition, we defined a label where utterance has no antecedent,
as well as relation-types (#1 and #6 in Table 5.1).

5.4.3 Evaluation metrics

We defined the micro and meso-level evaluation metrics for our dialogue struc-
ture parsing task. For the micro-level evaluation, we defined the label prediction
performances of the antecedents, the transaction units, and the relation-types by
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precision (Prec.), recall (Rec.), and F1. Note that we took the relative position of
each utterance from its antecedent as a label to compute the metrics when eval-
uating the antecedent prediction performance. In other words, we compared the
difference between the position of predicted antecedents and actual antecedents.
We also introduced metrics for the meso-level structure [Traum and Nakatani,
1999] in dialogues to evaluate the consistency of the parsing results. We used the
following three metrics:

• TuAcc is the ratio of the transaction units that perfectly predicted the
transaction boundaries for each utterance within the transaction unit.

• TreeAcc is the ratio of the transaction units that perfectly predicted the
antecedents for each utterance within the transaction unit.

• TreeAcc w/ rel is the ratio of the transaction units that perfectly pre-
dicted the antecedents and the relation-types for each utterance within the
transaction unit.

Note that the meso-level metrics are stricter than the micro-level metrics, which
judge the prediction result of each utterance.

5.5 Experimental results
Table 5.4 shows the performances of each dialogue structure parser. Here Single
denotes a case where the transaction unit, the antecedent, and the relation-type
predictors were individually trained. Multi denotes a case where these models
were trained with multi-task learning loss. In addition, Offline indicates that the
model used the dialogue entirely for parsing, and Online indicates that the model
used only the preceding context of each utterance. Majority denotes a case where
the always predicts the most frequent label. w/o floor emb indicates that the
embedding vectors of the floor is not used in the model. Prec., Rec., and F1
are the weighted averages† of the precision, recall, and F1 scores of the predicted
labels. The brackets are the prediction results where the oracle antecedent was
fed into the model.

†We calculated the weighted averages based on the label frequencies.
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Table 5.5: Transaction unit prediction performance of Multi-Offline model: The
brackets show the differences from Multi-Online model.

Tu-Label Precision Recall F1 Count
Start 94.66 93.06 93.85 (+0.23) 1829
Continue 97.50 98.00 97.75 (+0.03) 8599
Other 86.94 85.91 86.42 (+0.12) 1093
Weighted-Avg 96.05 96.07 96.06 (+0.07) 11521

　　　

The result shows that the dialogue structure parsing performance (transac-
tion unit prediction, antecedent prediction, and relation-types prediction) of the
Offline models have slightly improved from the Online models. This result
indicates that subsequent contexts are useful for predicting labels for each ut-
terance, but we have enough prediction accuracy without using the subsequent
context. When the Multi models use oracle antecedents to predict the trans-
action units and the relation-type, we can further improve the performance of
dialogue structure parsing. When the floor information was not used, the di-
alogue structure parsing performance decreased significantly. This implies that
multi-floor dialogue structure parsing does not work properly with the dialogue
structure parser for just multi-party dialogue.

Table 5.5 shows the results of the transaction unit prediction in Multi-Offline
and Multi-Online models, which were the best models in our experiment. We
confirmed that the model achieved over 85% F1 for all labels (types of transaction
boundary). However, there is still a problem in predicting “Other” (when the
utterance belongs to a different transaction than the previous utterance, but it is
not the start of a new transaction). Our models decided labels with the highest
prediction probability for each utterance; however, we did not take into account
the consistency of the prediction results in the sequence of dialogue. To solve this
problem, we can introduce a model that takes into account information about
the entire prediction results, such as Conditional Random Field (CRF) [Lafferty
et al., 2001] for further improvements.

Table 5.6 shows the results of the antecedent prediction in the Multi-Offline
and Multi-Online models. Here each label indicates the relative position from
each utterance to its antecedent. Note that this table only shows the predic-
tion results by considering a maximum of 10 previous utterances. We excluded
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Table 5.6: Antecedent prediction performance of Multi-Offline model: The brack-
ets show the differences from Multi-Online model.

