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Towards Low-Cost and High-Reproducible

MEG Current Source Reconstruction using

Meta-Analysis fMRI Data∗

Keita Suzuki

Abstract

Magnetoencephalography (MEG) offers a unique way to noninvasively inves-

tigate millisecond-order cortical activities by mapping sensor signals (magnetic

fields outside the head) to cortical current sources using current source recon-

struction methods. Current source reconstruction is defined as an ill-posed in-

verse problem, since the number of sensors is less than the number of current

sources. One powerful approach to solving this problem is to use functional MRI

(fMRI) data as a spatial constraint, although it boosts the cost of measurement

and the burden on subjects. Here, we show how to use the meta-analysis fMRI

data in two different ways instead of the individually recorded fMRI data. In the

first approach, single meta-analysis fMRI data was imported as prior informa-

tion of the hierarchical Bayesian estimation to mitigate the differences between

the meta-analysis and individual data. In the second approach, a combination

of multiple meta-analysis fMRI data was automatically selected based on MEG

data and used as prior information of currents. Using simulations, we found

the performances of both approaches were better than conventional methods.

Notably, the first approach showed better performance than the estimation us-

ing low-quality individual fMRI data. By applying experimental data of a face

recognition task, we qualitatively confirmed that group analysis results using the

first approach showed a tendency similar to the results using the individual fMRI

∗Doctoral Dissertation, Graduate School of Information Science, Nara Institute of Science

and Technology, June 18, 2021.
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data. Using the second approach, in addition to reconstructing a plausible cur-

rent map, it also estimated related terms derived from meta-analysis data. Our

results indicate that the use of meta-analysis fMRI data improves current source

reconstruction without additional measurement costs and leads to reproducible

results because of omitting the contaminated prior information.

Keywords:

magnetoencephalography, inverse problem, source reconstruction, meta-analysis,

hierarchical Bayesian
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fMRIのメタ分析結果を利用した低コストかつ高い再現
性を持つMEG電流源推定問題に関する研究∗

鈴木 啓大

内容梗概

脳磁図 (MEG)は非侵襲性，ミリ秒オーダーの時間分解能，そして比較的高い
空間分解能を同時に達成できる唯一の方法である．ここで，MEGの計測データ
は頭外部のセンサーによって計測されるため，空間分解能の高さは電流源の推定
手法に依存する．観測センサ数よりも推定電流源数が多いことから，この推定は
劣決定逆問題として定義される．この問題を解くための手法の一つとして，機能
的MRI(fMRI)計測により得られる高い空間分解能を持つデータを電流源推定の
空間制約として使用することが提案されている．しかしながら，MEG計測に加
えて fMRI計測も要するため，そのコストと被験者への負担は大きく増加する．
したがって，我々は計測によって得られる fMRIデータの代わりに，多くの研究
結果から得られるメタ分析結果を空間制約として使用することを提案する．ここ
で，メタ分析結果の組み込み方には二通りの方法を用意した．一つ目のアプロー
チは，階層変分ベイズ推定の枠組みにメタ分析結果を組み込む方法である．階層
変分ベイズ推定の効果により，メタ分析結果と個人のデータとの不一致が緩和さ
れることが期待される．二つ目のアプローチは，複数のメタ分析結果の組み合わ
せを観測データから自動的に決定し，これを制約情報として組み込む方法である．
シミュレーション実験の結果により，両アプローチは一般的に用いられている電
流源推定手法よりも良い推定解が得られることが確認できた．特に，階層変分ベ
イズ推定を用いた枠組みでは，低いクオリティの fMRIデータを使用する場合よ
りもかえって推定が向上することが確認できた．さらに，実データを用いた検証
では，実際の fMRIデータを制約条件として推定する場合と非常に類似した結果
が得られた．我々の結果は，メタ分析結果を用いることにより電流源推定を低コ

∗奈良先端科学技術大学院大学 先端科学技術研究科 博士論文, 2021年 6月 18日.
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ストかつ，場合によっては実際の fMRIデータを使用するよりも高い再現性を持っ
て行うことができることを示唆している．

キーワード

脳磁図, 逆問題, 電流源推定, メタ分析, 階層ベイズ
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1. Introduction

Non-invasive neuroimaging measurements can record human brain activities while

avoiding the risks of brain surgery. It is a tremendous feature in revealing our

brain functions (Baillet, 2017) and also the treatment of brain dysfunctions caused

by diseases such as autism (Kikuchi et al., 2016), schizophrenia (Rojas, 2019),

epilepsy (Stefan and Trinka, 2017), and so on (Uhlhaas et al., 2017). Today,

major neuroimaging modalities are broadly divided into two types: those that

measure hemodynamic response and electromagnetic signals.

The modalities that measure hemodynamic response include functional mag-

netic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS).

In particular for fMRI, due to its high spatial resolution and the established way

of reporting based on the standard brain (MNI-ICBM152), a massive amount of

research is reported, and consequently, meta-analysis studies are popular (Laird

et al., 2011; Smith et al., 2009; Dockès et al., 2020; Yarkoni et al., 2011). How-

ever, the temporal resolution of fMRI is fundamentally limited because of the

slow hemodynamic response to neural activities.

On the other hand, magnetoencephalography (MEG) and electroencephalo-

gram (EEG) detect fluctuations of magnetic/electric fields caused by synchronized

activities of cortical pyramidal neurons. Therefore, these modalities record neu-

ral activity induced signals directly with millisecond-order temporal resolution

(M. hamalainen, Hari, Ilmoniemi, Knuutila, and Lounasmaa, 1993). Here, the

process of measuring current sources using sensors is formulated as the forward

problem. Conversely, we can discuss the measured activity on a cortex by map-

ping signals from sensors to sources; known as the inverse problem or current

source reconstruction (Baillet, Mosher, and Leahy, 2001; Gross et al., 2013).

Therefore, by solving the inverse problem of MEG/EEG, we can obtain neu-

rophysiological data with not only high temporal but also adequate spatial res-

olution. Furthermore, fMRI and its meta-analysis data can be combined in the

inverse problem solution to enhance the spatial resolution.

In this article, we focused on MEG rather than EEG because of its higher

spatial accuracy. However, we note that our proposals and discussions are also

applicable to EEG.
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1.1 Forward problem

The purpose of the forward model is to formulate the relationships between the

activities of current sources and sensor signals. It consists of three subcompo-

nents: the source model, the head model, and the measurement model.

For the first, what the source model describes is the electrophysiology of neu-

rons and the assumption on currents. When excitatory postsynaptic potentials

(EPSPs) are generated at apical dendrites, intracellular currents flow from apical

dendrites to the soma of a pyramidal cell. This currents flow is known as primary

currents. MEG mainly records the primary currents while the primary currents

also generated extracellular currents called secondary currents. Although the

primary currents of a single neuron are too small to generate observable signals,

dendrites of cortical pyramidal cells are arranged perpendicularly to the cortical

surface. Consequently, synchronously fluctuating dendric currents enable to ob-

serve electromagnetic signals, and synchronized activity of tens of thousands of

neurons is regarded as a current dipole. The dipole fitting model is one of the

source models and it assumes that only a few numbers of dipoles are activated si-

multaneously. A key problem with this model is that the number of sources must

be decided a priori and the result approximates currents as few dipoles even if it

is distributed. On the other hand, distributed source models assume that each

vertex of the head model has a dipole and model the distribution of them. Our

study model the sources as a distributed source model.

The shape of the subject’s head is modeled as a 3D polygonal model. In gen-

eral, current sources are assumed on vertices of the cortex piece of the polygon.

The simplest one is a spherical model specified by the origin of the sphere and

its radius. However, it does not consider the shapes of the cortex. Therefore,

structural information derived from MRI data is used to construct a realistic

model. Then, the number of vertices controls the difficulty of the inverse prob-

lem in a trade-off between the ill-posedness and the structural constraint. The

more vertices induce not only better structural constraint but also worse ill-posed

condition. Although it depends on the purpose of the study, thousands of current

sources are commonly assumed (Henson et al., 2009).

The measurement model reflects the type, positions, and orientations of the

MEG sensors. The type of MEG sensors is categorized as magnetometer or

2



gradiometer. The magnetometer uses a coil and detects magnetic fields, including

many signals outside the head. The gradiometer uses two coils in the opposite

direction and detects differential signals of them. Hence, magnetic fields far from

coils cancel each other, and only magnetic fields generated close to the coils

are detected by the gradiometer. Most MEG sensors are equipped with both

magnetometer and gradiometer. Their sensor information is incorporated in the

volume conductor model.

Given the source model, the head model, and the sensor model, the volume

conductor model formulates the equations that describe the relationships be-

tween the current sources and the sensors by solving Maxwell’s equations under
quasi-static conditions. They are numerically calculated using boundary-element

methods or finite-element methods. Consequently, the forward model is sum-

marized into a matrix called the lead field describing the relationships between

sources and sensors as linear equations. When discussing the inverse problem, we

regard a lead field matrix is known.

1.2 Inverse problem

The current source reconstruction methods using the distributed source model

rely on solutions of the inverse problem, which is an ill-posed problem requiring

constraints in addition to data, since the number of observed signals is only a

few hundred, whereas the number of considered current sources is in the thou-

sands. This problem is similarly defined for electroencephalogram (EEG), which

observes changes in the electric field caused by neural activity. Many studies

have proposed various types of additional constraints and ways to incorporate

them in the mathematical model. The most straightforward but powerful one

is minimum norm estimation (MNE) (Hämäläinen et al., 1993; Hämäläinen and

Ilmoniemi, 1994; Wang et al., 1992). The MNE solution is obtained by minimiz-

ing a cost function consisting of a data-fitting error and the L2 norm of currents.

Moreover, a number of extensions of MNE have been proposed: incorporating

a Laplacian filter resulting in a spatial smoothness solution (LORETA and its

family; Pascual-Marqui et al., 1994, Pascual-Marqui, 2007, 2002), weighting the

lead field matrix to consider depth structure (wMNE; Lin et al., 2006), consid-

ering data-adaptive prior distribution on each source to obtain a spatially sparse

3



solution (Champagne; Cai et al., 2021; Owen et al., 2012; Wipf et al., 2010),

and in the data-adaptive scheme, composing a current covariance matrix as a lin-

ear combination of candidate components (multiple sparse priors; Friston et al.,

2008). For more details and recent reviews of MEG/EEG source reconstruction,

refer to the article or book (He et al., 2018; Sekihara and Nagarajan, 2015).

On the other hand, when the functional constraint is considered, fMRI data

are ideal due to the characteristics of high spatial resolution. Dynamic statistical

parametric mapping (dSPM; Dale et al., 2000) uses an fMRI statistical map as a

hard constraint of the source current variance by assuming that the prior current

variances are fixed according to the fMRI statistical map. The hierarchical vari-

ational Bayesian (hVB) estimation approach (Sato et al., 2004) similarly uses an

fMRI statistical map but incorporates it as a soft constraint of current variance by

assuming that the prior current variances are random variables with probabilistic

distributions having parameters according to the fMRI statistical map (i.e., they

incorporate the fMRI map into the hierarchical prior of the current variance).

Therefore, even if the intrinsic difference in the measurement principles of fMRI

and MEG causes a discrepancy between the spatial patterns of the fMRI activa-

tion map and the source current map (Kaneoke, 2006), the hVB approach is able

to resolve such discrepancies.

Although the fMRI prior information leads to significant improvement in

terms of spatial accuracy, there are practical problems. First, it requires ad-

ditional cost to measure the fMRI data. It increases not only the measurement

cost but also the burden on the subject. This burden also causes a decrease

in measurement quality and leads to a second issue. It is also inapplicable to

a published MEG dataset without fMRI records. Furthermore, when targeting

modalities with lower measurement costs, such as an EEG or an optically pumped

magnetometer (OPM) (Boto et al., 2018), the measurement cost of fMRI will be-

come relatively more serious. As a second problem, the reliability of individual-

level statistical maps is not always sufficient, especially for cognitive or emotional

tasks that induce smaller signal changes compared with visual and motor tasks

(Elliott et al., 2020). The quality of fMRI data is strongly influenced by the

subject’s condition and noise caused by a system and physiology (Geissler et al.,

2007; Welvaert and Rosseel, 2013).
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Figure 1.1. Illustration of the forward and inverse problem. The forward problem

is modeling the lead field matrix G. It is calculated using the sensor positions,

types, and a head model. Under the modeled G, the observation process of

magnetic fields’ time series B (M sensors by T time points) are expressed by

the multiplication of G and currents’ time series J (N sources by T time points)

with adding measurement noise ε. On the other hand, the goal of the inverse

problem is summarized in deriving the inverse filter L. Then, the currents’ time

series are reconstructed by the multiplication of L and B. Note that J and B

are visualized as a topography here using a head model and sensor positions,

although actual data are time series signals.

