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On the Utility of the Zero-Suppressed Binary
Decision Diagram∗

Renzo Roel P. Tan

Abstract

Decision-diagram-based solutions for discrete optimization have been persis-
tently studied. Among these is the use of the zero-suppressed binary decision di-
agram, a compact graph-based representation for a specified family of sets. Such
a diagram may work out problems in combinatorics by efficient enumeration.
A wide range of combinatorial problems in operations research falls under arc

routing problems, a domain which focuses on arc or edge features rather than
node or vertex attributes. The generalized directed rural postman problem is a
generic type of problem with the goal of finding the shortest path utilizing at
least an edge from each category in a graph with labeled edges. Another is the
undirected rural postman problem, a well-known problem in arc routing that seeks
to determine a minimum cost walk that traverses a certain set of required edges
on a given graph. The problems, arising in numerous real-world applications, are
nondeterministic polynomial-time hard.
In brief, an extension to the frontier-based search approach for zero-suppressed

binary decision diagram construction is proposed. The modification allows for the
inclusion of a class-determined constraint in formulation. Variations of the gener-
alized directed rural postman problem, proven to be nondeterministic polynomial-
time hard, are solved on some rapid transit systems as illustration. Results are
juxtaposed against standard integer programming in establishing the relative su-
periority of the new technique.

∗Doctoral Dissertation, Graduate School of Information Science,
Nara Institute of Science and Technology, September 20, 2021.
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A solution to the undirected rural postman problem based on the zero-suppressed
binary decision diagram is also presented. Through an extension to the frontier-
based search method of diagram construction, the approach solves the problem
by efficient enumeration, producing all feasible routes in addition to the optimal
route. Instances of the problem put forward in literature are then solved as bench-
mark for the decision-diagram-based solution. As reasonable time is consumed,
the method also proves to be a practicable candidate in solving the problem.
Given the aforementioned routines, the study expands the utility of the zero-

suppressed binary decision diagram through advancing an original graph measure
– the relative isolation probability of a vertex – in seeking to interpret a consequen-
tial edge metric from a vertex-centric perspective. Concisely, the probability of
relative isolation pertains to the likelihood of a vertex to be disconnected from all
designated source vertices in a graph with probability-weighted edges. A two-step
algorithm for efficient calculation is presented and evaluated. Contained within
the procedure is a Monte Carlo simulation and the use of the zero-suppressed bi-
nary decision diagram, efficiently constructed through the frontier-based search.
The novel measure is then computed for a diverse set of graphs, serving as bench-
mark for the proposed method. In closing, case studies on real-world networks
are performed to ensure the consistency of the experimental with the actual.

Keywords:

combinatorial optimization, discrete algorithms, frontier-based search, subgraph
enumeration, zero-suppressed binary decision diagram
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1. Introduction

1.1. Background
The zero-suppressed binary decision diagram is a compressed data structure capa-
ble of storing families of sets [33]. Due to the recursive structure of representation,
mathematical operations on families may be carried out comfortably [31]. The
intersection and union, for instance, are swiftly calculated using the diagram.
That being the case, feasible solutions to discrete optimization problems may be
economically kept in a zero-suppressed binary decision diagram [26]. The number
of feasible solutions, the optimal solutions, the mean and variance of solutions,
and other statistics may be extracted without difficulty [31].
In combinatorial optimization over graphs, a zero-suppressed binary decision

diagram may correspond to a collection of subgraphs [31]. The edge sets that
make up each subgraph differentiate the elements in the collection. It is thus
understood on this account that the nodes in the diagram are consistent with
the edges and not the vertices of the graph. Should the items from the subsets
in Figure 1.1a stand for the edges of the graph in Figure 1.1b, the elements of
the zero-suppressed binary decision diagram in Figure 1.1c would be the paths
shown in Figure 1.1d.
Regarding diagram construction, a fundamental approach is the frontier-based

search [30]. The algorithm inputs the needed information to the nodes as they
are being generated. As a consequence, requirements for the stored subgraphs are
set in conformity with the given problem. The practicality of the zero-suppressed
binary decision diagram has been growing. Domains such as architectural plan-
ning [43], disaster preparedness [44], grid power loss minimization [24], and route
finding [45] present diverse applications.
The study focuses on route finding settings. Various problems in operations

1



(a) A family of sets. (b) A fixed graph.

(c) The diagram. (d) Some paths.

Figure 1.1.: Representing a collection of subgraphs.

research may be posed as arc routing problems. See for example the following
book [22]. Procedures such as mail delivery, garbage collection, and meter reading
fall under the category. In general, arc routing consists of selecting an optimal
route in a network, relying more on the edge properties than the vertex properties
of the graph in the process.
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The generalized directed rural postman is an arc routing problem that is defined
on a graph with categorized edges. As illustration, consider for example a metro
system where a station is a vertex and a traversal from a station to the next is
an edge. Further, each edge is categorized; an edge is included in a line, which
is represented by a color. In the context of the Osaka Metro, for example, one
has the Midosuji line in red, the Tanimachi line in purple, the Yotsubashi line in
blue, and so on. The goal of the problem is to find the shortest path in the graph
that utilizes at least an edge from each category.
Another classic arc routing problem is the undirected rural postman problem

[39], where the aim is to identify the route that covers a set of required edges with
least cost – distance traveled, time consumed, et cetera. For instance, consider
a postman who has to deliver the mail to a number of houses. The postman
would have to traverse a subset of streets in the road network without missing
any home that should receive mail. Such a circumstance may be formulated as an
undirected rural postman problem where road intersections and road segments
would be the vertices and edges of the graph, respectively. The required subgraph
would then comprise sections of streets on which a house demands delivery.

1.2. Purpose
Decision-diagram-based solutions have been proposed in combinatorial optimiza-
tion over graphs. More specifically, basic routing problems on mass rapid transit
systems were solved by a compressed representation called the zero-suppressed
binary decision diagram [45]. In line with the above, the utility of the aforemen-
tioned variant of the binary decision diagram in resolving other discrete problems
in graph-theoretic contexts is explored.
Rooted in the insight, the research has the following objectives:

• Incorporate the use of the zero-suppressed binary decision diagram into
discrete algorithms;

• Propose and evaluate enumerative techniques to solve complex problems in
operations research; and
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• Craft an original graph measure as motivated by the enumeration capabil-
ities of the zero-suppressed binary decision diagram.

1.3. Overview
The succeeding chapters are organized as follows.
The second chapter examines preliminary concepts on the zero-suppressed bi-

nary decision diagram and the frontier-based search method of construction. The
third looks into basic combinatorial applications that may help in diagram com-
prehension and interpretation. In the fourth chapter, one details the decision-
diagram-based solutions for two prominent arc routing problems in operations
research. Results on a novel metric motivated by the zero-suppressed binary de-
cision diagram is discussed in the fifth chapter. To close, a synthesis and some
recommendations for future research is contained in the sixth chapter.
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2. Some Preliminaries

2.1. Zero-Suppressed Binary Decision Diagram
The zero-suppressed binary decision diagram is a graph-based data structure for
the efficient storage and handling of families of sets [46]. More formally, consult
the definition as follows [33].

Definition 1 (Zero-Suppressed Binary Decision Diagram). Consider a universe
U . For xk ∈ U , xi < xj if and only if i < j. A zero-suppressed binary decision
diagram is a labeled directed acyclic graph satisfying the following properties.

1. There is only one node with indegree 0 called the root.

2. There are only two nodes with outdegree 0 called the 0-terminal and the
1-terminal, denoted by ⊥ and >, respectively.

3. A nonterminal node has exactly two outgoing arcs labeled by 0 and 1 called
the 0-arc and 1-arc, respectively.

4. The destination of the 0-arc and the 1-arc of a nonterminal node is called
the 0-child and 1-child, respectively.

5. A nonterminal node is labeled by an element of U .

6. The label of a nonterminal node is strictly smaller than those of its children.

There exists a unique reduced zero-suppressed binary decision diagram with
the fewest nodes for a family of concern [33]. Reduction of a diagram in linear
time apropos of the number of nodes is seen in [31].

Remark 1. A reduced zero-suppressed binary decision diagram adheres to the
two points below.
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• There is no node whose 1-child is the 0-terminal.

• There are no distinct nodes that have the same label, 0-child, and 1-child.

Based on the definition, a family of subsets F from U may be represented by a
single zero-suppressed binary decision diagram D. A path P from the root to the
1-terminal comprising 0-arcs and 1-arcs corresponds to a subset U ′ ∈ F if and
only if for all x ∈ U ′, there is a node labeled with x whose 1-arc is in P [34]. One
proceeds to a theorem that hints at the inherent recursiveness of the diagram [33].

Theorem 1. Let diagram D correspond to family F . The root e is either a
terminal node or a nonterminal node.

1. If e is the 0-terminal then F = ∅, the empty family.

2. If e is the 1-terminal then F = {∅}, the family containing only the empty
set.

3. If e is nonterminal then it has two children. Let e0 be the 0-child and e1 be
the 1-child of e. Denote the family with diagram rooted at ei by Fi. The
family F may then be written as the union F0 ∪ (⋃

x∈F1 x ∪ {e}).

Expounding the theorem, the sets in F that do not contain e are connected
to e through its 0-arc. On the other hand, the sets in F that do contain e are
connected to e through its 1-arc. In notation, F0 = {x | x ∈ F , e /∈ x} and
F1 = {x \ {e} | x ∈ F , e ∈ x}.
The recursive structure of the zero-suppressed binary decision diagram is re-

vealed. For such a reason, the execution of family operations through the use
of the diagram become straightforward [33]. Complexities for several important
operations are explicitly stated [49]. Let two diagrams D1 and D2 correspond
to families F1 and F2 with elements from universes U1 and U2. Computing for
|D1| or identically, the number of subsets in F1, is of time complexity O (n (D1)).
The enumeration of elements represented by D1 is of O (|D1| · |U1|) complexity.
Finally, the intersection F1 ∩ F2 and the union F1 ∪ F2 may each be computed
in time complexity O (n (D1) · n (D2)).
For problems under the domain of combinatorics, subset solutions may be

represented by a zero-suppressed binary decision diagram [26]. The enumeration
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of solutions and accordingly, the optimal solution, the number of solutions, the
mean and variance of solutions, and other data may be extracted with ease [31].
In a graph-theoretic setting, the edges of a graph may correspond to the items
of a universe. Every node in the diagram is labeled with an edge in the graph
and its 0-arc and 1-arc indicates the exclusion and inclusion, respectively, of the
edge serving as label. As a path from the root node to the 1-terminal of the
diagram is a subgraph of the given graph, the entirety of the diagram stands in
for a collection of subgraphs. In the case of the paper, the zero-supressed binary
decision diagram is utilized particularly for path enumeration. An illustration
explaining how a diagram may represent a set of paths follows.
Consider the square grid of two vertices by two vertices shown in Figure 2.1a

and the possible paths from the first vertex to the fourth vertex shown in Figures
2.1b and 2.1c. The zero-suppressed diagram representing all paths is Figure 2.1d.
All nodes are labeled by a variable number corresponding to an edge and a

node identification number for reference in the diagram. A 1-arc is represented
by a solid line and a 0-arc is represented by a dashed line. The former and latter
correspond to the edge being present or not, respectively. At each level, one
proceeds to the 1-child if the edge is included and to the 0-child if the edge is
not. Any traversal from the root node to the 1-terminal with symbol > formed
by 1-arcs and 0-arcs, then, is a path in the sample grid. In particular, taking the
0-arc of node e1, the 1-arc of node e2, and the 1-arc of node e4 means taking the
path from vertex 1 to vertex 4 through vertex 3; taking the 1-arc of node e1 and
the 1-arc of node e3 means taking the path from vertex 1 to vertex 4 through
vertex 2.

