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Linear Systems via Geometric
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Chengyan Zhao

Abstract

In the field of control system, there lies an important class of linear systems,
called positive linear systems. For simple introduction, the time-invariant, finite-
dimensional single input, single output systems, described by state equations of
the form

ẋ(t) = Ax(t) + bu(t)

where the state matrix A is Metzler (the off-diagonal entries are nonnegative).
Positive linear systems, as another linear systems, satisfy the properties of general
linear systems and also the peculiar ones. Thus, positive linear systems could be
studied by other mathematical theories, like Linear Programming, Nonnegative
Matrices and Geometric Programming.
In the dynamic system, the abrupt changes of working environment, failures

of sensors or actuators, and the working points of nonlinear systems can be re-
garded as the phenomena of time-varying or stochastic switching, which can be
widely found in energy, chemical process, communication, social network, and
other practical systems. Due to these reasons, the models adopted for the design
of control systems are more and more complicated and specific. Recent years,
switched linear systems which are regarded as a special class of hybrid systems
attract a lot of attention in modeling the time-varying feature of dynamic sys-
tems. Due to the wide existence of nonnegative variables in the world, examples

∗Doctoral Dissertation, Graduate School of Science and Technology Nara Institute of Science
and Technology, March 11, 2021.
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like, power, traffic, bio-chemistry, positive linear systems become the hot spot in
the control research field recently. By using the property of nonnegative matrix
theory, the study of positive systems derives many new results than the gen-
eral linear system theory. In this situation, this dissertation aims at building
new frameworks for the positive time-varying linear systems. This dissertation
will make deep discussion on two issues of the positive linear systems with time-
varying state. One is the stability optimization of stochastic switched state. The
other is the general time-varying finite-time control. The main contributions are
as follows:
The stability optimization problem for the positive semi-Markov jump linear

systems is investigated. Firstly, for extending the stochastic switching rule in
modeling the positive switched linear systems to a more general case, the Markov
process adopted in the previous works is extended to semi-Markov process be-
cause Markov process has the limitation in modeling the switching phenomena in
real problems. By utilizing the spectral radius based stability analysis result of
positive semi-Markov jump linear system, the framework for solving the stability
optimization problem is proposed via geometric programming. Specifically, the
problems of tuning the coefficients of the system matrices for maximizing the ex-
ponential decay rate of the system under a budget-constraint and minimizing the
parameter tuning cost under the decay rate constraint is investigated. By using
a result from the matrix theory on the log-log convexity of the spectral radius of
nonnegative matrices, the stability optimization problems are reduced to convex
optimization problems under certain regularity conditions on the system matri-
ces and the cost function. Finally, the validity and effectiveness of the proposed
results are illustrated by using an example from the population biology.
The finite-time control problem for discrete-time positive linear system with

time-varying state is studied by adopting geometric programming. Although
several interesting control problems appearing in population biology, economics,
and network epidemiology can be described as the class of finite-time control
problems, an efficient solution to the control problem has not been yet found in
the literature. In this dissertation, an optimization framework for solving the
class of finite-time control problems via convex optimization is proposed. Finally,
the effectiveness of the proposed method is illustrated by a numerical simulation
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in the context of dynamical product development processes.
Based on the theoretical results of Chapter 4, we solve the resource allocation

of Product Development (PD) process. In this thesis, we formulate the dynamic
resource allocation of the PD process as a convex optimization problem. Specially,
we build and solve two variants of this issue: the budget-constrained problem
and the performance-constrained problem. By using convex optimization, we
propose a framework to optimally solve large problem instances at a relatively
small computational cost. The solutions to both problems exhibit similar trends
regarding resource allocation decisions and performance evolution. Furthermore,
we show that the product architecture affects resource allocation, which in turn
affects the performance of the PD process. By introducing centrality metrics
for measuring the location of the modules and design rules within the product
architecture network, we find that resource allocation decisions correlate to their
metrics. These results provide simple, but powerful, managerial guidelines for
efficiently designing and managing the PD process.

Keywords:

Positive systems, switched linear systems, semi-Markov process, finite-time con-
strol, stability optimization, geometric programming, convex optimization, biol-
ogy population control, product management, centrality.
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1 Introduction

1.1 Positive linear systems
Linear time-invariant systems, where the state, in-put, and out-put matrices with
respect to nonnegative orthant, are said to be positive linear systems [32]. Nu-
merous examples of dynamic systems with nonnegative variables are found in
biology [7], epidemics [37], chemistry [13], air-transportation [14], and project
management [15]. Compared with general linear systems, positive linear systems
hold the character that all its signals are confined to one nonnegative region in
multidimensional space. By utilizing the mathematical theory of positive system
built on the theory of nonnegative matrices [16] and the unified theoretical method
for positive systems [17], a large number of results have been reported about the
analysis and synthesis of positive systems such as positive realization [18], reach-
ability and controllability [19] [20], and stabilization [72].
For the synthesis problems of positive linear systems [32], the commonly recog-

nized approach is to building co-positive linear Lyaponov function. By utilizing
the character of positive systems, this way has the advantage compared with
the quadratic Lyaponov function that used for general linear system, because
the co-positive linear Lyaponov function based method can be solved by linear
programming which has the less variables and higher efficiency for computation.
However, the linear programming approach has the constraint that the controller
design problem does allow the parameter tunning feature to be nonlinear, which
restricts the feasibility of applying to practical problems. The key idea of this
thesis is to find the relationship between positive linear system and optimization
method for building the more specific computation framework. To simply state
the idea, we know that linear programming deal with the linear function with
real variables. In this situation, the parameter tunning function in the controller
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design problem must be liner or constant. Our motivation is if there exists a opti-
mization approach dealing the positive nonlinear function program? Fortunately,
geometric programming (see Section 2) is an ideal method for addressing a class
of nonnegative nonlinear function called posynomials.

1.2 Positive stochastic jump linear systems
Recently, positive linear systems with time-varying or stochastic switching fea-
tures [10] are deeply studied because the real physical systems always suffer from
the sudden change in the mode of interconnection between subsystems, failure of
the components, and human intervention during their operation. To describe this
phenomenon, stochastic process model is adopted for mathematically illustrat-
ing the jump feature among these subsystems. Currently, the most investigated
model is the Markov jump linear systems [1–6,9,33] which is regarded as an im-
portant class of stochastic switched dynamical systems and have applications in
mobile robots [36], epidemic processes [37], and networked control systems [38].
Several important issues on Markov jump linear systems [34] have been addressed
in the literature including controllability and stabilizability [11,23,27,31,39], ro-
bust optimal control [21,22,24–26,40], sampled-data control [28–30,41], and game
theory [42]. Furthermore, the class of systems includes the basic class of stochas-
tic dynamical systems with an independent and identically distributed parame-
ters [43,44]. Despite the aforementioned advances, modelling by a Markov jump
linear system suffers from the limitation that the sojourn time of the systems must
follow an exponential distribution. This restriction is not necessarily satisfied in
practice; a typical example arises in modeling the occurrence of component fail-
ures in the context of fault tolerant control systems, where the probability density
functions of failure rates are well-explained by Weibull distributions [45].
One natural way to overcome this limitation is to allow the sojourn times to

follow non-exponential distributions, which results in a broader class of stochastic
dynamical systems called semi-Markov jump linear systems [46]. In this context,
we can find in the literature several results toward the analysis and control of the
class of systems. The authors in [47] have presented sufficient conditions for the
moment stability of semi-Markov jump linear systems. Huang and Shi [48] derived
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linear matrix inequalities (LMIs) for the robust state-feedback control of semi-
Markov jump linear systems. We can also find several LMI-based approaches for
further advanced types of synthesis methodologies [49–52]. However, the design
methodologies in the aforementioned references can be conservative because their
derivation relies on approximations for avoiding the difficulty in dealing with
non-exponential distributions.
We show that the problem of tuning the parameters of parametrized positive

semi-Markov jump linear systems can be efficiently and exactly solved without
introducing any conservatism. We specifically show that, under the assumption
that the parametrization is described by posynomial functions [53], the problems
of finding the parameters maximizing the decay rate of the parametrized system
and minimizing the parameter tuning cost can be transformed to convex optimiza-
tion problems. The reduction to convex optimization problems is exact because
we do not rely on any approximations that are employed in the aforementioned
references. Instead of employing an approximation, in this thesis we utilize the
stability characterization of positive semi-Markov jump linear systems [46] as well
as the log-log convexity result on the spectral radius of nonnegative matrices [54].
The theoretical result in this thesis is illustrated by an example in the context of
the population biology [55].

1.3 Positive time-varying linear systems
The concept of finite-time stability [64], which is concerned with the stability
property of dynamical systems over a finite time window, is of practical impor-
tance due to its effectiveness in solving realistic control problems appearing in
several fields including robotics [65], spacecraft control [66], and multi-agent sys-
tems [67]. We find in the literature several advances in the field; for example,
Bhat and Bernstein [68] proposed a finite-time stability criteria for continuous-
time autonomous systems. Amato et al. [69] proposed a sufficient condition for
finite-time stability and control for time-invariant linear systems through the
Lyapunov function approach. Hong [70] considered the finite-time control and
stabilizability for a class of controllable systems. The authors in [71, 72] studied
a finite-time synthesis problem for the nonlinear systems.
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Recently, finite-time control problems have been actively investigated in the
context of positive systems [32], which are dynamical systems whose state vari-
ables are confined to be within the positive orthant and naturally arise in various
application areas including pharmacology [74], epidemiology [37,75], and commu-
nication networks [76]. For example, the authors in [77] derived a necessary and
sufficient condition for the finite-time stability of switched positive linear systems
by using the co-positive Lyapunov approach. Colaneri et al. [56] established the
convexity of the norm of the state variable of a class of positive time-varying
linear systems with respect to the diagonal entries of the state matrix. However,
the practical applicability of this convexity result is not necessarily enough to
cover some applications of positive linear systems because the convexity property
is limited to the diagonals of the state matrix of the system, as shall be discussed
later in this thesis. Furthermore, there is a lack of frameworks for considering the
cost associated with control input such as the one for chemical [7] and medical [73]
interventions.
Extending the framework in [62] for linear time-invariant positive systems,

in this thesis we propose an optimization framework to solve a class of finite-
time control problems for discrete-time time-varying positive linear systems. We
formulate the finite-time control problem as an optimization problem, in which
the parameter cost as well as the performance evaluation functions are described
by posynomial functions [53]. We then show that the finite-time control problem
can be transformed into a geometric program, which can be efficiently solved via
convex optimization. In the derivation of these results, we do not restrict the
tunable entries of the system matrix to its diagonals; therefore, the contribution
of this thesis lies in showing a form of convexity of the problem with respect to
any of the entries of the state matrix.

1.4 Application research: Optimal resource
allocation for product development

Successful Product Development (PD) requires careful allocation of development
resources. Allocating resources to various subsystems and modules within the
product system requires a deep understanding of many complex interactions.
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These interactions arise from various sources; namely, due to the physical in-
terdependencies between the different subsystems in the product itself (i.e., the
product architecture), the arrangements of organizations that will carry out the
development process (i.e., the social network behind the organization), and the
structure of the development process (i.e., predecessor relationships between de-
velopment activities) [94]. In particular, this paper is focused on obtaining an
understanding of the product architecture and its role in resource allocation de-
cisions during PD 1.
Product architecture is usually described by a continuum between an integral

product architecture to a modular one. In integral architectures, the product
functions are shared by product modules (i.e., physical elements), and in mod-
ular architectures, each function is delivered by a separate element or module.
Thus, integrality creates interdependence between product elements or modules.
This interdependency, in turn, results in complexity. That is, some of the inter-
dependencies may not be known in advance, or their influence on product and
PD process performance may also be unknown. Within this complex PD envi-
ronment, several studies have argued that the product architecture may evolve
from integral to modular [8, 95].
In this paper, we investigate how the product architecture may influence the

resource allocation decision to various modules using an optimization framework.
Using this framework, we can investigate the tendency for product architectures
to evolve form integral to modular architectures. The aim of this paper is to
check whether the location of a module within the product architecture can offer
PD managers insights into optimal resource allocation decisions.
Several authors have formulated and analyzed the PD problem by analogy to

dynamic linear systems (e.g., [35, 96]). In their analysis, they assumed that all
tasks in the design structure matrix (DSM) proceed in parallel, where the DSM is
a matrix representation of the development network. At any iteration stage, one

1Product architecture is not the only driver for resource allocation decisions. Other drivers,
such as existing product lineup, competitive products, product demand and price, technological
advancements, consumer taste changes, balancing the development portfolio, etc., may play an
influential role (Terwiesch and Ulrich, 2008). However, we focus on product architecture since
it is the central issue in our proposed model.”Terwiesch, C., Ulrich, K. (2008). Managing the
opportunity portfolio. Research-Technology Management, 51(5), 27-38.
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unit of work on one task results in a fraction of rework for the other dependent
tasks during the next iteration stage. The dependency between tasks is captured
by the numerical values in the DSM. As such, the work completed in a current
design iteration is a linear function of the work completed in the previous design
iteration, with the linear weights being the numerical values in the DSM.
Other authors have used complexity theory to describe and analyze the PD pro-

cess. They showed how the underlying network topologies and statistical struc-
tural properties provide direct information about the functionality, dynamics,
robustness, and fragility of these PD projects. Also, the authors in [97] argued
that modules could be optimized independently if interface standards between
modules are left unchanged. Similarly, Luo [98] used the NK framework to show
how different product architectural patterns can influence product evolvability.
Network analysis has also been used for analyzing PD project network [99,100].