1.2.1 Our contribution

In this study, to solve the issues mentioned above, we propose two different ap-

proaches using meta-analysis fMRI data as a prior information instead of an in-

dividual prior. The meta-analysis fMRI data form a statistical map synthesized
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from thousands of published fMRI studies. We used the meta-analysis results

available from the Neurosynth open-source project (Yarkoni et al., 2011).

A key idea of the first approach is that we took single meta-analysis data as

the hierarchical prior distribution of the current variance in hVB estimation (Sato

et al., 2004) rather than the prior current variance as in the dSPM approach, since

the former provides an adaptive way to incorporate fMRI information based on

MEG measurements. The feasibility of meta-analysis fMRI data as prior infor-

mation was assessed by comparing the results of source reconstruction with those

estimated using an individual fMRI prior. The results were quantitatively and

qualitatively evaluated using simulated and experimental data, respectively. For

the simulation, we conducted multi-modal data generation. Both fMRI and MEG

data were generated based on the same ground truth to mimic a situation in which

these are obtained from an individual. In order to bring the statistical properties

of simulated data closer to those of real data, this simulation adopted real data

to the extent possible. Using simulated data, we studied the effectiveness of a

meta-analysis fMRI prior compared with a contaminated individual fMRI prior.

We also investigated the appropriate range of an important hyper-parameter we

call prior weight. Using experimental data, we conducted group analysis using

the meta-analysis fMRI prior. Furthermore, we verified whether it is possible to

select optimal meta-analysis fMRI prior based on a statistical criterion for both

simulated and experimental data.

As mentioned in the discussion chapter, the selection of the meta-analysis

data is one of the most critical points for the first approach. Moreover, the re-

sults of meta-analysis data selection suggest the possibility of the combined meta-

analysis data as prior information. Therefore, we propose another approach that

uses meta-analysis data as prior information but the selection of them is auto-

matically determined using observation data. For this approach, named relevant

spatial prior (RSP) estimation, we conducted evaluations using another simula-

tion setting and the same experimental data.

1.3 Dissertation outline

The outline of this dissertation is illustrated in Fig. 1.2. The main topic is our

two approaches for the current source reconstruction, hVB and RSP. After the

6



Introduction chapter, we mathematically described the inverse problem in Math-

ematical formulation of the source reconstruction chapter. Here, we tried to ex-

plain both approaches in the general framework. Next, we introduced Materials

and Methods common to both approaches. After that, the thesis is branched into

two flows. Both flows include details of simulated and experimental data and

the results of the analysis. Finally, flows are merged into the Discussion chapter.

Supplemental information is summarized into several appendix chapters.

Figure 1.2. Outline of the dissertation.
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2. Mathematical formulation of the source re-

construction

In this chapter, we formulate the inverse problem of source reconstruction as

mathematical expressions. In particular, we introduce that the problem is gener-

ally explained as the differences of the prior of the current covariance in Bayesian

perspective. Here we show the notations for convenience.

Table 2.1. List of mathematical notations

Symbol Definition

1 Vector consists of ones.

I Identity matrix.

P (x) Probability distribution of random variable x.

P (x|y) Conditional probability distribution of x given y.

N (x|µ, σ2) Univariate Gaussian distribution over x with mean µ

and variance σ2.

N (x|µ,Σ) Multivariate Gaussian distribution over x with mean

vector µ and covariance matrix Σ.

Γ(γ) Gamma function defined as
∫∞
0

tγ−1e−tdt.

Γ(α|α0, γ0) Gamma distribution over α with mean α0 and degree of

freedom γ0. Defined as 1
αΓ(γ0)

(αγ0/α0)
γ0e−αγ0/α0 .

2.1 Bayesian formulation of current source reconstruction

From the Bayesian perspective, the inverse problem is commonly formulated as

P (j|b) = P (b|j)P0(j)

P (b)
, (2.1)

where j = {jn|n = 1 : N} is neural activities on N dipoles, and b = {bm|m =

1 : M} is observed MEG recordings by M sensors. Since the purpose of current

source reconstruction is to estimate current source j from the observed magnetic
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field data b, a posterior distribution P (j|b) is what we want. The right-hand

side is composed of a likelihood P (b|j), a prior of currents P0(j), and a marginal

likelihood P (b). As mentioned in the section 1.1, we assume that the currents

j and MEG recordings b are linearly related through the lead field matrix G =

{Gmn|m = 1 : M,n = 1 : N} (Hämäläinen et al., 1993) as

b = Gj + ε, (2.2)

where ε is the observation noise. When we assume the observation noise to be

white noise, ε follows a Gaussian distribution with the diagonal covariance σ2I.

Then, the likelihood function is written as

P (b|j) = N (b|Gj, σ2I). (2.3)

The above likelihood is commonly assumed for most source reconstruction meth-

ods. Hence, the differences in methods are mainly explained as the differences in

the assumptions on the prior distribution P0(j). When we assume that the prior

distribution is Gaussian with mean 0 and some covariance matrix A−1, then

P0(j) = N (j|0,A−1). (2.4)

Under this prior distribution, the right-hand side of Eq.(2.1) follows a Gaussian.

Therefore, the left-hand side of Eq.(2.1) is a Gaussian distribution as well. Here

we express the posterior distribution using mean j̄ and covariance Λ−1 as

P (j|b) = N (j|j̄,Λ−1). (2.5)

To calculate j̄ and Λ−1, we simplify the exponential part of Eq.(2.5) as

−1

2
(j − j̄)⊤Λ(j − j̄) = −1

2
j⊤Λj + j⊤Λj̄ + C. (2.6)

C denotes terms unrelated to j. Next, when we focus on j, denominator of

the right-hand side of Eq.(2.1) is ignored. Hence, the exponential part of the

right-hand side of Eq.(2.1) is reformulated as a quadratic expression for j using

Eq.(2.3) and (2.4) as

−1

2
{σ−2(b−Gj)⊤(b−Gj)+j⊤Aj} = −1

2
jT (A+σ−2G⊤G)j+σ−2j⊤G⊤b+C.

(2.7)
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By comparing Eq.(2.6) and (2.7), mean and precision (inverse of covariance) of

the posterior Eq.(2.5) are calculated as

Λ = A+
1

σ2
G⊤G, (2.8)

j̄ =
1

σ2
Λ−1G⊤b. (2.9)

j̄ is a minimum mean squared error (MMSE) estimation and also it corresponds to

a maximum a posteriori (MAP) estimation because mean and mode of a Gaussian

distribution are same. Practically, the size ofΛ−1 in Eq.(2.9) is N by N (N is thou-

sands) and this inversion is computationally heavy, therefore it is reformulated

using the matrix inversion (X−1+Y ⊤Z−1Y )−1Y ⊤Z−1 = XY ⊤(Y XY ⊤+Z)−1,

j̄ = A−1G⊤(GA−1G⊤ + σ2I)−1b

= A−1G⊤S−1b, (2.10)

while S = (GA−1G⊤ + σ2I) is called model data covariance and is a covariance

of marginal likelihood P (b).

Here, 1
σ2Λ

−1G⊤ = A−1G⊤S−1 is an inverse filter L because it maps observa-

tions b to estimated currents j̄. Furthermore, characteristics of an inverse filter

are summarized inA, the precision matrix of the prior distribution. It means that

differences in methods reflect differences in knowledge of current distribution.

2.2 Temporal expansion

In the previous section 2.1, we assumed that we have data at only a single time

point. However, data has many time points in the real situation. Therefore, we

expand the formulations to the temporal direction.

When we estimate currents of T time points J = (j1, ..., jT ) ∈ RN×T us-

ing temporally independent and identically distributed (i.i.d) observations B =

(b1, ..., bT ) ∈ RM×T , then a Bayesian theorem Eq.(2.1), a likelihood Eq.(2.3), and

a prior distribution Eq.(2.4) are rewritten as

P (J |B) =
P (B|J)P0(J)

P (B)
, (2.11)
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P (B|J) =
T∏
t=1

P (bt|jt)

=
T∏
t=1

N (bt|Gjt, σ
2I), (2.12)

P0(J) =
T∏
t=1

P0(jt)

=
T∏
t=1

N (jt|0,A−1). (2.13)

By following similar calculations in section 2.1 using above two equations, the

same inverse filter is derived. Then, estimation of T time points J̄ = (j̄1...j̄T ) ∈
RN×T is calculated as

J̄ =
1

σ2
Λ−1G⊤B (2.14)

= A−1G⊤S−1B. (2.15)

2.3 Minimum norm estimation

The minimum norm estimation (MNE) is one of the most classical and commonly

used method (Hämäläinen et al., 1993; Hämäläinen and Ilmoniemi, 1994; Wang et

al., 1992). While it is originally derived in the context of constrained optimization

problems, the solution of MNE can be characterized by the below prior

P0(j) = P (j|α)
= N (j|0, α−1I), (2.16)

where αI is a diagonal precision matrix. The MAP estimation is calculated using

Eq.(2.9) as

j̄ =
1

σ2

(
1

α
I +

1

σ2
G⊤G

)−1

G⊤b

=

(
σ2

α
I +G⊤G

)−1

G⊤b. (2.17)
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As the prior Eq.(2.16) indicated, MNE assumed that current dipoles are in-

dependent of each other and there is no knowledge on amplitudes of them.

If we have specific knowledge of each dipole, it is simply incorporated in

diagonal elements of the precision matrix of the prior distribution. Then, the

prior distribution is

P0(j) = P (j|α)

= N (j|0,A−1), (2.18)

where A = diag(α1, α2, . . . , αN) is the diagonal precision matrix of the currents

and α = (α1, α2, . . . , αN)
T is a vector of diagonal elements. Dynamic statistical

parametric mapping (dSPM; Dale et al., 2000) uses an fMRI statistical map to

determine this A. Therefore, the estimated current map of dSPM reflects the

fMRI data as a hard constraint. However, if there is a discrepancy between the

spatial patterns of the fMRI activation map and the source current map due to

the difference in the measurement principles of them (Kaneoke, 2006), the result

also reflects such errors. In section 2.4, we introduce another way to use a prior

data as a soft constraint.

2.4 Hierarchical variational Bayesian estimation

For the hierarchical variational Bayesian estimation (hVB; Sato et al., 2004),

we assume the observation noise ε follows an identically independent Gaussian

distribution N (0, (βΦ)−1), where β is a scaling parameter and Φ is a noise pre-

cision matrix scaled by β (Φ is normalized to satisfy tr(Φ) = M and is typically

determined from pre-stimulus rest period measurements),.

To incorporate spatial data as a soft constraint, the hVB model assumes the

prior distribution in a hierarchical way:

P0(J |Λ) = P0(J |A, β)

=
T∏
t=1

N (jt|0, (βA)−1), (2.19)
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P0(A) =
N∏

n=1

P0(αn)

=
N∏

n=1

Γ(αn|αn0, γ0), (2.20)

Γ(α|α0, γ0) ≡
1

αΓ(γ0)
(αγ0/α0)

γ0e−αγ0/α0 , (2.21)

P0(β) = 1/β. (2.22)

Γ(α|α0, γ0) represents a Gamma distribution with mean α0 and degree of freedom

γ0, where Γ(γ0) ≡
∫∞
0

tγ0−1e−tdt is the Gamma function. Here, αn0 is determined

based on fMRI information as α−1
n0 ∝ fMRI2n, where fMRIn is an imported sta-

tistical value of the nth dipole. Equation (2.22) is the prior distribution of the

scaling parameter β, defined as a non-informative prior distribution.

