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Abstract

The success of deep learning on video Action Recognition (AR) has motivated
researchers to progressively promote related tasks from the coarse level to the fine-
grained level. Compared with conventional AR that only predicts an action label
for the entire video, Temporal Action Detection (TAD) has been investigated
for estimating the start and end time for each action in videos. Taking TAD
a step further, Spatiotemporal Action Detection (SAD) has been studied for
localizing the action both spatially and temporally in videos. However, who
performs the action, is generally ignored in SAD, while identifying the actor
could also be important. To this end, we propose a novel task, Actor-identified
Spatiotemporal Action Detection (ASAD), to bridge the gap between SAD and
actor identification.

In ASAD, we not only detect the spatiotemporal boundary for instance-level
action but also assign the unique ID to each actor. To approach ASAD, Multiple
Object Tracking (MOT) and Action Classification (AC) are two fundamental
elements. By using MOT, the spatiotemporal boundary of each actor is obtained
and assigned to a unique actor identity. By using AC, the action class is estimated
within the corresponding spatiotemporal boundary. Since ASAD is a new task,
it poses many new challenges that cannot be addressed by existing methods: i)
no dataset is specifically created for ASAD, ii) no evaluation metrics are designed
for ASAD, iii) current MOT performance is the bottleneck to obtain satisfactory
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ASAD results. To address those problems, we contribute to i) annotate a new
ASAD dataset, ii) propose ASAD evaluation metrics by considering multi-label
actions and actor identification, iii) improve the data association strategies in
MOT to boost the MOT performance, which leads to better ASAD results. We
believe considering actor identification with spatiotemporal action detection could
promote the research on video understanding and beyond.
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Chapter 1

Introduction

Vision-based Action Recognition (AR) aims to detect human-defined actions from
a sequence of data (e.g., videos) and has a wide range of applications in our daily
life. For instance, it has been applied for YouTube to recognize billions of video
tags before recommending a video to us, or for the policemen to quickly retrieval a
criminal from thousands-hours surveillance videos, or for a virtual game machine
to interact with players, and many others.

In recent years, the success of deep learning on AR has motivated researchers
to progressively promote the AR task from the coarse level to the fine-grained
level. Compared with conventional AR that only predicts an action label for the
entire video, Temporal Action Detection (TAD) has been investigated for esti-
mating the start and end time for each action in videos. Taking TAD a step
further, Spatiotemporal Action Detection (SAD) has been studied for localizing
the action both spatially and temporally in videos. However, who performs the
action is generally ignored in SAD studies. We believe the actor identifica-
tion should be considered together with SAD. When multiple actors are
involved in the target scenes (e.g., basketball/soccer games), it is preferred to
know “who is doing what”, and thus, identifying each actor with their actions
is desired. Nonetheless, SAD and actor identification are treated as different
tasks for a long time. To this end, we propose a novel task, Actor-identified
Spatiotemporal Action Detection (ASAD), to bridge the gap between SAD and
actor identification (Figure 1.1).

To approach ASAD, Multiple Object Tracking (MOT) [11] and Action Classi-

1



Example of Rough Action 
Recognition in Videos

are playing basketball is dribblingis defending

Example of  Spatiotemporal 
Action Detection (SAD) in 

Videos 

is dribblingis defending

Example of Actor-identified
Spatiotemporal Action 

Detection (ASAD) in Videos 
Actor ID 0 Actor ID 1

Figure 1.1: Actor-identified Spatiotemporal Action Detection (ASAD) is Spa-
tiotemporal Action Detection (SAD) pluses actor identification. Part of this
figure is from https://www.pinterest.jp/pin/130745195408112697/.

fication (AC) [1] are two fundamental elements (Figure 1.2). By using MOT, the
spatiotemporal boundary of each actor is obtained and assigned to a unique ac-
tor identity. By using AC, the action class is estimated within the corresponding
spatiotemporal boundary. In general, they may work as independent modules by
considering the model training flexibility.