For example, the analysis of the network structure (i.e., statistical properties) for
various software and hardware development projects revealed that these networks
have both small world and scale free network patterns. Additionally, they demon-
strated that complex design networks are highly robust to the failure of randomly
selected design components, but weak for failures targeting specific components
(such as hub components). Similarly, Sosa et al. [101] found that the analysis of
the network structure of complex product designs (particularly, the existence of
hubs in the design network) impacts the quality of the product being developed.
More recently, the authors in [8] have formulated the PD resource allocation

problem as a nonlinear optimization problem. Furthermore, the authors proposed
a dynamic model in which there are several investment runs (or rounds) during
the PD process. This formulation allowed the investigation of several interesting
hypotheses, including the impact of architecture on performance evolution from
integral to modular systems.
The aim of this paper is to offer a more efficient optimization approach based

on convex optimization techniques, which would allow us to find the globally
optimal allocation of development resources. In this direction, we first adopt a
discrete-time linear system to represent the work transformation feature in the
PD process. Then, we propose an optimization framework where the resource
allocation problem of the PD process can be transformed into a convex optimiza-
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tion problem. We then apply our framework to symmetric and synthetic product
architectures to reveal the trends of the evolution of optimal investment. Finally,
analyzing case studies with asymmetric PD architectures, we gain into the re-
source allocation problem and provide a guide for designing and managing the
PD process.
This thesis is organized as follows. After giving mathematical preliminaries in

Section 3.1, we formulate the stabilization problem of positive semi-Markov jump
linear systems and state the main result. The derivation of the main result is
presented in Section 3.2. In Section 3.3, we illustrate the validity and effectiveness
of the result with numerical simulations. In Section 4.1, we formulate the finite-
time control problem studied in this thesis. In Section 4.2, we introduce our
assumptions on the system and cost functions and, then, state our main result.
Finally, in Chapter 5, we illustrate the effectiveness of our results by solving
the optimal resource allocation problem that arises in the context of managing
product development processes.
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2 Mathematical Preliminaries

The following notations are used in this dissertation. Let R, R+, R++ denote the
set of real, nonnegative, and positive numbers, respectively. Let N denote the set
of positive integers. Let Rn×n denote the set of n× n real matrices. The identity
matrix of order n is denoted by In. We let x ≥ 0 be a nonnegative vector, if
the entries of x are all nonnegative. We say that a square matrix is Metzler if
the off-diagonal entries of the matrix A are nonnegative. We let the entrywise
logarithm operation log[·] : Rn++ → Rn be defined by (log[v])i = log vi for all i ∈
{1, . . . , n}. Likewise, we define the entrywise exponentiation exp[·] : Rn → Rn++

in the same manner. We say that a matrix is nonnegative if all the entries of
the matrix are nonnegative. Let (Ω,M,P ) be a probability space. The expected
value of a random variable X on Ω is denoted by E[X]. We denote the spectral
radius of A by ρ(A). We define the entrywise logarithm of a vector v ∈ Rn++

by log[v] = [log v1, . . . , log vn]>. The entrywise exponential operation exp[·] is
defined in the same manner. Aij stands for (i, j) entry of the matrix A. L∗

Definition 1. [53] Let v1, . . ., vn denote n real positive variables.

1. We say that a real function g(v) is a monomial if there exist c > 0 and
a1, . . . , an ∈ R such that g(v) = cva1

1 . . . vann .

2. We say that a real function f(v) is a posynomial if f is a sum of monomials
of v.

3. We also say that a real function is a generalized posynomial if it can be
formed from posynomials using the operations of addition, multiplication,
positive (fractional) power, and maximum.

The following lemma shows the log-convexity of posynomials.
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Lemma 1. [53] Let f : Rn+ → R+ : x 7→ f(x) be a posynomial function. Then,
the function

F : Rn → R : w 7→ log f(exp[w])

is convex.

The log-convexity of posynomials allows us to solve a class of optimization
problems called geometric programs efficiently, as summarized in the following
proposition.

Proposition 1. If gi are monomials and fj are posynomials. We say the follow-
ing optimization problem is the geometric programming problem

minimize
θ∈Θ

f0(θ)

subject to fj(θ) ≤ 1, j = 1, . . . , p,
gi(θ) = 1, i = 1, . . . , q,

can be transformed into a convex optimization problem through the logarithmic
variable transformation

θ = exp[z], z ∈ Γ ⊂ Rm.

Then, we obtain the convex optimization problem with the following form:

minimize
z∈Γ

log f0(exp[z])

subject to log fj(exp[z]) ≤ 0, j = 1, . . . , p,
log gi(exp[z]) = 0, i = 1, . . . , q.

9



3 Stability optimization of
positive semi-Markov jump
linear systems via convex
optimization

In this chapter, we study the problem of optimizing the stability of positive semi-
Markov jump linear systems. We specifically consider the problems of tuning the
coefficients of the system matrices for maximizing the exponential decay rate of
the system under a budget-constraint and minimizing the parameter tuning cost
under the decay rate constraint. By using a result from the matrix theory on the
log-log convexity of the spectral radius of nonnegative matrices, we show that
the stability optimization problems are reduced to convex optimization problems
under certain regularity conditions on the system matrices and the cost function.
We illustrate the validity and effectiveness of the proposed results by using an
example from the population biology.

3.1 Problem formulation and main results
Let us consider a parameterized family of switched linear systems of the form

Σθ : dx
dt

= Aσ(t)(θ)x(t), x(0) = x0 ∈ Rn, (3.1)

where x(t) ∈ Rn is the state vector, σ is a piecewise-constant function taking val-
ues in the set {1, . . . , N}, and A1(θ), . . . , AN(θ) ∈ Rn×n are matrices parametrized
by the parameter θ belonging to a set Θ ⊂ R`.
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In this chapter, we assume that each subsystem has a positivity (see, e.g., [32,
57]). We also assume that σ is a semi-Markov process [58]; i.e., we assume that
the evolution of σ is governed by the following probabilities:

Pr{σ(t+ h) = j | σ(t) = i} =

λij(h)h+ o(h), if j 6= i,

1 + λii(h)h+ o(h), if j = i,

where λij(h) represents a time-varying transition rate from mode i to mode j,
λii(h) = −∑N

j=1,i 6=j λij(h), and o(h) is little-o notation defined by limh→0 o(h)/h =
0. The above assumptions are summarized into the following definition.

Definition 2 ( [46]). Let θ ∈ Θ. We say that the system Σθ is a positive
semi-Markov jump linear system if the initial state x0 is nonnegative, the matri-
ces A1(θ), . . . , AN(θ) are Metzler, and σ is a semi-Markov process taking values
in {1, . . . , N}.

For t ≥ 0 and x0 ∈ Rn+, we let x(t;x0) denote the trajectory of the system Σθ

at time t and with the initial condition x(0) = x0. This chapter is concerned with
the stability property of the system Σθ given as follows:

Definition 3 ( [46, 59]). We say that Σθ is exponentially mean stable if there
exist α > 0 and β > 0 such that, for every x0 and σ(0),

E[‖x(t;x0)‖] ≤ αe−βt‖x(0)‖.

If Σθ is mean stable, then the exponential decay rate of the system Σθ is defined
by

γθ = − sup
x0∈Rn+

lim sup
t→∞

logE[‖x(t;x0)‖]
t

.

In this chapter, we consider a budget-constrained stability optimization prob-
lem described as follows. Consider the situation where a limited amount of re-
source available is given for tuning the parameter θ to improve the stability of
the system Σθ. We let a real function C denote the cost for achieving a specific
parameter θ. In this context, we formulate our stability optimization problem as
follows:
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Problem 1 (Budget-constrained stabilization). Let a real number C̄ be given.
Find the parameter θ ∈ Θ such that the exponential decay rate γθ is maximized,
while the budget constraint

C(θ) ≤ C̄

is satisfied.

In the budget-constrained optimization problem, we need to distribute the
constrained parameter cost to Ai(θ) to obtain the maximized decay rate. How-
ever, there is another situation where the optimization object is minimizing the
parameter tuning cost C(θ) while satisfying the performance constraint (decay
rate). From this perspective, we formulate an alternative optimization problem
as follows:

Problem 2 (Performance-constrained stabilization). Let a positive number γ̄ be
given. Find the parameter θ ∈ Θ such that the parameter tuning cost C(θ) is
minimized, while the performance constraint

γθ ≥ γ̄

is satisfied.

In our main results, we show that Problems 1 and 2 reduce to convex opti-
mization problems. In order to state the main results, we place certain regularity
assumptions on the system matrices Ai(θ) and the cost function C(θ). For this
purpose, we introduce the class of functions called monomials and posynomi-
als [53]. We say that a function F : Rn++ → R++ is a monomial if there exist
c > 0 and real numbers a1, . . . , an such that

F (v) = cva1
1 v

a2
2 · · · vann

Then, we say that a function F is a posynomial if F is a sum of finite number of
monomials.
The following mild and reasonable assumption is necessary for ensuring Prob-

lems 1 and 2 reduce to convex optimization problems.

Assumption 1. The following conditions hold true:

12



1. For each k = 1, . . . , N , there exists an n× n Metzler matrix Mk such that
each entry of the matrix

Āk(θ) = Ak(θ)−Mk

is either a posynomial in θ or zero.

2. C(θ) is a posynomial in θ.

3. There exist posynomials φ1(θ), . . . , φm(θ) and positive constants φ̄1, . . . ,
φ̄m such that

Θ = {θ ∈ R` : φ1(θ) ≤ φ̄1, . . . , φm(θ) ≤ φ̄m}.

4. The sojourn times of the semi-Markov process σ are uniformly bounded,
i.e., there exists T > 0 such that the sojourn times are less than or equal to
T with probability one.

Remark 1. Major examples of positive linear time-invariant systems satisfy-
ing Assumption 1 include networked epidemic processes [60], population dynam-
ics [55], and dynamical buffer networks [61] (for further discussions, see [62]). For
example, in the containment problem for networked epidemic processes [60], the
parameter θ corresponds to the infection and recovery rates of the nodes, while
the cost function C(θ) would indicate the cost for medical resources to tune the
rates.

Also, we introduce the following notations to state the main results of this
chapter. Let σd be the embedded Markov chain of σ (see, e.g., [58]). For i, j ∈
{1, . . . , N}, let pij denote the transition probability of σd, i.e., let pij denote the
probability that the discrete-time Markov chain σd transitions into state j from
state i in one time step. Also, let hij denote the random variable representing
the sojourn time of σ at the mode j after jumping from the mode i, and fij(hij)
denote the corresponding probability density function.

Theorem 1. Let C̄ > 0 be given. For each θ ∈ Θ and g > 0, define the
matrix A (θ, g) ∈ R(nN)×(nN) as the block matrix whose (i, j)-block is defined by

[A (θ, g)]ij = pji

∫ T

0
e(Aj(θ)+gI)τfji(τ) dτ ∈ Rn×n. (3.2)

13



Define the set

log[Θ] = {log[θ] : θ ∈ Θ} ⊂ R`.