Using the likelihood function Eq. (2.12) and the prior distributions Eq. (2.19),

(2.20), (2.22), we compute the joint posterior distribution of the current J , prior

precision A, and scaling parameter β given the magnetic field B as follows:

P (J ,A, β|B) =
P (B|J , β)P0(J |A, β)P0(A)P0(β)

P (B)
. (2.23)

However, it cannot be solved analytically because the marginal likelihood P (B)

involves integration over A. Therefore, the approximated posterior distribution

is calculated using the variational Bayesian method. The resulting algorithm

consists of iterative updating of the posterior distribution Q(J , β) and Q(A)

(Appendix A).

We used the VBMEG toolbox (Takeda et al., 2019) to conduct the hVB

estimation. In the VBMEG implementation, the hyperparameter called the prior

weight controls the relative confidence between the fMRI information and the

observed MEG. The prior weight w is defined as

w =
γ0

γ0 + T/2
, (2.24)

where γ0 is the degree of freedom of the hierarchical prior distribution. The

prior weight ranges from 0 to less than 1. This confidence parameter appears in

updating the current variance α−1
n :

α−1
np = wα−1

n0 + (1− w)

⟨
β

T

T∑
t=1

j2n,t

⟩
Q(J ,β)

, (2.25)
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where <> indicates taking the expectation with respect to the posterior distribu-

tions of J and β. The left-hand side denotes the updated nth current’s variance
α−1
np . The first term of the right-hand side means fMRI information, and the

second term is current sources calculated from observed MEG data with T time

points. When we set the prior weight close to 1, the resulting prior distribution

tends to have peaks at the places where the fMRI information has a high value.

This indicates strong confidence in the fMRI information in the estimation. On

the other hand, if it is set to a small value, the result tends to emerge according

to the MEG data. To represent the strongest confidence in the fMRI information,

we set w = 0.99999999. Note that if the prior weight is 0, then we use only the

fMRI information as the initial value of α−1
np . Even if the prior information in-

cludes false positive activities, hVB estimation is able to suppress them by setting

the proper value on the prior weight (Yoshioka et al., 2008).

Our first approach incorporates a meta-analysis fMRI data instead of an indi-

vidual fMRI data using hVB estimation. The incorporated meta-analysis fMRI

data is selected by experimenter beforehand. As discussed in Discussion chapter,

it might bring a selection bias on results.

2.5 Relevant spatial prior estimation

To overcome the selection bias and express prior data as the combination of

multiple meta-analysis data, we introduce relevant spatial prior (RSP) estimation.

It is inspired by the formulation of multiple sparse priors (MSP; Friston et al.,

2008) and dependent relevance determination (DRD;Wu et al., 2019). MSP is one

of the source reconstruction methods that incorporate multiple prior information

such as a depth structure, a smoothness between dipoles, and also the minimum
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norm constraint by constructing the covariance of prior distribution as

A−1 = w1C1 + . . .+ wpCP

=
P∑

p=1

wpCp, (2.26)

wp = exp(up), (2.27)

up ∼ N (m, k−1), (2.28)

u ∼ N (m1, kI), (2.29)

where P is the total number of prior data, Cp ∈ RN×N is the pth covariance

matrix, wp is the weight of the pth covariance, and up is the log of wp. Each

covariance Cp is determined using each prior knowledge (e.g., for MNE, Cp =

α−1I) and the weighted sum of them is used as the covariance A−1. As above

indicated, each up is independently follows Gaussian with parameters m and k

and exponential of it is used as weight to restrict the weight to a positive value.

MSP estimates posterior mean of currents and weights iteratively using restricted

maximum likelihood estimation (Patterson and Thompson, 1971). As a result,

weights of non-contributed priors are automatically pruned by the effect of ARD

(Neal, 1996).

RSP estimation is an expansion of MSP. It can incorporate multiple spatial

prior data using a structure of them. We defined that the covariance of RSP as

A−1 = diag

(
P∑

p=1

wpdp

)
= diag (Dw) , (2.30)

wp = exp(up), (2.31)

u ∼ N (m1,K), (2.32)

where dp = (dp1, . . . , dpN)
T ∈ RN is a spatial data vector andD = (d1,d2, . . . ,dP ) ∈

RN×P is a whole dataset. Each data vector dp is determined using spatial data

such as fMRI data. Hence, the covariance matrix A−1 is composed of a weighted

combination of spatial prior data. Furthermore, unlike MSP, RSP can incorporate

the relevance structure between data such as similarities of spatial patterns into

15



K. Because K is a covariance matrix of the Gaussian process prior Eq.(2.32), it

can express the relationships between spatial data. Here, K is defined as

K =

 k1,1 . . . kP,P
...

. . .
...

kP,1 . . . kP,P

 , (2.33)

where

ki,j = ρexp

(
−dist(di,dj)

2l2

)
. (2.34)

ki,j includes hyper parameter ρ and l, and also dist function. ρ and l are common

to all ki,j, and control amplitude of ki,j and dist, respectively. Function dist

measures some distance between two data. It can be designed using any feature

of the data. If we designed dist function as

dist(di,dj) =

{
0 (i = j)

∞ (i ̸= j),
(2.35)

then K becomes a scalar matrix and RSP is equivalent to MSP. By designing the

dist function properly, estimated weights of similar spatial data are kept together

by the effect of DRD (Wu et al., 2019).

Our second approach incorporates a set of meta-analysis data and estimates

the weights of them using RSP.
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3. Materials and Methods

In this chapter, we introduce the key materials and methods used to implement

our approaches (hVB approach and RSP approach).

3.1 Forward modeling using VBMEG

We constructed a brain model and a lead field matrix using the MATLAB open-

source toolbox VBMEG (https://vbmeg.atr.jp). The individual brain model

is constructed based on a subject ’s T1-MRI image. First, we construct a poly-

gon model of the cortical surface using FreeSurfer (http://surfer.nmr.mgh.

harvard.edu/). From the polygon model, we select 10,004 vertices as the cur-

rent sources based on the predefined coordinate in the standard brain (MNI-

ICBM152). As a result, source locations of different subjects are aligned to those

of the standard brain while the sulcus-gyrus structure of each subject was main-

tained. This allows an easy comparison of the estimated source currents across

subjects for each source. Therefore, we can proceed to group analyses on the

source currents without any transformation. Next, we construct a 1-shell (cere-

brospinal fluid) head conductivity model. Based on the model, we make a lead

field matrix by solving the Maxwell equations with a boundary element method.

For more information on preparing the brain model and lead field matrix using

VBMEG, see Takeda et al., 2019.

3.2 Importing fMRI information

The statistical results of fMRI data were imported into a subject’s brain model

using VBMEG. Original statistical maps (t-value for individual fMRI data and

z-value for meta-analysis fMRI) are defined on voxels, and thus they were trans-

formed to the cortical surface using an inverse-distance weighted interpolation

method. Imported fMRI information were used to calculate parameters in the

probability distribution of the prior current variances as described in chapter 2.
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3.3 Meta-analysis fMRI prior

A statistical map synthesized by Neurosynth (Yarkoni et al., 2011) (https://

neurosynth.org) was imported to calculate the hierarchical prior using VBMEG.

Neurosynth infers the regions associated with a term by mining thousands of

papers and conducting a type of multilevel kernel density analysis (Wager et al.,

2009). Therefore, the term must be selected by the experimenter when obtaining

the meta-analysis results. In order to generate the effective meta-analysis data

as prior information, the term must be related to the task of a MEG experiment.

However, there are many choices in the term for a task. Therefore, for hVB

approach, we selected the term from the highest layer of the ontology of each

task domain (Thompson and Fransson, 2017). Namely, the term“ visual”was

chosen for the visual domain task and“motor”was chosen for the motor domain

task (see discussion on our choice of terms). For RSP approach, we tried to select

the related meta-analysis data from a set of data.

After generating the meta-analysis statistical maps, they were imported to

the subject ’s brain model in the same way as the individual fMRI prior. The

synthesized meta-analysis maps (Fig. 3.1) were employed as the hierarchical fMRI

prior. Note, the results of hVB approach uses meta-analysis data synthesized

using Neurosynth v0.4 and RSP approach uses Neurosynth v0.7.
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Figure 3.1. Meta-analysis priors synthesized by the terms “visual” and “motor.”

These are synthesized using Neurosynth (v0.4) and imported into VBMEG ’s
coordinate, and they are used for the prior information of current source recon-

struction. In hVB approach, the visual prior is used for the visual domain task,

and the motor prior is used for the motor domain task.

3.4 Performance evaluation of simulated data

Inspired by Owen et al. (2012), we evaluated the performance of source recon-

struction using the aggregate score of source-level spatial and temporal correla-

tions, defined as

AggregateScore =
SpatialCorrelation + TemporalCorrelation

2
. (3.1)

Since it is the average of Pearson’s correlation coefficients, it takes a value from

-1 to 1. Here, the correlation coefficient of spatial maps was calculated between

19



the simulated current map and the reconstructed one for each time point, and

they were averaged along the time axis:

SpatialCorrelation =
1

T

T∑
t

corrcoef(|jtruet |, |jrecont |), (3.2)

where T is the number of time points (250 for hVB simulations and 50 for RSP

simulations) and |jtruet | and |jrecont | are the simulated current map and the recon-

structed current map at time t, respectively.

On the other hand, to calculate temporal correlation, we matched each true

source to the reconstructed source that has maximal Pearson’s correlation within

10 mm. Here, we define that jtruen and jreconn are true (simulated) and recon-

structed current time series at source n. Since most of the true sources have no

activation, we cannot simply calculate the averaged correlation coefficient among

sources as spatial correlation Eq. (3.2). Therefore, we computed the temporal

correlation using the following sequential source matching procedure:

1. Pearson’s correlation coefficients between jtruen and jreconn for all 10,004

sources were calculated. As a result, a correlation coefficient matrix (10, 004×
10, 004) was derived.

2. The Euclidean distance matrix between all 10,004 sources was calculated.

Then, this matrix was thresholded at 10 mm. By applying this mask to

the correlation coefficient matrix computed in procedure 1, the source pairs

with over 10-mm distance were excluded.

3. The highest one of the remaining values was selected. Then, the selected

true source and the estimated one were considered a pair. The rows and

columns of the selected sources were removed from the masked correlation

matrix.

4. Procedure 3 was iterated until all true sources that have a non-zero activity

were paired.

After the matching procedure was completed, we took the average of correlations

of selected pairs and defined it as the temporal correlation in Eq. (3.1). This

procedure may result in true sources that do not have a matching target, and
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these were excluded from the analysis. We note that even in the worst case, such

sources accounted for only 0.004% of all sources and had almost no effect on the

results.
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4. Simulation and Experimental data for hVB

We explain the details of the simulation and experimental data to confirm the

hVB approach.

4.1 Data simulation

To evaluate the feasibility of meta-analysis fMRI data as the prior information of

current source reconstruction, we generated individual fMRI and MEG data with

two task conditions and several difficulty settings. Both fMRI and MEG data

were generated based on the same ground truth, which we call a common truth.

This procedure aggregated various datasets of several modalities (structural MRI,

fMRI, resting-state fMRI, diffusion MRI, and MEG sensor locations).

We generated two sets of data focusing on visual and motor experiments. The

simulated dataset of the visual domain was made using multi-modal datasets of

a face recognition task, which is publicly available from https://openneuro.

org/datasets/ds000117/versions/1.0.3/ (Wakeman and Henson, 2015). The

simulated dataset of the motor domain was made using the left-foot movement

task from the Human Connectome Project (Van Essen et al., 2012).

For all simulated data, we used the same brain model constructed from an

individual ’s data (subject No. 2 of Wakeman & Henson, 2015) using VBMEG.

4.1.1 Common truth

First, we randomly selected five subjects from both datasets (subject No. 2, 6,

9, 15, 16 for the visual domain, and No. 115724, 144933, 481951, 896879, 902242

for the motor domain). FMRI preprocessing, including realignment, slice timing

correction, normalization, and smoothing, were conducted for each subject using

the same parameters as those in the original study (we referred to Wakeman and

Henson (2015) for visual data and Van Essen et al. (2012) for motor data). Then,

task conditions against a baseline were contrasted. For the visual domain dataset,

we employed the face image recognition task (famous condition). For the motor

domain dataset, we employed the left-foot movement task (LFoot condition).