2.2. Frontier-Based Search
The frontier-based search is an approach for constructing a zero-suppressed binary
decision diagram representing the set of subgraphs satisfying specified constraints
[30]. Subgraphs of prescribed types such as paths, matchings, and trees, among
others, may be stored in a diagram based on the context of the problem. An
outline of the framework for representing a set of paths is provided.
The construction of the zero-suppressed binary decision diagram representing

7



(a) The sample grid.

(b) The first path utilizing
edges identified as 3 : 0
and 1 : 0 in the diagram.

(c) The second path utilizing
edges identified as 4 : 0 and
2 : 0 in the diagram.

(d) A diagram representing all paths from the
first vertex to the fourth vertex in a grid
with four vertices.

Figure 2.1.: A zero-suppressed binary decision diagram representing paths from
a grid with omission of the 0-terminal.
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the set of all the s-t paths of a given graph is explained below as an example
of the frontier-based search. This algorithm is similar to SimPath in [31]. Let
G = (V,E) be a weighted undirected graph that is simple and connected. There
are to be no multi-edges in G; each element of E is uniquely defined by a 2-
subset of V . Let s and t be vertices of V . A subgraph of G is denoted by
G′ = (V ′, E ′), where E ′ ⊆ E and V ′ = ⋃

e∈E′ e. Refining the notation, a union⋃j
i=1 ei is the set of vertices to which at least one of e1, e2, e3, . . . , ej is incident.

No vertex of degree 0 may exist in any subgraph. One sets E as the universe
for the zero-suppressed binary decision diagram. The elements of E are ordered,
with e1 < e2 < e3 < · · · < e|E|.
The diagram is constructed breadth-first, creating and labeling nodes starting

from the element in the universe considered to be the smallest. To begin, the
root node is labeled with e1. For i = 1, 2, 3, . . . , |E| − 1, a node labeled ei+1 is
generated only after nodes labeled ei are generated. Only the 1-terminal, the
0-terminal, or a node labeled ei+1 may serve as destination to both the 0-arc and
the 1-arc of any node labeled ei.
In motivating systematic construction, information on previous edge selection

is maintained for vertices which are incident to both a processed edge and an
unprocessed edge. Fittingly, the said set of vertices is called the frontier [30].
With F0 = F|E| = ∅, the jth frontier is defined in [30] as

Fj =
 j⋃
i=1

ei

 ∩
 |E|⋃
i=j+1

ei


for j = 1, 2, 3, . . . , |E| − 1.
Concurrently, an array n.deg that takes into account subgraph specifications is

recorded on each node n. A specified subset of V is mapped to the set of natural
numbers by the array. Moreover, to ensure the connectivity of an s-t path, the
partition of frontier Fj−1 is stored in n as n.comp. Vertex pairs that belong to
the same connected component in G are to be in the same partition in n.comp.
Initially, for the root node r, r.deg[v] = 0 for all v. For e = {u,w}, if e is

taken then n.deg[u] and n.deg[w] are incremented by one. For a vertex v, one
designates the largest among the indices of incident edges as k. The node v is
fixed once ek has been processed. No further updating is done on n.deg[v] as
it is independent of ek+1, ek+2, ek+3, . . . , e|E|. An s-t path is never completed if

9



n.deg[s] or n.deg[t] is not one or n.deg[v] is not zero or two for v 6= s, t. In this
case, the node becomes ⊥. If there is no vertex on the frontier that has the same
n.comp value as n.comp[v] then the node also becomes ⊥ because this means that
at least two connected components, one including v and another not including v,
are generated and are never to be combined.
The node sharing strategy is then hired, merging two nodes n and n′ if n.deg

is equal to n′.deg and n.comp is equal to n′.comp. If a vertex v is in Fj−1, n.deg[v]
is cached in ej-labeled node n.
Through node sharing and pruning, the frontier-based search produces a zero-

suppressed binary decision diagram. Node generation and information input
are simultaneously done towards representing a collection of subgraphs. An
unabridged discussion of the technique may be found in [30].

10



3. Literature Review

3.1. Solving Combinatorial Problems
Common combinatorial problems such as the combination and knapsack problems
are used as setting for the utility of the zero-suppressed binary decision diagram
[46]. These serve as preview to the investigation process hired in solving the
succeeding problems.

3.1.1. The Combination Problem
Determining the ways in which k objects can be selected from n distinct objects
irrespective of order is known as the combination problem. The family of k-
element subsets from a universe with n elements may be represented using a
single zero-suppressed binary decision diagram. The diagram in Figure 3.1 is for
the problem of finding all ways to choose exactly 3 items from a cardinality 7
item set.
In the diagram, all nodes on a level labeled by a variable number from 7 to 1 and

a node identification number represent an item in the universe. The solid 1-arc
and the dashed 0-arc correspond to the item being present or not, respectively.
A path formed by 1-arcs and 0-arcs from the root node to the 1-terminal with
symbol > is a set of 3 items from the n given.

3.1.2. The Knapsack Problem
A familiar problem in combinatorics is the knapsack problem. Given a set of
individually weighted items, the task is to resolve which subsets have total weights
not exceeding a prescribed weight. These sets dictate which selection of objects
may fill a fixed-size knapsack, from which the name derives. If one is to choose

11



Figure 3.1.: The zero-suppressed binary decision diagram for the combination
problem with n = 7 and k = 3.
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from n = 7 different items with assigned weight tuple w = (4, 3, 7, 5, 6, 8, 10) and
weight constraint W = 18, the rotated diagram is in Figure 3.2.

3.1.3. Taking the Intersection
A variant of the knapsack problem above may be solved as well. Suppose 7
items with weights defined by the same sequence (4, 3, 7, 5, 6, 8, 10) are given. To
add, the weight capacity of the knapsack is 18 and the restriction that precisely
3 items may be carried is imposed. Noticeably, the formulation simply puts
together the constraints for the combination and knapsack problems. Solving the
problem is tantamount to taking the intersection of the two diagrams previously
produced. Figure 3.3 shows the resulting zero-suppressed binary decision diagram
rotated. Should a value tuple (7, 2, 8, 3, 6, 9, 5) be incorporated into the problem,
computing for the 3-set with maximum total value and with weight not exceeding
the limit is straightforward. The set formed by taking the first, fifth, and sixth
items has total weight 18 and yields a value of 22 as maximum.

13



Figure 3.2.: The zero-suppressed binary decision diagram for the specified knap-
sack problem.
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Figure 3.3.: The zero-suppressed binary decision diagram for the intersection of
the combination and knapsack diagrams.
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4. Enumeration Perspectives in
Arc Routing

4.1. Generalized Directed Rural Postman
Problem

Concisely, the section augments the frontier-based search for zero-suppressed bi-
nary decision diagram construction. The resulting algorithm accommodates addi-
tional constraints during computation. By the advanced routine, the generalized
directed rural postman problem and its reverse are simultaneously solved for
several transit networks. To justify the effectiveness of the method, numerical
assessment is done in conclusion to the analysis.
An outline of the section is as follows. A summary of the generalized directed

rural postman is first provided. The methodology for investigation is then laid
out. Experiment results and reports on computational efficiency are presented
next. The contribution of the section is emphasized in closing.
To begin, the definition of a path in graph theory is first delved into. It is

essential in problem formulation.

Definition 2 (Path). Given a graph, a path is a sequence of edges y1, y2, . . . , yp

where yi = {vi−1, vi} for i = 1, 2, . . . , p with vertex vi 6= vj if i 6= j.

The question of finding the shortest journey in a metro network that uses each
line at least once may be formulated as a known problem in operations research,
the generalized directed rural postman [42]. The problem, along with the Chinese
postman [14] and the rural postman [32] problems, falls under the field of arc
routing, which focuses on arc or edge properties rather than node features [9]. A
definition derived from [13] follows.

16



Problem 1 (Generalized Directed Rural Postman). Given a set of weights W , a
set of colors C, a graph G = (V,E), an edge-weighting function w : E → W , and
a coloring function c : E → C, find path E ′ such that ∑

e∈E′ w(e) is minimum
and ⋃

e∈E′{c(e)} = C.

The generalized directed rural postman problem is nondeterministic polynomial-
time hard [9]. Accordingly, another nondeterministic polynomial-time hard prob-
lem is the reverse [19]. By seeking the maximum instead of the minimum weight,
the problem is distinctively named the crazy generalized directed rural postman.
Both the original and the reverse problems are hired by the study to further
demonstrate the efficiency and effectiveness of the technique.

Problem 2 (Crazy Generalized Directed Rural Postman). Given a set of weights
W , a set of colors C, a graph G = (V,E), an edge-weighting function w : E → W ,
and a coloring function c : E → C, find path E ′ such that ∑

e∈E′ w(e) is maximum
and ⋃

e∈E′{c(e)} = C.

As an aside, an exact algorithm for solving the original problem is introduced
in [13]. Given in [2] are improvements through a branch-and-cut solution. A
more recent study is [42], providing a clever workaround for finding the optimal
solution in reasonable time.
The constraints for the generalized directed rural postman problem and the

crazy generalized directed rural postman problem may be relaxed in cases where
no solutions are found. In lieu of paths, one may search for trails.

Definition 3 (Trail). Given a graph, a trail is a sequence of edges y1, y2, . . . , yp

where yi = {vi−1, vi} for i = 1, 2, . . . , p with edge yi 6= yj if i 6= j.