Assume that u = u? and v = v? solve the following optimization problem:

minimize
u∈log[Θ], v∈R

− v

subject to log ρ(A (exp[u], ev)) ≤ 0,
logC(exp[u]) ≤ log C̄,
log φi(exp[u]) ≤ log φ̄i, i = 1, . . . , `.

(3.3)

Then,
θ = exp[u?]

solves Problem 1 and attains the exponential decay rate ev?. Furthermore, the
optimization problem (3.3) is convex.

We can also show that Problem 2 can be solved by the following convex opti-
mization problem.

Theorem 2. Assume that u = u? solves the following optimization problem:

minimize
u∈log[Θ], v∈R

logC(exp[u])

subject to log ρ(A (exp[u], ev)) ≤ − log γ̄,
log φi(exp[u]) ≤ log φ̄i,

i = 1, . . . , `.

Then,
θ = exp[u?]

solves Problem 2 and attains the minimized cost C(exp[u?]). Furthermore, the
optimization problem in Theorem 2 is convex.

3.2 Proof
In this section, we give the proof of the main results. Because the proof of The-
orem 2 is similar to that of Theorem 1, we only present the proof of Theorem 1.
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We first prepare a few lemmas for the proof. The first lemma gives a character-
ization of the exponential decay rate of the system Σθ in terms of the spectral
radius of the matrix A (θ, g) defined in the theorem.

Lemma 2. Let θ ∈ Θ and g > 0 be arbitrary. The following statements are
equivalent:

• The exponential decay rate of Σθ satisfies γθ > g.

• ρ(A (θ, g)) < 1.

Proof. Assume γθ > g. Then, the positive semi-Markov jump linear system
dx

dt
= (Aσ(t)(θ) + gI)x(t)

is exponentially mean stable. Therefore, by Theorem 2.5 in [46], the matrix
A (θ, g) has a spectral radius less than one, as desired. The proof of the opposite
direction can be proved in the same manner and, therefore, is omitted.
We then recall the following celebrated result by [54]. We say that an R++-

valued function f(x) is superconvex if log f(x) is convex.

Lemma 3 ( [54]). Let A : R` → Rn×n++ be a function. Assume that each entry
of A is either a superconvex function or the zero function. Then, the mapping
R` → R++ : x 7→ ρ(A(x)) is superconvex.

We finally state the following lemma concerning the superconvexity of posyn-
omials.

Lemma 4 ( [53]). Let f : Rn++ → R++ be a posynomial. Then, the mapping
Rn → R++ : u 7→ f(exp[u]) is superconvex.

Let us now prove Theorem 1.
Lemma 2 shows that the solution of Problem 1 is given by the following opti-

mization problem:

minimize
θ∈Θ, g>0

− g

subject to ρ(A (θ, g)) ≤ 1,
C(θ) ≤ C̄,

φi(θ) ≤ φ̄i, i = 1, . . . , `.

(3.4)
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Performing the variable transformations

u = log[θ], v = log g

as well as taking logarithms in the objective functions and constraints, we can
equivalently reduce (3.4) into the optimization problem in Theorem 1. Therefore,
to complete the proof of theorem, we need to show the convexity of the optimiza-
tion problem in Theorem 1. The convexity of the constraints in Theorem 1 is a
direct consequence of the superconvexity of posynomials stated in Lemma 4. In
the remaining of this section, we shall show the convexity of the mapping

log[Θ]× R→ R : (u, v) 7→ log ρ(A (exp[u], ev)).

For each k = 1, . . . , N , we define the matrix function

Ãk(θ) = Ak(θ)−Mk + gI.

Then, equation (3.2) shows that

[A (θ, g)]ij = pji

∫ T

0
e(Ãj(θ)+Mj)τfji(τ) dτ,

where fji denotes the probability density function of the sojourn time hji. This
equation and the Lie-product formula

eA+B = lim
K→∞

(eA/KeB/K)K

for square matrices A and B (see, e.g., [63]) yield that

[A (θ, g)]ij = pji

∫ T

0
lim
K→∞

(
e
τÃj(θ,g)

K e
τMj
K

)K
fji(τ) dτ

= lim
K,L→∞

Γ
(K,L)
ij (θ, g)

where, for positive integers K and L, the n× n matrix Γ (K,L)
ij (θ, g) is defined by

Γ
(K,L)
ij (θ, g) = pji

L∑
`=1

T

L

(
e
`TÃj(θ,g)

KL e
`TMj
KL

)K
fji(`T/L).

Therefore, if we define

Γ
(K,L,M)
ij (θ, g) =

pji
L∑
`=1

T

L

(
M∑
m=0

1
m!

(
`T Ãj(θ, g)

KL

)m
e
`TMj
KL

)K
fji

(
`T

L

)
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then, by the definition of matrix exponentials, we obtain the following expression:

[A (θ, g)]ij = lim
K,L,M→∞

Γ
(K,L,M)
ij (θ, g). (3.5)

Let us show that each entry of the matrix Γ
(K,L,M)
ij is either a posynomial

in θ and g or zero. Since the matrix Mj is assumed to be Metzler (Assump-
tion 1.1), the matrix e`TMj/KL is nonnegative for all K and L. Also, each entry
of the matrix Ã(θ, g) is either a posynomial or zero by Assumption 1.1. Since
the set of posynomials is closed under additions and multiplications, each en-
try of the matrix power (`T Ãj(θ, g)/KL)m is either a posynomial of θ and g or
zero as well. From the above observation, we conclude that each entry of the
matrix Γ (K,L,M)(θ, g) is a posynomial with the variables θ and g or zero.
We are now ready to complete the proof of the theorem. Define the (nN)×(nN)

matrix A (K,L,M)(θ, g) as the block matrix whose (i, j)-block equals Γ (K,L,M)
ij (θ, g)

for all i, j ∈ {1, . . . , N}. Then, by Lemmas 3 and 4, the mapping

(u, v) 7→ ρ(A (K,L,M)(exp[u], ev))

is superconvex. Since (3.5) shows that the mapping A is a point-wise limit of
the mapping A (K,L,M), taking a limit preserves superconvexity, and the spectral
radius operator ρ(·) is continuous, we obtain the convexity of the mapping (3.2).
This completes the proof of convexity of the optimization problem (3.3), as de-
sired.

Remark 2. From the proof of Theorem 1, we see that Problem 1 can be formu-
lated as the problem (3.4) even without Assumption 1. Assumption 1 then allows
us to reduce the optimization problem (6) into a convex optimization problem.

Corollary 1. We can also show that a performance-constrained counterpart of
Problem 1 can be solved via convex optimization. Let us consider the following
optimization problem: For a given γ̄ > 0, find θ ∈ Θ such that the cost func-
tion C(θ) is minimized, while the requirement

γθ ≥ γ̄

In the same way as the proof of Theorem 1, we can show that the solution of the
optimization problem is given by

θ = exp[u?],
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where u = u? solves the following convex optimization problem:

minimize
u∈log[Θ], v∈R

logC(exp[u])

subject to log ρ(A (exp[u], ev)) ≤ − log γ̄,
log φi(exp[u]) ≤ log φ̄i,

i = 1, . . . , `.

The proof of this corollary is the same manner as Theorem 1.

3.3 Example: biological population control
In this section, we illustrate the validity and effectiveness of the main results
with an example in the context of population biology [55]. Many biological pop-
ulations are exposed to environmental fluctuations, from daily regular cycles of
light and temperature to irregular fluctuations of nutrients and pH levels. To
survive through the fluctuating environment, many biological populations em-
ploy a protection mechanism called bet-hedging to increase robustness against
the fluctuations of environment. In brief, bet-hedging means that the biological
populations exhibit several phenotypes that have different growth rates among
the possible environments.
For the bet-hedging population model, we consider a biological community

with n phenotypes living in a randomly fluctuating environment with N possible
environmental types. Let gik denote the growth rate of phenotype i under environ-
ment k. In the bet-hedging population, individuals may switch their phenotype
at any time but stochastically. We let ωjik denote the instantaneous rate at which
an individual having phenotype j switches its phenotype to i under environment
k. Let xi(t) denote the number of individuals having phenotype i at time t and
σ(t) denote the environment type at time t. Then, the dynamics of population
in phenotype i can be expressed by the following differential equation [55]

Σ : dxi
dt

= giσ(t)xi(t) +
n∑
j 6=i

ωjiσ(t)xj(t),

where ωiik = −∑n
j=1,j 6=i ω

ij
k . The fluctuation is governed by a semi-Markov process

σ(t) ∈ {1, . . . , N} as mentioned in Definition 2. Fig. 3.1 shows a schematic
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picture of this model for n = 2 and N = 2, i.e., individuals present two types of
phenotypes in two environments.
Let us consider the problem of driving the entire population into extinction

through biological intervention. Assume that L different types of antibiotics are
available for suppressing growth rates. Let c`(α`) (` ∈ {1, . . . , L}) denote the
cost for dosing α` unit of the `th antibiotics, which is assumed to reduce the
growth rate of the ith phenotype population by ∆`g

i(α`) independent of the
current environment types. In this situation, we can reduce the growth rate
of the ith phenotype population to giσ(t) −

∑L
`=1 ∆`g

i(α`) with the associated
total cost C(α) = ∑L

`=1 c`(α`). The resulting population dynamics admits the
representation

Σ ′ : dxi
dt

=
(
giσ(t) −

L∑
`=1

∆`g
i(α`)

)
xi(t) +

n∑
j 6=i

ωjiσ(t)xj(t).

Let us allow the following box constraint

0 ≤ α` ≤ ᾱ` (3.6)

on the amount of doses. Under this scenario, we consider the following optimal
intervention problem:

Problem 3 (Optimal intervention problem). Let C̄ be a positive constant. As-
sume that σ is a semi-Markov process satisfying Assumption 1.4. Find the set
of dose amounts α = (α1, . . . , αL) to maximize the exponential decay rate of the
system Σ ′ while satisfying

C(α) ≤ C̄. (3.7)

In this numerical example, we assume that the cost for antibiotics is linear with
their dose amount, i.e., we let

c`(α`) = r`α`

for a constant r` > 0 for all `. As for the suppression ∆`g
i(α`) of the growth rates,

we adopt the increasing function that presents diminishing marginal benefit on
the dosage

∆`g
i(α`) = si`¯

θ−q`` − (α` +
¯
θ`)−q`

¯
θ−q`` − (ᾱ` +

¯
θ`)−q`
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where
¯
θ` > 0, si` ≥ 0, and q` > 0 are parameters. These parameters allow

us to realize various shapes of the suppression functions, including the dose-
proportional suppression illustrated in Fig. 3.2. We notice that the zero dose of
the `th antibiotic does not change the growth rate, i.e., ∆`g

i(α`)(0) = 0, while
the maximum dose achieves the full performance ∆`g

i(ᾱ`) = si`.
Let us show that the optimal intervention problem reduces to Problem 1. We

introduce an auxiliary variable

θ` =
¯
θ` + α`

that is to be optimized. If we define θ̄` =
¯
θ` + ᾱ`, then the constraint (3.6) is

rewritten as the block constraint

¯
θ` ≤ θ` ≤ θ̄`,

which can be expressed using posyonmial functions [60]. Therefore, Assump-
tion 1.3 is satisfied. Let us define the variable θ = (θ1, . . . , θL). Then, we can
rewrite the system Σ ′ into the form (3.1), where the matrices A1(θ), . . . , AN(θ)
are defined by

[Ak(θ)]ii = g̃ik +
L∑
`=1

si`(¯
θ−q`` − θ̄−q`` )−1θ−q``

with g̃ik = gik − ωiik −
∑L
`=1 s

i
`¯
θ−q`` /(

¯
θ−q`` − θ̄−q`` ), and

[Ak(θ)]ij = ωijk

for i 6= j. Therefore, if we define the diagonal matrixMk = diag(g̃1
k, . . . , g̃

n
k ), then

each entry of the matrix Ak(θ) −Mk is a posynomial in the variables θ or zero.
Hence, Assumption 1.1 is satisfied. Furthermore, the cost constraint (3.7) can be
rewritten as