Then, we acquired one contrasted statistical map for each subject of both tasks.
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Next, group analysis was conducted using contrasted statistical maps of five

subjects for each task. Finally, the resulted statistical maps of group analysis

were thresholded with three levels of significance: p < 0.001, 0.01, or 0.05. These

thresholded maps were used as the common truth for both fMRI and MEG data

generation. Thresholding controlled the density of the common truth map and

modulated the cancellation index of the MEG data (Ahlfors et al., 2010). These

procedures are presented in the middle part of Fig. 4.1. To prevent the simulated

data from being highly dependent on the results of an individual, the common

truth was built based on the results of group analysis. All of the preprocesses and

statistical tests were performed using spm8 (https://www.fil.ion.ucl.ac.uk/

spm/software/spm8/).

4.1.2 FMRI data generation

We generated fMRI data with various signal qualities based on the common

truth by adding the resting-state brain activity as background noise (upper part

of Fig. 4.1). We designed a virtual fMRI task design. It was an event-related

paradigm. A stimulus was designed to be presented for 2 sec with 20 sec intervals.

We set the total number of fMRI scans to 240, with 2 sec of repetition time.

Then the designed time series were convolved with the canonical hemodynamic

response function (HRF) to obtain the time series of task-related brain activities.

The amplitude of the time series on all voxels was determined by weighting with

the common truth map, resulting in simulated fMRI data during the designed

task. The fMRI time series was further contaminated by adding the experimental

resting-state fMRI activity (see Ogawa, Aihara, Shimokawa, & Yamashita, 2018,

for data acquisition) as noise to take temporal modulations of each brain region

into account (Valente et al., 2009). We varied the amount of noise so that the

contrast-to-noise ratio (CNR) ranged from 0.5 to 10. CNR is defined as the ratio

between the task-related signal amplitude A and a standard deviation of the

task-irrelevant noise signal σ (Baumgartner et al., 2000; Welvaert and Rosseel,

2013):

CNR =
A

σ
. (4.1)

Finally, general linear model (GLM) analysis was conducted on the generated task

fMRI time series data using SPM8 (Friston et al., 1994), resulting in statistical
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maps of various CNR levels, which served as individual fMRI priors for current

estimation. Examples of the common truth and simulated individual fMRI priors

for CNR=0.5, 1, 3, 5, and 10 are shown in Fig. 4.2. The statistical maps in

the right panel gradually approach the common truth map as CNR increases.

Using these CNR-controlled priors, we investigated the effects of the quality of

the individual fMRI data on the current reconstruction that were comparable to

the meta-analysis fMRI data.

In Fig. C.1 and Fig. C.2, we report the distribution of CNR for all simulation

settings. These were calculated using coefficients and residuals of GLM, as CNR

= coeff.(condition) / mean square of residuals × scaling factor. The scaling factor

is the maximum value of the task design time series (after convolution with HRF).

As these figures indicate, the maximum CNRs of each setting were configured to

the desired value. To be compatible with more research, we also show the percent

signal change (PSC), which is a popularly used quality measure (Pernet, 2014;

Welvaert and Rosseel, 2013). It was also calculated using parameters of GLM as

PSC = coeff.(condition) / coeff.(constant) × scaling factor × 100.

4.1.3 MEG data generation

The locations and amplitudes of dipoles were defined based on the common truth

spatial map imported into VBMEG’s coordinate. Because it is difficult to design

the temporal evolution among distributed dipoles by hand, we designed it using

the ROI-level whole-brain current simulation. The simulation was conducted

using the connectome obtained from diffusion MRI data (it was averaged over

13 subjects, see Endo, Hiroe, & Yamashita, 2020, for data acquisition), and the

Larter-Breakspear neural mass model (Breakspear et al., 2003; Larter et al.,

1999) with the AAL parcellation (details of the ROI-level whole-brain current

simulation are following Endo, Hiroe, & Yamashita, 2020). To obtain vertex-

level whole-brain current time series, we assumed the same waveforms for vertices

belonging to a single ROI. Then by weighting the whole-brain waveforms with

the common truth of the task (visual or motor), we generated the current source

time series of the desired task. Observed MEG time series were calculated by

multiplying the lead field matrix and adding Gaussian noises. The length of a

single trial was set to 250 msec. These procedures are presented in the lower part

24



of Fig. 4.1.

The quality of MEG data was defined as the signal-to-noise ratio (SNR) of

trial-averaged data, and it was controlled by varying the number of trials. Here,

SNR of MEG data is defined as

SNR = 10log10
σ2
s

σ2
n

, (4.2)

where σ2
s is a variance of signals during the task and σ2

n is a variance of noises.

We configured the SNR of single-trial MEG data to be 0 [dB]. Consequently, the

SNR of trial-averaged data became 0, 5, and 10 [dB] when the number of trials

was 1, 3, and 10, respectively.

It is well known that current sources at nearby vertices with opposite dipole

orientations cancel each other, resulting in nearly zero MEG signals. Conse-

quently, it is assumed that the more vertices that are activated coherently, the

more difficult source reconstruction is. To characterize such a difficulty of the

source reconstruction, we computed the weighted cancellation index (wCI), which

is an extended version of a previously proposed cancellation index (Ahlfors et al.,

2010) :

wCI = 1−

[∑M
m (
∑N

n gmnjn)
2
]1/2

∑N
n

[∑M
m (gmnjn)2

]1/2 , (4.3)

where gmn is an element of a lead field matrix G and jn is a current at source n.

For the simulated current time series, we calculated the wCI at each time point

and averaged them over time. The wCI of the simulated data obtained from the

thresholding of common truth with p < 0.001, 0.01, and 0.05 was 0.77, 0.88, and

0.90 for the visual task and 0.40, 0.71, and 0.83 for the motor task, respectively.

To summarize the above, we generated MEG data by varying three SNR levels

and three wCI levels; thus, in total, there were nine simulation settings for each

task.

4.1.4 Current source reconstruction methods for comparison

In the simulation studies, we compared the source currents estimated by hVB

with different priors and also other source imaging methods. Estimation using

hVB was conducted with the meta-analysis priors (synthesized with the terms
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“visual” and “motor”), the simulated individual fMRI priors (with CNR=0.5, 1,

3, 5, 10), the common truth prior, and without a prior.

When we used the meta-analysis prior, we basically selected the relevant prior

for the task (“visual” prior for visual domain task and “motor” prior for motor

domain task). However, we also used irrelevant priors for the tasks, namely

“visual” prior for motor domain task and “motor” prior for visual domain task.

The individual fMRI priors obtained from different CNRs were considered.

We also considered the common truth as the prior information of the ideal case.

When there is no prior information, we can only use the uniform spatial pattern.

This means we set the same values on all initial values of the hierarchical prior

α−1
n0 in Eq.(2.20). In this thesis, we call this uniform spatial pattern as “uniform

prior” of hVB estimation. If the uniform prior was used with a small prior weight,

the estimated current variances tend to be sparse due to the effect of ARD (Neal,

1996).

To evaluate the significance of fMRI information, we also applied weighted

MNE (wMNE) and Champagne as benchmark methods. Both wMNE and Cham-

pagne were run using the functions from Brainstorm software (Tadel et al., 2011;

http://neuroimage.usc.edu/brainstorm) and NUTMEG software (Dalal et

al., 2004; http://nitrc.org/projects/nutmeg/), respectively.

We applied spatial smoothness filtering for all the above methods (see Ap-

pendix B).
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Figure 4.1. FMRI (upper part) and MEG (lower part) data-generation process

from the common truth (middle part). Simulated individual fMRI priors are

taken as the hierarchical prior of hVB estimation for simulated MEG data. Both

modalities are generated based on the common truth map. Density of the common

truth is controlled by thresholding the p-value (p < 0.001, 0.01, or 0.05). It affects

the density of the generated fMRI statistical map as well as the cancellation of

MEG data. The SNR of single-trial MEG data is fixed at 0 [dB], and total SNR

is controlled by the number of trials (only a single trial is shown in the figure).
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Figure 4.2. Examples of the common truth map and simulated individual fMRI

priors. Here, the common truth is computed for the face image recognition task

with thresholding p < 0.01. Individual fMRI data are generated from the com-

mon truth with controlled contamination. As the individual fMRI images show,

statistical maps gradually clarify the common truth map with increasing CNR.

They are imaged from the bottom view to observe the change in statistical maps

in the fusiform face area.

4.2 Experimental data

We analyzed the multi-subject, multi-modal neuroimaging dataset for face pro-

cessing recorded by Wakeman and Henson (2015). It was the same dataset that

was used to generate simulated data of the visual domain. This dataset contains

the evoked responses of 16 subjects to three types of face stimuli: famous, unfa-

miliar, and scrambled. MEG, EEG, electro-oculograms, and electro-cardiograms

were simultaneously recorded at 1,100 Hz with an Elekta Neuromag Vectorview

306 system (Helsinki). T1 images and fMRIs were also collected with a Siemens

3T TIM TRIO (Siemens, Erlangen, Germany). These data are stored in the Brain

Imaging Data Structure (BIDS) format (http://bids.neuroimaging.io/). We

preprocessed MEG data in the same way as done previously (Takeda et al., 2019).

Schematic descriptions are visualized in the left box of Fig. 4.3. As a result, the

face (famous and unfamiliar) and the scrambled conditions were compiled.

We constructed a t-map by contrasting all stimulus conditions (face, scram-

bled) against the baseline using SPM8. The t-map was computed for each subject
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and imported as individual fMRI priors (Fig. 4.4). On the other hand, the meta-

analysis prior was synthesized using Neurosynth with the term “visual,” and it

was common for all subjects (Fig. 3.1). We carried out source reconstruction

using two types of priors, an individual fMRI prior and the meta-analysis prior,

for each subject. The prior weight parameter was set to 0.3 for both priors.

Using all the subjects ’source currents, we conducted a group analysis and

examined the statistical differences of the current amplitudes between the face and

scrambled conditions. The method of group analysis followed our previous work

(Takeda et al., 2019). Briefly, we calculated the stimulus-triggered average of the

estimated source currents for each subject and condition. Then for each source

and time, we compared the 16 subjects ’current amplitudes between the face

and scrambled conditions using a paired t-test. Finally, the multiple comparison

problem was solved using Storey & Tibshirani (2003)’s method (false discovery

rates were controlled at 0.05). All of the procedures were computed separately for

results with an individual fMRI prior or the meta-analysis prior. The graphical

description of whole group analysis procedure is visualized in Fig. 4.3.
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Figure 4.3. Graphical explanation of the group analysis process. The preprocess

of MEG data (in the left box) and the flow of the group analysis are displayed.

Figure 4.4. Imported individual fMRI prior of sub-15. This is computed by

contrasting all stimulus conditions (face (famous and unfamiliar), scrambled)

against a baseline.
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5. Results for hVB approach

5.1 Simulated data

We first studied the effects of the prior weight parameter for both task domains

(visual and motor). We then evaluated how effective the meta-analysis prior

was compared to the individual fMRI priors using the appropriate prior weight.

Finally, data-driven model selection was attempted using a statistical criterion.

5.1.1 Effects of prior weight parameter

We first studied the effects of the prior weight parameter on reconstructed sources.

We repeatedly conducted current source reconstruction using the hVB method by

varying the prior weight from 0 to 0.99999999 (denoted as 1). The full results with

all simulation settings are reported in Fig. 5.1 for the visual task and Fig. 5.2

for the motor task. For comparison, we also plot the results with the worst

(CNR=0.5) and the best (CNR=10) individual fMRI priors. In addition, the

results using the common truth prior are reported.

For both tasks, the scores of the meta-analysis fMRI prior were very con-

sistently located between the simulated individual fMRI priors when the prior

weight and the term (“visual” or “motor”) were properly selected. For example,

for the results of p < 0.05 in the visual task (top 3 panels of Fig. ??), when the

meta-analysis prior “visual” was used with a prior weight 0.3, the aggregate scores

were consistently higher than the results of CNR0.5 and lower or comparable to

CNR10. We can find similar results for all conditions when using the relevant

prior (“visual” for the visual and “motor” for the motor task) and the optimal

prior weight settings. The appropriate range of the prior weight tends to be high

when the cancellation is high (p < 0.05, with wCI of 0.90 for the visual task and

0.83 for the motor task). Conversely, when the cancellation is low (p < 0.001,

wCI of 0.77 for the visual task and 0.40 for the motor task), the appropriate range

of the prior weight is low as well. These results indicate that estimations require

strong prior information when the cancellation is severe. This is because strong

cancellation induces very few observation signals.
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Figure 5.1. Scores for the visual task with various prior weight parameters. Re-

sults of the hVB estimation with the worst and the best individual fMRI priors

(CNR=0.5 and 10), the common truth prior, and the meta-analysis priors (syn-

thesized using terms “visual” and “motor”) are shown. Vertical axes indicate the

aggregate score (upper is better), and horizontal axes indicate the value of the

prior weight parameter. The error bar represents standard error of the mean over

ten different Monte Carlo repetitions for the data generation. We display results

of all simulation settings (3 SNR by 3 wCI (denoted as thresholds of the common

truth)).
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Figure 5.2. Scores for the motor task with various prior weight parameters.