Since ASAD is a new task, it poses many new challenges that cannot be
addressed by existing methods: i) no dataset is specifically created for ASAD,
ii) no evaluation metrics are designed for ASAD, iii) current MOT performance
could be the bottleneck to obtain satisfactory ASAD results. To address those
problems, we contribute to i) annotate a new ASAD dataset, ii) propose ASAD
evaluation metrics by considering multi-label actions and actor identification, iii)
improve the data association strategies in MOT to boost the MOT performance,
which leads to better ASAD results.

We summarize the main contributions of this thesis as follows.

• We raise a new study task of video action recognition — Actor-identified
Spatiotemporal Action Detection (ASAD). As far as we are aware, it has a
great importance but has been historically overlooked. ASAD bridges the
gap between the existing Spatiotemporal Action Detection (SAD) study

2



is dribblingis defending

Multiple Object Tracking (MOT)

Action Classification (AC)

Actor ID 0 Actor ID 1

Figure 1.2: The illustration of ASAD processing. Part of this figure is from
https://www.pinterest.jp/pin/130745195408112697/.

and the new demand for identifying actors.

• We specifically provided a novel dataset for ASAD study. It covers a rich
action category and actor identities.

• We presented novel metrics for ASAD evaluation. To the best of our knowl-
edge, existing metrics cannot be applied to ASAD, and we are the first to
introduce such metrics.

• Since MOT is the main bottleneck for improving the ASAD performance, we
proposed a new method to boost the MOT performance and therefore can
promote the ASAD performance. We also demonstrate that our methods
can achieve state-of-the-art results on other MOT datasets.

In the following chapters, we first review the literature on video action recogni-
tion, multiple object tracking (MOT), and action recognition (AC). In Chapter 2,
by comparing with previous research, we explain the importance of proposing
ASAD task. Then we introduce our efforts on constructing ASAD dataset and
metrics. In Chapter 3, we introduce a new ASAD dataset — Actor-identified
AVA (A-AVA), in where the spatiotemporal boundaries, actor identities, and
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corresponding actions are all annotated. Besides, we propose ASAD metrics to
evaluate all aspects of ASAD outputs. Next, we present our efforts on improving
the MOT algorithm. In Chapter 4, we show how to improve the MOT perfor-
mance by taking the appearance feature as the dominant factor. We demonstrate
the effectiveness of our MOT solution on multiple MOT datasets. After that, we
introduce the ASAD framework and experiments. In Chapter 5, we perform ex-
periments on our A-AVA dataset and evaluate the results by our ASAD metrics.
We prove that our MOT solution can improve actor identification performance
and consequently obtain better ASAD results. In the end, we talk about several
external works about action recognition that may be integrated into the ASAD
task in the future (see Appendix).
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Chapter 2

Related Works

2.1. Video Action Recognition

In general, video action recognition research can be divided into several cate-
gories (Figure 2.1). Normal Action Recognition (AR) takes an entire video, or, a
video clip, as the input and generates a corresponding action class. It is used to
understand the overall video concept without specifying the details in the spatial
domain and temporal domain. Temporal Action Detection (TAD) gives tempo-
ral details to AR, by clarifying the start and end time of an action. Accordingly,
one video could be segmented into several temporal components in TAD. Com-
pared with TAD, Spatiotemporal Action Detection (SAD) not only detects the
action boundary in the temporal domain but also locates the actor with bounding
boxes (or instance masks) in the spatial domain. We generally call such a spa-
tiotemporal boundary the action tube. In this work, we propose Actor-identified
Spatiotemporal Action Detection (ASAD) from SAD, by incorporating the unique
identity of each actor.

