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Towards Low-Cost and High-Reproducible
MEG Current Source Reconstruction using
Meta-Analysis fMRI Data*

Keita Suzuki

Abstract

Magnetoencephalography (MEG) offers a unique way to noninvasively inves-
tigate millisecond-order cortical activities by mapping sensor signals (magnetic
fields outside the head) to cortical current sources using current source recon-
struction methods. Current source reconstruction is defined as an ill-posed in-
verse problem, since the number of sensors is less than the number of current
sources. One powerful approach to solving this problem is to use functional MRI
(fMRI) data as a spatial constraint, although it boosts the cost of measurement
and the burden on subjects. Here, we show how to use the meta-analysis {MRI
data in two different ways instead of the individually recorded fMRI data. In the
first approach, single meta-analysis fMRI data was imported as prior informa-
tion of the hierarchical Bayesian estimation to mitigate the differences between
the meta-analysis and individual data. In the second approach, a combination
of multiple meta-analysis fMRI data was automatically selected based on MEG
data and used as prior information of currents. Using simulations, we found
the performances of both approaches were better than conventional methods.
Notably, the first approach showed better performance than the estimation us-
ing low-quality individual fMRI data. By applying experimental data of a face
recognition task, we qualitatively confirmed that group analysis results using the

first approach showed a tendency similar to the results using the individual fMRI

*Doctoral Dissertation, Graduate School of Information Science, Nara Institute of Science
and Technology, June 18, 2021.



data. Using the second approach, in addition to reconstructing a plausible cur-
rent map, it also estimated related terms derived from meta-analysis data. Our
results indicate that the use of meta-analysis fMRI data improves current source
reconstruction without additional measurement costs and leads to reproducible

results because of omitting the contaminated prior information.
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1. Introduction

Non-invasive neuroimaging measurements can record human brain activities while
avoiding the risks of brain surgery. It is a tremendous feature in revealing our
brain functions (Baillet, 2017) and also the treatment of brain dysfunctions caused
by diseases such as autism (Kikuchi et al., 2016), schizophrenia (Rojas, 2019),
epilepsy (Stefan and Trinka, 2017), and so on (Uhlhaas et al., 2017). Today,
major neuroimaging modalities are broadly divided into two types: those that
measure hemodynamic response and electromagnetic signals.

The modalities that measure hemodynamic response include functional mag-
netic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS).
In particular for fMRI, due to its high spatial resolution and the established way
of reporting based on the standard brain (MNI-ICBM152), a massive amount of
research is reported, and consequently, meta-analysis studies are popular (Laird
et al., 2011; Smith et al., 2009; Dockes et al., 2020; Yarkoni et al., 2011). How-
ever, the temporal resolution of fMRI is fundamentally limited because of the
slow hemodynamic response to neural activities.

On the other hand, magnetoencephalography (MEG) and electroencephalo-
gram (EEG) detect fluctuations of magnetic/electric fields caused by synchronized
activities of cortical pyramidal neurons. Therefore, these modalities record neu-
ral activity induced signals directly with millisecond-order temporal resolution
(M. hamalainen, Hari, Ilmoniemi, Knuutila, and Lounasmaa, 1993). Here, the
process of measuring current sources using sensors is formulated as the forward
problem. Conversely, we can discuss the measured activity on a cortex by map-
ping signals from sensors to sources; known as the inverse problem or current
source reconstruction (Baillet, Mosher, and Leahy, 2001; Gross et al., 2013).

Therefore, by solving the inverse problem of MEG/EEG, we can obtain neu-
rophysiological data with not only high temporal but also adequate spatial res-
olution. Furthermore, fMRI and its meta-analysis data can be combined in the
inverse problem solution to enhance the spatial resolution.

In this article, we focused on MEG rather than EEG because of its higher
spatial accuracy. However, we note that our proposals and discussions are also
applicable to EEG.



1.1 Forward problem

The purpose of the forward model is to formulate the relationships between the
activities of current sources and sensor signals. It consists of three subcompo-
nents: the source model, the head model, and the measurement model.

For the first, what the source model describes is the electrophysiology of neu-
rons and the assumption on currents. When excitatory postsynaptic potentials
(EPSPs) are generated at apical dendrites, intracellular currents flow from apical
dendrites to the soma of a pyramidal cell. This currents flow is known as primary
currents. MEG mainly records the primary currents while the primary currents
also generated extracellular currents called secondary currents. Although the
primary currents of a single neuron are too small to generate observable signals,
dendrites of cortical pyramidal cells are arranged perpendicularly to the cortical
surface. Consequently, synchronously fluctuating dendric currents enable to ob-
serve electromagnetic signals, and synchronized activity of tens of thousands of
neurons is regarded as a current dipole. The dipole fitting model is one of the
source models and it assumes that only a few numbers of dipoles are activated si-
multaneously. A key problem with this model is that the number of sources must
be decided a priori and the result approximates currents as few dipoles even if it
is distributed. On the other hand, distributed source models assume that each
vertex of the head model has a dipole and model the distribution of them. Our
study model the sources as a distributed source model.

The shape of the subject’s head is modeled as a 3D polygonal model. In gen-
eral, current sources are assumed on vertices of the cortex piece of the polygon.
The simplest one is a spherical model specified by the origin of the sphere and
its radius. However, it does not consider the shapes of the cortex. Therefore,
structural information derived from MRI data is used to construct a realistic
model. Then, the number of vertices controls the difficulty of the inverse prob-
lem in a trade-off between the ill-posedness and the structural constraint. The
more vertices induce not only better structural constraint but also worse ill-posed
condition. Although it depends on the purpose of the study, thousands of current
sources are commonly assumed (Henson et al., 2009).

The measurement model reflects the type, positions, and orientations of the

MEG sensors. The type of MEG sensors is categorized as magnetometer or



gradiometer. The magnetometer uses a coil and detects magnetic fields, including
many signals outside the head. The gradiometer uses two coils in the opposite
direction and detects differential signals of them. Hence, magnetic fields far from
coils cancel each other, and only magnetic fields generated close to the coils
are detected by the gradiometer. Most MEG sensors are equipped with both
magnetometer and gradiometer. Their sensor information is incorporated in the
volume conductor model.

Given the source model, the head model, and the sensor model, the volume
conductor model formulates the equations that describe the relationships be-
tween the current sources and the sensors by solving Maxwell " s equations under
quasi-static conditions. They are numerically calculated using boundary-element
methods or finite-element methods. Consequently, the forward model is sum-
marized into a matrix called the lead field describing the relationships between
sources and sensors as linear equations. When discussing the inverse problem, we

regard a lead field matrix is known.

1.2 Inverse problem

The current source reconstruction methods using the distributed source model
rely on solutions of the inverse problem, which is an ill-posed problem requiring
constraints in addition to data, since the number of observed signals is only a
few hundred, whereas the number of considered current sources is in the thou-
sands. This problem is similarly defined for electroencephalogram (EEG), which
observes changes in the electric field caused by neural activity. Many studies
have proposed various types of additional constraints and ways to incorporate
them in the mathematical model. The most straightforward but powerful one
is minimum norm estimation (MNE) (Haméldinen et al., 1993; Hamaéldinen and
[lmoniemi, 1994; Wang et al., 1992). The MNE solution is obtained by minimiz-
ing a cost function consisting of a data-fitting error and the L2 norm of currents.
Moreover, a number of extensions of MNE have been proposed: incorporating
a Laplacian filter resulting in a spatial smoothness solution (LORETA and its
family; Pascual-Marqui et al., 1994, Pascual-Marqui, 2007, 2002), weighting the
lead field matrix to consider depth structure (wMNE; Lin et al., 2006), consid-

ering data-adaptive prior distribution on each source to obtain a spatially sparse



solution (Champagne; Cai et al., 2021; Owen et al., 2012; Wipf et al., 2010),
and in the data-adaptive scheme, composing a current covariance matrix as a lin-
ear combination of candidate components (multiple sparse priors; Friston et al.,
2008). For more details and recent reviews of MEG/EEG source reconstruction,
refer to the article or book (He et al., 2018; Sekihara and Nagarajan, 2015).

On the other hand, when the functional constraint is considered, fMRI data
are ideal due to the characteristics of high spatial resolution. Dynamic statistical
parametric mapping (ASPM; Dale et al., 2000) uses an fMRI statistical map as a
hard constraint of the source current variance by assuming that the prior current
variances are fixed according to the fMRI statistical map. The hierarchical vari-
ational Bayesian (hVB) estimation approach (Sato et al., 2004) similarly uses an
fMRI statistical map but incorporates it as a soft constraint of current variance by
assuming that the prior current variances are random variables with probabilistic
distributions having parameters according to the fMRI statistical map (i.e., they
incorporate the fMRI map into the hierarchical prior of the current variance).
Therefore, even if the intrinsic difference in the measurement principles of fMRI
and MEG causes a discrepancy between the spatial patterns of the fMRI activa-
tion map and the source current map (Kaneoke, 2006), the hVB approach is able
to resolve such discrepancies.

Although the fMRI prior information leads to significant improvement in
terms of spatial accuracy, there are practical problems. First, it requires ad-
ditional cost to measure the fMRI data. It increases not only the measurement
cost but also the burden on the subject. This burden also causes a decrease
in measurement quality and leads to a second issue. It is also inapplicable to
a published MEG dataset without fMRI records. Furthermore, when targeting
modalities with lower measurement costs, such as an EEG or an optically pumped
magnetometer (OPM) (Boto et al., 2018), the measurement cost of fMRI will be-
come relatively more serious. As a second problem, the reliability of individual-
level statistical maps is not always sufficient, especially for cognitive or emotional
tasks that induce smaller signal changes compared with visual and motor tasks
(Elliott et al., 2020). The quality of fMRI data is strongly influenced by the
subject’s condition and noise caused by a system and physiology (Geissler et al.,
2007; Welvaert and Rosseel, 2013).
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Figure 1.1. Hlustration of the forward and inverse problem. The forward problem
is modeling the lead field matrix G. It is calculated using the sensor positions,
types, and a head model. Under the modeled G, the observation process of
magnetic fields’ time series B (M sensors by T' time points) are expressed by
the multiplication of G and currents’ time series J (N sources by T time points)
with adding measurement noise €. On the other hand, the goal of the inverse
problem is summarized in deriving the inverse filter L. Then, the currents’ time
series are reconstructed by the multiplication of L and B. Note that J and B
are visualized as a topography here using a head model and sensor positions,

although actual data are time series signals.

1.2.1 Our contribution

In this study, to solve the issues mentioned above, we propose two different ap-
proaches using meta-analysis fMRI data as a prior information instead of an in-

dividual prior. The meta-analysis fMRI data form a statistical map synthesized



from thousands of published fMRI studies. We used the meta-analysis results
available from the Neurosynth open-source project (Yarkoni et al., 2011).

A key idea of the first approach is that we took single meta-analysis data as
the hierarchical prior distribution of the current variance in hVB estimation (Sato
et al., 2004) rather than the prior current variance as in the dSPM approach, since
the former provides an adaptive way to incorporate fMRI information based on
MEG measurements. The feasibility of meta-analysis fMRI data as prior infor-
mation was assessed by comparing the results of source reconstruction with those
estimated using an individual fMRI prior. The results were quantitatively and
qualitatively evaluated using simulated and experimental data, respectively. For
the simulation, we conducted multi-modal data generation. Both fMRI and MEG
data were generated based on the same ground truth to mimic a situation in which
these are obtained from an individual. In order to bring the statistical properties
of simulated data closer to those of real data, this simulation adopted real data
to the extent possible. Using simulated data, we studied the effectiveness of a
meta-analysis fMRI prior compared with a contaminated individual fMRI prior.
We also investigated the appropriate range of an important hyper-parameter we
call prior weight. Using experimental data, we conducted group analysis using
the meta-analysis fMRI prior. Furthermore, we verified whether it is possible to
select optimal meta-analysis fMRI prior based on a statistical criterion for both
simulated and experimental data.