In a weighted graph, a minimal path is a path of minimum weight; a path
of maximum weight is called a maximal path. Consistently, a trail of minimum
weight is a minimal trail and a trail of maximum weight is a maximal trail.
The proposed method is implemented in the C++ programming language aided

by TdZdd1, an existing library for diagram manipulation documented in [25] and

1https://github.com/kunisura/TdZdd
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[46]. The ZDDLines2 repository, utilized in [45], served as basis for the program.
In addition, the entirety of the code is committed online to the GDRPDD3 project.
Version 9.3.0 of g++ is used as compiler. Machine specifications include the

Ubuntu 18.04.4 Long Term Support (Bionic Beaver) operating system, the Intel®

CoreTM i7-8565U processor at 1.80GHz, the NVIDIA® GeForce® MX250 graphics
card, and a memory of 16GB.
A sample grid and chosen metro networks of increasing size are encoded. The

first four rows of the text data for the sample network is shown as example.

1 2 100 1
2 3 100 1
3 4 100 1
4 5 100 1

Each row represents an edge and its properties. The first two numbers are the
start and end vertices that define the edge. The weight of the edge, typically
measured in units of distance or time, is given by the third number. The fourth
number specifies the category of which the edge is part; in the case of a metro,
this would be the line by which the edge is labeled or to which the two linked
stations belong. Coordinate data for all station positions are also gathered for
the purpose of visualization.
For each vertex pair (s, t) in the network, the following steps are done. First,

the diagram for all paths from s to t is created. The task is accomplished through
designating a degree constraint using the frontier-based search. For vertices s and
t, a vertex degree of 1 is set. The remaining vertices are forced to be of degree
2 or 0 depending on the involvement in s-t path generation. This guarantees
subgraphs included in the diagram to be paths. For trails, the limitation is eased
to accept even degrees greater than 2.
The requirement of having to use each metro line at least once is then ad-

dressed. The Lines class summarizing the approach in generating the diagram
that satisfies the said restriction is seen in Appendix A.1. Nodes in a level in the
zero-suppressed binary decision diagram created by the Lines class collectively
correspond to an edge in the graph. Stored in every node is a bitmask indicating

2https://github.com/renzopereztan/ZDDLines
3https://github.com/renzopereztan/GDRPDD
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the line usage of the subgraph represented by a traversal from the root to the
node. As the diagram is constructed from top to bottom, the states of the nodes
are updated depending on the line information coming from the designated edge.
For a problem with color set C = {c1, c2, . . . , c|C|}, edge setE = {e1, e2, . . . , em},

and coloring function c : E → C, the bitmask is set to be of |C| bits. Each bit ties
in with the elements of C in order, implying that the kth bit indicates whether
the color ck is covered or not. The root node has a bitmask state with all bits
being 0. For a node ei, the 0-child retains state and the state of the 1-child is
revised, flipping the bit designating c(ei) to 1 if it is 0. This happens routinely as
one descends. A path from the root node ends in the 1-terminal if the resulting
mask contains no bits with value 0, signifying all lines being utilized.
The intersection of the s-t path zero-suppressed binary decision diagram and

the constraint diagram is taken afterward. The final step is to obtain the overall
optimal paths for the graph. Attached as Appendices A.2 and A.3 are the MinDist
and MaxDist classes based on [31] utilized to produce the paths with minimum
and maximum weight.
The results are discussed in two parts. The outcome of the implementation

based on the zero-suppressed binary decision diagram is in the first two sub-
sections. This is further segmented into the sample grid setting and the metro
context. The third subsection replicates a standing method in literature for com-
parison. An integer linear program for the generalized directed rural postman
problem is examined.

4.1.1. Motivating Example
The simple graph consists of 22 vertices and 33 edges in a mesh-like pattern. All
edge weights are set to be 100 units. The 9 lines are determined by the vertical
and horizontal lines that cut through the grid.
The generalized directed rural postman problem and its reverse are solved in

56.96 seconds. The recorded time includes the enumeration of all paths in the
network that satisfy the category-based constraint and the extraction of the paths
that have the minimum and maximum cumulative weights. Note that through
the approach, even the solutions with the second smallest weight, the third largest
weight, and so on, are known and may easily be recalled.
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There are 2 unique solutions of total weight 900 units found for the minimum.
Figure 4.1 shows one of them. A total of 19 different paths exist for the maximum.
A solution with the maximum weight of 2100 units is seen in Figure 4.2.

4.1.2. Decision-Diagram-Based Approach
Composed of 98 vertices and 108 edges is the Hong Kong Mass Transit Railway,
referred to in the section as the Hong Kong Metro4. The network has 10 lines
identified in Appendix B.1. For the purposes of the study, an edge is weighted
one step. For every additional edge, the cost of the journey would increase by
one step.
An out-turn of no solution was reached in 1010.67 seconds. No path that

uses each line at least once exists for the metro. In response, relaxation is done.
Trails of minimum and maximum weight that pass through all lines are sought.
This problem-solving detour yields added complexity, hence the running time of
1172.33 seconds.
There are two minimal solutions. A trail with the minimum 35 steps is in Figure

4.3 and Table 4.1. Two solutions of 56 steps are maximal. Notice in Figure 4.4
that the algorithm forces itself to extend the trail in producing the maximum.
Pairs of edges that are incident to the same vertices but are on different lines are
likely to be taken as part of the trail.
The Osaka Metro5 is chosen for the second experiment. Previous studies [45]

have used the same network to find solutions to a constrained version of the
simpler s-t path problem. The metro has 107 vertices and 125 edges, a larger
network compared to the Hong Kong system. The edge weights are the distances
between stations given in kilometers. The 9 lines are in Appendix B.2.
The time taken for the simultaneous solution of the two problems is 938.89

seconds. Interestingly, there is only one solution for the minimum. The path
presented in Figure 4.5 and Table 4.2 with distance 16.2 kilometers is the optimal
solution. For the crazy generalized directed rural postman problem, a maximum
distance of 77.2 kilometers is registered. There are 30 ways to complete the
journey as in Figure 4.6.

4https://en.wikipedia.org/wiki/MTR
5https://en.wikipedia.org/wiki/Osaka_Metro
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Figure 4.1.: A solution to the original problem for the sample grid.

Figure 4.2.: A solution to the reverse problem for the sample grid.

Figure 4.3.: A solution to the relaxed original problem for the Hong Kong Metro.
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Table 4.1.: The Shortest Journey for the Hong Kong Metro

Move Initial Station Terminal Station Line

1 Ocean Park Admiralty

2 Admiralty North Point

3 North Point Yau Tong

4 Yau Tong Prince Edward

5 Prince Edward Lai King

6 Lai King Tsing Yi

7 Tsing Yi Kowloon

8 Kowloon Nam Cheong

9 Nam Cheong Hung Hom

10 Hung Hom Tai Wai

11 Tai Wai Che Kung Temple

Figure 4.4.: A solution to the relaxed reverse problem for the Hong Kong Metro.
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Figure 4.5.: The solution to the original problem for the Osaka Metro.

Table 4.2.: The Shortest Journey for the Osaka Metro

Move Initial Station Terminal Station Line

1 Hirabayashi Suminoekoen

2 Suminoekoen Daikokucho

3 Daikokucho Namba

4 Namba Nippombashi

5 Nippombashi Nagahoribashi

6 Nagahoribashi Tanimachi 6-Chome

7 Tanimachi 6-Chome Tanimachi 4-Chome

8 Tanimachi 4-Chome Midoribashi

9 Midoribashi Shigino
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The Taipei Metro6, also known as the Taipei Mass Rapid Transit, comprises
136 vertices and 149 edges. One includes the Airport Line and considers 7 lines
total listed in Appendix B.3 for the network. The edges are simply weighted in
units of steps.
The solution on the metro results in a computation time of 2176.70 seconds.

The minimum of 8 steps and maximum of 90 steps each share two solutions. For
the original problem, a solution is seen in Figure 4.7 and Table 4.3; a solution for
the reverse problem is in Figure 4.8.

4.1.3. Mathematical Programming
One pays particular attention to the generalized directed rural postman problem.
Solving the crazy variant entails a similar strategy. The problem is posed as an
integer program with linear constraints. A formulation motivated by [42] and [35]
is employed.

Program 1 (Linear Program for the Generalized Directed Rural Postman Prob-
lem). Minimize

∑
(u,v,l)∈A xu,v,l

subject to
∑

(u,v,l)∈A xu,v,l,∑
(u,v,l)∈A xu,v,l = ∑

(v,w,l)∈A xv,w,l ∀v ∈ V \ {s, t},∑
(s,v,l)∈A xs,v,l = ∑

(u,t,l)∈A xu,t,l = 1,∑
(u,v,l)∈A xu,v,l ≥ 1 ∀l ∈ C,

|V | · xu,v,l ≥ fu,v,l ∀ (u, v, l) ∈ A,∑
(u,v,l)∈A fu,v,l −

∑
(v,w,l)∈A fv,w,l ≥ y0 ∀v ∈ V \ {s},∑

(u,v,l)∈A xu,v,l −
∑

(v,w,l)∈A xv,w,l ≤ yv ∀v ∈ V,
xu,v,l ∈ {0, 1} ∀ (u, v, l) ∈ A,
fu,v,l ∈ N ∀ (u, v, l) ∈ A, and
yv ∈ N ∀v ∈ V.

6https://en.wikipedia.org/wiki/Taipei_Metro
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Figure 4.6.: A solution to the reverse problem for the Osaka Metro.

Table 4.3.: The Shortest Journey for the Taipei Metro

Move Initial Station Terminal Station Line

1 Xing Fu New Taipei Industrial Park

2 New Taipei Industrial Park Taipei Main

3 Taipei Main Zhongshan

4 Zhongshan Songjiang Nanjing

5 Songjiang Nanjing Zhongxiao Xinsheng

6 Zhongxiao Xinsheng Zhongxiao Fuxing

7 Zhongxiao Fuxing Daan
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Figure 4.7.: A solution to the original problem for the Taipei Metro.

Table 4.4.: Some Experiment Statistics

Graph |V | |E| |C| Time (s)

Sample 22 33 9 56.96

Hong Kong 98 108 10 1172.33†

Osaka 107 125 9 938.89

Taipei 136 149 7 2176.70

†Computation time for the relaxed problem.