We summarize the related datasets and studies for AR, TAD, SAD, and ASAD
in Table 2.1. To link bounding boxes to action tubes, Multiple Object Tracking
(MOT) is also commonly applied in SAD. Some SAD works can also track the
actor and assign them with unique IDs. However, based on the evaluation
protocol of SAD, the annotation of actor identity may not be provided
and the actor identification has not been evaluated. That means, there
is no clear boundary between ASAD and SAD in terms of the method, their
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Figure 2.1: A comparison of action recognition works, which could be roughly di-
vided into four categories: Action Recognition (AR), Temporal Action Detection
(TAD), Spatiotemporal Action Detection (SAD), and our defined Actor-identified
Spatiotemporal Action Detection (ASAD). Existing works (i.e., AR, TAD,
and SAD) ignore to identify actors while our ASAD addresses this
issue. Parts of this graph credit to [1].
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Action Recognition Category Available Datasets Related Works

AR HMDB [12], UCF101 [13],
Sports-1M [14], Kinetics-700 [15]

[16, 17, 18, 19]

TAD ActivityNet [20], YouTube-8M [21],
THUMOS [22], HACS [23]

[24, 25, 26, 27, 28, 29]

SAD
UCF101+ROAD [2], DALY [30],
Hollywood2Tubes [31] AVA [3],
AVA-Kinetics [32], ActEV [33]

[34, 35, 36, 37, 2, 38, 39, 40, 41, 8, 42, 43, 44, 7]

ASAD Okutama [6] (available but not ideal) Ours

Table 2.1: The related datasets and studies for AR, TAD, SAD, and ASAD.
Note that, unlike other SAD datasets, actor ID is given in annotations of Oku-
tama [6] but the ASAD evaluation has not been explored. Besides, the Okutama
dataset consists of 4K-resolution drone videos, which may only cover very limited
scenarios of ASAD. In addition, some SAD models, such as ROAD [2], Al-
phAction [7], and ACAM [8], may potentially generate ASAD results
but were evaluated by the SAD protocol in the original works. That
is, the consistency of actor identity is ignored in these works.

difference more lies in the data annotation and evaluation protocols. In detail, the
action tube ID given in SAD may not be consistent with actor ID. For example,
after the same actor changes his/her action, the corresponding action tube ID
changed but the actor ID should remain the same. Unfortunately, such kind of
actor ID is not available in most SAD datasets.

As we suppose that MOT and AC are two important components in ASAD,
we take a look into the role of MOT and AC in AR, TAD, SAD, and ASAD
(Table 2.2). The AC could be a necessary module for all action recognition
categories. In SAD, MOT might be used (e.g., on UCF101+ROAD dataset [2]),
but not be necessary (e.g., on AVA dataset [3]). However, both MOT and AC
are needed in ASAD.

In addition, previous studies [45, 46, 47] focus on only identifying actors in
videos, but without detecting their actions. In this manner, as a new task, ASAD
has bridged the gap between the SAD and the actor identification (Table 2.3).
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Action Recognition Category Using MOT Using AC

Action Recognition (AR) Not Need Need

Temporal Action Detection (TAD) Not Need Need

Spatiotemporal Action Detection (SAD) May Not Need Need

Actor-identified Spatiotemporal Action Detection (ASAD) Need Need

Table 2.2: The role of MOT and AC in AR, TAD, SAD, and ASAD. For some
evaluation protocols of SAD, there is no need to link detection to tubes and MOT
may not be used.

Approaches Identifying Actors Detecting Actions

Spatiotemporal Action Detection (SAD)
[34, 35, 36, 37, 2, 38, 39, 40, 42, 43, 44, 7]

7 3

Actor Identification [45, 46, 47] 3 7

Actor-identified Spatiotemporal Action Detection (ASAD) 3 3

Table 2.3: A comparison of SAD, Actor Identification, and ASAD.

2.2. Multiple Object Tracking

Since Multiple Object Tracking (MOT) plays an important role in Actor-identified
Spatiotemporal Action Detection (ASAD), we further provide an overview of
MOT related works.

Depending on the number of object classes, we divide MOT tasks into the
single-class MOT task and the multi-class MOT task. Single-class MOT, as the
name suggests, only contains a unique class for the target object (e.g., pedestrian)
in one video. By contract, multi-class MOT involves multiple object classes (e.g.,
pedestrian, bike, and car) per video. Compared with multi-class MOT, single-
class MOT is favored by numerous MOT studies [11, 48] because it offers a
relatively simple experimental environment. Recently, researchers have drawn
attention to multi-class MOT due to the increased demand from real applications
(e.g., autonomous driving [49]). To conduct data association, the main difference
between single-class and multi-class MOT lies in how to utilize the category
labels: while only identity labels are considered in single-class MOT, category
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labels could be leveraged in multi-class MOT.