Position Precision Recall F1 Count
-10 58.33 66.67 62.22 (-4.45) 21
-9 73.08 57.58 64.41 (+4.40) 33
-8 82.50 63.46 71.74 (-2.17) 52
-7 80.77 74.12 77.30 (-2.20) 85
-6 90.48 85.39 87.86 (-0.57) 178
-5 81.31 64.44 71.90 (+1.21) 135
-4 91.87 85.32 88.48 (+2.27) 477
-3 94.98 87.00 90.82 (+1.32) 1023
-2 94.84 93.06 93.94 (+0.79) 2509
-1 95.99 95.47 95.73 (+0.82) 4262
Weighted-Avg 94.58 91.15 93.21 (+0.88) 8775

　　　

a few cases when the antecedent of the utterance is not included in the ten pre-
vious utterances, and the utterance has no antecedent. Our models can predict
antecedents with high performance when the relative position was not distant.
On the other hand, the prediction performance was below 80% when the rela-
tive positions were distant (greater than five in absolute). This result suggests
the difficulty of addressing long-term dependency in dialogues. In addition, our
model ignores the consistency of the tree structure associated with the predicted
antecedents. The search for dialogue structures using dynamic programming
probably has the potential to improve the performance of our model.

Table 5.7 shows the results of the relation-type predictions in the Multi-
Offline and Multi-Online models. Our models showed higher F1 scores in
frequent relation-types, including when the utterance has no antecedent. There
is still a challenge in predicting low-frequent relation-types due to the lack of
training data. Ongoing annotation work [Traum et al., 2018] with additional
data may remedy this problem. We also need to look at ways to deal with these
unbalanced labels.

As shown in Table 5.5, 5.6, and 5.7, there was actually little difference in
performance between the Multi-Offline and Multi-Online models. Because
they both use a greedy method of predicting dialogue structure, adopting the
label with the highest prediction probability. In order to increase the benefits of
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Table 5.7: Relation-type prediction performance of Multi-Offline model: The
brackets show the differences from Multi-Online model.

Relation-Type Precision Recall F1 Count
Expansions
-continue 90.90 88.90 8989 (+1.74) 955
-link-next 99.37 99.69 9953 (+0.00) 318
-correction 40.00 11.11 1739 (-16.65) 36
-summarization 0.00 0.00 0.00 (+0.00) 13
Responses
-acknowledgement 97.29 97.06 97.17 (+0.19) 3366
-clarification 79.51 85.00 82.16 (+1.18) 420
-processing 0.00 99.57 99.78 (+0.21) 233
-question-answer 57.05 51.74 54.27 (-1.70) 172
-other 33.33 6.06 10.26 (-12.47) 33
-3rd-turn-feedback 50.00 0.40 7.41 (+0.96) 25
-reciprocal-response 0.00 0.00 0.00 (+0.00) 5
Translations
-l 95.93 98.14 97.03 (+0.06) 1563
-r 98.30 98.40 98.35 (+0.07) 1942
-comment 40.00 38.10 39.02 (+18.51) 21
No-antecedent 91.85 94.63 93.22 (-0.47) 2419
Weighted-Avg 93.75 94.26 93.90 (+0.10) 11521

　　　

the offline model, it is important to perform global optimization to improve the
consistency of the dialogue structure parsing results. In addition, when inferring
the dialogue structure in the online model, it is also important to utilize the
parsing results in the previous turns whenever a new utterance is observed. We
should improve the model we have built according to the intended use of the
dialogue structure parsing model.