Results of the hVB estimation with the worst and the best individual fMRI

priors (CNR=0.5 and 10), the common truth prior, and the meta-analysis priors

(synthesized using the terms “visual” and “motor”) are shown. Vertical axes

indicate the aggregate score (upper is better) and horizontal axes indicate the

value of the prior weight parameter. The error bar represents standard error of

the mean over ten different Monte Carlo repetitions for the data generation. We

display results of all simulation settings (3 SNR by 3 wCI (denoted as thresholds

of the common truth)).

5.1.2 Comparison between meta-analysis prior and other priors

We conducted a close comparison between the meta-analysis prior and the indi-

vidual fMRI prior with the properly fixed prior weight parameters. We focused

on one simulation setting (characterized by SNR and wCI), which had a level of

difficulty similar to the experimental data (face recognition task data (Wakeman
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and Henson, 2015)). Since we do not know the actual values of the SNR (Eq.(4.2))

and the wCI (Eq.(4.3)) for the experimental data, we approximated those values

as follows. A variance of signals during the task σ2
s and a variance of noises σ2

n

were calculated as the variance of trial-averaged signals and the variance of signals

before task onset, respectively. The wCI was calculated using the t-map of task

fMRI data of face−baseline contrast. Hence, jn was substituted with the t-value.

The calculated SNR was 4.88 [dB], and wCI was 0.95. Therefore, we selected the

simulation setting with SNR = 5 [dB] and the threshold of the common truth as

p < 0.05, corresponding to wCI = 0.90 (face image recognition task) and 0.83

(left-foot movement task).

The results are presented in Fig. 5.3. As a control analysis, we also compared

the results of the meta-analysis prior with those of the uniform prior and the

benchmark methods, wMNE and Champagne. The MNE and Champagne meth-

ods used their default hyperparameters, although the hVB methods used the best

prior weight parameter found through investigation using a grid search. In this

search, hVB was conducted using all prior weight values as Figs. 5.1 and 5.2,

and then assessed using the aggregate score to select the best prior weight. Re-

constructed current maps of the visual domain task are also shown in Fig. 5.1.2.

We can see that the sparser the estimated source, the higher the amplitude is

recovered.

For the visual domain task, the result of the relevant meta-analysis prior

(“visual”) shows a better score than that for the individual fMRI prior with

CNR=1. For the motor domain task, the result of the relevant meta-analysis

prior (“motor”) shows a better score than that for the individual fMRI prior with

CNR=0.5. On the other hand, such an individual fMRI prior with low-CNR

was better than the benchmark methods. However, if we use irrelevant meta-

analysis data, the performance is degraded. Therefore, meta-analysis fMRI data

synthesized using the relevant term has comparable efficiency with the individual

fMRI prior with CNR 0.5–1.

We also reported results assessed using spatial correlation (Fig. E.1) and tem-

poral correlation (Fig. E.2) for the same simulation setting as that in Fig. 5.3.

Although the results assessed using temporal correlation show little difference be-

tween priors, spatial correlation shows clearer differences. Hence, the differences
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in prior data mainly affect the estimated spatial maps rather than the time series.

To show the results under various conditions, the aggregate scores for all nine

simulation settings for the visual and motor tasks are shown in Fig. E.3 and

E.4, respectively. For both visual and motor tasks, the hVB results using the

appropriate meta-analysis fMRI prior were comparable or better than the scores

of low-CNR fMRI priors. Counterintuitively, when p < 0.001 for the motor task,

the results of the meta-analysis fMRI data of “visual” are comparable to those of

“motor.” This is due to the fact that the results of the fMRI group analysis used

to generate the simulated data had activation on vertices that can be covered by

both “visual” and “motor” meta-analysis data when p < 0.001.

Additionally, the results of the Champagne method show a comparable score

to hVB using individual fMRI data when the simulated current map has a sparse

setting (p < 0.001). In particular, this method shows consistent scores regardless

of SNR. These characteristics of the Champagne method seem to be caused by

the effect of sparse estimation (Wipf et al., 2010). These results indicate that the

fMRI data are particularly helpful when sources are densely activated.

Moreover, we also conducted current source reconstruction with the meta-

analysis fMRI prior synthesized using more detailed terms such as “face” and

“object recognition” for the visual domain task and “hand” and “foot” for the

motor domain task. Results are shown in Fig. E.5 and E.6. For comparison, the

scores of “visual” and “motor” were plotted (the same as in Fig. 5.3). In these

cases, “face” and “foot” seem to be suitable for the visual (face image recognition)

and the motor (left-foot movement) tasks, respectively. Actually, only the results

with the “foot” term improved the performance, whereas the result of the “face”

term was comparable to “visual.”
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Figure 5.3. Comparison of aggregate scores with various methods for the visual

task (left) and the motor task (right). The results of the hVB estimation with the

uniform prior, the individual fMRI priors (CNR=0.5, 1, 3, 5, 10), the common

truth prior, and the meta-analysis priors (synthesized using the terms “visual”

and “motor”) are reported. These priors are used with the best prior weight

parameter denoted in parentheses. Vertical axes indicate the aggregate score

(upper is better). The error bar represents standard error of the mean over ten

different Monte Carlo repetitions for the data generation. We display results of a

realistic simulation setting (p<0.05, SNR5) determined using experimental data.

The results of wMNE and Champagne are also shown as a control.
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Figure 5.4. Reconstructed current maps of the visual domain task with various

methods. The ground truth current map (top) and reconstructed maps are shown.

To visualize the maps, amplitudes are averaged along the time axis. The prior

weights are set to the same values as those in Fig. 5.3. For all figures, activities

over 10 % of their maximum value are displayed.

5.1.3 Model selection using free energy

In the neuroscience literature, free energy is one of the popularly used statistical

criteria for model selection (Friston et al., 2003; Fukushima et al., 2015; Wipf

and Nagarajan, 2009). In particular, free energy is used to select prior infor-

mation of source reconstruction in the multiple sparse priors method (Friston

et al., 2008; Henson et al., 2010). Inspired by these studies, we attempted to

select hyperparameters (prior weight and meta-analysis fMRI data) for hVB es-

timation using free energy (see Appendix A for the details of free energy in hVB

approximation). First, we studied whether the prior weight parameter could be

selected using free energy. The effects of the prior weight on free energy and the

aggregate score are reported in Fig. 5.5 As the results indicate, free energies were

negatively correlated with prior weights, but they were not related to aggregated

scores. This tendency was shown for other prior data as well. Thus, the prior

weight parameter could not be selected based on free energy.
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Figure 5.5. Free energy comparison of various prior weight parameters for sim-

ulated data. We display results of the uniform (left) and common truth (right)

prior for the simulated visual task, with p < 0.05, and the best and worst SNR

settings. Free energies are plotted as blue lines and aggregate scores are shown

as bar plots. Left and right vertical axes indicate the free energy and the aggre-

gate score, respectively. Horizontal axes indicate the value of the prior weight

parameter. The error bar represents standard error of the mean over ten different

Monte Carlo repetitions for the data generation. Note that a similar tendency is

observed for the simulated motor task data.

Next, we considered the meta-analysis fMRI data selection. Here, the prior

weight was pre-fixed to 0.3 for all prior data. For both visual and motor tasks,

we showed the results with SNR0 and 10, respectively (Fig. 5.6 and 5.7). These

figures indicate strong relationships between free energies and aggregated scores

regardless of SNR. These results support the potential of selecting the prior data

using free energy.
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Figure 5.6. Free energy comparison of various priors for simulated data (face

image recognition task). Free energies are plotted as blue lines and aggregate

scores are shown as bar plots. Left and right vertical axes indicate the free energy

and the aggregate score, respectively. The error bar represents standard error of

the mean over ten different Monte Carlo repetitions for the data generation. All

results are derived using prior weight 0.3. We display results of the face image

recognition task thresholded with p < 0.05. Left panel is for SNR = 0 and right

panel is for SNR=10.

40



Figure 5.7. Free energy comparison of various priors for simulated data (left-foot

movement task). Free energies are plotted as blue lines and aggregate scores are

shown as bar plots. Left and right vertical axes indicate the free energy and the

aggregate score, respectively. The error bar represents standard error of the mean

over ten different Monte Carlo repetitions for the data generation. All results are

derived using prior weight 0.3. We display results of the left-foot movement task

thresholded with p < 0.05. Left panel is for SNR = 0 and right panel is for

SNR=10.

5.2 Experimental data

Since we do not know the ground-truth of current sources for real experimental

data, we evaluated the reproducibility of the statistical maps obtained from group

analyses. We compared the individual fMRI prior with the meta-analysis fMRI

prior (“visual”). The prior weight parameters for the individual fMRI prior and

the meta-analysis fMRI prior were each set to 0.3, following our previous work

(Takeda et al., 2019) and the above simulation results (according to Fig. 5.3,

which is the simulated face image recognition task with the realistic setting, 0.3

was the best prior weight parameter). Finally, we attempted data-driven model

selection as well as simulated data.
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5.2.1 Group analysis

First, we checked the currents reconstructed using the individual fMRI prior and

the meta-analysis prior. The reconstructed currents time series and maps of one

example subject are shown in Fig. 5.8 and Fig. 5.9. These reconstructions were

run for all subjects in the same way. Next, we conducted the group analysis of

reconstructed current sources by contrasting the face condition to the scrambled

condition. Fig. 5.10 shows the number of sources exhibiting significant differences

between the face and scrambled conditions along the time axis. Although the

largest difference was observed at 0.17 sec for both priors, the detected source

of the meta-analysis prior was slightly smaller than the individual fMRI prior.

The time series of detected sources were quite similar, although we found a slight

difference at the second peak.

In Fig. 5.11, we compared the significant t-value maps of both priors at 0.17

sec, and they looked very similar to each other. They show significance at the right

Fusiform Face Area (FFA) and right insular cortex. The significant differences

at the right FFA are consistent with previous studies that reported that this

area exhibits face-selective responses (Grill-Spector et al., 2017, 2004; Jas et al.,

2018; Rossion et al., 2018; Wakeman and Henson, 2015). The statistical map

obtained using the meta-analysis prior shows a significant difference on the left

fusiform area and the left insula, which are not observed in that obtained from

the individual fMRI prior.

In Appendix F, we considered the effect of signal leakage using the resolution

kernel analysis. This showed that reconstructed currents in the insular cortex

can be leaked from the fusiform gyrus.
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Figure 5.8. Stimulus-triggered average of source currents estimated in face con-

dition (sub-15) using individual fMRI prior. The prior weight is set to 0.3. Its

time series (top) and amplitudes averaged within 0–0.3 sec (bottom) are shown.

In the bottom figures, activities over 30% of their maximum value are displayed.
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Figure 5.9. Stimulus-triggered average of source currents estimated in face condi-

tion (sub-15) using meta-analysis fMRI prior. The prior weight is set to 0.3. Its

time series (top) and amplitudes averaged within 0–0.3 sec (bottom) are shown.

In the bottom figures, activities over 30% of their maximum value are displayed.
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Figure 5.10. Differences in current amplitudes between face and scrambled condi-

tions along the time axis. The number of sources exhibiting significant differences

(q < 0.05) are shown for both individual fMRI and meta-analysis fMRI priors.

45



Figure 5.11. Significant t-value maps of the individual fMRI prior (top) and the

meta-analysis prior (bottom) at 0.17 sec.