Corresponding Datasets

Single-class MOT MOT15-17 Datasets [50, 51]
& MOTS20 dataset [52]

Multi-class MOT KITTI-MOTS Dataset [53, 52]
& BDD100K MOT Dataset [49]

Table 2.4: Corresponding datasets of single-class and multi-class MOT. Although
MOT15-17 datasets are annotated with multi-class MOT labels, they are gener-
ally evaluated in single-class MOT protocol.

Despite multi-class MOT and single-class MOT having the aforementioned
difference, they essentially seek for associating identical observations crossing
frames. We attempt to investigate their data association from online and offline
perspectives. Related works are listed in Table 2.5. The online data association is
performed on observations that are available up to the current frame. Typically,
linear assignment algorithms [54, 55] are applied to associate consecutive-frame
observations through a bipartite graph matching [56, 57]. Different from online
approaches, offline data association takes global observations into consideration,
which may not be applicable for real-time applications but be ideal for assisting
MOT annotation works. Numerous offline approaches have been proposed in
previous studies [11]. Among them, formulating MOT data association as a
global clustering problem has achieved great successes since decades ago [58, 59,
60, 61, 62, 63]. We applied Hierarchical Clustering (HC) for global clustering in
our offline approach. However, for the main challenge of applying HC in MOT,
as determining the sensitive cutting threshold, [59, 64, 63] has to heuristically
determine it.

Concerning how the motion feature and the appearance feature are utilized,
we further group existing data association approaches (online & offline) into four
categories, which are illustrated in Table 2.6. Particularly, approach ¶ only
applies the motion feature to calculate the motion affinity and then match cross-
frame observations. Those approaches either applying the Kalman filter (e.g.,
[66]) or training a neural network model (e.g., [79]) to estimate the object mo-
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Approaches Online Data
Association

Offline Data
Association

[65, 66, 56, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80] 3 7

[81, 82, 83, 61, 62, 84, 85] 7 3

Table 2.5: Online and offline data association works

Observations
Assignment 

Optimization
Matching

Observations Motion 
Affinity

Assignment 
Optimization

Matching

Observations Appearance 
Affinity

Assignment 
Optimization

Matching

Fused
Affinity

1

2

3

Observations
Appearance Information

Motion Information
Neural Network

Matching4

Motion 
Information

Appearance
Information

Motion 
Information

Appearance 
Information

(a) The mechanism of using motion features and appearance features for data
association.

Approaches Demand for
Tracklet Annotation

Feature
Fusion

Including Other ReID
Datasets for Training

¶ [66, 67, 79, 80] Not Used / High N/A N/A

· [61] Medium / Low N/A Easy

¸ [82, 83, 56, 68, 62, 73, 78] Medium / Low Difficult Easy

¹ [71, 72, 74, 75, 76, 77] High Easy Difficult

(b) The properties of listed data association approaches.

Table 2.6: Data association approaches.
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tion. While the former case does not need any tracklet annotation, the
later case heavily relies on the tracklet label to train the motion esti-
mation network. As opposed to ¶, · represents a bunch of appearance-based
methods. Generally, they adopt the appearance encoder from the object Re-
identification task (e.g., [86]) to learn strong discriminative appearance features
for data association.