Finally, in Table 5.8, 5.9, we show an example of dialogue structure parsing
on a fragment of multi-floor dialogue. Note that we displayed the correct labels
in brackets when the label was incorrectly predicted, and “#” corresponds to
cases where the utterance does not have the antecedent. The first example shows
that the model accurately predicts all the transaction boundaries, antecedents,
and relation-types, even if transactions were interleaved. However, the second
example is including error predictions of transaction boundaries. In this example,
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there are only two TUs, but the model has determined that the utterance has
three TUs. Note that, even if we assume the prediction of TU at #8 is correct,
the prediction at #11 is still not correct. When such confusion occurs, the error
extends beyond one utterance to multiple utterances. In many cases, delays in
communication and differences in the quality of annotations between Exp.1 and
2 often confuse predictions.
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Table 5.8: Examples of the dialogue structure parsing on multi-floor dialogue (correct case)
Left Floor Right Floor Prediction

# CommanderDM → Com-
mander

DM→RN RN TU Ant Rel

1 turn right
twenty
degrees

Start # #

2 turn right
20

Continue 1 translation-r

3 executing ... Continue 1 response-ack.
4 image Continue 1 translation-r
5 done image

sent
Continue 4 response-ack.

6 go forward
fifteen feet

Start # #

7 sent Other 5 translation-l
8 and go

through
door on
right

Other 6 expansion-cont.

9 move for-
ward about
15 feet , go-
ing through
door on
right ,
image

Continue 8 translation-r

10 executing ... Continue 8 response-ack.
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Table 5.9: Examples of the dialogue structure parsing on multi-floor dialogue (error case)
Left Floor Right Floor Prediction

# CommanderDM → Com-
mander

DM→RN RN TU Ant Rel

1 take a pic-
ture

Start # #

2 image Continue 1 translation-r
3 image sent Continue 2 response-ack.
4 sent Continue 3 translation-l
5 turn left

ninety
degrees

Start # #

6 turn left 90 Continue 5 translation-r
7 executing ... Continue 5 response-ack.

8 take a
picture
after each
command

Start
(Continue)

#
(5)

#
(expansion-cont.)

9 done Other
(Continue) 6 response-ack.

10 take pic
after each
command

Other
(Continue) 8 translation-r

11 image Other
(Continue) 8 translation-r

12 image sent Continue 11 response-ack.
13 sent Continue 12 translation-l
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5.6 Conclusion
We built a neural dialogue structure parser with an attention mechanism that
applies multi-task learning to automatically identify the dialogue structure of
multi-floor dialogues. The experimental results showed that our proposed model
improved the identification performance on all tasks compared to the model
trained on single task settings. However, problems remain with the performance
of the dialogue structure identification due to the lack of training data, especially
for rare labels. To prevent this problem, we will consider pre-training and the
transfer learning of models using existing dialogue corpora and discourse-relation
datasets. We also explore the possibility of introducing powerful models of similar
tasks related for predicting tree-structure in a document, such as a dependency
parsing [Nivre, 2010] and discourse parsing based on rhetorical structure the-
ory [Webber et al., 2012,Mann and Thompson, 1988].

This study has developed the first baseline model for automatic identification of
dialogue structure on multi-floor dialogues. It has a potential for applying to the
automatic annotation of dialogue structure on multi-floor dialogues and encour-
ages the development of a dialogue manager and robot navigator on multi-floor
settings. We would also improve communication protocols via natural language
by analyzing how intentions of participants are communicated on different dia-
logue floors using our dialogue structure parser.
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6 Conclusion

6.1 Summary
Neural conversation models are end-to-end schemes that generate system re-
sponses from user utterances. However, various challenges remain to control
response generation. Conditional neural conversation models offer a promising
approach to this problem, controlling response generation by conditioning the net-
work on specific intentions considering conversation structures and conversation
phenomena. This dissertation focused on three conditional neural conversation
model problems.

The first study (Chapter 3) focused on response generation controllability in
conditional neural conversation models. We considered a conditional neural con-
versation model where model responses could be controlled by specific intentions
considering conversation structure, such as dialogue acts. The system can ef-
fectively generate consistent responses towards a dialogue goal using intentions
that consider conversational structure. However, current conditional neural con-
versation models do not sufficiently guarantee high-quality response generation
representing the given intention. Therefore, we proposed a conditional neural con-
versation model with a new label-aware objective function that promotes highly
discriminative response generation based on the given intention while maintain-
ing generated response naturalness. Experimental results confirmed the proposed
model generated promising responses in terms of controllability and naturalness
compared with strong conventional models.