As mentioned in the discussion chapter, the selection of the meta-analysis
data is one of the most critical points for the first approach. Moreover, the re-
sults of meta-analysis data selection suggest the possibility of the combined meta-
analysis data as prior information. Therefore, we propose another approach that
uses meta-analysis data as prior information but the selection of them is auto-
matically determined using observation data. For this approach, named relevant
spatial prior (RSP) estimation, we conducted evaluations using another simula-

tion setting and the same experimental data.

1.3 Dissertation outline

The outline of this dissertation is illustrated in Fig. 1.2. The main topic is our

two approaches for the current source reconstruction, hVB and RSP. After the



Introduction chapter, we mathematically described the inverse problem in Math-
ematical formulation of the source reconstruction chapter. Here, we tried to ex-
plain both approaches in the general framework. Next, we introduced Materials
and Methods common to both approaches. After that, the thesis is branched into
two flows. Both flows include details of simulated and experimental data and
the results of the analysis. Finally, flows are merged into the Discussion chapter.

Supplemental information is summarized into several appendix chapters.

Chapter 1
Introduction

Chapter 2
Mathematical formulation
of the source reconstruction

v

Chapter 3
Materials and Methods
|

' v

Chapter 4 Chapter 6
Simulation and Experimental Simulation and Experimental
data for hVB data for RSP
Chapter 5 Chapter 7
Results for hVB approach Results for RSP approach

[ [
v

Chapter 8
Discussion

Figure 1.2. Outline of the dissertation.



2. Mathematical formulation of the source re-

construction

In this chapter, we formulate the inverse problem of source reconstruction as
mathematical expressions. In particular, we introduce that the problem is gener-
ally explained as the differences of the prior of the current covariance in Bayesian

perspective. Here we show the notations for convenience.

Table 2.1. List of mathematical notations
Symbol | Definition

1 Vector consists of ones.

1 Identity matrix.
P(z) Probability distribution of random variable x.
P(z|y) Conditional probability distribution of x given .

N (z|p,0?%) | Univariate Gaussian distribution over x with mean u

and variance o2.

N(x|p,X) | Multivariate Gaussian distribution over & with mean

vector p and covariance matrix 3.
INGY) Gamma function defined as [ 7~ e "dt.

['(a]ag,v0) | Gamma distribution over o with mean o and degree of

freedom ~yy. Defined as m(a%/ao)%e*a%/“o.

2.1 Bayesian formulation of current source reconstruction

From the Bayesian perspective, the inverse problem is commonly formulated as

Pol3) ()

P(Ib) = =R

(2.1)

where j = {j,|/n = 1 : N} is neural activities on N dipoles, and b = {b,,|m =
1: M} is observed MEG recordings by M sensors. Since the purpose of current

source reconstruction is to estimate current source 3 from the observed magnetic



field data b, a posterior distribution P(j|b) is what we want. The right-hand
side is composed of a likelihood P(b|j), a prior of currents Fy(7), and a marginal
likelihood P(b). As mentioned in the section 1.1, we assume that the currents
7 and MEG recordings b are linearly related through the lead field matrix G =
{Gpnm =1: M,n=1: N} (Haméldinen et al., 1993) as

b=Gj +¢, (2.2)

where € is the observation noise. When we assume the observation noise to be
white noise, € follows a Gaussian distribution with the diagonal covariance o1

Then, the likelihood function is written as
P(blj) = N(b|Gj,o"I). (2.3)

The above likelihood is commonly assumed for most source reconstruction meth-
ods. Hence, the differences in methods are mainly explained as the differences in
the assumptions on the prior distribution Py(j). When we assume that the prior

distribution is Gaussian with mean 0 and some covariance matrix A~', then
Py(j) = N (4]0, A7), (2.4)

Under this prior distribution, the right-hand side of Eq.(2.1) follows a Gaussian.
Therefore, the left-hand side of Eq.(2.1) is a Gaussian distribution as well. Here

we express the posterior distribution using mean j and covariance A™" as
P(jlb) = N(jl3,A7"). (2.5)

To calculate 5 and A™*, we simplify the exponential part of Eq.(2.5) as

1 . T . = 1 .T . T 4>
—5(3 —J) AG—73)= —5d Aj+i Aj+C (2.6)

C denotes terms unrelated to 3. Next, when we focus on j, denominator of
the right-hand side of Eq.(2.1) is ignored. Hence, the exponential part of the
right-hand side of Eq.(2.1) is reformulated as a quadratic expression for j using
Eq.(2.3) and (2.4) as

1 1
— {076~ G3) (b~ Gi)+5T Aj} = — 3T (A+07 G G+ GTb+C.
(2.7)



By comparing Eq.(2.6) and (2.7), mean and precision (inverse of covariance) of
the posterior Eq.(2.5) are calculated as

1
A=A+=G'G, (2.8)
g
j= e, (2.9)
0-2

J is a minimum mean squared error (MMSE) estimation and also it corresponds to
a maximum a posteriori (MAP) estimation because mean and mode of a Gaussian
distribution are same. Practically, the size of A™" in Eq.(2.9) is N by N (N is thou-
sands) and this inversion is computationally heavy, therefore it is reformulated
using the matrix inversion (X '+Y ' Z7'Y)"'Y'Z ' = XY (YXY ' +2)},

j=A"'G(GA'G" +o’I)"'b
= A'G"S'b, (2.10)

while S = (GA™'G" + ¢°I) is called model data covariance and is a covariance
of marginal likelihood P(b).

Here, 0_—12/1_1(}'T = A'G"S 7! is an inverse filter L because it maps observa-
tions b to estimated currents j. Furthermore, characteristics of an inverse filter
are summarized in A, the precision matrix of the prior distribution. It means that

differences in methods reflect differences in knowledge of current distribution.

2.2 Temporal expansion

In the previous section 2.1, we assumed that we have data at only a single time
point. However, data has many time points in the real situation. Therefore, we
expand the formulations to the temporal direction.

When we estimate currents of T time points J = (J;,...,57) € R¥*T us-
ing temporally independent and identically distributed (i.i.d) observations B =
(b1, ...,br) € RM*T then a Bayesian theorem Eq.(2.1), a likelihood Eq.(2.3), and
a prior distribution Eq.(2.4) are rewritten as

P(B|J)R(J)

P(J|B) = =g

(2.11)

10



= [[V®iGy,, 0T, (2.12)

=[[VGilo, A7), (2.13)

By following similar calculations in section 2.1 using above two equations, the
same inverse filter is derived. Then, estimation of T time points J = (j,...Jr) €
RY*T is calculated as
- 1
J=—=A"'G'B (2.14)
o

= A'G'S'B. (2.15)

2.3 Minimum norm estimation

The minimum norm estimation (MNE) is one of the most classical and commonly
used method (Hamaéldinen et al., 1993; Haméldinen and Ilmoniemi, 1994; Wang et
al., 1992). While it is originally derived in the context of constrained optimization

problems, the solution of MNE can be characterized by the below prior
Fy(3) = P(jla)
= N(jl0,a7"1), (2.16)

where ol is a diagonal precision matrix. The MAP estimation is calculated using
Eq.(2.9) as

0?2\«

1 /1 1 !
j= (—I+—2GTG) G'b
g
o? !
:(—I+GTG> G'b. (2.17)
(6%
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As the prior Eq.(2.16) indicated, MNE assumed that current dipoles are in-
dependent of each other and there is no knowledge on amplitudes of them.

If we have specific knowledge of each dipole, it is simply incorporated in
diagonal elements of the precision matrix of the prior distribution. Then, the

prior distribution is

Fy(3) = P(ila)

= N(jl0,A7"), (2.18)
where A = diag(ay, s, ..., ay) is the diagonal precision matrix of the currents
and a = (ay, @9, ...,ay)T is a vector of diagonal elements. Dynamic statistical

parametric mapping (dSPM; Dale et al., 2000) uses an fMRI statistical map to
determine this A. Therefore, the estimated current map of dASPM reflects the
fMRI data as a hard constraint. However, if there is a discrepancy between the
spatial patterns of the fMRI activation map and the source current map due to
the difference in the measurement principles of them (Kaneoke, 2006), the result
also reflects such errors. In section 2.4, we introduce another way to use a prior

data as a soft constraint.

2.4 Hierarchical variational Bayesian estimation

For the hierarchical variational Bayesian estimation (hVB; Sato et al., 2004),
we assume the observation noise € follows an identically independent Gaussian
distribution A/(0, (8®)~!), where 3 is a scaling parameter and ® is a noise pre-
cision matrix scaled by 8 (® is normalized to satisfy tr(®) = M and is typically
determined from pre-stimulus rest period measurements),.

To incorporate spatial data as a soft constraint, the hVB model assumes the

prior distribution in a hierarchical way:

Fy(J|A) = Fy(J]A, B)

= [IVGo.(3a)™). (2.19)
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= H I'(anlano, 70), (2.20)
I(alao, 7o) = a&%) (aryo/ ap) e/, (2.21)
Po(B) = 1/8. (2.22)

I'(a]ag, 7o) represents a Gamma distribution with mean o and degree of freedom
Yo, where I'(yg) = fooo t~-le~tdt is the Gamma function. Here, oy is determined
based on fMRI information as a,, oc fMRIZ,
tistical value of the nth dipole. Equation (2.22) is the prior distribution of the
scaling parameter /3, defined as a non-informative prior distribution.

Using the likelihood function Eq. (2.12) and the prior distributions Eq. (2.19),

(2.20), (2.22), we compute the joint posterior distribution of the current J, prior

where fMRI,, is an imported sta-

precision A, and scaling parameter § given the magnetic field B as follows:
P(B|J,3)Fy(J|A, B)Py(A)Fo(B)
P(B) '

However, it cannot be solved analytically because the marginal likelihood P(B)

P(J,A,[(|B) =

(2.23)

involves integration over A. Therefore, the approximated posterior distribution
is calculated using the variational Bayesian method. The resulting algorithm
consists of iterative updating of the posterior distribution Q(J, ) and Q(A)
(Appendix A).

We used the VBMEG toolbox (Takeda et al., 2019) to conduct the hVB
estimation. In the VBMEG implementation, the hyperparameter called the prior
weight controls the relative confidence between the fMRI information and the
observed MEG. The prior weight w is defined as

w= 10
’70+T/27

where 7y is the degree of freedom of the hierarchical prior distribution. The

(2.24)

prior weight ranges from 0 to less than 1. This confidence parameter appears in

updating the current variance a;,!:
3 T
a,, = wayy + (1 —w) <? Zj27t> , (2.25)
t=1 Q(J,B)
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where <> indicates taking the expectation with respect to the posterior distribu-
tions of J and 3. The left-hand side denotes the updated nth current ’ s variance
o, The first term of the right-hand side means fMRI information, and the
second term is current sources calculated from observed MEG data with T time
points. When we set the prior weight close to 1, the resulting prior distribution
tends to have peaks at the places where the fMRI information has a high value.
This indicates strong confidence in the fMRI information in the estimation. On
the other hand, if it is set to a small value, the result tends to emerge according
to the MEG data. To represent the strongest confidence in the fMRI information,
we set w = 0.99999999. Note that if the prior weight is 0, then we use only the
fMRI information as the initial value of o, ;.
cludes false positive activities, hVB estimation is able to suppress them by setting

Even if the prior information in-

the proper value on the prior weight (Yoshioka et al., 2008).

Our first approach incorporates a meta-analysis fMRI data instead of an indi-
vidual fMRI data using hVB estimation. The incorporated meta-analysis {MRI
data is selected by experimenter beforehand. As discussed in Discussion chapter,

it might bring a selection bias on results.