L∑
`=1

r`θ` ≤ C̄ +
L∑
`=1

r`¯
θ`

in terms of posynomials of the variable θ. Since all the conditions in Assumption 1
are satisfied, the optimal intervention problem can be efficiently solved by convex
optimization as shown in Theorem 1.
For simplicity of presentation, we focus on the case of n = N = 2 in this

numerical example. Throughout the simulation, we fix a part of the parameters
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as follows: ω21
1 = ω12

1 = 0.1, ω21
2 = ω12

2 = 0.5, g1
1 = 1, g2

1 = −0.5, g1
2 = −1,

g2
2 = 0.5, ᾱ1 = ᾱ2 = 1,

¯
θ1 =

¯
θ2 = 10, q1 = q2 = 0.01, s1

1 = s2
1 = s1

2 = s2
2 = 1,

c1 = c2 = 1, and C̄ = 2. Also, we assume that the environment keeps switching
from one to another, and that the sojourn time of each environment follows the
Weibull distribution having the probability density function

fij(hij) =


γij

kij
λij

(
hij
λij

)kij−1
e−(hij/λij)kij ,

if 0 < hij ≤ T ,

0, otherwise,

(3.8)

where λij is the range parameter for adjusting the expectation of the sojourn
time hij, and kij is the shape parameter. We truncate this density function at a
finite time T to satisfy Assumption 1.4, and γij is the constant for normalizing
the integral of the truncated density function. We remark that setting kij = 1
recovers the case of sojourn times following exponential distributions (i.e., the
Markovian case).
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𝜔2
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Environment 1 Environment 2
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Figure 3.1: Bet-hedging population

In our simulation, we investigate the trade-off between the parameter λij and
kij to see the impact of the extension from Markov process to semi-Markov pro-
cess. For problem solving, we adopt the commonly used off-the-shelve software for
convex optimization problem: fmincon routine in MATLAB. For this purpose,
we consider the situation in which the parameter λij and kij of the probability
density function fij in (3.8) can be tuned under the constraint of equally fixed
expectation E[h12] = E[h21] = 6. For various values of λ12 and k21, we present
the values of the optimized exponential decay rate in Fig. 3.3. We can observe
that the optimized decay rate nontrivially depends on k21 (i.e., the shape of the
density f21). Specifically, when k21 > 1, modeling the bet-hedging population via
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Figure 3.2: Three realizations of the doasge-performance function with the pa-
rameter.

semi-Markov process can increase the stability of system. On the other hand,
in the case of k21 < 1, we can see that the stability deteriorates. This observa-
tion shows that the trade-off between the parameter of semi-Markov process is
not trivial on the stability of system. Also, it is clearly seen that our proposed
framework extended the possible optimized solutions compared with the result
in Markov jump linear systems, in which the optimized solutions are only repre-
sented by the dashed line in Fig. 3.3. The biological population of phenotype 1
before and after medical intervention is illustrated in Fig. 3.4.
Let us also investigate the dependency of the optimized decay rate on the

shape parameter q` of the dosage-performance function (3.3). In this simulation,
we change the values of q1 and q2 from 1 to 100 under the constraint q1 = q2. We
also change the value of the budget C̄ in the interval [1, 2]. We solve the optimal
intervention problem for various pairs of q1 = q2 and C̄ and obtain the optimized
decay rates, as shown in Fig. 3.5. We can see that for the fixed budget on total
cost C̄, the increase on q` results the smaller decay rate, i.e., the stronger the
diminishing property of the antibiotic, the higher decay rate can be obtained.
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0.1

1

Figure 3.3: The optimized exponential decay rate for various values of λ12 and
k21. Dashed line indicates the optimized decay rate under the Markov
process (k12 = k21 = 1).
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before

after

Figure 3.4: 10 realizations of the biological populations of phenotype 1 in the log
form when E[h12] = E[h21] = 6 and λ12 = λ21 = 6.67 and k12 = k21 =
5. In this situation, σ(t) follows the semi-Markov process.
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Figure 3.5: The optimized exponential decay rate for C̄ = 1, 1.2, 1.4, 1.6, 1.8,
and 2 with the variation of parameters of the dosage-performance
functions q1 = q2.

25



4 Finite-time control for
discrete-time positive linear
systems with time-varying
state via convex optimization

In this chapter, we study a class of finite-time control problems for discrete-time
positive linear systems with time-varying state parameters, where the state vari-
ables are functions of time. From the property of posynomials, it is easily derived
that the discrete time series can be illustrate by posynomials. Hence, there ex-
ists the possibility that both the parameter tuning function and the stability
constraints in the discrete-time positive linear systems could be expressed by
posynomials. Therefore, the motivation lies that the Finite-time control problem
could be solved by geometric programming. Although several interesting control
problems appearing in population biology, economics, and network epidemiology
can be described as the class of finite-time control problems, an efficient solution
to the control problem has not been yet found in the literature. In this chap-
ter, we propose an optimization framework for solving the class of finite-time
control problems via convex optimization. We illustrate the effectiveness of the
proposed method by a numerical simulation in the context of dynamical product
development processes.

4.1 Finite-time control problem
In this section, we describe the finite-time control problem studied in this chapter.
In Section 4.1.1, we describe the system studied in this chapter and state the
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necessary assumptions. In Section 4.1.2, we formulate the finite-time control
problem as an optimization problem.

4.1.1 System Model

In this chapter, we consider the following parametrized time-varying linear system
defined on a finite time interval:

Σθ : x(k + 1) = (A(k) +K(k; θ(k)))x(k), k = 0, . . . , T,

where x(k) ∈ Rn is the state variable, A(k) ∈ A ⊂ Rn×n (k = 0, . . . , T ) is a
time-varying state matrix, and

K(k; θ(k)) ∈ K ⊂ Rn×n, k = 0, . . . , T,

is the control matrix parametrized by the vector θ(k) belonging to a set Θ ⊂ Rnθ .
We assume that the set K is bounded. Our objective in this chapter is to present
an optimization framework for tuning the parameter θ(k) in such a way that the
finite-time stability of the system is guaranteed, under the positivity assumption
on the system. The positivity of discrete-time time-varying linear systems is
formally defined as follows.

Definition 4. [32] We say that the time-varying linear system

Σ : x(k + 1) = M(k)x(k)

is ( internally) positive if for any initial condition x(0) with nonnegative entries,
the corresponding state trajectory x(k) is nonnegative for all k ≥ 0.

For positive time-varying linear systems, we define the notion of finite-time
stability [12] as follows.

Definition 5. Let T be a positive integer. Suppose that a positive number ε as
well as positive vectors v and `(k) (k ∈ {1, . . . , T}) are given. We say that Σ is
finite-time stable if the trajectory of the system satisfies

x>(k)`(k) < ε, k = 1, . . . , T,

for all initial states x(0) satisfying x>(0)v ≤ 1.
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In this chapter, we place the following assumption on the parameterized system
Σθ for ensuring its positivity.

Assumption 2. The matrix A+K is nonnegative for all A ∈ A and K ∈ K .

We then introduce cost and performance functions as follows. For each control
action K(k; θ(k)), the control parameter θ(k) at time k comes with an associated
cost. In this chapter, we suppose that a cost function for tuning the parame-
ter θ(k) is given by the following functional:

L : Rnθ → R : θ(k) 7→ L(θ(k)).

Let x(·; θ(k)) denote the solution of the system Σθ. In order to measure the
stability property of the system, we use the functional

J(θ(k)) = ‖x(·; θ(k))‖p

where p > 0 is a constant and ‖·‖p denotes the `p-norm of a sequence of real
vectors.

4.1.2 Problem Formulation

In this section, we present two types of optimization problems for the finite-time
control of the parametrized system Σθ. We first present the budget-constrained
optimization problem to minimize J while satisfying the constraint on the cost
function L as well as the finite-time stability. Formally, the budget-constrained
optimization problem is stated as follows:

Problem 4. Let a constant L̄ be given. Find a sequence of variables θ =
{θ(k)}Tk=0 such that

L(θ) ≤ L̄

and the system Σθ is finite-time stable in the sense of Definition 5, while mini-
mizing the cost function J(θ).
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Mathematically, the budget-constrained finite-time control problem can be
stated as

minimize
θ∈ΘT+1

J(θ) (4.1a)

subject to x>(k; θ(k))`(k) < ε, (4.1b)
L(θ) ≤ L̄. (4.1c)

Likewise, by exchanging the roles of the objective function and constraints
in the budget-constrained optimization problem, we obtain the performance-
constrained optimization problem

Problem 5. Let a constant J̄ be given. Find a sequence of variables θ =
{θ(k)}Tk=0 such that

J(θ) ≤ J̄

and the system Σθ is finite-time stable in the sense of Definition 5, while mini-
mizing the cost function L(θ).

As in (4.1), we can mathematically formulate the performance-constrained
finite-time control problem as the following:

minimize
θ∈ΘT+1

L(θ)

subject to x>(k; θ(k))`(k) < ε,

J(θ) ≤ J̄.

4.2 Main result
In this section, we present our optimization framework for solving the budget-
constrained and performance-constrained finite-time control problems. Under
proper assumptions, we show that the problems can be transformed into convex
optimization problems.
In Problems 4 and 5, the functional J(θ) is typically a nonlinear function.

Furthermore, the cost functional L(θ) is often nonlinear in applications due to
the their physical characteristics such as the dosage-effect relation in the therapy
control processes. For these reasons, Problems 4 and 5 are not trivial to solve
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directly. However, in this chapter, we show that a mild set of assumptions allow
us to reduce the problems to geometric programming, which can be efficiently
solved via convex optimization [53].
Let us first give a brief overview of geometric programming. We start from

stating the following definition.

Definition 6. [53] Let v1, . . ., vn denote n real positive variables. We say that
a real function g(v) is a monomial if there exist c > 0 and a1, . . . , an ∈ R such
that g(v) = cva1

1 · · · v
an
n . We say that a real function f(v) is a posynomial if f is

a sum of monomials of v.

The following lemma shows the log-convexity of posynomials.

Lemma 5. [53] Let f : Rn+ → R+ : x 7→ f(x) be a posynomial function. Then,
the function

F : Rn → R : w 7→ log f(exp[w])

is convex.

The log-convexity of posynomials allows us to solve a class of optimization
problems called geometric programs efficiently, as summarized in the following
proposition [53].

Proposition 2. Let g1(θ), . . . , gq(θ) be monomials and f0(θ), . . . , fp(θ) be posyno-
mials. Assume that variables θ ∈ Θ satisfy Definition 6. We say that the following
optimization problem

minimize
θ∈Θ

f0(θ)

subject to fi(θ) ≤ 1, i = 1, . . . , p,
gj(θ) = 1, j = 1, . . . , q,

can be transformed into a convex optimization problem through the logarithmic
variable transformation

θ = exp[z], z ∈ Γ ⊂ Rm.
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Then, we obtain the convex optimization problem with the following form:

minimize
z∈Γ

log f0(exp[z])

subject to log fi(exp[z]) ≤ 0, i = 1, . . . , p,
log gj(exp[z]) = 0, j = 1, . . . , q.

To exploit the log-convexity of posynomials, we first place the following as-
sumption on the structure of the parametrized time-varying linear system Σθ:

Assumption 3. Define the matrix Kmin ∈ Rn×n by

[Kmin]ij = inf{Kij : K ∈ K }.

Then, the matrix

Ã(k) = A(k) +Kmin (4.4)

is nonnegative for all k.

We remark that, in Assumption 3, the existence of the matrix Kmin is guaran-
teed by the boundedness of the set K. Furthermore, this assumption is not very
restrictive and is satisfied in the examples that we discuss in this section.
Using the matrix Ã in (4.4), we rewrite the parametrized system Σθ as

Σθ : x(k + 1) = (Ã(k) + K̃(k; θ(k)))x(k), k ∈ {0, . . . , T},

where
K̃(k; θ(k)) = K(k; θ(k))−Kmin

is a nonnegative matrix. For this nonnegative matrix as well as the parameter
space Θ, we place the following assumption.

Assumption 4. The following conditions hold true:

1. There exist a sequence of the posynomials f1(θ), . . . , fN(θ) such that

Θ = {θ ∈ Rm++ : f1(θ) ≤ 1, . . . , fN(θ) ≤ 1}.
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2. There exist posynomials κij(k; θ(k)) (i, j ∈ {1, . . . , n} and k ∈ {0, . . . , T})
such that

K̃(k; θ(k)) = {[κij(k; θ(k))]i,j : θ ∈ Θ}

3. L(θ) is a posynomial.

We can now present the first main result of this chapter; namely, we can show
that Problem 4 can be solved via convex optimization.