The second study (Chapter 4) focused on incorporating entrainment, an at-
tractive human phenomenon, into neural conversation models. Entrainment is
a well-known conversational phenomenon where conversation participants mu-
tually synchronize regarding various aspects, is thought to be closely related
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to human-human conversation quality. We first analysed relationships between
conversation quality and entrainment using an automatic entrainment evalua-
tion measure, and showed that entrainment improved participant satisfaction in
human-human and human-machine conversations. Therefore, we subsequently
proposed a conditional neural conversation model to control generation using a
given entrainment degree as the intention for response generation. Experimental
results confirmed that the proposed entrainable neural conversation model gen-
erated comparable or more natural responses than current conventional models,
and could satisfactorily control generated response entrainment.

The third study (Chapter 5) focused on automatically understanding how in-
tentions were expressed and contributed to practical conversation situations. We
concentrated on multi-floor dialogue, i.e., dialogues that span multiple conver-
sational floors. Most current dialogue systems, including neural conversation
models, do not consider multi-floor dialogues. Expanding the research scope will
contribute to building autonomous systems to solve real-world problems using
multi-floor dialogues. We first automatically identified how participants would
proceed with a dialogue in domains such as urban search and rescue or military
reconnaissance. As a first step, we proposed a baseline model that automatically
identifies multi-floor dialogue structure based on multi-task learning and an at-
tention mechanism. We showed experimentally that the proposed model achieved
promising identification performance for dialogue structure and discussed its lim-
itations.

6.2 Perspectives
This dissertation focused on three conditional neural conversation model prob-
lems. However, much remains to be addressed to improve further and to make
the proposed models more attractive.

Neural conversation models discussed in Chapters 3 and 4 have been trained
on limited datasets, leaving considerable room for improvement in response qual-
ity. Human subjective evaluations showed that generated responses around of
about 30% were not meaningful or acceptable to dialogue context. This prob-
lem becomes more apparent when user and system converse through multiple
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turns. Language models trained on massive language resources have been shown
as promising approaches for various NLP tasks to address data sparsity. Fu-
ture studies should investigate using such pre-trained language models for the
proposed models. Furthermore, since the models proposed in Chapters 3 and 4
apply optimization at the turn level, they did not consider the effects of unnatu-
ral conversations that accumulate when the model talks to the user for multiple
turns. Therefore, we also need to consider global optimization methods that
maximize response generation performance when continuing a conversation with
a user from start to finish.

We need a neural conversation model to make effective use of context. Neu-
ral conversation models used in Chapters 3 and 4 were insufficiently capable of
considering the long-term context. We applied an objective function considering
entrainment and an attention mechanism in Chapter 4, to leverage dialogue con-
text on neural conversation models. However, it remains challenging to generate
responses that incorporate many words from the dialogue context because cur-
rent methods do not have mechanisms to explicitly access the vocabulary used in
the dialogue context during decoding. Hierarchical attention or a copying mech-
anism could explicitly solve this problem based on word information in dialogue
contexts.

We should consider controllable neural conversation models integrating en-
trainment and various intentions. The approach to control response generation
entrainment described in Chapter 4 focused on lexical choice in the dialogue.
However, lexical choice is only one entrainment factor, with other factors in-
cluding syntax, style, acoustic prosody, turn-taking, and dialogue act commonly
employed in human-human dialogue. Thus, we need to understand how various
factors are used in dialogue and how they affect dialogue quality, then build neu-
ral conversation models that integrate different control factors. By theoretically
integrating the various types of intentions, we ultimately aim to develop a so-
phisticated system that does not violate human conversation principles such as
Grice’s maxims. We believe that neural conversation models can develop more
human-like behavior by reproducing human conversational phenomena, including
entrainment.

We should extend the research basis to incorporate real-world multi-floor dia-
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logue. The dataset we used in Chapter 5 incorporated two floors and three partic-
ipants, including one multi-communicator, which was the minimum requirement
for multi-floor dialogue, and the proposed model had easily identifiable dialogue
structure since only simple commands were used in the dataset. Therefore, we
need to analyze more difficult dialogues with more floors and participants to de-
velop a high-level decision-making model that addresses multi-floor dialogue, and
connecting various dialogue systems, including conditional neural conversation
models.