2.5 Relevant spatial prior estimation

To overcome the selection bias and express prior data as the combination of
multiple meta-analysis data, we introduce relevant spatial prior (RSP) estimation.
It is inspired by the formulation of multiple sparse priors (MSP; Friston et al.,
2008) and dependent relevance determination (DRD; Wu et al., 2019). MSP is one
of the source reconstruction methods that incorporate multiple prior information

such as a depth structure, a smoothness between dipoles, and also the minimum
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norm constraint by constructing the covariance of prior distribution as

Ail:wlCl—l—...—l—prp

P
=> w,C,, (2.26)
p=1
w, = exp(u,), (2.27)
u, ~ N(m, k™), (2.28)
w ~ N (ml, kI, (2.29)

where P is the total number of prior data, C, € R¥*V is the pth covariance
matrix, w, is the weight of the pth covariance, and u, is the log of w,. Each
covariance C, is determined using each prior knowledge (e.g., for MNE, C, =
a~1T) and the weighted sum of them is used as the covariance A~!. As above
indicated, each u, is independently follows Gaussian with parameters m and k
and exponential of it is used as weight to restrict the weight to a positive value.
MSP estimates posterior mean of currents and weights iteratively using restricted
maximum likelihood estimation (Patterson and Thompson, 1971). As a result,
weights of non-contributed priors are automatically pruned by the effect of ARD
(Neal, 1996).

RSP estimation is an expansion of MSP. It can incorporate multiple spatial

prior data using a structure of them. We defined that the covariance of RSP as

P
A~! = diag (Z wpdp>
p=1

= diag (Dw), (2.30)
w, = exp(u,), (2.31)
w~ N(ml, K), (2.32)

where d, = (d1, .. .,d,n)" € RY is a spatial data vector and D = (dy, dy, . .., dp)
RN¥*? is a whole dataset. Each data vector d, is determined using spatial data
such as fMRI data. Hence, the covariance matrix A~! is composed of a weighted
combination of spatial prior data. Furthermore, unlike MSP, RSP can incorporate

the relevance structure between data such as similarities of spatial patterns into
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K. Because K is a covariance matrix of the Gaussian process prior Eq.(2.32), it

can express the relationships between spatial data. Here, K is defined as

kii ... kepp
K = : , (2.33)
kpi ... kpp
where
ki; = pexp (—W) . (2.34)

k; ; includes hyper parameter p and [, and also dist function. p and [ are common
to all k;;, and control amplitude of k;; and dist, respectively. Function dist
measures some distance between two data. It can be designed using any feature

of the data. If we designed dist function as

0 (=)

then K becomes a scalar matrix and RSP is equivalent to MSP. By designing the

dist function properly, estimated weights of similar spatial data are kept together
by the effect of DRD (Wu et al., 2019).

Our second approach incorporates a set of meta-analysis data and estimates
the weights of them using RSP.
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3. Materials and Methods

In this chapter, we introduce the key materials and methods used to implement

our approaches (hVB approach and RSP approach).

3.1 Forward modeling using VBMEG

We constructed a brain model and a lead field matrix using the MATLAB open-
source toolbox VBMEG (https://vbmeg.atr.jp). The individual brain model
is constructed based on a subject = s T1-MRI image. First, we construct a poly-
gon model of the cortical surface using FreeSurfer (http://surfer.nmr.mgh.
harvard.edu/). From the polygon model, we select 10,004 vertices as the cur-
rent sources based on the predefined coordinate in the standard brain (MNI-
ICBM152). As a result, source locations of different subjects are aligned to those
of the standard brain while the sulcus-gyrus structure of each subject was main-
tained. This allows an easy comparison of the estimated source currents across
subjects for each source. Therefore, we can proceed to group analyses on the
source currents without any transformation. Next, we construct a 1-shell (cere-
brospinal fluid) head conductivity model. Based on the model, we make a lead
field matrix by solving the Maxwell equations with a boundary element method.
For more information on preparing the brain model and lead field matrix using
VBMEG, see Takeda et al., 2019.

3.2 Importing fMRI information

The statistical results of fMRI data were imported into a subject s brain model
using VBMEG. Original statistical maps (t-value for individual fMRI data and
z-value for meta-analysis fMRI) are defined on voxels, and thus they were trans-
formed to the cortical surface using an inverse-distance weighted interpolation
method. Imported fMRI information were used to calculate parameters in the

probability distribution of the prior current variances as described in chapter 2.
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3.3 Meta-analysis fMRI prior

A statistical map synthesized by Neurosynth (Yarkoni et al., 2011) (https://
neurosynth.org) was imported to calculate the hierarchical prior using VBMEG.
Neurosynth infers the regions associated with a term by mining thousands of
papers and conducting a type of multilevel kernel density analysis (Wager et al.,
2009). Therefore, the term must be selected by the experimenter when obtaining
the meta-analysis results. In order to generate the effective meta-analysis data
as prior information, the term must be related to the task of a MEG experiment.
However, there are many choices in the term for a task. Therefore, for hVB
approach, we selected the term from the highest layer of the ontology of each
task domain (Thompson and Fransson, 2017). Namely, the term “ visual ” was
chosen for the visual domain task and “motor” was chosen for the motor domain
task (see discussion on our choice of terms). For RSP approach, we tried to select
the related meta-analysis data from a set of data.

After generating the meta-analysis statistical maps, they were imported to
the subject ’ s brain model in the same way as the individual fMRI prior. The
synthesized meta-analysis maps (Fig. 3.1) were employed as the hierarchical fMRI
prior. Note, the results of hVB approach uses meta-analysis data synthesized

using Neurosynth v0.4 and RSP approach uses Neurosynth v0.7.
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Figure 3.1. Meta-analysis priors synthesized by the terms “visual” and “motor.”
These are synthesized using Neurosynth (v0.4) and imported into VBMEG ’ s
coordinate, and they are used for the prior information of current source recon-
struction. In hVB approach, the visual prior is used for the visual domain task,

and the motor prior is used for the motor domain task.

3.4 Performance evaluation of simulated data

Inspired by Owen et al. (2012), we evaluated the performance of source recon-
struction using the aggregate score of source-level spatial and temporal correla-
tions, defined as

SpatialCorrelation 4+ TemporalCorrelation
5 .
Since it is the average of Pearson ~ s correlation coefficients, it takes a value from

AggregateScore = (3.1)

-1 to 1. Here, the correlation coefficient of spatial maps was calculated between
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the simulated current map and the reconstructed one for each time point, and

they were averaged along the time axis:
L I
SpatialCorrelation = T 2 corrcoef (|77, |7:°°°")), (3.2)

where T is the number of time points (250 for hVB simulations and 50 for RSP
simulations) and |§;""°| and |§;°°*"| are the simulated current map and the recon-
structed current map at time ¢, respectively.

On the other hand, to calculate temporal correlation, we matched each true
source to the reconstructed source that has maximal Pearson’s correlation within
10 mm. Here, we define that 3¢ and 7" are true (simulated) and recon-
structed current time series at source n. Since most of the true sources have no
activation, we cannot simply calculate the averaged correlation coefficient among
sources as spatial correlation Eq. (3.2). Therefore, we computed the temporal

correlation using the following sequential source matching procedure:

1. Pearson’s correlation coefficients between 3¢ and 3" for all 10,004

sources were calculated. As aresult, a correlation coefficient matrix (10, 004 x
10,004) was derived.

2. The Euclidean distance matrix between all 10,004 sources was calculated.
Then, this matrix was thresholded at 10 mm. By applying this mask to
the correlation coefficient matrix computed in procedure 1, the source pairs

with over 10-mm distance were excluded.

3. The highest one of the remaining values was selected. Then, the selected
true source and the estimated one were considered a pair. The rows and
columns of the selected sources were removed from the masked correlation

matrix.

4. Procedure 3 was iterated until all true sources that have a non-zero activity

were paired.

After the matching procedure was completed, we took the average of correlations
of selected pairs and defined it as the temporal correlation in Eq. (3.1). This

procedure may result in true sources that do not have a matching target, and
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these were excluded from the analysis. We note that even in the worst case, such
sources accounted for only 0.004% of all sources and had almost no effect on the

results.
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4. Simulation and Experimental data for hVB

We explain the details of the simulation and experimental data to confirm the
hVB approach.

4.1 Data simulation

To evaluate the feasibility of meta-analysis fMRI data as the prior information of
current source reconstruction, we generated individual fMRI and MEG data with
two task conditions and several difficulty settings. Both fMRI and MEG data
were generated based on the same ground truth, which we call a common truth.
This procedure aggregated various datasets of several modalities (structural MRI,
fMRI, resting-state fMRI, diffusion MRI, and MEG sensor locations).

We generated two sets of data focusing on visual and motor experiments. The
simulated dataset of the visual domain was made using multi-modal datasets of
a face recognition task, which is publicly available from https://openneuro.
org/datasets/ds000117/versions/1.0.3/ (Wakeman and Henson, 2015). The
simulated dataset of the motor domain was made using the left-foot movement
task from the Human Connectome Project (Van Essen et al., 2012).

For all simulated data, we used the same brain model constructed from an
individual ” s data (subject No. 2 of Wakeman & Henson, 2015) using VBMEG.

4.1.1 Common truth

First, we randomly selected five subjects from both datasets (subject No. 2, 6,
9, 15, 16 for the visual domain, and No. 115724, 144933, 481951, 896879, 902242
for the motor domain). FMRI preprocessing, including realignment, slice timing
correction, normalization, and smoothing, were conducted for each subject using
the same parameters as those in the original study (we referred to Wakeman and
Henson (2015) for visual data and Van Essen et al. (2012) for motor data). Then,
task conditions against a baseline were contrasted. For the visual domain dataset,
we employed the face image recognition task (famous condition). For the motor
domain dataset, we employed the left-foot movement task (LFoot condition).

Then, we acquired one contrasted statistical map for each subject of both tasks.
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Next, group analysis was conducted using contrasted statistical maps of five
subjects for each task. Finally, the resulted statistical maps of group analysis
were thresholded with three levels of significance: p < 0.001, 0.01, or 0.05. These
thresholded maps were used as the common truth for both fMRI and MEG data
generation. Thresholding controlled the density of the common truth map and
modulated the cancellation index of the MEG data (Ahlfors et al., 2010). These
procedures are presented in the middle part of Fig. 4.1. To prevent the simulated
data from being highly dependent on the results of an individual, the common
truth was built based on the results of group analysis. All of the preprocesses and
statistical tests were performed using spm8 (https://www.fil.ion.ucl.ac.uk/

spm/software/spm8/).

4.1.2 FMRI data generation

We generated fMRI data with various signal qualities based on the common
truth by adding the resting-state brain activity as background noise (upper part
of Fig. 4.1). We designed a virtual fMRI task design. It was an event-related
paradigm. A stimulus was designed to be presented for 2 sec with 20 sec intervals.
We set the total number of fMRI scans to 240, with 2 sec of repetition time.
Then the designed time series were convolved with the canonical hemodynamic
response function (HRF') to obtain the time series of task-related brain activities.
The amplitude of the time series on all voxels was determined by weighting with
the common truth map, resulting in simulated fMRI data during the designed
task. The fMRI time series was further contaminated by adding the experimental
resting-state fMRI activity (see Ogawa, Aihara, Shimokawa, & Yamashita, 2018,
for data acquisition) as noise to take temporal modulations of each brain region
into account (Valente et al., 2009). We varied the amount of noise so that the
contrast-to-noise ratio (CNR) ranged from 0.5 to 10. CNR is defined as the ratio
between the task-related signal amplitude A and a standard deviation of the
task-irrelevant noise signal ¢ (Baumgartner et al., 2000; Welvaert and Rosseel,

2013):

CNR = 2. (4.1)

o
Finally, general linear model (GLM) analysis was conducted on the generated task

fMRI time series data using SPM8 (Friston et al., 1994), resulting in statistical
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maps of various CNR levels, which served as individual fMRI priors for current
estimation. Examples of the common truth and simulated individual fMRI priors
for CNR=0.5, 1, 3, 5, and 10 are shown in Fig. 4.2. The statistical maps in
the right panel gradually approach the common truth map as CNR increases.
Using these CNR-controlled priors, we investigated the effects of the quality of
the individual fMRI data on the current reconstruction that were comparable to
the meta-analysis fMRI data.