26



Figure 4.8.: A solution to the reverse problem for the Taipei Metro.
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For each edge connecting vertices u and v on line l, a binary variable xu,v,l is
assigned. Instinctively, the sum of the variables is to be minimized. A virtual
source s and a virtual target t, both of which are connected to every vertex in the
station, are added to overcome the crux of having to solve the program for each
possible vertex pair. One may consult [42] and [6] for a thorough explanation of
the constraints and some possible refinements.
Upon completing the integer programming experiment, the correctness of the

solutions attained by the decision-diagram-based algorithm is confirmed. From
the optimal solutions to the number of solutions, results from both methods
match. A complete iteration for a network, however, took several hours. It is
important to note that this is primarily because of the need for solving the model
multiple times to get the number of solutions that give minimum.

4.2. Undirected Rural Postman Problem
The research augments the frontier-based search in zero-suppressed binary deci-
sion diagram construction to accommodate the class-based constrained brought
about by the problem having required and nonrequired edges. One then chooses
instances of the undirected rural postman problem used across several sources for
tests on computational efficiency. In closing, some advantages of the proposed
zero-suppressed binary decision diagram method are established.
The section is organized as follows. The preliminary concepts on the undirected

rural postman problemis first surveyed. The methodology used in the study is
then detailed. Following this, experiment results and the corresponding discussion
are laid out. To close, a synthesis is contained.
The notion of a walk in graph theory is requisite for the formulation of the

problem.

Definition 4 (Walk). Given a graph, a walk is a sequence of edges y1, y2, y3, . . . , yp

where yk is the pair of vertices {wk, wk+1} for i = 1, 2, . . . , p.

In a walk, therefore, vertices and edges may be repeated in the sequence.
The undirected rural postman problem is first introduced in [39]. The problem,

defined on a graph with required edges, involves designing a walk of least cost
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that traverses each edge in the required subgraph at least once. In contrast
to the undirected Chinese postman problem [14] where the required subgraph
is connected, the undirected rural postman would have no such guarantee [20].
The problem is proven to be nondeterministic polynomial-time hard [32]. The
section hires an uncomplicated definition of the problem suitable for the method
of solution. The definition is motivated by [15].

Problem 3 (Undirected Rural Postman Problem). Given a graph G = (V,E),
a set of required edges R ⊂ E, a set of costs C ⊂ R+, and a cost function
c : E → C, find walk E ′ such that ∑

e∈E′ c(e) is minimum and R ⊆ E ′.

A few applications from [15] are below.

• Street sweeping is a common example [3]. In a city, certain streets may
require service more often than others.

• Snow plowing is also an application [21]. There are varying priority levels
across categories of roads.

• Another example is school bus routing [1, 4, 12]. Students living in some
street segments must board.

As there is prominence to the undirected rural postman problem, the different
kinds of solutions have been frequently studied. Exact algorithms and heuristics
exist in solving the undirected rural postman problem. Among the exact methods
are a fundamental branch-and-bound scheme in [8], a cutting plane technique
in [10], and a solution through an improved formulation in [17]. Heuristics that
yield approximations are also used. The constructive approach by Frederickson
[18] is most common; nevertheless, there are alternatives such as the Monte Carlo
routine [11] and an improvement heuristics [23]. Recently, a solution based on
genetic algorithms was also investigated [37].
Test grid configurations and chosen benchmark graphs of increasing size are

converted into an edge list. The edge list would then be divided into two sublists
– one for the required edges and another for the nonrequired edges. The first
rows of the sublist containing required edges are shown as example.
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3 4 1
11 12 1
13 14 1

A row represents an edge and its properties. Since an edge is defined by a set
of two vertices, the first two numbers are the start and end vertices forming the
edge. The cost of the edge, in most cases a distance or time measure, is specified
by the third number. Visualization is done with the help of an online tool7 for
graphing.
The proposed decision-diagram-based approach in solving the undirected rural

postman problem is outlined in Algorithm 1. The explanation follows.
The class readGraph begins zddURPP by inserting each edge into the graph

twice. This workaround is imperative to allow frontierBasedSearch to use an
edge at most two times. Every required edge is assigned an integer from 0 to
|R| − 1 in r. The two copies of an edge is given the same identification number.
Edges that are not required are assigned the number −1.
Following the steps supra, the maximum degree for a vertex in the graph is

stored through getMaxDegree. This piece of information is required primarily by
degreeConstraint, which prescribes the vertex degrees during the walk enumer-
ation using frontierBasedSearch.
Whether or not each required edge labeled from 0 to |R| − 1 is used in the

solution is kept track with Required. An important procedure in Required is
getChild, seen in Algorithm 2. First, the required edges, including the nonre-
quired edges, are ensured to be sorted in order of requirement. Upon execution,
the constraint sets a flag to true whenever an edge is used. The flag is checked
whenever the current level being processed differs from the previous level based
on the edge identification number. If the flag is true then it is reset to false and
the the process continues; otherwise, the concerned branch of the zero-suppressed
binary decision diagram is cut off. Edges with labels of −1 are skipped.
The intersection of the degreeConstraint, frontierBasedSearch, and Required

zero-suppressed binary decision diagrams is taken afterward. Ultimately, the
overall optimal walk for the graph is acquired following [31].
Implementation was done in the C++ language. The compiler used was g++

7https://csacademy.com/app/graph_editor/
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Algorithm 1 zddURPP
1: G⇐ readGraph()
2: d⇐ edge distance function
3: r ⇐ edge requirement assignment
4:

5: mvd⇐ getMaxDegree(G) . Store the maximum degree of a vertex in G
6: dc⇐ degreeConstraint(G) . Create a record of degree constraints for

vertices in G
7: fbs⇐ frontierBasedSearch(G) . Create a diagram of all walks in G
8: req ⇐ Required(G) . Create a diagram constraint to use all required edges
9:

10: for all v ∈ G.V do
11: dc[v] = [0, 2, 4, . . . ,mvd]
12: end for
13:

14: zdd⇐ dc ∩ fbs ∩ req

15: ans⇐ zdd.evaluateMinResult()
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Algorithm 2 getChild for Required
1: procedure getChild(flag, level, value)
2:

3: if r[level] 6= r[level − 1] then
4: if flag = 0 then
5: return 0
6: end if
7: flag = 0
8: end if
9:

10: if value = 1 then
11: flag = 1
12: end if
13:

14: level⇐ level − 1
15: if level = 0 then
16: return -1
17: end if
18: return level

19:

20: end procedure
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version 7.5.0. The TdZdd8 library with documentation in [25] was employed for
diagram manipulation. Moreover, the framework utilized is based on ZDDLines9,
the program used in [45]. Refer to the URPDD10 repository for the complete
code. Table 4.5 summarizes the machine specifications.
The experiments are discussed in three parts. Results from preliminary tests

done on a sample grid is detailed in the first subsection. The second subsection
presents the outcome from solving benchmark instances in literature [8]. The
third contains some notes on the performance of the zero-suppressed binary de-
cision diagram method.

4.2.1. Tests on a Grid Network
A test grid of 3 edges by 3 edges is used as setting. The total number of vertices
is 16 and the total number of edges is 24. All edges are set to be of cost 1
unit. Varying configurations of the undirected rural postman problem were then
generated, with 3 ≤ |R| ≤ 13. The required edges were chosen arbitrarily for
each problem.
The results from 8 problems are arranged by the number of required edges in

Table 4.6. Every problem is given an identification number i for reference. To
recapitulate, |E| is the number of edges, |R| is the number of required edges,
and |V | is the number of vertices. The number of nodes and elements in the
resulting zero-suppressed binary decision diagram are denoted by n (D) and |D|,
respectively. The time taken in seconds, the memory consumed in MB, and the
cost z of the minimal solution is shown in the table.
As seen, the undirected rural postman problem is solved by the approach in

reasonable time. Diagrams with tens of thousands of nodes representing billions
of feasible solutions is constructed in less than a second on average. In addition,
the minimum costs are attained exactly by the routine.

8https://github.com/kunisura/TdZdd
9https://github.com/renzopereztan/ZDDLines

10https://github.com/renzopereztan/URPDD
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Table 4.5.: The specifications of the machine used in experimentation.

Operating System Ubuntu 18.04.3 Long Term Support
Processor Intel® CoreTM i9-9920X at 3.50GHz
Graphics Card NVIDIA® GeForce® RTX2080 Ti/PCIe/SSE2
Memory 128GB

Table 4.6.: Results of the experiment on the generated test grid networks.

i |E| |R| |V | Time
(s)

Space
(MB)

n (D) |D| z

1 24 3 16 0.07 5 1.93E+04 2.99E+09 12
3 24 4 16 0.04 4 6.43E+03 2.25E+09 12
2 24 5 16 0.15 9 3.06E+04 1.72E+09 14
5 24 7 16 0.05 5 4.77E+03 1.08E+09 12
4 24 7 16 0.29 16 3.32E+04 1.00E+09 14
7 24 8 16 0.43 23 2.89E+04 8.52E+08 14
8 24 9 16 0.25 15 1.00E+04 6.35E+08 16
6 24 13 16 1.52 66 1.85E+04 2.69E+08 20
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4.2.2. Instances from Literature
Benchmark instances from [8] are then chosen. A selection of 14 problems with
7 ≤ |V | ≤ 26 and 10 ≤ |E| ≤ 47 is solved. The costs of the edges differ per
instance. The number of required edges in a problem ranges from 4 to 24. The
required subgraph is determined in accord with the reference text.
Following the same format as the previous table is Table 4.7, in which the results

are found. In the experiment, the generation of a diagram with hundreds of nodes
representing thousands of solutions takes a fraction of a second whereas generating
a diagram with millions of nodes representing tens of trillions of solutions would
take around an hour. Given the difficulty of the task, such consumption of time
is justified for decision-diagram-based enumeration [38,45].
With regard to correctness, the algorithm gives the exact answers without

fail. It outperforms the heuristics compiled in [37]. Against exact solutions, the
enumerative solution demands more time in calculation. The advantages of the
latter, however, are plenty. Apart from the obvious listing of all feasible solutions
and drawing of the minimal walk, these include being able to produce the k
solutions of lowest or highest cost, to find the mean and variance of all feasible
solutions, to filter solutions based on some desired criterion, and others.

4.2.3. Notes on Performance
To gain deeper insight into the potentiality of the method, some observations are
highlighted. One zeroes in on the results for two problem pairs – the fourth and
fifth grid network configurations and the fourth and fifth problems from literature.

1. Given the same graph, more required edges means less decisions for the
algorithm to make. There are three possibilities for an edge from a zero-
suppressed binary decision diagram perspective. These are take the edge,
take the edge twice, and do not take the edge. For a required edge, the op-
tion of not taking the edge is eliminated, substantially reducing processing.