We will try to develop an overall system in the long term to address and/or
integrate these identified issues.
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Khudanpur, S. (2011). Extensions of recurrent neural network language model.
In 2011 IEEE international conference on acoustics, speech and signal process-
ing (ICASSP), pages 5528–5531. IEEE.

[Mizukami et al., 2016] Mizukami, M., Yoshino, K., Neubig, G., Traum, D., and
Nakamura, S. (2016). Analyzing the effect of entrainment on dialogue acts.
In Proceedings of the 17th Annual Meeting of the Special Interest Group on
Discourse and Dialogue.

129



[Mosier, 1951] Mosier, C. I. (1951). I. problems and designs of cross-validation
1. Educational and Psychological Measurement, 11(1):5–11.

[Nasir et al., 2019] Nasir, M., Chakravarthula, S. N., Baucom, B. R., Atkins,
D. C., Georgiou, P., and Narayanan, S. (2019). Modeling Interpersonal Lin-
guistic Coordination in Conversations Using Word Mover’s Distance. In Proc.
Interspeech 2019, pages 1423–1427.

[Natale, 1975] Natale, M. (1975). Convergence of mean vocal intensity in dyadic
communication as a function of social desirability. Journal of Personality and
Social Psychology, 32(5):790.

[Nenkova et al., 2008] Nenkova, A., Gravano, A., and Hirschberg, J. (2008). High
frequency word entrainment in spoken dialogue. In Proceedings of the 46th
annual meeting of the association for computational linguistics on human lan-
guage technologies: Short papers, pages 169–172. Association for Computa-
tional Linguistics.

[Niederhoffer and Pennebaker, 2002] Niederhoffer, K. G. and Pennebaker, J. W.
(2002). Linguistic style matching in social interaction. Journal of Language
and Social Psychology, 21(4):337–360.

[Nivre, 2010] Nivre, J. (2010). Dependency parsing. Language and Linguistics
Compass, 4(3):138–152.

[Odena, 2016] Odena, A. (2016). Semi-supervised learning with generative ad-
versarial networks. arXiv preprint arXiv:1606.01583.

[Oh and Rudnicky, 2000] Oh, A. H. and Rudnicky, A. I. (2000). Stochastic lan-
guage generation for spoken dialogue systems. In ANLP-NAACL 2000 Work-
shop: Conversational Systems.

[Oh and Rudnicky, 2002] Oh, A. H. and Rudnicky, A. I. (2002). Stochastic nat-
ural language generation for spoken dialog systems. Computer Speech & Lan-
guage, 16(3-4):387–407.

[Olsson et al., 1982] Olsson, U., Drasgow, F., and Dorans, N. J. (1982). The
polyserial correlation coefficient. Psychometrika, 47(3):337–347.

130



[Papineni et al., 2002] Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J.
(2002). Bleu: a method for automatic evaluation of machine translation. In
Proceedings of the 40th annual meeting on association for computational lin-
guistics, pages 311–318. Association for Computational Linguistics.

[Paranjape et al., 2020] Paranjape, A., See, A., Kenealy, K., Li, H., Hardy, A.,
Qi, P., Sadagopan, K. R., Phu, N. M., Soylu, D., and Manning, C. D. (2020).
Neural generation meets real people: Towards emotionally engaging mixed-
initiative conversations. arXiv preprint arXiv:2008.12348.

[Pele and M.Werman, 2009] Pele, O. and M.Werman (2009). Fast and robust
earth mover’s distances. In Proceedings of the 12th International Conference
on Computer Vision, pages 460–467. IEEE.

[Pele and Werman, 2008] Pele, O. and Werman, M. (2008). A linear time his-
togram metric for improved sift matching. In European conference on computer
vision, pages 495–508. Springer.

[Peng et al., 2019] Peng, Y., Fang, Y., Xie, Z., and Zhou, G. (2019). Topic-
enhanced emotional conversation generation with attention mechanism.
Knowledge-Based Systems, 163:429–437.

[Pichl et al., 2018] Pichl, J., Marek, P., Konrád, J., Matulík, M., Nguyen, H. L.,
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