In Fig. C.1 and Fig. C.2, we report the distribution of CNR for all simulation
settings. These were calculated using coefficients and residuals of GLM, as CNR
= coeff.(condition) / mean square of residuals x scaling factor. The scaling factor
is the maximum value of the task design time series (after convolution with HRF).
As these figures indicate, the maximum CNRs of each setting were configured to
the desired value. To be compatible with more research, we also show the percent
signal change (PSC), which is a popularly used quality measure (Pernet, 2014;
Welvaert and Rosseel, 2013). It was also calculated using parameters of GLM as
PSC = coeff.(condition) / coeff.(constant) x scaling factor x 100.

4.1.3 MEG data generation

The locations and amplitudes of dipoles were defined based on the common truth
spatial map imported into VBMEG " s coordinate. Because it is difficult to design
the temporal evolution among distributed dipoles by hand, we designed it using
the ROI-level whole-brain current simulation. The simulation was conducted
using the connectome obtained from diffusion MRI data (it was averaged over
13 subjects, see Endo, Hiroe, & Yamashita, 2020, for data acquisition), and the
Larter-Breakspear neural mass model (Breakspear et al., 2003; Larter et al.,
1999) with the AAL parcellation (details of the ROI-level whole-brain current
simulation are following Endo, Hiroe, & Yamashita, 2020). To obtain vertex-
level whole-brain current time series, we assumed the same waveforms for vertices
belonging to a single ROI. Then by weighting the whole-brain waveforms with
the common truth of the task (visual or motor), we generated the current source
time series of the desired task. Observed MEG time series were calculated by
multiplying the lead field matrix and adding Gaussian noises. The length of a

single trial was set to 250 msec. These procedures are presented in the lower part
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of Fig. 4.1.
The quality of MEG data was defined as the signal-to-noise ratio (SNR) of

trial-averaged data, and it was controlled by varying the number of trials. Here,

SNR of MEG data is defined as

:qw | mqw

2
s

We configured the SNR of single-trial MEG data to be 0 [dB]. Consequently, the
SNR of trial-averaged data became 0, 5, and 10 [dB] when the number of trials

was 1, 3, and 10, respectively.

where 02 is a variance of signals during the task and o2 is a variance of noises.

It is well known that current sources at nearby vertices with opposite dipole
orientations cancel each other, resulting in nearly zero MEG signals. Conse-
quently, it is assumed that the more vertices that are activated coherently, the
more difficult source reconstruction is. To characterize such a difficulty of the
source reconstruction, we computed the weighted cancellation index (wCI), which
is an extended version of a previously proposed cancellation index (Ahlfors et al.,

2010) :
1/2

|0 2N gomndn)?]
S [0 (gndn)?]

where ¢,,, is an element of a lead field matrix G and j, is a current at source n.

wCl=1—

(4.3)

1/2°

For the simulated current time series, we calculated the wCI at each time point
and averaged them over time. The wCI of the simulated data obtained from the
thresholding of common truth with p < 0.001, 0.01, and 0.05 was 0.77, 0.88, and
0.90 for the visual task and 0.40, 0.71, and 0.83 for the motor task, respectively.

To summarize the above, we generated MEG data by varying three SNR levels
and three wClI levels; thus, in total, there were nine simulation settings for each
task.

4.1.4 Current source reconstruction methods for comparison

In the simulation studies, we compared the source currents estimated by hVB
with different priors and also other source imaging methods. Estimation using

hVB was conducted with the meta-analysis priors (synthesized with the terms
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“visual” and “motor”), the simulated individual fMRI priors (with CNR=0.5, 1,
3, 5, 10), the common truth prior, and without a prior.

When we used the meta-analysis prior, we basically selected the relevant prior
for the task (“visual” prior for visual domain task and “motor” prior for motor
domain task). However, we also used irrelevant priors for the tasks, namely
“visual” prior for motor domain task and “motor” prior for visual domain task.

The individual fMRI priors obtained from different CNRs were considered.
We also considered the common truth as the prior information of the ideal case.
When there is no prior information, we can only use the uniform spatial pattern.
This means we set the same values on all initial values of the hierarchical prior
a,y in Eq.(2.20). In this thesis, we call this uniform spatial pattern as “uniform
prior” of hVB estimation. If the uniform prior was used with a small prior weight,
the estimated current variances tend to be sparse due to the effect of ARD (Neal,
1996).

To evaluate the significance of fMRI information, we also applied weighted
MNE (wMNE) and Champagne as benchmark methods. Both wMNE and Cham-
pagne were run using the functions from Brainstorm software (Tadel et al., 2011;
http://neuroimage.usc.edu/brainstorm) and NUTMEG software (Dalal et
al., 2004; http://nitrc.org/projects/nutmeg/), respectively.

We applied spatial smoothness filtering for all the above methods (see Ap-
pendix B).
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Figure 4.1. FMRI (upper part) and MEG (lower part) data-generation process
from the common truth (middle part). Simulated individual fMRI priors are
taken as the hierarchical prior of hVB estimation for simulated MEG data. Both
modalities are generated based on the common truth map. Density of the common
truth is controlled by thresholding the p-value (p < 0.001, 0.01, or 0.05). It affects
the density of the generated fMRI statistical map as well as the cancellation of
MEG data. The SNR of single-trial MEG data is fixed at 0 [dB], and total SNR

is controlled by the number of trials (only a single trial is shown in the figure).
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Figure 4.2. Examples of the common truth map and simulated individual fMRI
priors. Here, the common truth is computed for the face image recognition task
with thresholding p < 0.01. Individual fMRI data are generated from the com-
mon truth with controlled contamination. As the individual fMRI images show,
statistical maps gradually clarify the common truth map with increasing CNR.
They are imaged from the bottom view to observe the change in statistical maps

in the fusiform face area.

4.2 Experimental data

We analyzed the multi-subject, multi-modal neuroimaging dataset for face pro-
cessing recorded by Wakeman and Henson (2015). It was the same dataset that
was used to generate simulated data of the visual domain. This dataset contains
the evoked responses of 16 subjects to three types of face stimuli: famous, unfa-
miliar, and scrambled. MEG, EEG, electro-oculograms, and electro-cardiograms
were simultaneously recorded at 1,100 Hz with an Elekta Neuromag Vectorview
306 system (Helsinki). T1 images and fMRIs were also collected with a Siemens
3T TIM TRIO (Siemens, Erlangen, Germany). These data are stored in the Brain
Imaging Data Structure (BIDS) format (http://bids.neuroimaging.io/). We
preprocessed MEG data in the same way as done previously (Takeda et al., 2019).
Schematic descriptions are visualized in the left box of Fig. 4.3. As a result, the
face (famous and unfamiliar) and the scrambled conditions were compiled.

We constructed a t-map by contrasting all stimulus conditions (face, scram-

bled) against the baseline using SPM8. The t-map was computed for each subject
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and imported as individual fMRI priors (Fig. 4.4). On the other hand, the meta-
analysis prior was synthesized using Neurosynth with the term “visual,” and it
was common for all subjects (Fig. 3.1). We carried out source reconstruction
using two types of priors, an individual fMRI prior and the meta-analysis prior,
for each subject. The prior weight parameter was set to 0.3 for both priors.
Using all the subjects > source currents, we conducted a group analysis and
examined the statistical differences of the current amplitudes between the face and
scrambled conditions. The method of group analysis followed our previous work
(Takeda et al., 2019). Briefly, we calculated the stimulus-triggered average of the
estimated source currents for each subject and condition. Then for each source
and time, we compared the 16 subjects ~ current amplitudes between the face
and scrambled conditions using a paired t-test. Finally, the multiple comparison
problem was solved using Storey & Tibshirani (2003) " s method (false discovery
rates were controlled at 0.05). All of the procedures were computed separately for
results with an individual fMRI prior or the meta-analysis prior. The graphical

description of whole group analysis procedure is visualized in Fig. 4.3.
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5. Results for hVB approach

5.1 Simulated data

We first studied the effects of the prior weight parameter for both task domains
(visual and motor). We then evaluated how effective the meta-analysis prior
was compared to the individual fMRI priors using the appropriate prior weight.

Finally, data-driven model selection was attempted using a statistical criterion.

5.1.1 Effects of prior weight parameter

We first studied the effects of the prior weight parameter on reconstructed sources.
We repeatedly conducted current source reconstruction using the hVB method by
varying the prior weight from 0 to 0.99999999 (denoted as 1). The full results with
all simulation settings are reported in Fig. 5.1 for the visual task and Fig. 5.2
for the motor task. For comparison, we also plot the results with the worst
(CNR=0.5) and the best (CNR=10) individual fMRI priors. In addition, the
results using the common truth prior are reported.

For both tasks, the scores of the meta-analysis fMRI prior were very con-
sistently located between the simulated individual fMRI priors when the prior
weight and the term (“visual” or “motor”) were properly selected. For example,
for the results of p < 0.05 in the visual task (top 3 panels of Fig. ??), when the
meta-analysis prior “visual” was used with a prior weight 0.3, the aggregate scores
were consistently higher than the results of CNRO.5 and lower or comparable to
CNR10. We can find similar results for all conditions when using the relevant
prior (“visual” for the visual and “motor” for the motor task) and the optimal
prior weight settings. The appropriate range of the prior weight tends to be high
when the cancellation is high (p < 0.05, with wCI of 0.90 for the visual task and
0.83 for the motor task). Conversely, when the cancellation is low (p < 0.001,
wCl of 0.77 for the visual task and 0.40 for the motor task), the appropriate range
of the prior weight is low as well. These results indicate that estimations require
strong prior information when the cancellation is severe. This is because strong

cancellation induces very few observation signals.
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Figure 5.1. Scores for the visual task with various prior weight parameters. Re-
sults of the hVB estimation with the worst and the best individual fMRI priors
(CNR=0.5 and 10), the common truth prior, and the meta-analysis priors (syn-

thesized using terms “visual” and “motor”) are shown. Vertical axes indicate the

aggregate score (upper is better), and horizontal axes indicate the value of the

prior weight parameter. The error bar represents standard error of the mean over

ten different Monte Carlo repetitions for the data generation. We display results
of all simulation settings (3 SNR by 3 wCI (denoted as thresholds of the common
truth)).

32




p <0.05, SNRO p <0.05, SNR5 p<0.05, SNR10 mean=SE, #data = 10

— F —CNROS

0.7 0.7 0.7 — E -CNR10
CcT
0.6 06 06 —F—visual
motor
05 05 - 05 -—— =
T B ey 1
0.4 04 =m_am = ""*’*:’y__q 0.4 A“"‘—-r\_‘i-"'=
03| ey S o o 03 ﬁ\___./- 03
0.2 02 02
S 5 b > x> 544 NN A S 5 b > x> 5 9 a4 N N~ S 6 b > x> 5 4 a4 N AN
N o A of AT o A of AT of A o AT of A o AT o AT of A& o AT of AT o AT of AT of
p<0.01, SNRO p<0.01, SNR5 p<0.01, SNR10
07 07 07
0.6 06 06 S8 A
L - —— i -— T e e
05 05 - 05 SeS—m—m g WA F =T
il ————al— T
- =
041 o — — o iagnf 04 ﬂi\_\/ 04
03 < J 03 03
0.2 0.2 0.2
Q b H X X o 9 12 N Q H© © X X o o 9 q N N

Q o po > DD A 4 N N
N o 2T of T o AT of AT of

D2 N D D v N N
N 0¥ G o N o T o AT of

P 2 o o™ P o SV S N N
N 0¥ 2\ o N o AT o Y of

p <0.001, SNRO p <0.001, SNR5 p <0.001, SNR10
= e -
0.7 - 0.7 07 = =
o g e— T = o
5 eican R R
S os SRR 2 B O 06 06
L 05 T 05 05
&
o
L 04 0.4 0.4
[=))
(=2
< 03 03 03
0.2 0.2 0.2
Q. b 6 X K > > a a4 N NN O % 5 K K > 5 9 4 N NN O 6 o K K> 0 a4 a4 N NN
"G 0l N off AT ol NE of AT off N 0P N off AT ol AT o AT off N o AT off AT ol A of AT off
Prior Weight

Figure 5.2. Scores for the motor task with various prior weight parameters.
Results of the hVB estimation with the worst and the best individual fMRI
priors (CNR=0.5 and 10), the common truth prior, and the meta-analysis priors
(synthesized using the terms “visual” and “motor”) are shown. Vertical axes
indicate the aggregate score (upper is better) and horizontal axes indicate the
value of the prior weight parameter. The error bar represents standard error of
the mean over ten different Monte Carlo repetitions for the data generation. We
display results of all simulation settings (3 SNR by 3 wCI (denoted as thresholds

of the common truth)).