Theorem 4.2.1. The solution of the following convex optimization problem is
given by z = {z(k)}Tk=0, where z(k) belongs to the set Γ ⊂ Rm.

minimize
z∈ΓT+1

log J(exp[z]) (4.5a)

subject to log x>(k; exp[z(k)])`(k) < log ε, (4.5b)
logL(exp[z]) ≤ log L̄. (4.5c)

Then, the solution of Problem 4 is given by

θ(k) = exp[z(k)]. (4.6)

Proof. Under the log transformation z(k) = log[θ(k)], the constraints (4.1a),
(4.1b) and (4.1c) are equivalent to the constraints (4.5a), (4.5b) and (4.5c), re-
spectively. Therefore, the solution of Problem 4 given by (4.6) becomes the
solutions of optimization problem (4.5). From Lemma 5, we can get that (4.5c) is
convex if the cost function L(θ) follows the posynomials. Also, for the convexity
of (4.5b), x>(k; θ(k))`(k) is a linear function which is definitely a posynomial
function. For the convexity of (4.5a), we can derive that the entry of state vector
is posynomials from the expansion of x(k; θ(k)):

x(k; θ(k)) = (Ã(k − 1) + K̃(k − 1; θ(k − 1))) · · ·
(Ã(0) + K̃(0; θ(0)))x(0).

From the previous assumptions, we can see that if the performance measurement
function follows posynomials, J(θ) is convex under the log transformation. From
Proposition 2, we can see that Theorem 4.2.1 is a convex optimization problem.
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Likewise, the performance-constrained form of finite-time control problem can
also be solved through the following optimization problem:

Corollary 2. The solution of the following convex optimization problem is given
by z = {z(k)}Tk=0, where z(k) belongs to the set Γ ⊂ Rm.

minimize
z∈ΓT+1

logL(exp[z])

subject to log x>(k; exp[z(k)])`(k) < log ε,
log J(exp[z]) ≤ log J̄.

Then, the solution of Problem 5 is given by

θ(k) = exp[z(k)].

4.3 Example: Product Development
Management

In this section, we illustrate the effectiveness of our proposed framework by solving
the dynamic optimal resource allocation problem for the automotive appearance
design process in the car manufacturing industry.
In this chapter, we adopt the automotive appearance design example presented

in [35], which contains the following tasks: 1) carpet, 2) center console, 3) door
trim panel, 4) garnish trim, 5) overhead system, 6) instrument panel, 7) luggage
trim, 8) package tray, 9) seats and 10) steering wheel. Suppose there are T
development rounds during the process, the dynamic process of the remaining
work on each task can be represented by the discrete-time positive linear system
x(k + 1) = Ax(k), k ∈ {0, . . . , T}, where x(k) is the remaining work vector, A is
the work transition matrix which is nonnegative. In this chapter, we adopt the
dynamic model in [8]

Ak(φk, γk) =


φ1,k +∆1 · · ·

∏k
`=1 γ1n,`∏k

`=1 γ21,` · · ·
∏k
`=1 γ2n,`

... . . . ...∏k
`=1 γn1,` · · · φn,k +∆n

 ,
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where the value of the off-diagonal entries of the work transition matrix is updated
with the accumulated effect in the previous investment rounds (k−1, k−2, . . . , 0).
φk = {φ1,k, . . . , φn,k} represents the adjustable work efficiency of the task, while
γk = {γij,k}, (i, j = 1, . . . , n, i 6= j) are the off-diagonal entires of Ak(φk, γk) which
represent the ratio of the extra work transferred among the tasks with progress.
Furthermore, we let ∆:,k to represent the abrupt change on φk (e.g., equipment
fault, conflict on schedule or the absence of engineer). During the intermittence
of the development process, the managers allocate a fixed amount of resource to
prompt the development process (i.e., tuning the parameter of work transition
matrix). We assume that the parameters can be tuned within the following
intervals:

0 < φmin
i,k ≤ φi,k ≤ φmax

i,k , 0 < γmin
ij,k ≤ γij,k ≤ γmax

ij,k .

Specifically, the resource can be allocated on the tasks (i.e., diagonal entries of
Ak(φk, γk)) to promote the efficiency, or on the off-diagonals to reduce the ratio
of the generated work among the related tasks. Furthermore, suppose that the
initial value of Ak(φk, γk) is given by φmax

i,k , γmax
ij,k , we have to pay fi(φi,k) unit of

cost for tuning the work efficiency of module i from φmax
i,k to φi,k. Likewise, we let

the cost for tuning γij,k equal to gij(γij,k). The total cost for the kth investment
round is calculated by taking the sum of the cost in all the entries of Ak(φk, γk):

Bk(φk, γk) =
n∑

i,j=1
(fi(φi,k) + gij(γij,k)). (4.7)

Usually, a dynamic product development process contains dozens or hundreds
of tasks and several investment rounds. Moreover, from the discussion in Sec-
tion 4.2, the dynamic resource allocation problem for product development pro-
cess is also a nonlinear optimization problem. Thus, finding the optimal strat-
egy is a difficult problem which can not easily be solved by the experience
based method. For checking the satisfaction for Assumption 3, we can see that
Ak(φk, γk), k ∈ {0, . . . , T} is a sequence of nonnegative matrices with the di-
rectly tuning parameters φk, γk belonging to positive numbers. Then, by utilizing
the knowledge in [53], the cost function (4.7) can be modeled with posynomials.
Thus, the problem satisfies the assumptions and definitions in our theorem. By
using Theorem 4.2.1, we can transform the optimal resource allocation problem
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Table 4.1: Work transition matrix of automotive appearance design
A0,1 A0,2 A0,3 A0,4 A0,5 A0,6 A0,7 A0,8 A0,9 A0,10

A0,1 0.85 0.12 0.02 0.06 0.06 0.06
A0,2 0.1 0.53 0.04 0.3 0.02 0.24 0.02
A0,3 0.02 0.04 0.47 0.08 0.24 0.02 0.18 0.02
A0,4 0.06 0.18 0.68 0.14 0.1 0.02 0.08
A0,5 0.04 0.83
A0,6 0.3 0.26 0.16 0.28 0.06 0.02 0.2
A0,7 0.02 0.02 0.1 0.06 0.76 0.06 0.04
A0,8 0.1 0.06 0.83 0.16
A0,9 0.08 0.24 0.18 0.08 0.04 0.04 0.16 0.63 0.2
A0,10 0.02 0.02 0.26 0.2 0.7

of automotive appearance design process into the finite-time control problem for
positive linear system.
In our case study, we select the performance-constrained problem, which aims

at minimizing the total investments while satisfying the constraint on the to-
tal remaining work. For the problem initialization, we unify the initial value
of remaining work with x(0)i = 1, (i = 1, . . . , 10) (i.e., all the tasks at the
beginning of development process have 100% work remained). We set the in-
vestment rounds T = 5 and take the sum of the remaining work after the final
investment round ∑n

i=1 xi(T ) as performance evaluation. Furthermore, we set the
constraint value of the total remaining work with 0.001 × ∑n

i=1 xi(0) (i.e., the
remaining work is 0.1% of the beginning) for judging the accomplish of process.
The initial value of Ak(φk, γk) is given in Table 4.1. Let the entries of Ak(φk, γk)
be tuned within the interval [0.1, 1] (i.e., the component can be accelerated be-
tween [0%− 90%]). Finally, we let the variance on the efficiency of each task ∆i

varies between [−0.2, 0.2]. For the finite-time stability constraint in (4.1b), we
set `(k) = η(k)x(0), where η(k) = e−k, (k = 1, . . . , 5), and ε = 1.
For the cost function, we adopt the following posynomial function:

fij(γij) = cij

(
1

(γij)p
− 1

(Ωij)p

)
,

where p > 0 is the parameter for tuning the shape of cost function, and cij, Ωij,
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Figure 4.1: Gray line: log xi(k); Solid line: finite-time stability constraint; Dashed
line: average value of log xi(k).

i, j = {1, . . . , 10} are positive numbers for fitting the data. For simplicity, we
unify the parameters of all cost functions with cij = 1, p = 1, Ωij = 1. In this
case, for example, if γij = 1 (i.e., the corresponding entry in Ak(φk, γk) is not
tuned), then fij(γij) = 0 which means the cost is 0.
Fig. 4.1 shows that despite satisfying the object function, the dashed line does

not exceed the prescribed boundedness (i.e., the designed strategy meets the con-
straint of finite-time stability). Through solving the convex optimization prob-
lem, we are sure to get the optimal decision variables. However, from Fig. 4.2
and Fig. 4.3, we can get the trends of the decision variables γ and φ, which means
that the manager can foresee the trends before the process is put into effect. The
information from Fig. 4.2 and Fig. 4.3 is especially useful for the stage of prod-
uct development system design, where the manager can modify the structure of
the work transition matrix based on the technology of management engineering
to improve the performance of the product development system via the earlier
design approach.
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Figure 4.2: The investments in φi versus investment round k.

Figure 4.3: The investments in γij versus investment round k.
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5 Optimal resource allocation of
dynamic product development
via convex optimization

In this chapter, we first review the dynamic model of the product development
(PD) process proposed in [8]. Then, from the perspective of system and control,
we show that the work transition feature in the PD process can be expressed
by a discrete-time linear system. Finally, we formulate the optimal resource
allocation problem of the PD process as the budget-constrained optimization and
the performance-constrained problem separately.

5.1 Work transformation matrix
In PD, the product architecture is built not only by the constituent parts that
define the product system (i.e., modules or components), but also by the inter-
action relationships between these parts (i.e., dependency structure) [78]. In this
thesis, we assume that the product architecture has been determined in the early
design stage. That is, the modules and their dependency structure (i.e., design
rules) have been established. In this situation, we focus on improving the perfor-
mance of PD system through allocating the development resources to the various
modules and design rules over all investment rounds (i.e., design iterations).
We start the problem formulation by reviewing the dynamic PD model pre-

sented in [8]. Suppose that there are n modules and T investment rounds during
the PD process, we let Pi(k) represent the amount of the remaining work in the
ith module after finishing the kth investment round. The remaining work of all
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modules is defined by the vector

P (k) =


P1(k)

...
Pn(k)

 .
The performance of the PD process is evaluated by the sum of the remaining
work in each module [79], which implies that the less total remaining work, the
higher performance the product system has. Thus, the sum of the remaining
work from all modules can be adopted as a measurement of the performance of
the PD system at each round, which is expressed by the following equation:

n∑
i=1

Pi(k).

At each iteration stage, the module finishes a certain amount of remaining work,
and sends/receives the produced work (i.e., a fraction of rework) to/from its
dependent modules. To describe this work transformation process, we use a
discrete-time linear system expressed by the following equation:

P (k + 1) = Ak(φk, γk)P (k), k = 0, . . . , T, (5.1)

where Ak(φk, γk) is the work transformation matrix (WTM),

φk = {φ1,k, . . . , φn,k}

is the vector of the work completion rate of modules, and

γk = {γij,k} (i, j = 1, . . . , n, i 6= j)

are the updated value of design rules. The value of the inter-module variable γij,k
represents the work flow strength from module i to j at kth investment round,
i.e., at round k + 1, the accumulated produced work to module j is the sum
of the multiplication of the remaining work Pi(k) on module i and γij,k. For
an established product architecture, the performance of the product system can
be further improved by investing in both modules (i.e., determining the work
completion rate in the certain iteration stage) and design rules (i.e., reducing the
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dependency strength between two modules). We assume that φk, γk can be tuned
within the following intervals:

0 <
¯
φi,k ≤ φi,k ≤ φ̄i,k, 0 <

¯
γij,k ≤ γij,k ≤ γ̄ij,k,

where φ̄i,k, γ̄ij,k are the initialized parameter values in (5.1), and
¯
φi,k,

¯
γij,k are the

limitations of parameters. For the PD process with multiple investment rounds,
the authors in [8] showed that unlike the memoryless feature in the investment
for the modules, the investment in the design rules for reducing the work flow
strength has a cumulative effect. That is to say, γij,k in the kth round is updated
to include the values of the design rules that resulted from the investment in the
(k − 1)th round. Therefore, the updated value of the design rules at the kth
iteration γij,k is the multiplication of the updated value of the design rules from
the 0th to the kth round, which is expressed as ∏k

`=1 γij,`. The specific form of
the Ak(φk, γk) is given by

Ak(φk, γk) =


φ1,k

∏k
`=1 γ12,` · · ·

∏k
`=1 γ1n,`∏k

`=1 γ21,` φ2,k · · · ∏k
`=1 γ2n,`

... ... . . . ...∏k
`=1 γn1,`

∏k
`=1 γn2,` · · · φn,k

 .