5.2.2 Model selection using free energy

We attempted free energy based model selection as well as simulated data. We

selected candidate meta-analysis dataset including relevant (“visual,” “face,” and

“object recognition”) and irrelevant (“motor”) terms. All hVB estimations were

conducted with prior weight = 0.3. The results are shown in Fig. 5.12. Be-

cause baselines of subjects are different, between-prior differences are slight in

the left panel. Therefore, we corrected each subject’s baseline to zero to clarify

the between-prior differences (right panel). This figure shows that the free en-

ergy of the meta-analysis prior of the “motor” term is higher than the subject’s

own fMRI data and the meta-analysis data of “visual,” although this is a face
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recognition task. However, when “motor” was used as a prior of the source re-

construction, little activity was observed in the visual processing area. Besides,

the results of the group analysis showed almost no significant difference between

conditions. Therefore, the results of the “motor” prior supported by free energy

were inappropriate. Compared to the results of simulated data, this does not

support the prior data selection using free energy.

Next, we attempted the same selection using trial-averaged data. The results

are shown in Fig. 5.13. Note that we applied the hVB algorithm to all single-trial

data rather than trial-averaged data because our previous study showed higher

intra-subject reproducibility in the former setting. This figure visualized that

ranks of free energy were arranged in the order of “visual,” “Individual fMRI,”

“face,” “object recognition,” and “motor.” Moreover, individual fMRI data and

all relevant terms were superior to the irrelevant term “motor.” These supported

the plausibility of the free energy based prior data selection.
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Figure 5.12. Free energy comparison of various priors for experimental data using

the single-trial setting. Uncorrected (left) and subject-wise baseline corrected free

energies are plotted. Both panels show each subject ’s free energy (plotted as

light blue lines) and averaged one (plotted as a dark blue line). All results are

derived using prior weight 0.3. Note higher free energy guarantees higher lower

bounds of the evidence (see Appendix A).
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Figure 5.13. Free energy comparison of various priors for experimental data using

the trial-averaging setting. Uncorrected (left) and subject-wise baseline corrected

free energies are plotted. Both panels show each subject ’s free energy (plotted

as light blue lines) and averaged one (plotted as a dark blue line). All results are

derived using prior weight 0.3. Note higher free energy guarantees higher lower

bounds of the evidence (see Appendix A).
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6. Simulation and Experimental data for RSP

We explain the details of the simulation and experimental data to confirm the

RSP approach.

6.1 Data simulation

6.1.1 Constructing meta-analysis dataset and covariance matrix

For the first, we prepared a meta-analysis dataset using Neurosynth to generate

the simulated data for evaluation of RSP approach. Since there are thousands of

terms in Neurosynth, we referred to a study that pruned and clustered all terms in

Neurosynth into 7 domains with less than 150 terms using hierarchical clustering

(W.H.Thompson & P.Fransson 2017). Using this result, we constructed three

datasets of 15, 25, and 129 terms, respectively. All selected terms are lined up in

Table. D.1.

Next, hyper parameters and dist function of Eq.(2.35) are defined. We set

ρ = 9, l = 2, and dist function as cosine similarity (Note that cosine similarity

does not meet the axiom of distance but useful to evaluate similarity of data).

Hence, we derived the covariance matrix K for each dataset. Fig. 6.1 shows K

for the dataset of 15 terms. We can see there are clusters in matrices because

terms are arranged by domains.

To compare RSP with MSP, we also prepared a scalar covariance matrix for

each datasets.
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Figure 6.1. Covariance matrix K (dataset of 15 terms). The covariance matrix

K of u is imaged. It reflects a relevance structure of terms. Terms are arranged

and colored by domains (blue : Visual, red : Auditory, green : Motor).

6.1.2 Data generation

We generated simulated data by following the observation process as shown in

Fig. 6.2 . Here, hyper parameter m = −5, σ2 = −502 (no observation noise), and

the time length T = 50.

To evaluate our RSP approach, we estimated u, w, J , and hyper parameters

using a observation B.
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Figure 6.2. Data-generation process for RSP approach.

6.2 Experimental data

We analyzed the same face processing dataset as hVB approach with same pre-

processing (see section 4.2). Here, we only focused on a subject (sub-8), the face

condition. Moreover, we set a time of interest (ToI) because RSP assumes the

stationarity. The ToI is set to the temporal peak (0.16 sec after onset) ± 25

msec. ToI of all trials is cut out and assembled to construct long observation

data. Consequently, we prepared a MEG observation time series with the num-

ber of timepoints T = 3438. A graphical explanation of this process is shown in

Fig. 6.3.

We conducted RSP estimation using a meta-analysis dataset with 15 terms
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and covarianceK of them (as same as Fig. 6.1). RSP estimation is also conducted

using scalar covariance matrix (equivalent to MSP). Then, results of RSP and

MSP were compared.

Figure 6.3. Preprocessing of the experimental data.
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7. Results for RSP approach

7.1 Simulated data

We studied the reconstruction performance of RSP and MSP by changing the size

of the dataset from 15 to 129 (Fig. 7.1)). For the benchmark, the results of MNE

and hVB were also evaluated. HVB was computed only for 15 dataset due to the

computational cost. The term of meta-analysis data for hVB was selected based

on free energy, and prior weight parameter was set to 0.03. Here, we evaluated

three reconstructed values; B̄, J̄ , and w̄, where B̄ is calculated as GJ̄ . Since

MNE and hVB do not have the parameter w̄, B̄ and J̄ were drawn. As the figure

indicated, every method reconstruct B̄ perfectly except for hVB. The reason for

the perfect reconstruction might come from the inverse problem. Namely, there

is an infinite number of solutions that meet the forward model. However, for the

hVB, B̄ and also J̄ were significantly lower than others. This is because of the

simulation setting. The data were simulated using multiple meta-analysis fMRI

data; therefore, it is a disadvantageous condition for hVB, which can use only

one piece of information. This result suggested that hVB is inadequate for tasks

such as stimulating complex brain functions (e.g., movie watching (ES Finn and

PA Bandettini, 2021)).

Next, when we look at J̄ , we cannot see differences between RSP and MSP,

while MNE shows lower performance than them. It indicates that RSP and MSP

outperform the no-functionally constrained method, although the data include

complex brain activation.

Finally, we can find differences between RSP and MSP in w̄. When the

number of terms is large, RSP is slightly better than MSP. Furthermore, when

the number of terms is small, some estimations of MSP are wrong. It indicates

that the possibility of RSP in terms of stability of estimation.
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Figure 7.1. Comparing the results of RSP and MSP. For the benchmark, MNE

and hVB are reported as well in B̄ and J̄ . The y-axis of w̄ indicates Pearson’s

correlation coefficients. The y-axis of B̄ and J̄ is temporally averaged correlation

coefficients defined in section 3.4.

7.2 Experimental data

We compared currents maps and weights w̄ estimated using RSP and MSP for

face processing data. Reconstructed currents maps (Fig. 7.2) show similar ac-

tivations on FFA. However, there are several differences between them. First,

MSP reconstructed more currents on the dorsal stream than RSP. Second, RSP

indicated activations on the insular cortex similar to the result of group analysis

at almost the same time point using hVB (Fig. 5.11). As the same discussion in

Appendix F, it might be caused by the signal leakage from FFA.

These differences in reconstructed maps are interpretable by analyzing esti-
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mated weights (Fig. 7.3). As the figure indicated, there is a significant difference

between w̄ of RSP and MSP. While MSP estimated only on “visual,” RSP es-

timated not only “visual” but also “face.” This difference caused the difference

in reconstructed sources because meta-analysis fMRI data “visual” includes both

the ventral and dorsal streams.

Figure 7.2. Reconstructed currents maps using RSP and MSP. To visualize the

maps, amplitudes are averaged along the time axis. For both figures, activities

over 10 % of their maximum value are displayed.
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Figure 7.3. Comparing estimated w of RSP and MSP.
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8. Discussion

In the present study, we proposed the use of meta-analysis fMRI data for MEG

current source reconstruction. The meta-analysis fMRI data is a statistical map

synthesized from thousands of published fMRI studies. Here, we introduced two

different approaches.

8.1 Discussions on hVB approach

For the first, we used the meta-analysis results available from the Neurosynth

open-source project (Yarkoni et al., 2011) as the hierarchical prior distribution of

the current variance in the hierarchical variational Bayesian estimation method

(Sato et al., 2004) because this approach offers an adaptive way to incorporate

fMRI information based on MEG measurements. This hVB approach was quan-

titatively evaluated using simulations of a visual task and a motor task. As

a result, we discovered that source reconstruction performance using the meta-

analysis prior was comparable to that using an individual fMRI prior with CNR =

1 and CNR = 0.5 for the visual and motor tasks, respectively. We also confirmed

the fMRI prior outperformed the MNE, Champagne, and hVB estimations with a

uniform prior (no fMRI information). In particular, when the simulated currents

are spatially dense (p < 0.05), or the SNR of MEG data is high, hVB using the

low-CNR fMRI prior was better than the sparse estimations of the Champagne

method. Using the experimental data of a real face recognition task (Wakeman

and Henson, 2015), we qualitatively confirmed that group analysis results ob-

tained from the meta-analysis fMRI prior were similar to those obtained from

individual fMRI priors.

Our simulations were based on multi-modal data generation, where both

whole-brain fMRI and MEG time series data were generated from the common

truth activation map. We defined the common truth activation map for a specific

task, which was the group analysis of results obtained from real fMRI exper-

imental data of five subjects during the task, representing the spatial pattern

of task-specific neuronal activation. From the common truth map, whole-brain

fMRI time series data were generated using the virtually designed event-related

paradigm and resting-state fMRI time series as noise. We modified the amount of
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resting-state fMRI noise to obtain the individual fMRI prior maps of various sig-

nal quality, defined as CNR. MEG time series was generated by applying the lead

field matrix to simulated current time series data with added noise. The current

time series data for a specific task were generated by weighting the whole-brain

current time series (simulated using the connectome dynamics model) with the

spatial map of the task (common truth map). This procedure allows us to remove

any biases of the cancellation effect among dipoles caused by the hand design.

However, the simulated current time series seems to be more difficult than the

empirical one when we do not adjust the wCI. This is because the connectome

dynamics model was simulated with coarse parcellation (AAL atlas), and the

time series were common within each ROI. Moreover, the coherence of simulated

resting-state data tends to be higher than the stimulus evoked response. To make

the difficulty realistic under such parcellation, we modulated wCI of the gener-

ated data by thresholding the common truth with p < 0.001, 0.01, or 0.05. We

also modulated observation noises of MEG data with SNR = 0, 5, or 10 [dB]

by varying the number of trials. Then, simulations were conducted with nine

combinations of settings (3 SNR by 3 wCI).

Inspired by Owen et al. (2012), we assessed the results of source reconstruction

using the aggregate score (Eq. (3.1)). This metric averaged the sum of spatial

and temporal correlation coefficients between simulated and reconstructed cur-

rents. By comparing the evaluation using the aggregate score (Fig. 5.3), spatial

correlation (Fig. E.1), and temporal correlation (Fig. E.2), we confirmed that the

differences in prior data mainly affect the estimated spatial maps rather than the

temporal time series. This is natural because we incorporated the spatial prior

data in the covariance of the current map.

From the simulation studies of the visual and motor tasks, we confirmed that

the current source reconstruction performance of hVB using the meta-analysis

fMRI prior was better than that using the low-CNR individual fMRI prior. For

the visual domain task (left of Fig. 5.3), the result of the relevant meta-analysis

prior shows a better score than the individual fMRI prior with CNR=1. For the

motor domain task (right of Fig. 5.3), the result of the relevant meta-analysis prior

shows a better score than for the individual fMRI prior with CNR=0.5. Referring

to Figs. C.1 and C.2, CNR1 and CNR0.5 of the p < 0.05 condition corresponds
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to PSC0.7 and PSC0.6 at the maximum activated voxel, respectively. Note that

these low PSC values could be observed as the worst-case in a real-task fMRI

study (e.g., Drobyshevsky et al., 2006, reported similar PSCs for the cognitive

and emotional tasks). We also confirmed that the hVB method using the meta-

analysis fMRI prior was superior to the control methods without fMRI priors, such

as the hVB method using the uniform prior, wMNE, and Champagne. Especially,

by comparing with the Champagne method, we confirmed that the meta-analysis

prior for the hVB method was helpful when the source spatial density was high (p

< 0.05). Moreover, the meta-analysis fMRI data synthesized using an irrelevant

term, such as “motor” for the visual task or “visual” for the motor task, resulted in

degraded performance. Therefore, we concluded that it is worth using the meta-

analysis fMRI prior synthesized using relevant terms when the individual fMRI

data are missing or of low quality. This also means that the results equivalent to

the use of a low-CNR fMRI prior can be obtained without fMRI measurement,

and in that case, the reduced cost could be used to enhance MEG measurement.