5.1.2 Comparison between meta-analysis prior and other priors

We conducted a close comparison between the meta-analysis prior and the indi-
vidual fMRI prior with the properly fixed prior weight parameters. We focused
on one simulation setting (characterized by SNR and wCI), which had a level of

difficulty similar to the experimental data (face recognition task data (Wakeman
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and Henson, 2015)). Since we do not know the actual values of the SNR (Eq.(4.2))

and the wCI (Eq.(4.3)) for the experimental data, we approximated those values

2

as follows. A variance of signals during the task o2 and a variance of noises o2

were calculated as the variance of trial-averaged signals and the variance of signals
before task onset, respectively. The wCI was calculated using the t-map of task
fMRI data of face—baseline contrast. Hence, j,, was substituted with the t-value.
The calculated SNR was 4.88 [dB], and wCI was 0.95. Therefore, we selected the
simulation setting with SNR = 5 [dB] and the threshold of the common truth as
p < 0.05, corresponding to wCI = 0.90 (face image recognition task) and 0.83
(left-foot movement task).

The results are presented in Fig. 5.3. As a control analysis, we also compared
the results of the meta-analysis prior with those of the uniform prior and the
benchmark methods, wMNE and Champagne. The MNE and Champagne meth-
ods used their default hyperparameters, although the hVB methods used the best
prior weight parameter found through investigation using a grid search. In this
search, hVB was conducted using all prior weight values as Figs. 5.1 and 5.2,
and then assessed using the aggregate score to select the best prior weight. Re-
constructed current maps of the visual domain task are also shown in Fig. 5.1.2.
We can see that the sparser the estimated source, the higher the amplitude is
recovered.

For the visual domain task, the result of the relevant meta-analysis prior
(“visual”) shows a better score than that for the individual fMRI prior with
CNR=1. For the motor domain task, the result of the relevant meta-analysis
prior (“motor”) shows a better score than that for the individual fMRI prior with
CNR=0.5. On the other hand, such an individual fMRI prior with low-CNR
was better than the benchmark methods. However, if we use irrelevant meta-
analysis data, the performance is degraded. Therefore, meta-analysis fMRI data
synthesized using the relevant term has comparable efficiency with the individual
fMRI prior with CNR 0.5-1.

We also reported results assessed using spatial correlation (Fig. E.1) and tem-
poral correlation (Fig. E.2) for the same simulation setting as that in Fig. 5.3.
Although the results assessed using temporal correlation show little difference be-

tween priors, spatial correlation shows clearer differences. Hence, the differences

34



in prior data mainly affect the estimated spatial maps rather than the time series.

To show the results under various conditions, the aggregate scores for all nine
simulation settings for the visual and motor tasks are shown in Fig. E.3 and
E.4, respectively. For both visual and motor tasks, the hVB results using the
appropriate meta-analysis fMRI prior were comparable or better than the scores
of low-CNR fMRI priors. Counterintuitively, when p < 0.001 for the motor task,
the results of the meta-analysis fMRI data of “visual” are comparable to those of
“motor.” This is due to the fact that the results of the fMRI group analysis used
to generate the simulated data had activation on vertices that can be covered by
both “visual” and “motor” meta-analysis data when p < 0.001.

Additionally, the results of the Champagne method show a comparable score
to hVB using individual fMRI data when the simulated current map has a sparse
setting (p < 0.001). In particular, this method shows consistent scores regardless
of SNR. These characteristics of the Champagne method seem to be caused by
the effect of sparse estimation (Wipf et al., 2010). These results indicate that the
fMRI data are particularly helpful when sources are densely activated.

Moreover, we also conducted current source reconstruction with the meta-
analysis fMRI prior synthesized using more detailed terms such as “face” and
“object recognition” for the visual domain task and “hand” and “foot” for the
motor domain task. Results are shown in Fig. E.5 and E.6. For comparison, the
scores of “visual” and “motor” were plotted (the same as in Fig. 5.3). In these
cases, “face” and “foot” seem to be suitable for the visual (face image recognition)
and the motor (left-foot movement) tasks, respectively. Actually, only the results
with the “foot” term improved the performance, whereas the result of the “face”

term was comparable to “visual.”
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face image recognition task (p < 0.05, SNR5) left-foot movement task (p < 0.05, SNR5)

0.6 0.6 mean=SE, #data = 10
Q g M Individual fMRI
S v} Meta-analysis fMRI
A < 04 [ Common Truth (CT)
= = [[] Others
o)} o
v g
o o 0.2
> o
<< <
0

Figure 5.3. Comparison of aggregate scores with various methods for the visual
task (left) and the motor task (right). The results of the hVB estimation with the
uniform prior, the individual fMRI priors (CNR=0.5, 1, 3, 5, 10), the common
truth prior, and the meta-analysis priors (synthesized using the terms “visual”
and “motor”) are reported. These priors are used with the best prior weight
parameter denoted in parentheses. Vertical axes indicate the aggregate score
(upper is better). The error bar represents standard error of the mean over ten
different Monte Carlo repetitions for the data generation. We display results of a
realistic simulation setting (p<0.05, SNR5) determined using experimental data.

The results of wMNE and Champagne are also shown as a control.
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Figure 5.4. Reconstructed current maps of the visual domain task with various
methods. The ground truth current map (top) and reconstructed maps are shown.
To visualize the maps, amplitudes are averaged along the time axis. The prior
weights are set to the same values as those in Fig. 5.3. For all figures, activities

over 10 % of their maximum value are displayed.

5.1.3 Model selection using free energy

In the neuroscience literature, free energy is one of the popularly used statistical
criteria for model selection (Friston et al., 2003; Fukushima et al., 2015; Wipf
and Nagarajan, 2009). In particular, free energy is used to select prior infor-
mation of source reconstruction in the multiple sparse priors method (Friston
et al., 2008; Henson et al., 2010). Inspired by these studies, we attempted to
select hyperparameters (prior weight and meta-analysis fMRI data) for hVB es-
timation using free energy (see Appendix A for the details of free energy in hVB
approximation). First, we studied whether the prior weight parameter could be
selected using free energy. The effects of the prior weight on free energy and the
aggregate score are reported in Fig. 5.5 As the results indicate, free energies were
negatively correlated with prior weights, but they were not related to aggregated
scores. This tendency was shown for other prior data as well. Thus, the prior

weight parameter could not be selected based on free energy.
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Figure 5.5. Free energy comparison of various prior weight parameters for sim-
ulated data. We display results of the uniform (left) and common truth (right)
prior for the simulated visual task, with p < 0.05, and the best and worst SNR
settings. Free energies are plotted as blue lines and aggregate scores are shown
as bar plots. Left and right vertical axes indicate the free energy and the aggre-
gate score, respectively. Horizontal axes indicate the value of the prior weight
parameter. The error bar represents standard error of the mean over ten different
Monte Carlo repetitions for the data generation. Note that a similar tendency is

observed for the simulated motor task data.

Next, we considered the meta-analysis fMRI data selection. Here, the prior
weight was pre-fixed to 0.3 for all prior data. For both visual and motor tasks,
we showed the results with SNRO and 10, respectively (Fig. 5.6 and 5.7). These
figures indicate strong relationships between free energies and aggregated scores
regardless of SNR. These results support the potential of selecting the prior data

using free energy.

39



face image recognition task (p < 0.05, SNRO) face image recognition task (p < 0.05, SNR10)

5 x10°
6.7 x10 69 10.7 mean=+SE, #data = 10
05 —F— Free Energy
6.85 0.6
6.65 %
T 0.4 % 0's
IS . 687 ’% /| g
> 1 = S 8
o <)
g ¢ @ @ 04 @
o 03 % 2 . <
by 3 @ 6.75 3
3 S 8 03 &
9] L )
2 6.55 5 O e [}
= 02 5 6.7 3
< 02 <
6.5 0.1 6.65 o1
6.45 NS 0 0.6 DR R R R R R R R R D o
& A R 4 IR AN N A R A A A
> S L & ) o) SRS > $ < Iy
£ TS & ¢ $
& ¢ &
<
S 3

Figure 5.6. Free energy comparison of various priors for simulated data (face
image recognition task). Free energies are plotted as blue lines and aggregate
scores are shown as bar plots. Left and right vertical axes indicate the free energy
and the aggregate score, respectively. The error bar represents standard error of
the mean over ten different Monte Carlo repetitions for the data generation. All
results are derived using prior weight 0.3. We display results of the face image
recognition task thresholded with p < 0.05. Left panel is for SNR = 0 and right
panel is for SNR=10.

40



left-foot movement task (p < 0.05, SNRO) left-foot movement task (p < 0.05, SNR10)
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Figure 5.7. Free energy comparison of various priors for simulated data (left-foot
movement task). Free energies are plotted as blue lines and aggregate scores are
shown as bar plots. Left and right vertical axes indicate the free energy and the
aggregate score, respectively. The error bar represents standard error of the mean
over ten different Monte Carlo repetitions for the data generation. All results are
derived using prior weight 0.3. We display results of the left-foot movement task
thresholded with p < 0.05. Left panel is for SNR = 0 and right panel is for
SNR=10.

5.2 Experimental data

Since we do not know the ground-truth of current sources for real experimental
data, we evaluated the reproducibility of the statistical maps obtained from group
analyses. We compared the individual fMRI prior with the meta-analysis fMRI
prior (“visual”). The prior weight parameters for the individual fMRI prior and
the meta-analysis fMRI prior were each set to 0.3, following our previous work
(Takeda et al., 2019) and the above simulation results (according to Fig. 5.3,
which is the simulated face image recognition task with the realistic setting, 0.3
was the best prior weight parameter). Finally, we attempted data-driven model

selection as well as simulated data.
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5.2.1 Group analysis

First, we checked the currents reconstructed using the individual fMRI prior and
the meta-analysis prior. The reconstructed currents time series and maps of one
example subject are shown in Fig. 5.8 and Fig. 5.9. These reconstructions were
run for all subjects in the same way. Next, we conducted the group analysis of
reconstructed current sources by contrasting the face condition to the scrambled
condition. Fig. 5.10 shows the number of sources exhibiting significant differences
between the face and scrambled conditions along the time axis. Although the
largest difference was observed at 0.17 sec for both priors, the detected source
of the meta-analysis prior was slightly smaller than the individual fMRI prior.
The time series of detected sources were quite similar, although we found a slight
difference at the second peak.

In Fig. 5.11, we compared the significant t-value maps of both priors at 0.17
sec, and they looked very similar to each other. They show significance at the right
Fusiform Face Area (FFA) and right insular cortex. The significant differences
at the right FFA are consistent with previous studies that reported that this
area exhibits face-selective responses (Grill-Spector et al., 2017, 2004; Jas et al.,
2018; Rossion et al., 2018; Wakeman and Henson, 2015). The statistical map
obtained using the meta-analysis prior shows a significant difference on the left
fusiform area and the left insula, which are not observed in that obtained from
the individual fMRI prior.

In Appendix F, we considered the effect of signal leakage using the resolution
kernel analysis. This showed that reconstructed currents in the insular cortex

can be leaked from the fusiform gyrus.
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Stimulus—triggered average of source currents estimated using individual fMRI prior (sub-15)
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Figure 5.8. Stimulus-triggered average of source currents estimated in face con-
dition (sub-15) using individual fMRI prior. The prior weight is set to 0.3. Its
time series (top) and amplitudes averaged within 0-0.3 sec (bottom) are shown.