2. The problem may be thought of as being the task of connecting parts of the
required subgraph through choosing nonrequired edges that would serve as
links. This means that the more connected the required subgraph is to begin
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Table 4.7.: Results of the experiment on standard instances from literature.

i |E| |R| |V | Time
(s)

Space
(MB)

n (D) |D| z

13 10 4 7 0.01 4 2.30E+02 3.53E+03 35
1 13 7 11 0.02 4 2.56E+02 5.62E+03 76
11 14 7 9 0.04 4 8.45E+02 1.39E+05 23
12 18 5 7 0.08 6 1.04E+04 5.96E+07 19
10 20 10 12 0.42 24 1.47E+04 2.44E+07 80
9 26 14 14 0.54 39 6.97E+03 3.75E+09 83
2 33 12 14 50.12 2230 4.91E+05 1.03E+12 152
5 35 16 20 31.01 1724 1.74E+05 1.13E+13 124
4 35 22 17 1297.53 71229 6.73E+05 3.89E+12 84
15 37 19 26 1714.08 106885 1.09E+06 1.47E+11 441
18 37 16 23 4532.78 126383 9.26E+06 1.40E+13 146
8 40 24 17 1552.16 114617 9.48E+05 1.71E+14 122
17 44 17 19 3481.13 126641 5.71E+06 4.06E+16 112
7 47 24 23 5289.39 126723 6.85E+05 6.62E+16 130
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with, the more efficient the algorithm becomes. Figure 4.9 and Figure 4.10
provide an example, where the solution to the fifth grid problem is secured
faster than the solution to the fourth possibly due to the required subgraph
of the fifth being more connected in the first place.

3. Figure 4.11 and Figure 4.12 illustrate how the structure of the given graph
affect execution drastically. The fifth benchmark instance is solved in 31.01
seconds; the fourth benchmark instance, having the same number of edges
but a different structure, is solved in 1297.53 seconds. The sparsity of a
graph is a huge factor in computation, especially in the case of a solution
by enumeration using the zero-suppressed binary decision diagram.
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Figure 4.9.: The given graph and the required subgraph for the fourth sample
grid.

Figure 4.10.: The given graph and the required subgraph for the fifth sample
grid.
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Figure 4.11.: The given graph and the required subgraph for the fourth
benchmark problem.

Figure 4.12.: The given graph and the required subgraph for the fifth
benchmark problem.
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5. Contemporary Measures for
Network Resilience

The world operates through networks, thereby establishing the need to study the
graphs through which they are represented. On that account, graph measures
or graph metrics have long been a domain of interest. Classical metrics such
as the connectivity, distance, betweenness, clustering, and reliability polynomial
are commonly used to characterize graphs [16]. In addition, there are spectral
measures that look into the matrices associated with the graphs [36].
Among the aforementioned are measures that aim to examine whether or not a

network would remain to be functioning satisfactorily in the event of damage [40].
In the research, a new graph metric called the probability of relative isolation is
introduced. The relative isolation probability reveals how likely it is that a vertex
would be disconnected from sources given the failure of some edges. Lifelines
such as road networks, water pipelines, power lines, communication systems, et
cetera and their possible failure during stress are contexts to which the measure
is especially applicable. Several advantages to its utility are being able to:

• Know which nodes may require urgent attention after a destructive episode;

• Have a reasonable basis for the sequence of links for immediate repair;

• Gauge if there are redundancies in the network design and construction;

• Discover prospective node or link groups for network reinforcement; and

• Estimate possible locations for the process of adding more network sources.

To compute for the vertex probabilities of relative isolation, a two-step pro-
cedure is devised. The first step employs the use of randomness and iteration

40



through conducting a Monte Carlo experiment. The random numbers determine
the survival or failure of the edges and consequently, the active components of
the graph for each iteration. A check for any source connection is done on the
vertices in the second step, having recourse to a compressed data representation
known as the zero-suppressed binary decision diagram.
Benchmark configurations from literature and graphs for real networks are

each translated into an edge list. Every row is an edge, represented by the two
vertices through which it is defined. The source vertices and failure probabilities
of the edges are kept in a separate file in order to conveniently create multiple
scenarios. Visualization is done in the general-purpose diagramming software
yEd1 with version 3.20.1.

5.1. Probability of Relative Isolation
Requisite for the formulation of the metric is the notion of a path in graph theory.

Definition 5 (Path). Given a graph, a path is a sequence y1, y2, . . . , yp where
yi = {vi−1, vi} is an edge of the graph for i = 1, 2, . . . , p with vertex vi 6= vj of
the graph if i 6= j. A path from vertex v0 to vertex vp is called a v0-vp path.

A path is therefore a sequence of edges that joins a sequence of vertices which
are distinct. The formal definition of the relative isolation probability of a vertex
in a given graph is below.

Definition 6 (Probability of Relative Isolation). Consider the graph G = (V,E)
and the set of source vertices S ⊂ V . Let the probability of failure of an edge be
π (ei) for i = 1, 2, 3, . . . , |E|, with function π : E → [0, 1].
The number of iterations, which is essentially how many times the Monte Carlo

experiment is executed, is set to beN . A random number ρk (ei) with function ρk :
E → [0, 1] is assigned to each edge ei on the kth iteration for k = 1, 2, 3, . . . , N .
For all ei ∈ E, an indicator function µk is defined to be

µk (ei) =

0 if ρk (ei) > π (ei)
1 otherwise

,

1Link: https://www.yworks.com/products/yed.
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assigning either a 0 or a 1 to each edge indicating its survival or failure, respec-
tively, for iteration k.
Subsequently, a subgraph Gk = (Vk, Ek) is produced, with ei ∈ Ek if and only

if µk (ei) = 0 and vj ∈ Vk for j = 1, 2, 3, . . . , |V | if and only if there exists e ∈ Ek
such that vj ∈ e or if vj ∈ S. More precisely, Ek = {e ∈ E | µk (e) = 0} and
Vk = {v ∈ V | v ∈ e, e ∈ Ek} ∪ S in notation. For all vj ∈ V \ S, a second
indicator function is then defined as

λk (vj) =

0 if there exists a path in Gk to some s ∈ S
1 otherwise

,

specifying whether or not each vertex is reachable by a source for iteration k. If
vj ∈ S then λk (vj) = 0.
Given the above, the relative isolation probability of a vertex vj within N

instances, denoted by ΠN
ι (vj), is

ΠN
ι (vj) =

∑N
l=1 λl (vj)
N

.

5.2. Monte Carlo Preliminary Processing
The preliminary processing step is first done through a Monte Carlo simulation,
instituting the survival or failure of each edge and generating all Gk for k =
1, 2, 3, . . . , N . Algorithm 3 shows the pseudocode, in which line 11 draws up the
random numbers uniformly over the interval (0, 1) for comparison to the relevant
probabilities assigned to the edges. The product is a combined input file holding
the resulting N instances of the graph.

5.3. Decision Diagram Computation Proper
The computation proper happens in the second step, outlined in Algorithm 4.
For each simulation, a zero-suppressed binary decision diagram is constructed for
each pair comprising a nonsource vertex v and a source vertex s to determine
whether or not there is a path from s to v. The degree constraint dc prescribes v
and s as the endpoints of a path, with both vertex degrees being one as designated
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Algorithm 3 MCPrePro
1: G ← readGraph()
2: S ← readSources()
3: Assume G = (V,E).
4:

5: print(|E|, N)
6: printEOL
7:

8: for all e ∈ E do
9: print(e.u, e.v)
10: for i = 1, . . . , N do
11: if (randUniform(0, 1) ≤ e.p) then
12: print(1)
13: else
14: print(0)
15: end if
16: end for
17: printEOL
18: end for
19:

20: print(|S|)
21: printEOL
22:

23: for all s ∈ S do
24: print(s)
25: end for
26:

27: printEOL
28: printEOF

Note that e.p is the probability that the edge e is alive and e.u and e.v stand for the vertices
of the edge e.
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in Lines 11 and 14). The other vertices are either inner vertices of a path or are
not included in the path, with vertex degrees being two or zero as designated
in Lines 6, 20, and 25). Using dc, the zero-suppressed binary decision diagram
denoted by paths in Line 15 that represents the set of all the paths from s to v is
constructed by constructPathZdd described in the previous section.
Thereafter, a path from s to v used for examining connectivity must only go

through available edges. This constraint is represented by the zero-suppressed
binary decision diagram of in Line 9. Let Eavail be the set of available edges
in E. The function constructOmitFailureZdd constructs the diagram of
representing the set of any subsets of Eavail, that is, the power set of Eavail. The
diagram is constructed outside the for loops of v and s since it is independent
from v and s.
The function zddIntersection in Line 16 performs the intersection operation

on the two zero-suppressed binary decision diagrams, constructing the diagram
representing the intersection of the two families of sets represented by the two
diagrams [5]. The intersection of paths and of generates the set of paths that
use only the available edges as a zero-suppressed binary decision diagram. The
existence of a path from the source to the vertex is then inspected by the com-
parison of zdd and ⊥ in Line 17. If such a path does not exist then zdd becomes
⊥, the diagram for the empty set. The check is carried out by the comparison of
the two pointers directed to the roots of zdd and ⊥ in constant time.
If a valid path from s to v is not found then the algorithm adds 1 to the isolation

count of that vertex and moves on to the next vertex; otherwise, it simply moves
on to the next vertex. In the end, isolation count of each vertex is divided by the
number of simulations to get the probability of relative isolation.
As a comment, keep in mind that source vertices have a relative isolation

probability of 0 since there always exists a path to itself. Sources are skipped
when running the decision-diagram-based simulation part.
In summary, the algorithm calculates the relative isolation probabilities of the

vertices by running a number of randomized simulations, checking if the vertex
is disconnected from all sources in each simulation, and getting the percentage of
simulations in which the vertex is relatively isolated.
The C++ programming language, coupled with version 9.3.0 of the g++ as
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Algorithm 4 PIZDD
1: G← readGraph()
2: S ← readSources()
3: Assume G = (V,E).
4: Let isolations and dc be arrays whose indices are vertices.
5: isolations[v]← 0 for all v ∈ V
6: dc[v]← {0, 2} for all v ∈ V
7:

8: for sim = 1, . . . , N do
9: of ← constructOmitFailureZdd(sim)
10: for v ∈ V − S do
11: dc[v]← {1}
12: found ← false
13: for s ∈ S do
14: dc[s]← {1}
15: paths ← constructPathZdd(dc)
16: zdd ← zddIntersection(paths, of )
17: if zdd 6= ⊥ then
18: found ← true
19: end if
20: dc[s]← {0, 2}
21: if found then
22: break
23: end if
24: end for
25: dc[v]← {0, 2}
26: if not found then
27: isolations[v]← isolations[v] + 1
28: end if
29: end for
30: end for
31:

32: for v ∈ V do
33: print(v, isolations[v]/n)
34: end for
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compiler, is selected for implementation. Fundamental diagram manipulation is
carried out through the TdZdd2 library documented in [25]. The ZDDLines3

program serves as foundation for the portion involving the enumeration of paths
[45]. For the complete code, refer to the PIZDD4 repository as published online.
Concerning machine specifications, the operating system is the Ubuntu 18.04.4

Long Term Support (Bionic Beaver). The processor is the Intel® CoreTM i7-
8565U running at 1.80GHz. A memory of 16GB and an NVIDIA® GeForce®

MX250 graphics card are also made available for use.