It should be noted that we used the default hyperparameters for the control

methods (MNE and Champagne) while the optimized parameters for the hVB

methods. Thus, the performance comparison may not be fair. Although their

performance may be improved using parameter fine-tuning (Bertrand et al., 2019;

Cai et al., 2021), it is beyond the scope of this study.

The prior weight parameter is the most important parameter for hVB esti-

mation, which affects the quality of current source reconstruction. Therefore, we

studied the proper range of the prior weight parameter using simulated data by

the grid-search strategy. For both visual and motor tasks (Fig. 5.1 and Fig. 5.2),

the optimal prior weight tends to be high when the cancellation is high (p <

0.05) regardless of the type of fMRI priors, while the optimal prior weight is low

when the cancellation is low (p < 0.001). These results indicate that the cur-

rent source with a higher cancellation setting requires stronger prior information

because strong cancellation induces fewer MEG observations.

Using the experimental data of a real face-recognition task, we qualitatively

confirmed that group analysis results of the meta-analysis fMRI prior have a

similar tendency with the results of an individual fMRI prior. We set the prior

weight parameter for the meta-analysis fMRI prior to 0.3 based on the simulation
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study of the visual task and set the parameter for the individual fMRI prior to

0.3 according to the previous work (Takeda et al., 2019). For the significance

time series of both priors, the largest difference was observed at the same time

point, although there were small differences (Fig. 5.10). In Fig. 5.11, we compare

the significant t-value maps of both priors at that time. Both of them show

significance at the right FFA, although they were derived using different types

of priors. The significance at the right FFA is consistent with previous studies

reporting that this area exhibits face-selective responses (Grill-Spector et al.,

2017, 2004; Jas et al., 2018; Rossion et al., 2018; Wakeman and Henson, 2015).

In these figures, we can observe activities on the insula as well. We hypothesized

that they occurred due to signal leakage (Brookes et al., 2012; Colclough et

al., 2015; Palva et al., 2018; Sato et al., 2018). To verify this, we calculated the

resolution kernel for both priors (Sekihara et al., 2005). As a result of the analysis,

the activities on the insula could be observed due to the signal leakage from the

ventral occipitotemporal cortex (Appendix F). These results corresponded to

our previous study (Takeda et al., 2019). Such similarities in the results between

individual fMRI and meta-analysis fMRI suggest the possibility of substituting a

meta-analysis prior for the individual prior in a neuroscience study.

It is difficult to subjectively select the term used to synthesize the meta-

analysis fMRI data. This came from the results with detailed terms such as “face”

and “object recognition” for the visual domain task and “hand” and “foot” for the

motor domain task (Figs. E.5 and E.6). The meta-analysis prior synthesized using

the term “foot” significantly improved the score (comparable to the high-CNR

fMRI priors) for the left-foot movement task. However, against our intuition,

the result with the term “face” was not improved, and “object recognition” was

lower than the result with the term “visual.” These results might be due to the

following reasons. In most visual tasks, the stimulus-induced activation occurs

from the primary visual cortex, and it is then transferred to the higher visual

cortex. Hence, the entire visual cortex is activated. This situation is favorable

for the meta-analysis prior synthesized using the term from the highest layer of

the ontology. Therefore, the term “face” was not a better selection than the

term “visual.” On the other hand, the left-foot movement task with the p >

0.05 setting mainly activated left-foot-related areas. Therefore, the term from
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the lower layer of the ontology was suitable for this situation. In the results,

only “foot” was a good prior, whereas both “hand” and “foot” were selected

from the lower layer. This seems natural because the meta-analysis with the

term “hand” is not directly related to the left-foot-related areas. Although these

obvious results indicate that the meta-analysis data synthesized using detailed

terms might improve the reconstruction, they also imply the difficulty of making

the appropriate data selection for the meta-analysis.

In the neuroscience literature, free energy is one of the popularly used sta-

tistical criteria for model selection (Friston et al., 2003; Fukushima et al., 2015;

Wipf and Nagarajan, 2009). In particular, free energy is used to select prior infor-

mation of source reconstruction in the multiple sparse priors method (Friston et

al., 2008; Henson et al., 2010). Inspired by these studies, we attempted to select

hyperparameters (prior weight and meta-analysis fMRI data) for hVB estimation

using free energy. First, we studied whether the prior weight parameter could be

selected using free energy. The effects of the prior weight on free energy and the

aggregate score are reported in Fig. 5.5. As the results indicate, free energies were

negatively correlated with prior weights, but they were not related to aggregated

scores. This tendency was shown for other prior data as well. We speculated

that this is because when the prior weight is low, the estimated currents can be

fitted to the observation data independent of the prior data and thus free energy

also has a high value. Thus, we concluded that prior weight cannot be selected

based on free energy. Next, we considered the prior data selection when the prior

weight was fixed to 0.3 for all priors. For both visual and motor tasks, we showed

the results with SNR0 and 10, respectively (Figs. 5.6 and 5.7). These figures in-

dicate strong relationships between free energies and aggregated scores regardless

of SNR. These results support the potential of selecting the prior data using free

energy. Therefore, we also plotted free energies with the prior weight of 0.3 for

the experimental data (Fig. 5.12). The figure shows that the free energy of the

meta-analysis prior of the “motor” term is higher than the subject’s own fMRI

data and the meta-analysis data of “visual,” although this is a face recognition

task. However, when “motor” was used as a prior in the source reconstruction,

little activity was observed in the visual processing area. In addition, the results

of the group analysis showed almost no significant difference between conditions.
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Therefore, the results of the “motor” prior supported by free energy were inap-

propriate. Compared to the results of simulated data, this does not support the

prior data selection using free energy. Note that we applied the hVB algorithm

to all single-trial data rather than trial-averaged data because our previous study

showed higher intra-subject reproducibility in the former setting. However, when

we applied the trial-averaged data and checked the applicability of free energy

for the prior data selection, we obtained plausible results similar to the results of

simulated data (Fig. 5.13). This is probably because the SNR of the single-trial

data of real data was much worse than the SNR0 of the simulation. To confirm

the applicability of prior data selection based on free energy, further investigation

into the impact of a single-trial setting on free energy computation is required.

Furthermore, since we need to repeatedly run the hVB algorithm for all candidate

prior data to compute free energy, the computational cost will be significantly

increased in proportion to the number of candidates.

Care must be taken when using the meta-analysis fMRI prior for scientific

findings. Use of prior information biases the results of current source reconstruc-

tion. Since there are numerous combinations of the meta-analysis prior and the

prior weight value, the choice depends on the data analyst, and results may be

chosen after trials. To mitigate such results selection, we need a guideline on

how to use the method and report the results. For now, we recommend that

meta-analysis fMRI data be synthesized using relevant and general (conserva-

tive) terms such as “visual” for visual tasks or “motor” for motor tasks. This

comes from the above discussion on term selection. However, there is no solution

to decide the prior weight value systematically, although it has been shown to

have a significant impact on the results as well (Figs. 5.1 and 5.2). Therefore,

trial-and-error efforts are indispensable to tune the prior weight. However, this

recommendation might be updated by the progress made in free-energy-based

prior data selection. For example, it may be possible to select the term based

on the free energy using pre-fixed prior weight value. On the other hand, this

method is ready for applications such as brain-machine interface (BMI), where

the direct goal is to improve decoding accuracy. In this case, we believe there is

no problem in selecting a term that will improve the decoding accuracy as long

as the generalization performance is evaluated.
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8.2 Discussions on RSP approach

As above discussions reveal, one of the most critical issues in hVB approach is the

selection bias. To overcome it, we introduced second approach, RSP estimation.

While hVB utilizes ARD to suppress error activation on dipoles of prior data,

RSP selects the combination of prior data itself. This mitigates the selection bias

because we do not need to select prior data.

As the results of the simulation studies indicated, RSP improved the recon-

struction significantly than MNE and hVB (Fig. 7.1). Furthermore, it was sug-

gested that RSP estimate latent variable w more stably than MSP although the

performance of current reconstruction itself is equivalent to MSP. Both RSP and

MSP were robust to increasing the number of prior data in terms of reconstructed

currents J .

The results of the experimental data indicated interesting differences between

RSP and MSP (Fig. 7.2). First, MSP reconstructed more currents on the dor-

sal stream than RSP. Second, RSP indicated activations on the insular cortex

similar to the result of group analysis at almost the same time point using hVB

(Fig. 5.11). As discussed above, it might caused by the signal leakage from FFA.

These differences in reconstructed maps are interpretable by analyzing estimated

weights (Fig. 7.3). As the figure indicated, there is a significant difference between

w̄ of RSP and MSP. While MSP estimated only on ”visual”, RSP estimated not

only ”visual” but also ”face”. This difference caused the difference in recon-

structed sources because meta-analysis fMRI data ”visual” includes both of the

ventral and dorsal streams.

The RSP estimation using meta-analysis fMRI dataset have another possibil-

ity related to interpretable estimation. Because all of meta-analysis fMRI data

are labelled by terms, we might discuss the estimation based on selected data. If

this is established, it could lead to the ability to reverse inference at MEG time

resolution.

8.3 General discussions

In this study, we used the results of meta-analysis from Neurosynth. However,

many useful and practical platforms for fMRI meta-analysis have also been pro-
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posed and are promising as the prior information of source reconstruction. The

BrainMap group supplies the ICA maps of large-scale meta-analysis fMRI data

(https://www.brainmap.org/icns/). These are well-suited to our present rec-

ommendation of selecting a conservative prior for hVB approach because ICA

maps are already classified to a few intrinsic connectivities (Laird et al., 2011;

Smith et al., 2009). This feature is also suitable for RSP approach because it

might help interpretations of selected prior data. Another option is NeuroQuery

(https://neuroquery.org). Because of its ability to predict brain activity from

a short sentence (Dockès et al., 2020), it seems to be suitable for applications

such as decoding newly designed tasks. While this contradicts our recommen-

dation of hVB approach to generate a conservative prior, it is still attractive for

applications such as BMI.

In terms of reproducibility, meta-analysis fMRI is promising. In recent years,

the study of task fMRI has been a problem because of its poor reproducibil-

ity (Elliott et al., 2020). When individual fMRI data are used as the prior for

source reconstruction, the reconstructed maps are accumulated with uncertainty

included in the fMRI data. On the other hand, although the meta-analysis prior

does not take into account individual variability, it is not affected by the repro-

ducibility issue of individual data. Therefore, it is not possible to conclude which

is better, but in terms of reproducibility, there is potential in using meta-analysis

data as prior information. This is supported by the fact that the results of the

two group analyses were very similar (Fig. 5.11).

Our approach is also easily applicable to the source reconstruction problems of

EEG. As demonstrated previously (Takeda et al., 2019), hVB estimation for EEG

data is supported in VBMEG software. And RSP can use EEG data as same as

MEG because formulations are same for EEG. We expect the low measurement

cost of EEG to make it suitable for combination with meta-analysis fMRI data.