In the bottom figures, activities over 30% of their maximum value are displayed.
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Stimulus—triggered average of source currents estimated using meta-analysis fMRI prior (sub-15)
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Figure 5.9. Stimulus-triggered average of source currents estimated in face condi-
tion (sub-15) using meta-analysis fMRI prior. The prior weight is set to 0.3. Its
time series (top) and amplitudes averaged within 0-0.3 sec (bottom) are shown.
In the bottom figures, activities over 30% of their maximum value are displayed.
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Figure 5.10. Differences in current amplitudes between face and scrambled condi-
tions along the time axis. The number of sources exhibiting significant differences
(q < 0.05) are shown for both individual fMRI and meta-analysis fMRI priors.
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Figure 5.11. Significant t-value maps of the individual fMRI prior (top) and the

meta-analysis prior (bottom) at 0.17 sec.

5.2.2 Model selection using free energy

We attempted free energy based model selection as well as simulated data. We
selected candidate meta-analysis dataset including relevant (“visual,” “face,” and
“object recognition”) and irrelevant (“motor”) terms. All hVB estimations were
conducted with prior weight = 0.3. The results are shown in Fig. 5.12. Be-
cause baselines of subjects are different, between-prior differences are slight in
the left panel. Therefore, we corrected each subject’s baseline to zero to clarify
the between-prior differences (right panel). This figure shows that the free en-
ergy of the meta-analysis prior of the “motor” term is higher than the subject’s

own fMRI data and the meta-analysis data of “visual,” although this is a face
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recognition task. However, when “motor” was used as a prior of the source re-
construction, little activity was observed in the visual processing area. Besides,
the results of the group analysis showed almost no significant difference between
conditions. Therefore, the results of the “motor” prior supported by free energy
were inappropriate. Compared to the results of simulated data, this does not
support the prior data selection using free energy.

Next, we attempted the same selection using trial-averaged data. The results
are shown in Fig. 5.13. Note that we applied the hVB algorithm to all single-trial
data rather than trial-averaged data because our previous study showed higher
intra-subject reproducibility in the former setting. This figure visualized that
ranks of free energy were arranged in the order of “visual,” “Individual fMRI,”

Y

“face,” “object recognition,” and “motor.” Moreover, individual fMRI data and
all relevant terms were superior to the irrelevant term “motor.” These supported

the plausibility of the free energy based prior data selection.

47



FE comparison for experimental data (single-trial setting)
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Figure 5.12. Free energy comparison of various priors for experimental data using
the single-trial setting. Uncorrected (left) and subject-wise baseline corrected free
energies are plotted. Both panels show each subject * s free energy (plotted as
light blue lines) and averaged one (plotted as a dark blue line). All results are
derived using prior weight 0.3. Note higher free energy guarantees higher lower

bounds of the evidence (see Appendix A).

48



FE comparison for experimental data (trial-averaging setting)
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Figure 5.13. Free energy comparison of various priors for experimental data using
the trial-averaging setting. Uncorrected (left) and subject-wise baseline corrected
free energies are plotted. Both panels show each subject * s free energy (plotted
as light blue lines) and averaged one (plotted as a dark blue line). All results are
derived using prior weight 0.3. Note higher free energy guarantees higher lower

bounds of the evidence (see Appendix A).
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6. Simulation and Experimental data for RSP

We explain the details of the simulation and experimental data to confirm the

RSP approach.

6.1 Data simulation
6.1.1 Constructing meta-analysis dataset and covariance matrix

For the first, we prepared a meta-analysis dataset using Neurosynth to generate
the simulated data for evaluation of RSP approach. Since there are thousands of
terms in Neurosynth, we referred to a study that pruned and clustered all terms in
Neurosynth into 7 domains with less than 150 terms using hierarchical clustering
(W.H.Thompson & P.Fransson 2017). Using this result, we constructed three
datasets of 15, 25, and 129 terms, respectively. All selected terms are lined up in
Table. D.1.

Next, hyper parameters and dist function of Eq.(2.35) are defined. We set
p=29,1 =2 and dist function as cosine similarity (Note that cosine similarity
does not meet the axiom of distance but useful to evaluate similarity of data).
Hence, we derived the covariance matrix K for each dataset. Fig. 6.1 shows K
for the dataset of 15 terms. We can see there are clusters in matrices because
terms are arranged by domains.

To compare RSP with MSP, we also prepared a scalar covariance matrix for

each datasets.
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Figure 6.1. Covariance matrix K (dataset of 15 terms). The covariance matrix
K of u is imaged. It reflects a relevance structure of terms. Terms are arranged
and colored by domains (blue : Visual, red : Auditory, green : Motor).

6.1.2 Data generation

We generated simulated data by following the observation process as shown in
Fig. 6.2 . Here, hyper parameter m = —5, 02 = —50% (no observation noise), and
the time length 7" = 50.

To evaluate our RSP approach, we estimated w, w, J, and hyper parameters

using a observation B.
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Figure 6.2. Data-generation process for RSP approach.

6.2 Experimental data

We analyzed the same face processing dataset as hVB approach with same pre-
processing (see section 4.2). Here, we only focused on a subject (sub-8), the face
condition. Moreover, we set a time of interest (Tol) because RSP assumes the
stationarity. The Tol is set to the temporal peak (0.16 sec after onset) £+ 25
msec. Tol of all trials is cut out and assembled to construct long observation
data. Consequently, we prepared a MEG observation time series with the num-
ber of timepoints 7' = 3438. A graphical explanation of this process is shown in
Fig. 6.3.

We conducted RSP estimation using a meta-analysis dataset with 15 terms
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and covariance K of them (as same as Fig. 6.1). RSP estimation is also conducted
using scalar covariance matrix (equivalent to MSP). Then, results of RSP and

MSP were compared.

Temporal peak (0.16sec)

6

Assémbled observatioﬁ dataB

Figure 6.3. Preprocessing of the experimental data.
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7. Results for RSP approach

7.1 Simulated data

We studied the reconstruction performance of RSP and MSP by changing the size
of the dataset from 15 to 129 (Fig. 7.1)). For the benchmark, the results of MNE
and hVB were also evaluated. HVB was computed only for 15 dataset due to the
computational cost. The term of meta-analysis data for hVB was selected based
on free energy, and prior weight parameter was set to 0.03. Here, we evaluated
three reconstructed values; B, J, and w, where B is calculated as GJ. Since
MNE and hVB do not have the parameter w, B and J were drawn. As the figure
indicated, every method reconstruct B perfectly except for hVB. The reason for
the perfect reconstruction might come from the inverse problem. Namely, there
is an infinite number of solutions that meet the forward model. However, for the
hVB, B and also J were significantly lower than others. This is because of the
simulation setting. The data were simulated using multiple meta-analysis {MRI
data; therefore, it is a disadvantageous condition for hVB, which can use only
one piece of information. This result suggested that hVB is inadequate for tasks
such as stimulating complex brain functions (e.g., movie watching (ES Finn and
PA Bandettini, 2021)).

Next, when we look at J, we cannot see differences between RSP and MSP,
while MNE shows lower performance than them. It indicates that RSP and MSP
outperform the no-functionally constrained method, although the data include
complex brain activation.

Finally, we can find differences between RSP and MSP in w. When the
number of terms is large, RSP is slightly better than MSP. Furthermore, when
the number of terms is small, some estimations of MSP are wrong. It indicates

that the possibility of RSP in terms of stability of estimation.
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Figure 7.1. Comparing the results of RSP and MSP. For the benchmark, MNE
and hVB are reported as well in B and J. The y-axis of w indicates Pearson’s
correlation coefficients. The y-axis of B and J is temporally averaged correlation

coefficients defined in section 3.4.

7.2 Experimental data

We compared currents maps and weights w estimated using RSP and MSP for
face processing data. Reconstructed currents maps (Fig. 7.2) show similar ac-
tivations on FFA. However, there are several differences between them. First,
MSP reconstructed more currents on the dorsal stream than RSP. Second, RSP
indicated activations on the insular cortex similar to the result of group analysis
at almost the same time point using hVB (Fig. 5.11). As the same discussion in
Appendix F, it might be caused by the signal leakage from FFA.

These differences in reconstructed maps are interpretable by analyzing esti-
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mated weights (Fig. 7.3). As the figure indicated, there is a significant difference
between w of RSP and MSP. While MSP estimated only on “visual,” RSP es-

? This difference caused the difference

timated not only “visual” but also “face.
in reconstructed sources because meta-analysis fMRI data “visual” includes both

the ventral and dorsal streams.

Reconstructed currents map using RSP

(e

Figure 7.2. Reconstructed currents maps using RSP and MSP. To visualize the
maps, amplitudes are averaged along the time axis. For both figures, activities

over 10 % of their maximum value are displayed.
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Figure 7.3. Comparing estimated w of RSP and MSP.
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8. Discussion

In the present study, we proposed the use of meta-analysis fMRI data for MEG
current source reconstruction. The meta-analysis fMRI data is a statistical map
synthesized from thousands of published fMRI studies. Here, we introduced two

different approaches.

8.1 Discussions on hVB approach

For the first, we used the meta-analysis results available from the Neurosynth
open-source project (Yarkoni et al., 2011) as the hierarchical prior distribution of
the current variance in the hierarchical variational Bayesian estimation method
(Sato et al., 2004) because this approach offers an adaptive way to incorporate
fMRI information based on MEG measurements. This hVB approach was quan-
titatively evaluated using simulations of a visual task and a motor task. As
a result, we discovered that source reconstruction performance using the meta-
analysis prior was comparable to that using an individual fMRI prior with CNR =
1 and CNR = 0.5 for the visual and motor tasks, respectively. We also confirmed
the fMRI prior outperformed the MNE, Champagne, and hVB estimations with a
uniform prior (no fMRI information). In particular, when the simulated currents
are spatially dense (p < 0.05), or the SNR of MEG data is high, hVB using the
low-CNR fMRI prior was better than the sparse estimations of the Champagne
method. Using the experimental data of a real face recognition task (Wakeman
and Henson, 2015), we qualitatively confirmed that group analysis results ob-
tained from the meta-analysis fMRI prior were similar to those obtained from
individual fMRI priors.

Our simulations were based on multi-modal data generation, where both
whole-brain fMRI and MEG time series data were generated from the common
truth activation map. We defined the common truth activation map for a specific
task, which was the group analysis of results obtained from real fMRI exper-
imental data of five subjects during the task, representing the spatial pattern
of task-specific neuronal activation. From the common truth map, whole-brain
fMRI time series data were generated using the virtually designed event-related

paradigm and resting-state fMRI time series as noise. We modified the amount of
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resting-state fMRI noise to obtain the individual fMRI prior maps of various sig-
nal quality, defined as CNR. MEG time series was generated by applying the lead
field matrix to simulated current time series data with added noise. The current
time series data for a specific task were generated by weighting the whole-brain
current time series (simulated using the connectome dynamics model) with the
spatial map of the task (common truth map). This procedure allows us to remove
any biases of the cancellation effect among dipoles caused by the hand design.
However, the simulated current time series seems to be more difficult than the
empirical one when we do not adjust the wCI. This is because the connectome
dynamics model was simulated with coarse parcellation (AAL atlas), and the
time series were common within each ROI. Moreover, the coherence of simulated
resting-state data tends to be higher than the stimulus evoked response. To make
the difficulty realistic under such parcellation, we modulated wCI of the gener-
ated data by thresholding the common truth with p < 0.001, 0.01, or 0.05. We
also modulated observation noises of MEG data with SNR = 0, 5, or 10 [dB]
by varying the number of trials. Then, simulations were conducted with nine
combinations of settings (3 SNR by 3 wCI).

Inspired by Owen et al. (2012), we assessed the results of source reconstruction
using the aggregate score (Eq. (3.1)). This metric averaged the sum of spatial
and temporal correlation coefficients between simulated and reconstructed cur-
rents. By comparing the evaluation using the aggregate score (Fig. 5.3), spatial
correlation (Fig. E.1), and temporal correlation (Fig. E.2), we confirmed that the
differences in prior data mainly affect the estimated spatial maps rather than the
temporal time series. This is natural because we incorporated the spatial prior
data in the covariance of the current map.