Suppose that we can use the development resources to update the value of
φk, γk. That is, we can use the resources to tune the work completion rate φk and
the dependency strength γk. Moreover, we assume that there is an associated
cost fi(φi,k) for tuning the value from φ̄i,k to φi,k. Likewise, gij(γij,k) is the cost
for tuning the value γ̄ij,k to γij,k. Then, the total cost in the kth investment round
equals

Bk(φk, γk) =
n∑
i=1

fi(φi,k) +
n∑
i=1

∑
i 6=j

gij(γij,k). (5.2)

Form the perspective of project manager, optimally allocating the development
resources to the maximum extent to obtain the maximized profit is imperative,
especially when a huge project is carried out. However, making the optimal
resources allocation strategy for thousands of decision variables just by experi-
ence and intuition seems not very effective. Thus, a mathematical programming
formulation for finding the optimal investment strategy is essential.
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5.2 Optimization problem
As mentioned in Section 5.1, at each iteration, PD managers can use a certain
amount of development resources to improve the performance of the product
system. Particularly, the resources can be allocated on a module for tuning its
work completion rate or on the design rule for reducing the dependency strength
between two certain modules. Assuming that given a set of budgets for each
investment round during the whole development process, how should we make
the allocation strategy to minimize the total remaining work of the PD process?
It is clear that the minimized remaining work stands for obtaining the maximized
work efficiency of the PD system. Based on this question, we formulate the
budget-constrained problem as follows:

Problem 6 (Budget-constrained optimization). Assume that, given P (0), there
are T investment rounds with the corresponding budgets B̄k > 0 (k = 1, . . . , T ) for
resource allocation during the PD process, as well as the cost functions fi(φi,k)
and gij(γij,k). Find a sequence of decision variables for allocating the invest-
ment resources in modules φ = {φi,k}Tk=1 (i = 1, . . . , n) and design rules γ =
{γij,k}Tk=1(i, j = 1, . . . , n, i 6= j) to minimize the total remaining work at the end
of T th round while satisfying the budget constraints on the investment resources
in each round.

Mathematically, we formulate the budget-constrained
problem as:

minimize
φ,γ

n∑
i=1

Pi(T ) (5.3a)

subject toBk(φk, γk) ≤ B̄k, (5.3b)
0 <

¯
φi,k ≤ φi,k ≤ φ̄i,k,

0 <
¯
γij,k ≤ γij,k ≤ γ̄ij,k, k = 1, . . . , T. (5.3c)

For the budget-constrained problem, our goal is to make the optimal resource
allocation strategy to accelerate the PD process to the greatest extent. However,
PD managers also face with another case when the prescribed target on the
remaining work (i.e., as a proxy for judging the completion of the PD process) at
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T is set, how to make the resources allocation strategy to minimize the cost? In
this case, the performance-constrained problem can be formulated as follows:

Problem 7 (Performance-constrained optimization). Assume that, given P (0),
there are T investment rounds and the prescribed remaining work constraint P̄T >
0, as well as the cost functions fi(φi,k) and gij(γij,k). Find a sequence of decision
variables for allocating the development resources in modules φ = {φi,k}Tk=1 (i =
1, . . . , n) and design rules γ = {γij,k}Tk=1 (i, j = 1, . . . , n, i 6= j) to minimize the
total investment resource while satisfying the constraint on remaining work.

As in (5.3), we can mathematically build the performance-constrained problem
as the following:

minimize
φ,γ

T∑
k=1

Bk(φk, γk) (5.4a)

subject to
n∑
i=1

Pi(T ) ≤ P̄T , (5.4b)

0 <
¯
φi,k ≤ φi,k ≤ φ̄i,k,

0 <
¯
γij,k ≤ γij,k ≤ γ̄ij,k. k = 1, . . . , T.

The difficulty of solving the budget-constrained problem and the performance-
constrained problem mainly stems from the nonlinearity of the functions (5.3a),
(5.4a) and constraints (5.3b), (5.4b). That is, the budget-constrained problem
and the performance-constrained problem become nonlinear optimization prob-
lems. Although there are some numerical solutions for this case based on heuristic
methods [80, 81], such techniques can cause the solution to be trapped in a lo-
cal optimal point. Moreover, the computation cost of the heuristic solver grows
rapidly with the increase in problem size (i.e., the number of modules, design rules
and the investment rounds). Thus, there exists a need for developing a compu-
tation framework that can deliver the optimal solution for a relatively large size
of the resources allocation problem.

5.3 Solution using convex optimization
In this section, we present an optimization framework for efficiently solving the
budget-constrained problem and the performance-constrained problem. Under
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Figure 5.1: Four DSM architectures. All with 50 modules and 100 design rules:
(a) Block diagonal network, (b) Erdős-Rényi network (Random), (c)
Watz-Strogatz network (Small world), (d) Barabási-Albert network
(Scale free). The diagonals in the DSM represent the location of mod-
ules, and the off-diagonals show the dependencies between modules.

the relatively mild assumption on the cost function, we can show that problems
can be transformed into convex optimization problems. Let us begin with review-
ing the definition of posynomials with the following:

Definition 7 ( [53]). Let v = {v1, . . ., vn} denote n real positive variables.

1. We say that a real function g(v) is a monomial if there exist c > 0 and a
set of real numbers a1, . . . , an such that g(v) = cva1

1 · · · v
an
n .

2. We say that a real function f(v) is a posynomial if f is a sum of monomials
of v.

3. We also say that a real function is a generalized posynomial if it can be
formed from posynomials using the operations of addition, multiplication,
positive (fractional) power, and maximum.

To precisely model the cost features, the nonlinearity from the practical prob-
lem can not be ignored. From Definition 7, we can see that the posynomials
are nonlinear functions which can be used for fitting real data from practical PD
problems. For specific techniques to fit posynomials to real data, we refer readers
to [53]. Also, the following lemma shows the convexity property of posynomi-
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als, which is essential in transforming the budget-constrained problem and the
performance-constrained problem into convex optimization problems.

Lemma 6 ( [53]). If f is a posynomial, then, the function x 7→ log f(exp[x]) is
convex.

As mentioned earlier, the nonlinearity of the real data can be fitted by posyn-
omials. From Definition 7, we can see that the range of the posynomials is in
the nonnegative number field. However, in practice, real data may run out of
the nonnegative area. Thus, normalizing the range of the cost function to the
nonnegative field is necessary (i.e., adjust the minimum value of the cost function
larger than 0). For this reason, we make the following assumption for ensuring
the nonnegativity of the cost function. We assume that the cost function has the
following form:

fi(φi,k) = f+
i (φi,k)− f+

i (φ̄i,k),
gij(γij,k) = g+

ij(γij,k)− g+
ij(γ̄ij,k).

The essential part of the cost function is the first term f+
i (φi,k), while the second

term (−f+
i (φ̄i,k)) is for normalizing the cost function as fi(φ̄i,k) = 0, similarly for

gij(γij,k), which means that the zero investment yields no cost.
The resulting optimization problems (5.3) and (5.4) are not trivial to solve

directly because the nonlinearity in the work transformation process function
(5.3a), (5.4b) and the resource cost functions (5.3b), (5.4a). Although there exist
heuristic optimization methods that can solve this problem, the solution is local
optimal due to the constraint of the algorithm. In a real product development
project, especially for the complex case that contains hundreds of modules and
design rules, finding the global optimal resource allocation strategy can bring
great benefit for the company and share holders. Therefore, it is necessary to
establish an efficient computation framework for obtaining the global optimal
solution to the problems (5.3) and (5.4).
The following theorem allows us to overcome the difficulty and solve the budget-

constrained problem and the performance-constrained problem via convex opti-
mization and is the main theoretical result of this thesis.

Theorem 3. Problems 6 and 7 reduce to convex optimization problems. In this
appendix, we illustrate how we can reduce Problems 6 and 7 to convex optimization

44



problems. For the total cost function in (5.2), we define

B+
k (φk, γk) =

n∑
i=1

f+
i (φi,k) +

n∑
i=1

∑
i 6=j

g+
ij(γij,k),

B−k (φk, γk) =
n∑
i=1

f+
i (φ̄i,k) +

n∑
i=1

∑
i 6=j

g+
ij(γ̄ij,k).

Under this notation, we can show that the solution of the budget-constrained prob-
lem is given by

φ = exp[x], γ = exp[y], (5.5)

where exp[·] is the entrywise exponential function of the variables, and x =
{xk}Tk=1 and y = {yk}Tk=1 solve the following convex optimization problem:

minimize
x,y,Γ

Γ

subject to logB+
k (xk, yk) ≤ log(B̄k +B−k ), (5.6a)

log
n∑
i=1

Pi(T ) ≤ Γ, (5.6b)

log
¯
φi,k ≤ xi,k ≤ log φ̄i,k, (5.6c)

log
¯
γij,k ≤ yij,k ≤ log γ̄ij,k. (5.6d)

Let us give a brief proof of this statement. Under Lemma 6, it can easily be seen
that (5.3a), (5.3b), and (5.3c) in the budget-constrained problem are equivalent
to (5.6a), (5.6b), (5.6c), and (5.6d). Therefore, the solution of the optimization
problem (5.6) given by (5.5) is the solution of the budget-constrained problem. Un-
der this equivalence, we show the convexity of the optimization problem (5.6). It is
sufficient to show that constraints (5.6a) and (5.6b) are convex if the performance
functions (5.3a), (5.3b) and the cost function (5.2) follow Definition 7.
Similarly, the next theorem shows that the performance-constrained problem

can also be solved with the same optimization framework. Specifically, Then,
the solution of the performance-constrained problem is given by (5.5), where x =
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{xk}Tk=1 and y = {yk}Tk=1 solve the following convex optimization problem

minimize
x,y,Ψ

Ψ

subject to log
n∑
i=1

Pi(T ) ≤ log P̄T ,

log
T∑
k=1

B+
k (xk, yk) ≤ log(Ψ +

T∑
k=1

B−k ),

log
¯
φi,k ≤ xi,k ≤ log φ̄i,k,

log
¯
γij,k ≤ yij,k ≤ log γ̄ij,k.

We omit the proof of this statement because it is similar to the one for the budget-
constrained problem.

5.4 Experimental setup, analysis and discussion
of results

In this section, we show the effectiveness of the proposed framework by solving rel-
atively large-size PD problems with different product architectures. Furthermore,
by investigating the solution, we reveal the trends, structure, and relationship of
the decision variables. In Section 5.4.1, we introduce four typical DSM archi-
tectures embedded in our simulation experiments. In Section 5.4.2, we give the
specific form of the cost function. Then, in Section 5.4.3, we present the opti-
mal solution of the budget-constrained problem, perform its analysis, and discuss
the results. Likewise, in Section 5.4.4, the optimal solution of the performance-
constrained problem is demonstrated and discussed. In Section 5.4.5, we statis-
tically investigate the impact of product architecture on the optimal resources
allocation.

5.4.1 DSM architecture

As mentioned earlier, the design structure matrix (DSM) is a matrix represen-
tation of the development network which can have a particular architecture [82].
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Figure 5.2: Three cost functions with p = 1, 10, and 50. fij(Ωij) = 0 represents
that no resource is allocated, where Ωij denotes the initial value of
the certain entry in WTM. fij(εΩij) = 1 indicates the upper bound
of the allocated resources where we can to obtain the fully improved
value.