The use of the meta-analysis fMRI prior would be a significant step in the

development of MEG studies. This is because the advent of OPM has shown

remarkable results in reducing the cost of MEG measurements and expanding

the measurement targets (Boto et al., 2018; Hill et al., 2019; Lin et al., 2019;

Tierney et al., 2020). However, the number of sensors in the current OPM devices

is limited to dozens due to physical constraints (Hill et al., 2020). Therefore, it

65



would be important to gain the ability to add prior information that is comparable

to a low-CNR individual fMRI prior without the cost of measurement.
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Appendix

A. Hierarchical variational approximation

The hVB approximates the joint posterior distribution Eq. (2.23) using the dis-

tribution Q(J , β,A) (Sato et al., 2004). It is obtained by maximizing the fol-

lowing free energy F (Q) under the independent decomposition assumption that

Q(J , β,A) = Q(J , β)Q(A):

F (Q) =

∫
Q(J , β,A)log

[
P (J , β,A,B)

Q(J , β,A)

]
dJdβdA

= logP (B)−KL[Q(J , β,A)||P (J , β,A|B)]. (A.1)

Here, maximizing the free energy guarantees maximizing the lower bound of the

evidence P (B) (Bishop, 2006). As a result, the maximization of free energy is

realized as a sequential optimization for below Q(J , β) and Q(A) (Sato et al.,

2004):

Q(J ,β) =
T∏
t=1

N (jt|j̄t, (βS)−1)Γ(β|βp, γβp), (A.2)

S = G⊤ΦG+ Ā, (A.3)

j̄t = S−1G⊤ΦBt, (A.4)

βp
−1 =

1

TN
Tr

[(
GĀ

−1
G⊤ +Φ−1

)−1
T∑
t=1

BtB
⊤
t

]
, (A.5)

γβp =
TN

2
, (A.6)

Q(A) =
N∏

n=1

Γ(αn|αnp, γp), (A.7)

γp = γ0 +
T

2
, (A.8)

α−1
np =

[
γ0
αn0

+
1

2

T∑
t=1

(
βpj̄

2
n,t + S−1

n,n

)]
γ−1
p , (A.9)

where j̄t is the mean of posterior current distribution at time point t and Ā =

diag(α1p, α2p, . . . , αNp) is the posterior precision matrix of the currents. j̄l,m and
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Sl,m are the l,m elements of j̄t and S, respectively. When we introduce the prior

weight Eq. (2.24) to Eq. (A.9), we can derive Eq. (2.25). The hVB algorithm

evaluates Q(J , β) and Q(A) iteratively until the free energy converges.

B. Spatial smoothness constraint

When conducting current source reconstruction using hVB, a smoothness con-

straint is incorporated (Yoshioka et al., 2008). To do this, we modeled current

sources as

j = Wz, (B.1)

where W is a spatial filter having a Gaussian profile with a full width at half

maximum (FWHM) of 8 mm, and z is an auxiliary variable. Then, the forward

model Eq.(2.2) can be replaced by

b = GWz + ε

= Gwz + ε, (B.2)

where Gw = GW is a smoothed lead field matrix. Therefore, the source recon-

struction becomes the problem of estimating z using Gw. For a fair comparison,

we filtered the estimations of wMNE and Champagne using the same W . Note

we confirmed that this process did not bring a disadvantage for any method in

terms of either temporal or spatial assessment.
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C. Distribution of CNR and PSC

Figure C.1. Distribution of calculated CNR and PSC for the visual simulation

setting. The upper figures show CNR, and the lower figures show PSC. Each

column corresponds to a different significance level, p<0.001, 0.01, or 0.05 from

left to right. We report results only on truly activated voxels. The number in

parentheses of CNR0.5 denotes the number of voxels, and it is the same for other

CNRs because it is modulated by significance level. The boxplot inside the violins

represent the interquartile range, and the white dot shows the median value.
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Figure C.2. Distribution of calculated CNR and PSC for the motor simulation

setting. The upper figures show CNR, and the lower figures show PSC. Each

column corresponds to a different significance level, p<0.001, 0.01, or 0.05 from

left to right. We report results only on truly activated voxels. The number in

parentheses of CNR0.5 denotes the number of voxels, and it is the same for other

CNRs because it is modulated by significance level. The boxplot inside the violins

represent the interquartile range, and the white dot shows the median value.

D. List of meta-analysis dataset

Table D.1: List of meta-analysis dataset of 129 terms

Domain Term
Default Mode affect
Default Mode arousal
Default Mode assessment
Default Mode autobiographical memory
Default Mode awareness
Default Mode basal ganglia
Default Mode belief
Default Mode confidence
Default Mode context
Default Mode default mode
Default Mode detection
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Default Mode distress
Default Mode dorsal attention
Default Mode emotion
Default Mode emotion regulation
Default Mode empathy
Default Mode episodic memory
Default Mode evaluation
Default Mode examination
Default Mode fear
Default Mode frontostriatal
Default Mode hippocampal
Default Mode identification
Default Mode inference
Default Mode inhibitory
Default Mode interacting
Default Mode knowledge
Default Mode limbic
Default Mode memory
Default Mode memory encoding
Default Mode memory retrieval
Default Mode mentalizing
Default Mode mind
Default Mode morphological
Default Mode navigation
Default Mode negative affect
Default Mode olfactory
Default Mode perspective
Default Mode practice
Default Mode prefrontal temporal
Default Mode recognition memory
Default Mode recollection
Default Mode reward
Default Mode salience
Default Mode self
Default Mode self referential
Default Mode semantic memory
Default Mode sexual
Default Mode social
Default Mode social cognition
Default Mode stress
Default Mode subcortical
Default Mode sustained attention
Default Mode task positive
Default Mode temporal parietal
Visual attentional control
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Visual body
Visual competing
Visual face
Visual meaningful
Visual motion
Visual object recognition
Visual observation
Visual occipitotemporal
Visual orienting
Visual parietal frontal
Visual planning
Visual prefrontal parietal
Visual preparation
Visual reasoning
Visual recognition
Visual representation
Visual retrieval
Visual sensorimotor
Visual spatial attention
Visual switching
Visual visual
Visual visual attention
Visual visuomotor
Visual visuospatial
Visual working memory
Fronto Parietal attention
Fronto Parietal choice
Fronto Parietal cognitive control
Fronto Parietal conflict
Fronto Parietal decision making
Fronto Parietal domain general
Fronto Parietal executive control
Fronto Parietal expected
Fronto Parietal feedback
Fronto Parietal fronto parietal
Fronto Parietal goal
Fronto Parietal learning
Fronto Parietal maintenance
Fronto Parietal monitoring
Fronto Parietal motivational
Fronto Parietal prediction
Fronto Parietal response inhibition
Fronto Parietal risk
Auditory access
Auditory auditory
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Auditory categorization
Auditory coding
Auditory fronto temporal
Auditory integration
Auditory language
Auditory language comprehension
Auditory lexical
Auditory naming
Auditory phonological
Auditory reading
Auditory semantic
Auditory speech
Auditory speech production
Auditory task control
Auditory temporal frontal
Motor action
Motor action observation
Motor cerebellar
Motor coordination
Motor discrimination
Motor endogenous
Motor eye movement
Motor imagery
Motor imitation
Motor intelligence
Motor mirror neuron
Motor motor
Motor motor control
Motor motor imagery
Motor orientation
Motor rhythm
Motor somatosensory
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E. Supplementary figures of hVB results

Figure E.1. Comparison of spatial correlation with various methods for the visual

task (left) and the motor task (right). The results of the hVB estimation with the

uniform prior, the individual fMRI priors (CNR=0.5, 1, 3, 5, 10), the common

truth prior, and the meta-analysis priors (synthesized using the terms “visual”

and “motor”) are reported. These priors are used with the best prior weight pa-

rameter denoted in parentheses. Vertical axes indicate the correlation coefficient

of the spatial map (upper is better). The error bar represents standard error of

the mean over ten different Monte Carlo repetitions for the data generation. We

display results of a realistic simulation setting (p<0.05, SNR5) determined using

experimental data. The results of wMNE and Champagne are also shown as a

control.
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Figure E.2. Comparison of temporal correlation with various methods for the

visual task (left) and the motor task (right). The results of the hVB estimation

with the uniform prior, the individual fMRI priors (CNR=0.5, 1, 3, 5, 10), the

common truth prior, and the meta-analysis priors (synthesized using the terms

“visual” and “motor”) are reported. These priors are used with the best prior

weight parameter denoted in parentheses. Vertical axes indicate the correlation

coefficient of the time series (upper is better). The error bar represents stan-

dard error of the mean over ten different Monte Carlo repetitions for the data

generation. We display results of a realistic simulation setting (p<0.05, SNR5)

determined using experimental data. The results of wMNE and Champagne are

also shown as a control.
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Figure E.3. Comparison of aggregate scores with various methods for all simula-

tion settings (visual task). The results of the hVB estimation with the uniform

prior, the individual fMRI priors (CNR=0.5, 1, 3, 5, 10), the common truth prior,

and the meta-analysis priors (synthesized using the terms “visual” and “motor”)

are reported. These priors are used with the best prior weight parameter denoted

in parentheses. Vertical axes indicate the aggregate score (upper is better). The

error bar represents standard error of the mean over ten different Monte Carlo

repetitions for the data generation. We display results of all simulation settings

(3 SNR by 3 wCI (denoted as thresholds of the common truth)).
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Figure E.4. Comparison of aggregate scores with various methods for all simula-

tion settings (motor task). The results of the hVB estimation with the uniform

prior, the individual fMRI priors (CNR=0.5, 1, 3, 5, 10), the common truth prior,

and the meta-analysis priors (synthesized using the terms “visual” and “motor”)

are reported. These priors are used with the best prior weight parameter denoted

in parentheses. Vertical axes indicate the aggregate score (upper is better). The

error bar represents standard error of the mean over ten different Monte Carlo

repetitions for the data generation. We display results of all simulation settings

(3 SNR by 3 wCI (denoted as thresholds of the common truth)).

77



Figure E.5. Score comparison of meta-analysis prior synthesized using detailed

terms (visual task). The results of the hVB estimation with the uniform prior,

the individual fMRI priors (CNR=0.5, 1, 3, 5, 10), the common truth prior, and

the meta-analysis priors (synthesized using the terms “face” and “object recogni-

tion”) are reported. These priors are used with the best prior weight parameter

denoted in parentheses. The horizontal line colored magenta indicates the ag-

gregate score of the term “visual” with prior weight 3e-1. Vertical axes indicate

the aggregate score (upper is better). The error bar represents standard error of

the mean over ten different Monte Carlo repetitions for the data generation. We

display results of a realistic simulation setting (p<0.05, SNR5) determined using

experimental data. The results of wMNE and Champagne are also shown as a

control.
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Figure E.6. Score comparison of meta-analysis prior synthesized using detailed

terms (motor task). The results of the hVB estimation with the uniform prior,

the individual fMRI priors (CNR=0.5, 1, 3, 5, 10), the common truth prior, and

the meta-analysis priors (synthesized using the terms “foot” and “hand”) are

reported. These priors are used with the best prior weight parameter denoted in

parentheses. The horizontal line colored magenta indicates the aggregate score

of the term “motor” with prior weight 1e-2. Vertical axes indicate the aggregate

score (upper is better). The error bar represents standard error of the mean over

ten different Monte Carlo repetitions for the data generation. We display results

of a realistic simulation setting (p<0.05, SNR5) determined using experimental

data. The results of wMNE and Champagne are also shown as a control.

F. Signal leakage analysis using resolution kernel

Because of the ill-posedness of the source reconstruction problem, there are linear

relations between reconstructed sources. Therefore, signals are spread from real

activity to other regions and cause spurious activations. This phenomenon is

called signal leakage or source leakage (Brookes et al., 2012; Colclough et al.,

2015; Palva et al., 2018; Sato et al., 2018). To consider the impact of signal
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leakage, we employed the resolution kernel (Sekihara et al., 2005).

In the absence of noise, the forward model is b = Gj using observations

b, lead field matrix G, and real currents j. Then, reconstructed currents j̄ is

calculated as

j̄ = Lb

= LGj, (F.1)

where L is an inverse filter. Here, we define R = LG as the resolution kernel.

As the above equation indicated, R tells us how the real currents spread in the

reconstructed one. For example, the i-th column of this matrix indicates the

signal spread of the i-th current of j. Although ideal R is a diagonal matrix, it

is impossible due to the ill-posedness.

We computed a resolution kernel derived with the meta-analysis fMRI prior

(“visual”) and plotted a column of the right ventral occipitotemporal cortex

(VOTC). This region is a part of the fusiform gyrus and is known for the face-

selective response (Jonas et al., 2016). As the figure displayed, many signals

could be leaked from the right VOTC to the right insular cortex. It suggested

that the reconstructed currents on the insula were leakage from the fusiform gyrus

(Fig. 5.11). Note that similar results were obtained with the inverse filter of an

individual fMRI prior.
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Figure F.1. Resolution kernel at the ventral occipitotemporal cortex is displayed

on the cortex. Intensity indicates the degree of signal leakage from the right

ventral occipitotemporal cortex (marked as a white circle). It is calculated using

the resolution kernel derived with the meta-analysis fMRI prior (“visual”). This

figure is of sub-15 of experimental data.
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