From the simulation studies of the visual and motor tasks, we confirmed that
the current source reconstruction performance of hVB using the meta-analysis
fMRI prior was better than that using the low-CNR individual fMRI prior. For
the visual domain task (left of Fig. 5.3), the result of the relevant meta-analysis
prior shows a better score than the individual fMRI prior with CNR=1. For the
motor domain task (right of Fig. 5.3), the result of the relevant meta-analysis prior
shows a better score than for the individual fMRI prior with CNR=0.5. Referring
to Figs. C.1 and C.2, CNR1 and CNRO.5 of the p < 0.05 condition corresponds
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to PSCO0.7 and PSCO0.6 at the maximum activated voxel, respectively. Note that
these low PSC values could be observed as the worst-case in a real-task fMRI
study (e.g., Drobyshevsky et al., 2006, reported similar PSCs for the cognitive
and emotional tasks). We also confirmed that the hVB method using the meta-
analysis fMRI prior was superior to the control methods without fMRI priors, such
as the hVB method using the uniform prior, wMNE, and Champagne. Especially,
by comparing with the Champagne method, we confirmed that the meta-analysis
prior for the hVB method was helpful when the source spatial density was high (p
< 0.05). Moreover, the meta-analysis fMRI data synthesized using an irrelevant
term, such as “motor” for the visual task or “visual” for the motor task, resulted in
degraded performance. Therefore, we concluded that it is worth using the meta-
analysis fMRI prior synthesized using relevant terms when the individual fMRI
data are missing or of low quality. This also means that the results equivalent to
the use of a low-CNR fMRI prior can be obtained without fMRI measurement,
and in that case, the reduced cost could be used to enhance MEG measurement.
It should be noted that we used the default hyperparameters for the control
methods (MNE and Champagne) while the optimized parameters for the hVB
methods. Thus, the performance comparison may not be fair. Although their
performance may be improved using parameter fine-tuning (Bertrand et al., 2019;
Cai et al., 2021), it is beyond the scope of this study.

The prior weight parameter is the most important parameter for hVB esti-
mation, which affects the quality of current source reconstruction. Therefore, we
studied the proper range of the prior weight parameter using simulated data by
the grid-search strategy. For both visual and motor tasks (Fig. 5.1 and Fig. 5.2),
the optimal prior weight tends to be high when the cancellation is high (p <
0.05) regardless of the type of fMRI priors, while the optimal prior weight is low
when the cancellation is low (p < 0.001). These results indicate that the cur-
rent source with a higher cancellation setting requires stronger prior information
because strong cancellation induces fewer MEG observations.

Using the experimental data of a real face-recognition task, we qualitatively
confirmed that group analysis results of the meta-analysis fMRI prior have a
similar tendency with the results of an individual fMRI prior. We set the prior

weight parameter for the meta-analysis fMRI prior to 0.3 based on the simulation
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study of the visual task and set the parameter for the individual fMRI prior to
0.3 according to the previous work (Takeda et al., 2019). For the significance
time series of both priors, the largest difference was observed at the same time
point, although there were small differences (Fig. 5.10). In Fig. 5.11, we compare
the significant t-value maps of both priors at that time. Both of them show
significance at the right FFA, although they were derived using different types
of priors. The significance at the right FFA is consistent with previous studies
reporting that this area exhibits face-selective responses (Grill-Spector et al.,
2017, 2004; Jas et al., 2018; Rossion et al., 2018; Wakeman and Henson, 2015).
In these figures, we can observe activities on the insula as well. We hypothesized
that they occurred due to signal leakage (Brookes et al., 2012; Colclough et
al., 2015; Palva et al., 2018; Sato et al., 2018). To verify this, we calculated the
resolution kernel for both priors (Sekihara et al., 2005). As a result of the analysis,
the activities on the insula could be observed due to the signal leakage from the
ventral occipitotemporal cortex (Appendix F). These results corresponded to
our previous study (Takeda et al., 2019). Such similarities in the results between
individual fMRI and meta-analysis fMRI suggest the possibility of substituting a
meta-analysis prior for the individual prior in a neuroscience study.

It is difficult to subjectively select the term used to synthesize the meta-
analysis fMRI data. This came from the results with detailed terms such as “face”
and “object recognition” for the visual domain task and “hand” and “foot” for the
motor domain task (Figs. E.5 and E.6). The meta-analysis prior synthesized using
the term “foot” significantly improved the score (comparable to the high-CNR
fMRI priors) for the left-foot movement task. However, against our intuition,
the result with the term “face” was not improved, and “object recognition” was
lower than the result with the term “visual.” These results might be due to the
following reasons. In most visual tasks, the stimulus-induced activation occurs
from the primary visual cortex, and it is then transferred to the higher visual
cortex. Hence, the entire visual cortex is activated. This situation is favorable
for the meta-analysis prior synthesized using the term from the highest layer of
the ontology. Therefore, the term “face” was not a better selection than the
term “visual.” On the other hand, the left-foot movement task with the p >

0.05 setting mainly activated left-foot-related areas. Therefore, the term from
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the lower layer of the ontology was suitable for this situation. In the results,
only “foot” was a good prior, whereas both “hand” and “foot” were selected
from the lower layer. This seems natural because the meta-analysis with the
term “hand” is not directly related to the left-foot-related areas. Although these
obvious results indicate that the meta-analysis data synthesized using detailed
terms might improve the reconstruction, they also imply the difficulty of making
the appropriate data selection for the meta-analysis.

In the neuroscience literature, free energy is one of the popularly used sta-
tistical criteria for model selection (Friston et al., 2003; Fukushima et al., 2015;
Wipf and Nagarajan, 2009). In particular, free energy is used to select prior infor-
mation of source reconstruction in the multiple sparse priors method (Friston et
al., 2008; Henson et al., 2010). Inspired by these studies, we attempted to select
hyperparameters (prior weight and meta-analysis fMRI data) for hVB estimation
using free energy. First, we studied whether the prior weight parameter could be
selected using free energy. The effects of the prior weight on free energy and the
aggregate score are reported in Fig. 5.5. As the results indicate, free energies were
negatively correlated with prior weights, but they were not related to aggregated
scores. This tendency was shown for other prior data as well. We speculated
that this is because when the prior weight is low, the estimated currents can be
fitted to the observation data independent of the prior data and thus free energy
also has a high value. Thus, we concluded that prior weight cannot be selected
based on free energy. Next, we considered the prior data selection when the prior
weight was fixed to 0.3 for all priors. For both visual and motor tasks, we showed
the results with SNRO and 10, respectively (Figs. 5.6 and 5.7). These figures in-
dicate strong relationships between free energies and aggregated scores regardless
of SNR. These results support the potential of selecting the prior data using free
energy. Therefore, we also plotted free energies with the prior weight of 0.3 for
the experimental data (Fig. 5.12). The figure shows that the free energy of the
meta-analysis prior of the “motor” term is higher than the subject’s own fMRI
data and the meta-analysis data of “visual,” although this is a face recognition
task. However, when “motor” was used as a prior in the source reconstruction,
little activity was observed in the visual processing area. In addition, the results

of the group analysis showed almost no significant difference between conditions.
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Therefore, the results of the “motor” prior supported by free energy were inap-
propriate. Compared to the results of simulated data, this does not support the
prior data selection using free energy. Note that we applied the hVB algorithm
to all single-trial data rather than trial-averaged data because our previous study
showed higher intra-subject reproducibility in the former setting. However, when
we applied the trial-averaged data and checked the applicability of free energy
for the prior data selection, we obtained plausible results similar to the results of
simulated data (Fig. 5.13). This is probably because the SNR, of the single-trial
data of real data was much worse than the SNRO of the simulation. To confirm
the applicability of prior data selection based on free energy, further investigation
into the impact of a single-trial setting on free energy computation is required.
Furthermore, since we need to repeatedly run the hVB algorithm for all candidate
prior data to compute free energy, the computational cost will be significantly
increased in proportion to the number of candidates.

Care must be taken when using the meta-analysis fMRI prior for scientific
findings. Use of prior information biases the results of current source reconstruc-
tion. Since there are numerous combinations of the meta-analysis prior and the
prior weight value, the choice depends on the data analyst, and results may be
chosen after trials. To mitigate such results selection, we need a guideline on
how to use the method and report the results. For now, we recommend that
meta-analysis fMRI data be synthesized using relevant and general (conserva-

4

tive) terms such as “visual” for visual tasks or “motor” for motor tasks. This
comes from the above discussion on term selection. However, there is no solution
to decide the prior weight value systematically, although it has been shown to
have a significant impact on the results as well (Figs. 5.1 and 5.2). Therefore,
trial-and-error efforts are indispensable to tune the prior weight. However, this
recommendation might be updated by the progress made in free-energy-based
prior data selection. For example, it may be possible to select the term based
on the free energy using pre-fixed prior weight value. On the other hand, this
method is ready for applications such as brain-machine interface (BMI), where
the direct goal is to improve decoding accuracy. In this case, we believe there is
no problem in selecting a term that will improve the decoding accuracy as long

as the generalization performance is evaluated.
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8.2 Discussions on RSP approach

As above discussions reveal, one of the most critical issues in hVB approach is the
selection bias. To overcome it, we introduced second approach, RSP estimation.
While hVB utilizes ARD to suppress error activation on dipoles of prior data,
RSP selects the combination of prior data itself. This mitigates the selection bias
because we do not need to select prior data.

As the results of the simulation studies indicated, RSP improved the recon-
struction significantly than MNE and hVB (Fig. 7.1). Furthermore, it was sug-
gested that RSP estimate latent variable w more stably than MSP although the
performance of current reconstruction itself is equivalent to MSP. Both RSP and
MSP were robust to increasing the number of prior data in terms of reconstructed
currents J.

The results of the experimental data indicated interesting differences between
RSP and MSP (Fig. 7.2). First, MSP reconstructed more currents on the dor-
sal stream than RSP. Second, RSP indicated activations on the insular cortex
similar to the result of group analysis at almost the same time point using hVB
(Fig. 5.11). As discussed above, it might caused by the signal leakage from FFA.
These differences in reconstructed maps are interpretable by analyzing estimated
weights (Fig. 7.3). As the figure indicated, there is a significant difference between
w of RSP and MSP. While MSP estimated only on ”visual”, RSP estimated not
only ”visual” but also "face”. This difference caused the difference in recon-
structed sources because meta-analysis fMRI data ”visual” includes both of the
ventral and dorsal streams.

The RSP estimation using meta-analysis fMRI dataset have another possibil-
ity related to interpretable estimation. Because all of meta-analysis fMRI data
are labelled by terms, we might discuss the estimation based on selected data. If
this is established, it could lead to the ability to reverse inference at MEG time

resolution.

8.3 General discussions

In this study, we used the results of meta-analysis from Neurosynth. However,

many useful and practical platforms for fMRI meta-analysis have also been pro-
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posed and are promising as the prior information of source reconstruction. The
BrainMap group supplies the ICA maps of large-scale meta-analysis fMRI data
(https://www.brainmap.org/icns/). These are well-suited to our present rec-
ommendation of selecting a conservative prior for hVB approach because ICA
maps are already classified to a few intrinsic connectivities (Laird et al., 2011;
Smith et al., 2009). This feature is also suitable for RSP approach because it
might help interpretations of selected prior data. Another option is NeuroQuery
(https://neuroquery.org). Because of its ability to predict brain activity from
a short sentence (Dockes et al., 2020), it seems to be suitable for applications
such as decoding newly designed tasks. While this contradicts our recommen-
dation of hVB approach to generate a conservative prior, it is still attractive for
applications such as BMI.

In terms of reproducibility, meta-analysis fMRI is promising. In recent years,
the study of task fMRI has been a problem because of its poor reproducibil-
ity (Elliott et al., 2020). When individual fMRI data are used as the prior for
source reconstruction, the reconstructed maps are accumulated with uncertainty
included in the fMRI data. On the other hand, although the meta-analysis prior
does not take into account individual variability, it is not affected by the repro-
ducibility issue of individual data. Therefore, it is not possible to conclude which
is better, but in terms of reproducibility, there is potential in using meta-analysis
data as prior information. This is supported by the fact that the results of the
two group analyses were very similar (Fig. 5.11).