For this reason, the DSM architecture in our experiment is determined by the fol-
lowing network models: the Block diagonal [82], the Erdős-Rényi (random) [83],
the Watz-Strogatz (small world) [84] and the Barabási-Albert (scale free) [85]
graphs.
Fig. 5.1 shows the four DSM architectures used in this thesis. On one end,

the Block diagonal network represents a typical modular architecture, where the
dependencies between modules are divided into dependent groups (no interactions
between the groups), and the modules in each group are fully dependent (see
Fig. 5.1 (a) [86]). Alternatively, the Watz-Strogatz network and the Barabási-
Albert network represent the other extreme, called integral architecture. The
Watz-Strogatz network in Fig. 5.1 (c) shows the small world property, where
most modules dependencies are local, but few dependencies exist between the
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distant modules [8, 84]. The Barabási-Albert network in Fig. 5.1 (d) illustrates
the preferential attachment feature of the PD project. The project starts with few
modules and as the design process unravels the new modules are linked to the old
modules [8, 85]. We adopt the Erdős-Rényi network in Fig. 5.1 (b) for randomly
setting the dependency structure in the DSM, which serves as a benchmark to
other patterned DSM architectures. For other DSM architectures, we refer the
readers to [8, 87,88].

5.4.2 Cost function

As mentioned in Section 5.1, the resources allocated on the modules and design
rules result in a reduction of the parameters in (5.1). Based on this, we claim
that the cost function should be a decreasing function, and satisfy Definition 7.
Thus, we use the following cost function:

fij(γij) = cij

(
1

(γij)p
− 1

(Ωij)p

)
,

where γij,k (i, j = 1, . . . , n, i 6= j) is the updated value of the parameter in
the WTM, p is a positive integer for tuning the shape of the concerned cost
function, and cij, Ωij are positive numbers for fitting the value of the cost function
to satisfy Definition 7. Then, we make the following assumption to show the
diminishing return property, which ensures the convexity of the cost function as
well. Suppose that there is a fixed increment εij > 0 on γij, and let ∆fij(γij) =
fij(γij−εij)−fij(γij) represent the cost for tuning γij to γij−εij. The diminishing
return property means that the parameter tuning cost ∆fij(γij) increases with
γij, and also implies the convexity of fij. In practice, the parameters of the
cost function are carefully assigned by the managers and the work teams (e.g.,
see [?, 8]). Fig. 5.2 shows three realizations of the cost function under different
values of p.

5.4.3 Analysis and discussion of the budget-constrained
problem

In this subsection, we optimally solve the budget-constrained problem through
our proposed framework. Then, we investigate the evolution of decision variables
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during the budget-constrained PD process. Finally, we introduce the centrality
metrics for measuring the importance of modules and design rules, and study
whether the allocated resources or the remaining work in each module or design
rule correlates with its centrality.
In this simulation experiment, for testing the effectiveness of solving a relatively

large scale PD problem [89], we produce the DSMs of size 50 and hold the total
number of dependencies to 100 for each DSM architecture. We set the number of
investment rounds T = 5, and the budget B̄k = 300 for each investment round.
For initializing the parameters of the WTM, we unify φ̄i,k = 0.5 (k = 1, . . . , 5, i =
1, . . . , 50) and γ̄ij,k = 0.05 (i, j = 1, . . . , 50, i 6= j) for all the experiments. For
all the cost functions, we unify the parameters with cij = 1, p = 1, Ωij = 1, and
ε = 0.1, which indicates that the φ and γ can be updated between [0 − 0.9] of
the initial value. From the parameter initialization, we can see that the values
of φi,k and γij,k can be tuned within the intervals [0.05, 0.5] and [0.005, 0.05],
respectively. We conduct the experiments with the selected DSM architectures
in Fig 5.1, and observe the following response variables: the remaining work in
modules, the investment in the modules and the design rules, and the dependency
strength between modules.
For problem solving, we adopt the commonly used off-the-shelve software for

convex optimization problem: fmincon routine in MATLAB. From the experiment
setup, we can see that the total number of the decision variables is (50+100)×5 =
750, which reaches the standard size of large PD process. Through running the
experiment on the desktop with common configuration (i.e., Intel Core i7-7700
and 8GB memory), the average time for solving the optimization problem is 210
minutes, which illustrates that our framework is capable for solving the much
larger-scale problems.
Fig. 5.3 shows the evolution of the resources allocation variables (φi,k, γji,k),

the remaining work Pi(k) and the dependency strength of design rules in solving
the budget-constrained problem. Particularly, Fig. 5.3 (a) shows the decreasing
trends of the remaining work in each module, which indicates that the PD process
is in progress. However, this experiment contains more than 1 investment round,
so just by observing the remaining work from Fig. 5.3 (a) is not easily for us
to distinguish the effect of the investment in each investment round. Thus, we
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define the completion rate ξ(k) for each investment round by

ξ(k) =
∑n
i=1 Pi(k)−∑n

i=1 Pi(k + 1)∑n
i=1 Pi(k)

as an index for measuring the corresponding performance in each round. From
Fig. 5.4, we can observe the evolution of the performance during the process,
where the performance of product system is monotonically improved with suc-
cessive investment. Compared with the experiment with no investment (dashed
line), we can derive that the PD process is accelerated with the allocated re-
sources. As seen in Fig. 5.4, with the investment in progress, the performance
reaches its saturation. We also notice that the limits of performance are different
from the DSM architectures, which implies that the DSM architecture must be
taken into consideration for further studying the performance. We note that the
high performance of the block diagonal network is consistent with the finding
in [87] that real design networks have a nested hierarchical network structure.
Figs. 5.3 (b) and 5.3 (c) show the evolution of investment in modules and

design rules, where we can see that the investment in modules increases, while the
investment in design rules decreases. This phenomenon is in line with the result
in [8] that there is a shift in resource allocation from design rules to modules
as the development process progresses. Moreover, it is worth noting that the
modular architecture consumed more resources on the modules compared with
design rules, while integral architecture consumed more resources on the design
rules. Thus, the evolution of the decision variables also confirms that the product
architecture evolves from integral to modular as the product matures. In Fig. 5.3
(d), we can see that the dependency values of the design rules tends to 0, which
indicates that the dependency strength between modules is reduced or nearly
eliminated by successive investment in design rules.
Next, we carry out a further investigation on whether there is a relationship

between the optimal cumulative investment in a specific module. We define the
cumulative allocated resources on the module during the process by

µi =
T∑
k=1

fi(φi,k)
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Table 5.1: Pearson correlation analysis for the budget-constrained problem
(Figs. 5.9-5.12)

DSM Eigenvector PageRank Closeness

Remaining work 0.993 - 0.999
Block diagonal Investment in module 0.992 - 0.989

Investment in DRs 0.993 - 0.979

Remaining work 0.561 0.947 0.867
Random Investment in module 0.518 0.944 0.886

Investment in DRs 0.443 0.573 0.595

Remaining work 0.501 0.968 0.531
Small world Investment in module 0.483 0.972 0.526

Investment in DRs 0.377 0.614 0.364

Remaining work 0.493 0.994 0.948
Scale free Investment in module 0.427 0.987 0.968

Investment in DRs 0.666 0.751 0.734

and its related design rules

ρi =
T∑
k=1

 n∑
j=1

gij(γij,k) +
n∑
j=1

gji(γji,k)
 .

We also define the cumulative allocated resources on design rules by

ρij =
T∑
k=1

(gij(γij,k) + gji(γji,k)) .

Fig. 5.5 shows a positive correlation between the investment in the modules and
its related design rules. This observation can be used as a managerial guideline for
resource allocation: if a module is assigned with a certain amount of resources,
then corresponding amount of resource must be allocated to its related design
rules.
After discussing the results in Fig. 5.3, we introduce the centrality metrics (i.e.,

importance measures) for the modules and design rules to investigate whether
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there is a relationship between the investment in module/design rule and its cen-
trality. For describing the importance of the modules and design rules, we adopt
three centrality metrics [90]: the Eigenvector, the PageRank, and the Closeness
centrality. For simplicity, we normalize each centrality metric to 1. Throughout
the thesis, we let the centrality metric of the ith module be denoted by ri, and
the centrality metric of a design rule between the ith and the jth module be
denoted by rij, respectively. Then, Figs. 5.9-5.12 show the the dependence on
the centrality measures of remaining work Pi(T ), cumulative resource allocation
µi on the modules, and cumulative resource allocation ρij on the design rules.
From Figs. 5.9-5.12, we observe that the extent of correlation varies with differ-
ent centrality metrics. To decide which centrality metric performs the best in
describing the correlation, we adopt Pearson correlation [91] to help us select the
proper centrality metric. A perfect Pearson correlation 1 occurs when each of the
variables is a perfect monotone function of the other. On the contrary, 0 means
that there is completely no correlation between the two set of numbers. Table 5.1
shows the result of Pearson correlation for Figs. 5.9-5.12. From Table 5.1, we can
see that PageRank performs the best except for the block diagonal case because
the definition of PageRank is infeasible for measuring the block diagonal network.
Fortunately, both the Eigenvector centrality and the Closeness centrality perform
a strong linear correlation, which can be used for the block diagonal case.
From Figs. 5.9-5.12, we find that there exists a relatively strong correlation

between the investment/remaining work and its PageRank centrality under the
four DSM architectures. So, as a quick heuristic, we can assign the budget as
a function of centrality instead of solving a complex optimization problem, as
previously found in [92]. Moreover, PD managers can use PageRank centrality
as a proxy to allocate development resources for the modules.
For the correlation between the investment in the design rule and its centrality

in Figs. 5.9 (c)-5.12 (c), we can see that the extent of correlation in Figs. 5.9
(c)-5.11 (c) is not strong enough for drawing a conclusion. However, for the block
diagonal case in Fig. 5.12 (c), we observe a different phenomenon that hundred
of variables are overlapped to a few points, and are strongly correlated with the
Eigenvector and the Closeness centrality. Specifically, we notice that design rules
belonging to different sub-blocks but with the same size receive the same amount
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of investment. In other words, the investment in design rules is independent of the
block to which it belongs. This independence is caused by the special structure of
the block diagonal network, in which all the sub-blocks are independent of each
other.

5.4.4 Analysis and discussion of the
performance-constrained problem

In this subsection, we solve the performance-constrained problem via convex op-
timization. Although we have revealed the trends of the decision variables and
the internal relations for the budget-constrained problem, we cannot conclude
that the same situation also exists in the performance-constrained problem.
As in Section 5.4.3, we perform the simulation experiment on a controlled set of

product architectures. For initializing the performance-constrained problem, we
adopt the same parameters setting as the budget-constrained problem. Based on
the formulation of the performance-constrained problem, we set the constraint for
the total remaining work of the final investment round to P̄T = 0.01, which can
be regarded as a threshold for judging the accomplishment of the PD process. For
example, suppose that the total remaining work at the beginning is normalized
to 1, if we set P̄T = 0.01, it means that when the total remaining work is 1% its
initial value, we can say that the project is finished. We conduct the experiments
with the selected DSM architectures in Fig 5.1, and observe the following response
variables: the remaining work in modules, the investment in the modules and the
design rules, the dependency strength between modules, and the total investment
in each round.
Fig. 5.6 shows the evolution of decision variables and the remaining work of

the performance-constrained problem. From Figs. 5.6 (a)-(c), we can see that the
solution of the performance-constrained problem exhibits similar trends to the
budget-constrained problem. Particularly, the solution shows that the product
architecture evolves from an integral to a modular as successive investment are
made on the modules and the design rules. In Fig. 5.6 (d), it is worth noting that
there is a decreasing tendency on the total investment during the PD process,
which contradicts our intuition that the resources should be equally allocated for
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Remaining work Random Small world Scale free Block diagonal
Random — 0.265 0.085 4.95× 10−23

Small world — — 0.013 1.48× 10−21

Scale free — — — 7.04× 10−25

Block diagonal — — — —

Table 5.2: p-values from ANOVA test of the total remaining work in Fig. 5.7 (a).

Invest in modules Random Small world Scale free Block diagonal
Random — 0.579 3.03× 10−5 1.06× 10−23

Small world — — 1.63× 10−7 3.04× 10−28

Scale free — — — 7.63× 10−19

Block diagonal — — — —

Table 5.3: p-values from ANOVA test of the total investment in modules in
Fig. 5.7 (c).

each investment round. In the performance-constrained problem, we also find
the positive correlation between the investment in the module and its related
design rules as the budget-constrained problem. Further analysis similar to the
ones for the performance-constrained problem allows us to draw the same set
of conclusions as the one we obtained for the budget-constrained problem. The
details are omitted.