5.4. Results on Varying Graphs
Two segments comprise the results. Outcomes on six sample networks are pre-
sented in the first part as benchmark. Graphs with varying structures, seen
in Figures 5.1 to 5.6, are hand-picked from familiar published work [7, 48]. In
the second part, the technique is evaluated on graphs representing real-world
lifeline networks. One inspects the Bursa, Hanoi, and Kobe water supply sys-
tems [27,28,47].
Sample networks with 6 ≤ |V | ≤ 40 and 15 ≤ |E| ≤ 58 are first used as

setting for the benchmarking experiment. In order, the six are a complete graph,
a Petersen graph, two distinctive graphs, a square grid, and a rectangular mesh.
The number of simulations is initialized to 100, 1000, and 10000. To examine

the algorithm correctness, the vertex relative isolation probabilities are computed
for edge failure probabilities 0.50, 0.05, and 0.95. The routine is repeated nine
times over per network.
Tables 5.1, 5.2, and 5.3 summarize the results. To reiterate, |E| is the number

of edges and |V | is the number of vertices. The computation time for each of
the two steps is presented both separately and as a sum. For example, tρ(e),1 and
tρ(e),2 are costs in seconds for the Monte Carlo instance generator and the decision
diagram connectivity test, respectively, and tρ(e) is the overall time taken. The

2Link: https://github.com/kunisura/TdZdd.
3Link: https://github.com/renzopereztan/ZDDLines.
4Link: https://github.com/renzopereztan/PIZDD.
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Figure 5.1.: Network 1.

Figure 5.2.: Network 2.
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Figure 5.3.: Network 3.

Figure 5.4.: Network 4.
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average time consumed for all set-ups of equal N is t̄. In symbols,

tρ(e) = tρ(e),1 + tρ(e),2

and
t̄ = tρ1(e) + tρ2(e) + tρ3(e)

3 .

Considering the complexity of an enumerative decision-diagram-based approach,
the consumption of time is fair [38,45]. The total cost ranges from several seconds
for experiments with 100 iterations to several minutes for experiments with 10000
iterations.
The set of probabilities obtained for the graphs when all edges are set to fail

half of the time are attached as Appendices C.1, C.2, C.3, C.4, C.5, and C.6.
Setting the results from the different values for N side by side serve as preview
to the convergence of the method.
The procedure is then applied to real-world systems. More specifically, the

water distribution networks of three cities – Bursa in Turkey, Hanoi in Vietnam,
and Kobe in Japan – are chosen for processing. For the three networks, 12 ≤
|V | ≤ 32 and 17 ≤ |E| ≤ 34.
The program is run thrice for each network, accommodating 100, 1000, and

10000 instances. The edge probabilities of failure differ per network. Information
is sought from references that provide well-justified data. Details on the Bursa
city network is found in [41]. Furthermore, a comprehensive analysis of the Hanoi
city network may be seen in [47]. Lastly, the Kobe city network is treated in [29].
The results for the lifeline networks are in Tables 5.4, 5.5, and 5.6, following

the same format as the previous tables. The vertex probabilities of relative iso-
lation are consistently calculated in reasonable time. Less than two seconds is
required for 100 iterations and less than two minutes is required for 10000 itera-
tions. Likewise, the probabilities are noted as Appendices C.7, C.8, and C.9 for
reference.
As an aside, accuracy is further ensured by running the entire pool of experi-

ments multiple times. One remarks that the variability between the initializations
is not substantial.
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Figure 5.5.: Network 5.

Table 5.4.: Summary figures of the experiment on applications with N = 100.

Network |E| |V | t1 t2 t

Bursa 17 12 0.0040 0.4289 0.4330

Hanoi 34 32 0.0033 1.4145 1.4178

Kobe 20 15 0.0025 0.5263 0.5288

Table 5.5.: Summary figures of the experiment on applications with N = 1000.

Graph |E| |V | t1 t2 t

Bursa 17 12 0.006 4.2833 4.2898

Hanoi 34 32 0.0099 12.7125 12.7224

Kobe 20 15 0.0057 5.6930 5.6987
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Figure 5.6.: Network 6.
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Table 5.6.: Summary figures of the experiment on applications with N = 10000.

Network |E| |V | t1 t2 t

Bursa 17 12 0.0448 41.478 41.5926

Hanoi 34 32 0.0985 114.5840 114.6825

Kobe 20 15 0.0505 57.1823 57.2328
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6. Conclusion

In summary, a novel solution to the known generalized directed rural postman
problem and the unconventional crazy generalized directed rural postman prob-
lem is put forth. The two nondeterministic polynomial-time hard problems were
simultaneously solved by the decision-diagram-based procedure in minutes while
a traditional integer program analogue consumed several hours on each problem.
Moreover, the capacity for enumerating solutions and the flexibility in adjustment
further the relative superiority of the use of the decision diagram.
Furthermore, the paper has advanced an enumerative technique for the solution

of the undirected rural postman problem based on the zero-suppressed binary de-
cision diagram. Exact solutions to a diverse set of problem instances were reached
in time well-justified for methods of enumeration. Observations on performance
were pointed out towards the improvement of the algorithm.
A novel measure for graphs consisting of edges that have known failure prob-

abilities is also put forward. Its definition is accompanied by a demonstration of
efficient calculation through a Monte Carlo method integrated with a decision-
diagram-based technique. The new probabilistic metric is worked out across
selected networks, proving reasonable computational cost.
For future research, preprocessing may be done to simplify the graphs before

diagram construction. Another possible plan of action to reduce computation
time is parallelization. As prospects for comparison are scarce, other classes of
binary decision diagrams may also be considered so that the proposed approach
may be set side by side with other decision-diagram-based solutions.
With respect to the proposed graph metric, an original consolidated measure

for the whole graph based on the vertex probabilities of relative isolation is to be
pursued. Regarding probability evaluation, crafting an algorithm that offers less
computation time and an implementation on larger networks are suggested.
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Appendices
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A. Codes

A.1. Line Constraint
class Lines : public tdzdd : : DdSpec<Lines , int , 2> {
public :

L ines ( ){}
int getRoot ( int& s t a t e )
const{
s t a t e = 0 ;
return n ; }
int getChi ld ( int& state , int l e v e l , int value )
const{

i f ( va lue == 1) s t a t e |= (1<< l [ n−l e v e l ] ) ;
l e v e l −−;

i f ( l e v e l == 0){
i f ( s t a t e == ((1<<L)−1)<<1){

return −1;
} else {

return 0 ;
}

}
return l e v e l ;
}

} ;

A.2. Extracting the Minimum
class MinDist : public tdzdd : : DdEval<MinDist , DistData> {
public :

MinDist ( ){}
void evalTerminal ( DistData& data , bool one )
const {

data . va l = one ? 0 : 100000;}
void evalNode ( DistData& data , int l e v e l ,
tdzdd : : DdValues<DistData ,2> const& va lues )
const {
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const DistData& data0 = va lue s . get ( 0 ) ;
const DistData& data1 = va lue s . get ( 1 ) ;
i f ( data0 . va l <= data1 . va l + d [ n−l e v e l ] ) {

data . va l = data0 . va l ;
data . mask = data0 . mask ;

} else {
data . va l = data1 . va l + d [ n−l e v e l ] ;
data . mask = data1 . mask ;
data . mask [ l e v e l −1] = 1 ;

}
}

} ;

A.3. Extracting the Maximum
class MaxDist : public tdzdd : : DdEval<MaxDist , DistData> {
public :

MaxDist ( ){}
void evalTerminal ( DistData& data , bool one )
const {

data . va l = one ? 0 : INT_MIN; }
void evalNode ( DistData& data , int l e v e l ,
tdzdd : : DdValues<DistData ,2> const& va lues )
const {

const DistData& data0 = va lue s . get ( 0 ) ;
const DistData& data1 = va lue s . get ( 1 ) ;
i f ( data0 . va l >= data1 . va l + d [ n−l e v e l ] ) {

data . va l = data0 . va l ;
data . mask = data0 . mask ;

} else {
data . va l = data1 . va l + d [ n−l e v e l ] ;
data . mask = data1 . mask ;
data . mask [ l e v e l −1] = 1 ;

}
}

} ;
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B. Lines

B.1. Hong Kong Metro

Icon Name

Airport Express Line

East Rail Line

Island Line

Kwun Tong Line

Tuen Ma Line

South Island Line

Tseung Kwan O Line Line

Tsuen Wan Line

Tung Chung Line

West Rail Line
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B.2. Osaka Metro

Icon Name

Midosuji Line

Tanimachi Line

Yotsubashi Line

Chuo Line

Sennichimae Line

Sakaisuji Line

Nagahori Tsurumi-Ryokuchi Line

Imazatosuji Line

Nanko Port Town Line

B.3. Taipei Metro

Icon Name

Wenhu Line

Tamsui-Xinyi Line

Songshan-Xindian Line

Zhonghe-Xinlu Line

Bannan Line

Circular Line

Airport Line
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C. Probabilities

C.1. Network 1

j Π100
ι (vj) Π1000

ι (vj) Π10000
ι (vj)

1† 0.0000 0.0000 0.0000
2 0.0600 0.0400 0.0409
3 0.0400 0.0430 0.0435
4 0.0300 0.0480 0.0446
5 0.0500 0.0400 0.0463
6† 0.0000 0.0000 0.0000

†Indicates a source vertex.