Our approach is also easily applicable to the source reconstruction problems of
EEG. As demonstrated previously (Takeda et al., 2019), hVB estimation for EEG
data is supported in VBMEG software. And RSP can use EEG data as same as
MEG because formulations are same for EEG. We expect the low measurement
cost of EEG to make it suitable for combination with meta-analysis fMRI data.

The use of the meta-analysis fMRI prior would be a significant step in the
development of MEG studies. This is because the advent of OPM has shown
remarkable results in reducing the cost of MEG measurements and expanding
the measurement targets (Boto et al., 2018; Hill et al., 2019; Lin et al., 2019;
Tierney et al., 2020). However, the number of sensors in the current OPM devices

is limited to dozens due to physical constraints (Hill et al., 2020). Therefore, it
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would be important to gain the ability to add prior information that is comparable

to a low-CNR individual fMRI prior without the cost of measurement.
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Appendix

A. Hierarchical variational approximation

The hVB approximates the joint posterior distribution Eq. (2.23) using the dis-
tribution Q(J, 5, A) (Sato et al., 2004). It is obtained by maximizing the fol-

lowing free energy F' (Q) under the independent decomposition assumption that
(J, 5, A, B)]
A)lo dJdpdA
/ QU Ao | 5 s
=logP(B) — KL[Q(J, 8, A)||P(J, 3, A|B)]. (A.1)

Here, maximizing the free energy guarantees maximizing the lower bound of the
evidence P(B) (Bishop, 2006). As a result, the maximization of free energy is
realized as a sequential optimization for below Q(J,3) and Q(A) (Sato et al.,
2004):

T
T.5) = [T N Glder (BS) T (816 50). (A2)
t=1
S=G'®G + A, (A.3)
j. =S 'G'®B,, (A.4)
1 1 1 -
-1 A~ T -1 T
Bt = (ca”'cT+27) ;BtBt], (A.5)
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T = (A.6)
N
Q(A) = H F(an’anp: 7}0)7 (A?)
n=1
T
'7p:'70+§a (A.8)
o 1
G = | a5 0 B+ 500 | % (A.9)
" t=1

where j, is the mean of posterior current distribution at time point ¢ and A =

diag(aup, ap, - - -, ) is the posterior precision matrix of the currents. j;,, and
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Sy are the I, m elements of j, and S, respectively. When we introduce the prior
weight Eq. (2.24) to Eq. (A.9), we can derive Eq. (2.25). The hVB algorithm
evaluates Q(J, 8) and Q(A) iteratively until the free energy converges.

B. Spatial smoothness constraint

When conducting current source reconstruction using hVB, a smoothness con-
straint is incorporated (Yoshioka et al., 2008). To do this, we modeled current

sources as

] =Wz, (B.1)

where W is a spatial filter having a Gaussian profile with a full width at half
maximum (FWHM) of 8 mm, and z is an auxiliary variable. Then, the forward

model Eq.(2.2) can be replaced by

b=GWz+e¢
= Guz +&, (B.2)

where G, = GW is a smoothed lead field matrix. Therefore, the source recon-
struction becomes the problem of estimating z using G,,. For a fair comparison,
we filtered the estimations of wMNE and Champagne using the same W. Note
we confirmed that this process did not bring a disadvantage for any method in

terms of either temporal or spatial assessment.
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C. Distribution of CNR and PSC
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Figure C.1. Distribution of calculated CNR and PSC for the visual simulation
setting. The upper figures show CNR, and the lower figures show PSC. Each
column corresponds to a different significance level, p<0.001, 0.01, or 0.05 from
left to right. We report results only on truly activated voxels. The number in
parentheses of CNRO.5 denotes the number of voxels, and it is the same for other
CNRs because it is modulated by significance level. The boxplot inside the violins

represent the interquartile range, and the white dot shows the median value.
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Figure C.2. Distribution of calculated CNR and PSC for the motor simulation
setting. The upper figures show CNR, and the lower figures show PSC. Each
column corresponds to a different significance level, p<0.001, 0.01, or 0.05 from
left to right. We report results only on truly activated voxels. The number in
parentheses of CNRO.5 denotes the number of voxels, and it is the same for other
CNRs because it is modulated by significance level. The boxplot inside the violins

represent the interquartile range, and the white dot shows the median value.

D. List of meta-analysis dataset

Table D.1: List of meta-analysis dataset of 129 terms

Domain Term
Default Mode  affect
Default Mode arousal
Default Mode  assessment
Default Mode  autobiographical memory
Default Mode — awareness
Default Mode  basal ganglia
Default Mode belief
Default Mode  confidence
Default Mode  context
Default Mode  default mode
Default Mode detection
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Default Mode

distress

Default Mode

dorsal attention

Default Mode

emotion

Default Mode

emotion regulation

Default Mode

empathy

Default Mode

episodic memory

Default Mode

evaluation

Default Mode

examination

Default Mode

fear

Default Mode

frontostriatal

Default Mode

hippocampal

Detfault Mode

identification

Default Mode

inference

Default Mode

inhibitory

Default Mode

interacting

Default Mode

knowledge

Default Mode

limbic

Default Mode

memory

Default Mode

memory encoding

Default Mode

memory retrieval

Detfault Mode

mentalizing

Default Mode

mind

Default Mode

morphological

Default Mode

navigation

Default Mode

negative affect

Default Mode

olfactory

Default Mode

perspective

Default Mode

practice

Default Mode

prefrontal temporal

Detfault Mode

recognition memory

Default Mode

recollection

Default Mode

reward

Default Mode

salience

Default Mode

self

Default Mode

self referential

Default Mode

semantic memory

Default Mode

sexual

Default Mode

soclal

Default Mode

social cognition

Default Mode

stress

Default Mode

subcortical

Default Mode

sustained attention

Default Mode

task positive

Default Mode

temporal parietal

Visual

attentional control
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Visual body
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E. Supplementary figures of hVB results

face image recognition task (p < 0.05, SNRb5) left-foot movement task (p < 0.05, SNR5)
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Figure E.1. Comparison of spatial correlation with various methods for the visual
task (left) and the motor task (right). The results of the hVB estimation with the
uniform prior, the individual fMRI priors (CNR=0.5, 1, 3, 5, 10), the common
truth prior, and the meta-analysis priors (synthesized using the terms “visual”
and “motor”) are reported. These priors are used with the best prior weight pa-
rameter denoted in parentheses. Vertical axes indicate the correlation coefficient
of the spatial map (upper is better). The error bar represents standard error of
the mean over ten different Monte Carlo repetitions for the data generation. We
display results of a realistic simulation setting (p<0.05, SNR5) determined using
experimental data. The results of wMNE and Champagne are also shown as a

control.
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Figure E.2. Comparison of temporal correlation with various methods for the
visual task (left) and the motor task (right). The results of the hVB estimation
with the uniform prior, the individual fMRI priors (CNR=0.5, 1, 3, 5, 10), the
common truth prior, and the meta-analysis priors (synthesized using the terms
“visual” and “motor”) are reported. These priors are used with the best prior
weight parameter denoted in parentheses. Vertical axes indicate the correlation
coefficient of the time series (upper is better). The error bar represents stan-
dard error of the mean over ten different Monte Carlo repetitions for the data
generation. We display results of a realistic simulation setting (p<0.05, SNR5)
determined using experimental data. The results of wMNE and Champagne are

also shown as a control.
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Figure E.3. Comparison of aggregate scores with various methods for all simula-
tion settings (visual task). The results of the hVB estimation with the uniform
prior, the individual fMRI priors (CNR=0.5, 1, 3, 5, 10), the common truth prior,
and the meta-analysis priors (synthesized using the terms “visual” and “motor”)
are reported. These priors are used with the best prior weight parameter denoted
in parentheses. Vertical axes indicate the aggregate score (upper is better). The
error bar represents standard error of the mean over ten different Monte Carlo
repetitions for the data generation. We display results of all simulation settings
(3 SNR by 3 wClI (denoted as thresholds of the common truth)).
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Figure E.4. Comparison of aggregate scores with various methods for all simula-
tion settings (motor task). The results of the hVB estimation with the uniform
prior, the individual fMRI priors (CNR=0.5, 1, 3, 5, 10), the common truth prior,

¢

and the meta-analysis priors (synthesized using the terms “visual” and “motor”)
are reported. These priors are used with the best prior weight parameter denoted
in parentheses. Vertical axes indicate the aggregate score (upper is better). The
error bar represents standard error of the mean over ten different Monte Carlo
repetitions for the data generation. We display results of all simulation settings

(3 SNR by 3 wCI (denoted as thresholds of the common truth)).
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face image recognition task (p < 0.05, SNR5)
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Figure E.5. Score comparison of meta-analysis prior synthesized using detailed
terms (visual task). The results of the hVB estimation with the uniform prior,
the individual fMRI priors (CNR=0.5, 1, 3, 5, 10), the common truth prior, and
the meta-analysis priors (synthesized using the terms “face” and “object recogni-
tion”) are reported. These priors are used with the best prior weight parameter
denoted in parentheses. The horizontal line colored magenta indicates the ag-
gregate score of the term “visual” with prior weight 3e-1. Vertical axes indicate
the aggregate score (upper is better). The error bar represents standard error of
the mean over ten different Monte Carlo repetitions for the data generation. We
display results of a realistic simulation setting (p<0.05, SNR5) determined using
experimental data. The results of wMNE and Champagne are also shown as a
control.
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left-foot movement task (p < 0.05, SNR5)
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Figure E.6. Score comparison of meta-analysis prior synthesized using detailed
terms (motor task). The results of the hVB estimation with the uniform prior,
the individual fMRI priors (CNR=0.5, 1, 3, 5, 10), the common truth prior, and
the meta-analysis priors (synthesized using the terms “foot” and “hand”) are
reported. These priors are used with the best prior weight parameter denoted in
parentheses. The horizontal line colored magenta indicates the aggregate score
of the term “motor” with prior weight le-2. Vertical axes indicate the aggregate
score (upper is better). The error bar represents standard error of the mean over
ten different Monte Carlo repetitions for the data generation. We display results
of a realistic simulation setting (p<0.05, SNR5) determined using experimental

data. The results of wMNE and Champagne are also shown as a control.

F. Signal leakage analysis using resolution kernel

Because of the ill-posedness of the source reconstruction problem, there are linear
relations between reconstructed sources. Therefore, signals are spread from real
activity to other regions and cause spurious activations. This phenomenon is
called signal leakage or source leakage (Brookes et al., 2012; Colclough et al.,
2015; Palva et al., 2018; Sato et al., 2018). To consider the impact of signal
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leakage, we employed the resolution kernel (Sekihara et al., 2005).
In the absence of noise, the forward model is b = Gj using observations
b, lead field matrix G, and real currents j. Then, reconstructed currents j is

calculated as

Lb
= LGy, (F.1)

J

where L is an inverse filter. Here, we define R = LG as the resolution kernel.
As the above equation indicated, R tells us how the real currents spread in the
reconstructed one. For example, the i-th column of this matrix indicates the
signal spread of the i-th current of 7. Although ideal R is a diagonal matrix, it
is impossible due to the ill-posedness.

We computed a resolution kernel derived with the meta-analysis fMRI prior
(“visual”) and plotted a column of the right ventral occipitotemporal cortex
(VOTC). This region is a part of the fusiform gyrus and is known for the face-
selective response (Jonas et al., 2016). As the figure displayed, many signals
could be leaked from the right VOTC to the right insular cortex. It suggested
that the reconstructed currents on the insula were leakage from the fusiform gyrus
(Fig. 5.11). Note that similar results were obtained with the inverse filter of an
individual fMRI prior.
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Figure F.1. Resolution kernel at the ventral occipitotemporal cortex is displayed
on the cortex. Intensity indicates the degree of signal leakage from the right
ventral occipitotemporal cortex (marked as a white circle). It is calculated using
the resolution kernel derived with the meta-analysis fMRI prior (“visual”). This

figure is of sub-15 of experimental data.
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