5.4.5 Analysis of different DSM architectures

In this subsection, we carry out an analysis of variance on the product architecture
to investigate whether the product architecture affects the resource allocation and
the performance of the designed PD system. It is important to remark that the
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Investment in DRs Random Small world Scale free Block diagonal
Random — 0.389 3.63× 10−6 1.91× 10−27

Small world — — 2.54× 10−10 1.38× 10−30

Scale free — — — 1.56× 10−18

Block diagonal — — — —

Table 5.4: p-values from ANOVA test of the total investment in design rules in
Fig. 5.7 (e)

Total investment Random Small world Scale free Block diagonal
Random — 0.325 2.95× 10−8 4.95× 10−5

Small world — — 1.45× 10−13 3.18× 10−4

Scale free — — — 1.34× 10−18

Block diagonal — — — —

Table 5.5: p-values from ANOVA test of the total investment in Fig. 5.8 (a).

Invest in modules Random Small world Scale free Block diagonal
Random — 0.532 0.023 2.39× 10−6

Small world — — 0.009 5.01× 10−7

Scale free — — — 1.65× 10−5

Block diagonal — — — —

Table 5.6: p-values from ANOVA test of the total investment in modules in
Fig. 5.8 (c).
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Investment in DRs Random Small world Scale free Block diagonal
Random — 0.028 2.59× 10−5 1.61× 10−5

Small world — — 3.61× 10−4 1.66× 10−4

Scale free — — — 2.31× 10−14

Block diagonal — — — —

Table 5.7: p-values from ANOVA test of the total investment in design rules in
Fig. 5.8 (e).

set of synthetic networks we use for our analysis is not intended to replicate all
the aspects of real design networks, specifically the significant difference between
the distribution of in- and out-degrees in the product architecture [87,88].
In this experiment, we used the four DSM architectures introduced in Fig. 5.1

and selected the three response variables: total remaining work, total invest-
ment in modules, and total investment in design rules. To detect any statistical
difference, we randomly generate 50 sample networks for each type of product
architecture. In all the problems, we unify the parameters of the WTM and the
cost functions as in the previous sections. We solve these problems with the
proposed framework in this thesis. The results of the budget-constrained prob-
lem and the performance-constrained problem sorted by product architecture are
shown in Figs. 5.7 and 5.8, respectively. We use Boxplots to illustrate the maxi-
mum, th e minimum, the variance, and the mean value of the investment and the
remaining work. We observe that the architecture affects the resource allocation,
which in turn affects the remaining work, investment in modules and design rules
of the PD process. To statistically investigate the dependence, we also carry out
one-way ANOVA tests [93] between pairs of data. We adopt the p-value from the
ANOVA test as an index to illustrate the difference between each two networks.
From Figs. 5.7 and 5.8, we observe that the difference among the networks except
the random network is statistically significant, while the difference between the
random and small world network is often not significant. This tendency could be
partly attributed to the similarity in the construction rules for these two networks.
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For the remaining work of the budget-constrained problem (Fig. 5.7 (a)), we can
see that the Block diagonal architecture has the minimum remaining work (the
best performance) compared with the other three architectures, which indicates
that the modular architecture performs better than integral architecture (i.e.,
small world and scale free). Besides, we also notice that although the Block
diagonal has the best performance, the variability is larger than the Small world
case. This result implies that the stability of product architecture can not be
neglected in designing the DSM structure. From Fig. 5.7 (b) and Fig. 5.7 (c),
we confirm that there exists a variance on the investment in modules and design
rules with different product architectures. Also, from Fig. 5.8 for the performance-
constrained problem, we can see that for meeting the same target of the remaining
work, the Block diagonal architecture costs the minimum resources among the
four architectures, which also indicates that the modular architecture performs
better than integral architecture.

5.4.6 Limitation and robustness

We discuss the limitation and robustness of our analysis in this section. First,
as we remarked in the introduction, the set of synthetic networks we use for our
analysis does not necessarily cover all the types of realistic design networks. As
revealed in the seminal works in [87,88], empirical product development architec-
tures often exhibit distinctive asymmetry between the distributions of incoming
and outgoing links. For this reason, we investigate real product development
processes having asymmetric architectures in the next section.
Second, our findings above are dependent on the the current choice of relevant

parameters. In order to examine the robustness of our analysis to the choice of
parameters, we let the shape parameter p of the cost function (4.3) vary between
[1, 10] and perform simulations. We then found that the solution (i.e., the result-
ing pattern of resource allocation) exhibits the same trend, which can suggest the
robustness of our analysis. We also vary the other shape parameter cij to find
that, the larger cij, the lower the effect of the investment on the development
process due to the higher price of the resources.
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(d) The dependency strength of design rules versus investment round.

Figure 5.3: The optimal solution of the budget-constrained problem. Color lines
distinguish the importance of modules/design rules via the PageRank.
Colorbar indicate the importance (PageRank) of the Y-axis values.
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Figure 5.4: Performance evolution of the budget-constrained problem.
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(a) Random (b) Small-world

(c) Scale free (d) Block diagonal

Figure 5.5: The correlation between the investment in module and the total in-
vestment in its dependent design rules in the optimal solution of the
budget-constrained problem.
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(d) The total resource cost versus investment round.

Figure 5.6: The optimal solution of the performance-constrained problem. Color
lines distinguish the importance of module/design rules via the
PageRank.
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Figure 5.7: The total investment and performance of the budget-constrained
problem versus different DSM architectures.
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Figure 5.8: The total investment and performance of performance-constrained
problem versus different DSM architectures.
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Eigenvector centrality PageRank Closeness centrality

Remaining
workPi(T )
of module

(a) Remaining work of module versus its centrality measures in the network.

Cumulative
investment
µi

in module i

(b) Cumulative investment in module versus its centrality measures in the network.

Cumulative
investment
ρij

in design
rules

(c) Investment in design rule versus its centrality measures in the network.

Figure 5.9: The remaining work, investment in modules and design rules of Prob-
lem 6 versus their centrality measures in the Erdős-Rényi (random)
network. Dash line: Linear regression line.
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Eigenvector centrality PageRank Closeness centrality

Remaining
workPi(T )
of module

(a) Remaining work of module versus its centrality measures in the network.

Cumulative
investment
µi

in module i

(b) Cumulative investment in module versus its centrality measures in the network.

Cumulative
investment
ρij

in design
rules

(c) Investment in design rule versus its centrality measures in the network.

Figure 5.10: The remaining work, investment in modules and design rules of Prob-
lem 6 versus their centrality measures in the Watz-Strogatz (small
world) network. Dash line: Linear regression line.
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Eigenvector centrality PageRank Closeness centrality

Remaining
workPi(T )
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(a) Remaining work of module versus its centrality measures in the network.

Cumulative
investment
µi

in module i

(b) Cumulative investment in module versus its centrality measures in the network.

Cumulative
investment
ρij

in design
rules

(c) Investment in design rule versus its centrality measures in the network.

Figure 5.11: The remaining work, investment in modules and design rules of Prob-
lem 6 versus theirr centrality measures in the Barabási-Albert (scale-
free) network. Dash line: Linear regression line.
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Remaining
workPi(T )
of module

(a) Remaining work of module versus its centrality measures in the network.

Cumulative
investment
µi

in module i

(b) Cumulative investment in module versus its centrality measures in the network.

Cumulative
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ρij

in design
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(c) Investment in design rule versus its centrality measures in the network.

Figure 5.12: The remaining work, investment in modules and design rules of Prob-
lem 6 versus their centrality measures in the Block-diagonal network.
Dash line: Linear regression line.
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6 Discussion

In this thesis, we have studied the two issues of positive time-varying linear sys-
tems: the feature of time-varying governed by the semi-Markov switching process
and the discrete-time switched case. Moreover, as a novel computation frame-
work, the optimal resource allocation of dynamic product development problem
is solved by the proposed results.
For the stabilization of positive semi-Markov jump linear systems, in this the-

sis, we only address the fundamental stabilization problem. For other issues in
control problems, there also exist many stability measurements can be adopted
for further study, like, the L1 control, sign-stability, time-delayed systems, and
robust control. Besides that, it is also worth to explore the stochastic process
under the more general situation. For example, if the semi-Markov jump process
shows a partial information of the transition matrix (i.e., the switching informa-
tion between some subsystems are unknown), the stabilization problem would be
a challenge one and worth studied. For the application research, examples like,
the fault tolerant control, the epidemic spreading control, and the wireless power
transmission control can also be generalized to the semi-Markov jump situation
based on the results in this thesis.
For the finite-time control for positive time-varying linear systems, we assume

that the entries in the parameterized state matrices follow the posynomials. How-
ever, if the entries include the negative expressions of posynomials, the optimiza-
tion problem becomes non-convex, which can be regarded as a more general case
compared to the problem studied in this thesis. For this situation, the non-convex
optimization method would be utilized to study the computation framework. For
solving the real problems, we derived the result under the assumption that the
switching signal is known before the controller design. However, in solving prac-
tical problems, the accuracy of the modeled switching signal impacts a lot on
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the performance of the designed controller. Therefore, it is necessary for us to
adopt the statistics approach or the machine learning methods for fitting the real
switching signal. For example, the optimal energy operation in the data center
relies on the requests from the data users. However, it is known that the data
request is not deterministic, but it follows the tendency on statistics. In this
situation, it is worth for us to explore the learning method based approached for
solving the application problems.
In Chapter 5, we tested the feasibility of the theoretical result proposed in

Chapter 4 for solving the optimal resources allocation of product development
process. Moreover, we combined the network analysis method and our results to
build a synthesis framework for solving the optimization of complex networks.
Based on this results, it is also possible to solve other complex networks based
model like, wireless networks, epidemic spreading networks, and multi-agent sys-
tems. One limitation of the framework proposed in this paper is that it does not
consider the time-delay effect; so, dynamic investment problem with time-delay
need to be considered in future work; especially, if the parameters of the PD
system are updated after a certain period. Then, the investment decision making
problem becomes applicable to a more general situation.
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7 Conclusions

In this thesis, we studied two issues of positive time-varying linear systems via
geometric programming and proposed the novel frameworks for addressing the
related control problems. we first studied the stabilization problem of positive
semi-Markov jump linear systems. By utilizing the spectral property of nonneg-
ative matrices, we proposed a novel computation framework that the optimal
performance of the system can be formulated to a convex optimization problem
which is solved by optimizing the spectral radius of the matrix under the budget-
constrained of the system parameter. Then, we checked the validity through a
simulation example of the biological propagation which illustrates the relations
among these parameters.
Then, for the discrete-time positive linear system with time-varying state, we

studied a class of finite-time control problems for the discrete-time time-varying
positive linear systems constrained by the parameter tuning cost. By utilizing
the convexity property of posynomial functions, we have shown that the finite-
time control problem can be transformed into a convex optimization problem.
Finally, we have illustrated the effectiveness of our framework by a numerical
simulation on product development processes. In the future work, one of the
possible extension of our work is to consider the time-delay effect; especially, if
the parameters of the PD system are updated after a certain period. Then, the
investment decision making problem becomes a more general situation.
In the application research (Chapter 5), our results provide PD managers with

an efficient tool to allocate development resources optimally for the budgetcon-
strained problem and performance-constrained problem, where the resources can
be allocated on both modules and design rules. Although we carried out the ex-
periments with two types of problems, and with different product architectures for
each problem, the evolution of the investment and remaining work exhibit similar
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trends, which shows that the evolution property of the PD process is independent
of the problem formulation and product architecture. Moreover, the investment
and performance in modules also illustrate that certain correlations exist despite
the problem formulation and product architecture, which also confirms that these
trends and correlations are the intrinsic properties of the PD process. In the anal-
ysis of different PD architectures, we show that the architecture of the product
affects resource allocation which in turn affects the performance of the PD pro-
cess. Design and managerial guidelines can result from the direct analysis of the
PD architecture. Specifically, for development engineers, our result can be used
for selecting the product architecture which leads to maximum performance. On
the other hand, when the PD architecture is fixed, our proposed framework helps
PD managers in deciding on the optimal budget proportions to be allocated to
modules and to design rules.
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