C.2. Network 2

j Π100
ι (vj) Π1000

ι (vj) Π10000
ι (vj)

1 0.4500 0.3360 0.3234
2† 0.0000 0.0000 0.0000
3 0.5300 0.4580 0.4289
4 0.3900 0.3720 0.3533
5 0.5400 0.5070 0.5087
6 0.5200 0.5230 0.5005
7 0.5700 0.4910 0.5034
8 0.5500 0.5460 0.5164
9 0.4000 0.3810 0.3619
10 0.4100 0.4680 0.4423
11† 0.0000 0.0000 0.0000
12 0.3200 0.3330 0.3352
13 0.4100 0.3710 0.3590
14 0.4600 0.4320 0.4385
15 0.5200 0.5220 0.5016
16 0.5100 0.4920 0.5151
17 0.5100 0.5230 0.5118
18 0.4700 0.4950 0.4916
19 0.4400 0.4450 0.4391
20 0.3300 0.3280 0.3556
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C.3. Network 3

j Π100
ι (vj) Π1000

ι (vj) Π10000
ι (vj)

1 0.1700 0.1520 0.1410
2 0.2400 0.3220 0.3113
3 0.3600 0.4350 0.4058
4 0.2900 0.3490 0.3411
5† 0.0000 0.0000 0.0000
6 0.2000 0.2140 0.2038
7 0.3200 0.3170 0.3067
8 0.1500 0.1910 0.1825
9† 0.0000 0.0000 0.0000
10 0.2300 0.2490 0.2257
11 0.3000 0.3180 0.3062
12 0.3900 0.4240 0.3964
13 0.2800 0.3500 0.3255
14 0.4900 0.4950 0.4922

C.4. Network 4

j Π100
ι (vj) Π1000

ι (vj) Π10000
ι (vj)

1† 0.0000 0.0000 0.0000
2 0.2600 0.3400 0.3321
3 0.4500 0.4000 0.4408
4 0.4400 0.4440 0.4424
5 0.4800 0.4240 0.4407
6 0.4900 0.4380 0.4460
7 0.3200 0.3490 0.3350
8 0.3800 0.3400 0.3455
9 0.4500 0.4320 0.4423
10 0.4200 0.4250 0.4394
11† 0.0000 0.0000 0.0000
12 0.4200 0.4390 0.4416
13 0.4700 0.4240 0.4493
14 0.3200 0.3390 0.3371
15 0.4500 0.4280 0.4450
16 0.4900 0.4360 0.4473
17 0.3800 0.3160 0.3301
18 0.2700 0.3240 0.3362
19 0.5000 0.4300 0.4494
20 0.4300 0.4420 0.4484
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C.5. Network 5

j Π100
ι (vj) Π1000

ι (vj) Π10000
ι (vj)

1† 0.0000 0.0000 0.0000
2 0.3700 0.3370 0.3467
3 0.5000 0.4670 0.4983
4 0.5700 0.5610 0.5938
5 0.7100 0.6560 0.6805
6 0.3700 0.3320 0.3422
7 0.4400 0.3700 0.3828
8 0.4700 0.3990 0.4487
9 0.5300 0.4650 0.5078
10 0.6000 0.5530 0.5973
11 0.5100 0.5050 0.4902
12 0.5200 0.4480 0.4468
13 0.4800 0.4310 0.4448
14 0.5000 0.4170 0.4523
15† 0.5100 0.4620 0.5039
16 0.6800 0.5910 0.5756
17 0.5600 0.5040 0.5005
18 0.5000 0.4520 0.4510
19 0.3800 0.3590 0.3966
20 0.3700 0.3300 0.3556
21 0.7900 0.6900 0.6724
22 0.6600 0.5910 0.5832
23 0.6200 0.4820 0.4992
24 0.4000 0.3430 0.3565
25 0.0000 0.0000 0.0000
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C.6. Network 6

j Π100
ι (vj) Π1000

ι (vj) Π10000
ι (vj)

1† 0.0000 0.0000 0.0000
2 0.4800 0.4520 0.4328
3 0.3800 0.4210 0.4275
4 0.5100 0.5430 0.5328
5 0.6200 0.6610 0.6453
6 0.6400 0.6850 0.6687
7 0.7200 0.7840 0.7698
8 0.7300 0.7820 0.7790
9 0.8000 0.8480 0.8518
10 0.7600 0.8550 0.8538
11 0.8800 0.9000 0.9020
12 0.8500 0.9050 0.9059
13 0.9200 0.9250 0.9373
14 0.9100 0.9320 0.9359
15 0.9400 0.9550 0.9569
16 0.9600 0.9500 0.9575
17 0.9600 0.9660 0.9667
18 0.9600 0.9690 0.9675
19 0.9900 0.9760 0.9720
20 0.9800 0.9780 0.9725
21 0.9900 0.9730 0.9726
22 0.9800 0.9820 0.9716
23 0.9700 0.9660 0.9689
24 0.9700 0.9720 0.9680
25 0.9500 0.9540 0.9569
26 0.9400 0.9540 0.9580
27 0.9300 0.9370 0.9364
28 0.9000 0.9380 0.9372
29 0.9000 0.9080 0.9026
30 0.8800 0.9160 0.9035
31 0.8300 0.8690 0.8538
32 0.8300 0.8670 0.8510
33 0.7700 0.7880 0.7799
34 0.7900 0.7790 0.7758
35 0.7100 0.6630 0.6733
36 0.6700 0.6320 0.6481
37 0.5100 0.5130 0.5304
38 0.4000 0.4190 0.4281
39 0.4800 0.4190 0.4299
40† 0.0000 0.0000 0.0000
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C.7. Bursa Network

j Π100
ι (vj) Π1000

ι (vj) Π10000
ι (vj)

1† 0.0000 0.0000 0.0000
2 0.0200 0.0200 0.0250
3 0.0000 0.0140 0.0114
4 0.0000 0.0060 0.0037
5 0.0200 0.0080 0.0033
6 0.0100 0.0060 0.0044
7† 0.0000 0.0000 0.0000
8 0.0000 0.0000 0.0000
9 0.0000 0.0040 0.0038
10 0.0100 0.0320 0.0266
11 0.2100 0.1490 0.1439
12 0.0000 0.0000 0.0000
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C.8. Hanoi Network

j Π100
ι (vj) Π1000

ι (vj) Π10000
ι (vj)

1† 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000
4 0.0700 0.1090 0.1026
5 0.1500 0.2160 0.2147
6 0.2600 0.3460 0.3403
7 0.3400 0.4690 0.4586
8 0.4300 0.5460 0.5399
9 0.5200 0.5950 0.5848
10 0.5800 0.5970 0.5949
11 0.7300 0.6880 0.7011
12 0.8300 0.7600 0.7766
13 0.8900 0.8280 0.8317
14 0.6400 0.5830 0.5619
15 0.5400 0.5300 0.4906
16 0.4100 0.4050 0.3826
17 0.2800 0.3150 0.3109
18 0.2200 0.2090 0.2099
19 0.1600 0.1060 0.1084
20 0.0600 0.0550 0.0598
21 0.0600 0.0610 0.0729
22† 0.0000 0.0000 0.0000
23 0.2400 0.2310 0.2467
24 0.3600 0.3360 0.3452
25 0.3300 0.3770 0.3823
26 0.4500 0.4430 0.4322
27 0.4600 0.4510 0.4384
28 0.3600 0.3870 0.3756
29 0.4600 0.4500 0.4475
30 0.4900 0.4430 0.4503
31 0.3300 0.3770 0.3823
32 0.3300 0.3770 0.3823
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C.9. Kobe Network

j Π100
ι (vj) Π1000

ι (vj) Π10000
ι (vj)

1† 0.0000 0.0000 0.0000
2 0.2300 0.2890 0.2552
3 0.2200 0.1600 0.1688
4 0.1100 0.0440 0.0418
5 0.1700 0.1460 0.1533
6† 0.0000 0.0000 0.0000
7 0.1700 0.1480 0.1490
8 0.1800 0.1640 0.1653
9 0.1200 0.1330 0.1400
10 0.0700 0.0440 0.0509
11 0.0600 0.0260 0.0268
12 0.0600 0.0270 0.0288
13 0.1100 0.0250 0.0338
14 0.0000 0.0000 0.0000
15 0.0000 0.0000 0.0000

68



Acknowledgements

For the people I love

69



References

[1] R. Angel, W. Caulde, R. Noonan, and A. Whinston. Computer-assisted
school bus scheduling. Management Science Vol. 18 No. 6, pages 279–288,
1972.

[2] T. Avila, A. Corberan, I. Plana, and J. Sanchis. A new branch-and-cut al-
gorithm for the generalized directed rural postman problem. Transportation
Science Vol. 50 No. 2, pages 750–761, 2016.

[3] L. Bodin and S. Kursh. A computer-assisted system for the routing and
scheduling of street sweepers. Operations Research Vol. 26 No. 4, pages
528–537, 1978.

[4] J. Braca, J. Bramel, B. Posner, and D. Simchi-Levi. A computerized ap-
proach to the new york city school bus routing project. Columbia University
Working Paper, 1993.

[5] R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers Vol. 35 No. 8, pages 677–691, 1986.

[6] P. Cerny, T. Henzinger, L. Kovacs, A. Radhakrishna, and J. Zwirchmayr.
Segment abstraction for worst-case execution time analysis. Proceedings of
Programming Languages and Systems: The 24th European Symposium of
Programming, pages 105–131, 2015.

[7] S. Chaterjee, V. Ramana, G. Vishwakarma, and A. Verma. An improved
algorithm for k-terminal probabilistic network reliability analysis. Journal
of Reliability and Statistical Studies Vol. 10 Iss. 1, pages 15–26, 2017.

70



[8] N. Christofides, V. Campos, A. Corberan, and E. Mota. An algorithm
for the rural postman problem. Imperial College London Technical Report
IC.OR.81.5, 1981.

[9] A. Corberan and G. Laporte. Arc Routing: Problems, Methods, and Appli-
cations. Society for Industrial and Applied Mathematics, 2015.

[10] A. Corberan and J. Sanchis. A polyhedral approach for the rural postman
problem. European Journal of Operations Research Vol. 79 Iss. 1, pages
95–114, 1994.

[11] P. Fernandez de Cordoba, L. Garcia-Raffi, and J. Sanchis. A heuristic algo-
rithm based on monte carlo methods for the rural postman problem. Com-
puters and Operations Research Vol. 25 Iss. 12, pages 1097–1106, 1998.

[12] J. Desrosiers, J. Ferland, J. Rousseau, G. Lapalme, and L. Chapleau.
TRANSCOL: A multi-period school bus routing and scheduling system.
Studies in the Management Sciences Vol. 22, pages 47–71, 1986.

[13] M. Drexl. On the generalized directed rural postman problem. Journal of
the Operations Research Society Vol. 65 No. 8, pages 1143–1154, 2014.

[14] J. Edmonds and E. Johnson. Matching, euler tours, and the chinese postman.
Mathematical Programming Vol. 5 No. 1, pages 88–124, 1973.

[15] H. Eiselt, M. Gendreau, and G. Laporte. Arc routing problems, part ii: The
rural postman problem. Operations Research Vol. 43 No. 3, pages 399–414,
1995.

[16] W. Ellens and R. Kooij. Graph measures and network robustness. arXiv
e-print 1311.5064, 2013.

[17] E. Fernandez, O. Meza, R. Garfinkel, and M. Ortega. On the undirected rural
postman problem: Tight bounds based on a new formulation. Operations
Research Vol. 51 No. 2, pages 281–291, 2003.

[18] G. Frederickson, M. Hecht, and C. Kim. Approximation algorithms for some
routing problems. SIAM Journal on Computing Vol. 7 No. 2, pages 178–193,
1978.

71



[19] M. Garey and D. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[20] G. Ghiani and G. Laporte. Arc Routing: Problems, Methods, and Applica-
tions, chapter The Undirected Rural Postman Problem, pages 85–99. Society
for Industrial and Applied Mathematics, 2015.

[21] E. Haslam and J. Wright. Applications of routing technologies to rural snow
and ice control. Transportation Research Record No. 1304, pages 202–211,
1991.

[22] A. Hertz. Graph Theory, Combinatorics, and Algorithms, chapter Recent
Trends in Arc Routing, pages 215–236. Springer, 2006.

[23] A. Hertz, G. Laporte, and P. Hugo. Improvement procedures for the undi-
rected rural postman problem. INFORMS Journal on Computing Vol. 11
No. 1, pages 53–62, 1999.

[24] T. Inoue, K. Takano, T. Watanabe, J. Kawahara, R. Yoshinaka, A. Kishi-
moto, K. Tsuda, S. Minato, and Y. Hayashi. Distribution loss minimization
with guaranteed error bound. IEEE Transactions on Smart Grid Vol. 5 No.
1, pages 102–111, 2014.

[25] H. Iwashita and S. Minato. Efficient top-down ZDD construction techniques
using recursive specifications. Hokkaido University Division of Computer
Science TCS Technical Report TCS-TR-A-13-69, 2013.

[26] H. Iwashita, Y. Nakazawa, J. Kawahara, T. Uno, and S. Minato. ZDD-based
computation of the number of paths in a graph. Hokkaido University Division
of Computer Science TCS Technical Report TCS-TR-A-12-60, 2012.

[27] M. Javanbarg, J. Kiyono, and M. Ghazizadeh. Reliability analysis of lifeline
networks using binary decision diagram. In Proceedings of the 4th Interna-
tional Conference on Modern Research in Civil Engineering, and Architec-
tural and Urban Development, 2016.

[28] M. Javanbarg, C. Scawthorn, J. Kiyono, and Y. Ono. Reliability analysis of
infrastructure and lifeline networks using obdd. In Safety, Reliability, and

72



Risk of Structures, Infrastructures, and Engineering Systems: Proceedings of
the 10th International Conference on Structural Safety and Reliability, pages
3463–3470, 2010.

[29] M. Javanbarg and S. Takada. Redundancy model for water supply systems
under earthquake environments. Proceedings of the 5th International Con-
ference on Seismology and Earthquake Engineering, page 16094, 2007.

[30] J. Kawahara, T. Inoue, H. Iwashita, and S. Minato. Frontier-based search
for enumerating all constrained subgraphs with compressed representation.
IEICE Transactions on Fundamentals of Electronics, Communications, and
Computer Sciences Vol. E100-A No. 9, pages 1773–1784, 2017.

[31] D. Knuth. The Art of Computer Programming Vol. 4 Fasc. 1. Addison-
Wesley, 2009.

[32] J. Lenstra and A. Rinnooy Kan. On general routing problems. Networks
Vol. 6 No. 3, pages 273–280, 1976.

[33] S. Minato. Zero-suppressed BDDs for set manipulation in combinatorial
problems. Proceedings of the 30th International Design Automation Confer-
ence, pages 272–277, 1993.

[34] S. Minato. Zero-suppressed BDDs and their applications. International
Journal on Software Tools for Technology Transfer Vol. 3 No. 2, pages 156–
170, 2001.

[35] R. Miyashiro, T. Kasai, and T. Matsui. Strictly solving the longest one-
way ticket problem. Proceedings of the 2000 Fall National Conference of the
Operations Research Society of Japan, pages 24–25, 2000.

[36] B. Mojar. The laplacian spectrum of graphs. Graph Theory, Combinatorics,
and Applications: Proceedings of the 6th Quadrennial International Confer-
ence on the Theory and Applications of Graphs Vol. 2, pages 871–898, 1991.

[37] M. Moreira and J. Ferreira. A genetic algorithm for the undirected rural
postman problem. 2010.

73



[38] D. Morrison, E. Sewell, and S. Jacobson. Solving the pricing problem in a
branch-and-price algorithm for graph coloring using zero-suppressed binary
decision diagrams. INFORMS Journal on Computing Vol. 28 No. 1, pages
67–82, 2016.

[39] C. Orloff. A fundamental problem in vehicle routing. Networks Vol. 4 Iss.
1, pages 35–64, 1974.

[40] H. Perez-Roses. Sixty years of network reliability. Mathematics in Computer
Science Vol. 12, pages 275–293, 2018.

[41] A. Selcuk and M. Yucemen. Reliability of lifeline networks with multiple
sources under seismic hazard. Natural Hazards Vol. 21, pages 1–18, 2000.

[42] F. Sikora. The shortest way to visit all metro lines in a city. arXiv Electronic
Preprint arXiv:1709.05948, 2018.

[43] A. Takizawa, Y. Miyata, and N. Katoh. Enumeration of floor plans based
on a zero-suppressed binary decision diagram. International Journal of Ar-
chitectural Computing Iss. 1 Vol. 13, pages 25–44, 2015.

[44] A. Takizawa, Y. Takechi, A. Ohta, N. Katoh, T. Inoue, T. Horiyama,
J. Kawahara, and S. Minato. Enumeration of region partitioning for evacu-
ation planning based on ZDD. Proceedings of the 11th International Sympo-
sium on Operations Research and Its Applications in Engineering, Technol-
ogy, and Management, pages 1–8, 2013.

[45] R. Tan, J. Kawahara, A. Garciano, and I. Sin. A zero-suppressed binary
decision diagram approach for constrained path enumeration. Lecture Notes
in Engineering and Computer Science: Proceedings of the World Congress
on Engineering 2019, pages 132–136, 2019.

[46] T. Toda, T. Saitoh, H. Iwashita, J. Kawahara, and S. Minato. ZDDs and
enumeration problems: State-of-the-art techniques and programming tool.
Computer Software Vol. 34 No. 3, pages 97–120, 2017.

74



[47] A. Vasan and S. Simonovic. Optimization of water distribution network
design using differential evolution. Journal of Water Resources Planning
and Management Vol. 136 Iss. 2, pages 279–287, 2010.

[48] F. Yeh and S. Kuo. Obdd-based network reliability calculation. Electronics
Letters Vol. 33 No. 9, pages 759–760, 1997.

[49] R. Yoshinaka, J. Kawahara, S. Denzumi, H. Arimura, and S. Minato. Coun-
terexamples to the long-standing conjecture on the complexity of BDD bi-
nary operations. Information Processing Letters Vol. 112 No. 16, pages
636–640, 2012.

75



Publication List

Journal Articles
[1] Renzo Roel P. Tan, Jun Kawahara, Kazushi Ikeda, Agnes Garciano, and Kyle
Stephen S. See. Concerning a Decision-Diagram-Based Solution to the Gen-
eralized Directed Rural Postman Problem. International Journal of Computer
Science 47 (2). 2020.

[2] Renzo Roel P. Tan, Kyle Stephen S. See, Jun Kawahara, Kazushi Ikeda,
Richard M. de Jesus, Lessandro Estelito O. Garciano, and Agnes Garciano. The
Relative Isolation Probability of a Vertex in a Multiple-Source Edge-Weighted
Graph. Engineering Letters. Submitted (May 2021).

[3] Aldrich Ellis C. Asuncion, Renzo Roel P. Tan, Christian Paul O. Chan Shio,
and Kazushi Ikeda. Recursive Linear Bounds for the Vertex Chromatic Number
of the Pancake Graph. International Journal of Applied Mathematics. Submitted
(July 2021).

Other Papers
[4] Renzo Roel P. Tan, Kazushi Ikeda, and Len Patrick Dominic M. Garces.
On eigenvalue bounds for the finite-state birth-death process intensity matrix.
Journal of Physics: Conference Series 1593. 2020.

[5] Renzo Roel P. Tan, Kazushi Ikeda, and John Paul C. Vergara. Hindsight-
Combined and Hindsight-Prioritized Experience Replay. In Lecture Notes in
Computer Science: Neural Information Processing. Springer Nature. 2020.

[6] Renzo Roel P. Tan, Florian Sikora, Kazushi Ikeda, and Kyle Stephen S. See.
Arc Routing Based on the Zero-Suppressed Binary Decision Diagram. In Trans-
actions on Engineering Technologies. Springer Nature. 2021.

76


	List of Figures
	1 Introduction
	1.1 Background
	1.2 Purpose
	1.3 Overview

	2 Some Preliminaries
	2.1 Zero-Suppressed Binary Decision Diagram
	2.2 Frontier-Based Search

	3 Literature Review
	3.1 Solving Combinatorial Problems

	4 Enumeration Perspectives in Arc Routing
	4.1 Generalized Directed Rural Postman Problem
	4.2 Undirected Rural Postman Problem

	5 Contemporary Measures for Network Resilience
	5.1 Probability of Relative Isolation
	5.2 Monte Carlo Preliminary Processing
	5.3 Decision Diagram Computation Proper
	5.4 Results on Varying Graphs

	6 Conclusion
	Appendices
	A Codes
	A.1 Line Constraint
	A.2 Extracting the Minimum
	A.3 Extracting the Maximum

	B Lines
	B.1 Hong Kong Metro
	B.2 Osaka Metro
	B.3 Taipei Metro

	C Probabilities
	C.1 Network 1
	C.2 Network 2
	C.3 Network 3
	C.4 Network 4
	C.5 Network 5
	C.6 Network 6
	C.7 Bursa Network
	C.8 Hanoi Network
	C.9 Kobe Network

	References
	Publication List