To train the appearance encoder, the tracklet annotation is preferred but not
mandatory. Since the appearance encoder may work as an independent compo-
nent, other ReID datasets (e.g., [9]) can be used in the training. Approach ¸ is
a combination of ¶ and ·, which fuses the motion feature and the appearance
feature for data association. However, it is non-trivial to make a trade-off be-
tween the motion feature and the appearance feature in diverse scenarios. Some
defects, such as failing for fast movement, may exist in existing approaches (e.g.,
[56]), and thus improved solutions are desired. Approach ¹ leverages neural
networks to directly learn a data association strategy in an end-to-end manner.
Consequently, the hand-craft feature fusion is avoided, but this, in turn, makes
¹ can only be trained with adequate annotated tracklet labels, which increases
the annotation burdens. Besides, the trajectories, though, are smooth in the
labeled data, heavy jitters could exist in the testing data due to the detection
noise. This inconsistency arises from the generalization challenge for ¹, as un-
satisfactory results might be generated when the detection quality is poor. Our
approach leverages the procedure of ¸, which may require further exploration of
the fusion strategy. But in compensation, it reduces the demand for annotated
tracklets and also improves the model generalization by incorporating the priory
knowledge to spatiotemporal constraints.

2.3. Action Classification

The Action Classification (AC) model plays such a role to map the spatiotempo-
ral information to action categories. There are numerous AC studies considering
the approaches of utilizing features and designing the model structure. In detail,
Action Classification (AC) approaches could be divided into 5 categories, includ-
ing RGB AC, RGB + Flow AC, Pose AC, RGB + Pose AC, and RGB + Flow
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+ Pose AC, as shown in Figure 2.2. Based on these 5 categories, we list the
corresponding studies in Table 2.7.

RGB Video

Pose/Skeleton

Optical Flow

Optical Flow
Estimation

Pose 
Estimation

RGB-based
Action Classification

Two-stream (RGB + Flow)
Action Classification

RGB + Pose
Action Classification

Pose/Skeleton Based 
Action Classification

Three-stream (RGB 
+ Flow + Pose) Based 
Action Classification

Figure 2.2: Categories of Action Classification (AC) models.

Approaches RGB AC RGB + Flow AC Pose AC RGB + Pose AC RGB + Flow + Pose AC

Large-scale AC [14] 3 7 7 7 7

Two-Stream [16] 7 3 7 7 7

C3D [17], I3D [87], ECO [88],
P3D [89], FastSlow [19]

3 3 7 7 7

HCN [90], 2s-AGCN [91],
DD-Net [92]

7 7 3 7 7

Potion [93], PA3D [94] 7 7 7 3 7

Chained AC [95] 7 7 7 7 3

Table 2.7: The properties of action classification works
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Chapter 3

Proposed ASAD Dataset and
Evaluation Metrics

Given a video, Actor-identified Spatiotemporal Action Detection (ASAD) aims
to detect the spatiotemporal boundaries (i.e., tracklets/actor tubes) for each
actor, assign each actor a unique identity, and obtain the actions of actors at
each moment. Consequently, the ASAD dataset should include those factors and
the ASAD metrics should verify the performance on those factors. We organized
our proposed dataset and evaluation metrics scripts at GitHub https://github.
com/fandulu/ASAD.

3.1. Dataset for ASAD

By reviewing existing action recognition datasets (Chapter 2), it can be noticed
that a proper ASAD dataset may not be available. Although the existing Spa-
tiotemporal Action Detection (SAD) dataset might be similar to our desired
ASAD dataset, the actor identity is not properly annotated in the SAD dataset.
We illustrate the annotation difference between SAD and ASAD data annota-
tion by using UCF101+ROAD dataset [2] and AVA dataset [3] as examples (Fig-
ures 3.1 and 3.2). In the UCF101+ROAD dataset, the spatiotemporal boundaries
are incomplete. Since actor identification is not the concern in SAD, after the
predefined action is finished, the spatiotemporal annotation is not available. In
contrast, the annotation in ASAD should complete the spatiotemporal boundary
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for each actor in the entire video, no matter if the defined action is finished or
not. In the AVA dataset, despite the actor IDs being given, multiple actor IDs
have been assigned to the same actor in a single video, which is incorrect for actor
identification. For actor identification purposes, the unique actor ID should be
assigned to each actor in one piece of video. Besides, while some remote surveil-
lance video datasets equip with spatiotemporal boundaries, actor identities, and
action classes, they focus on the special scene (e.g., remote surveillance) and may
not be suitable for the general ASAD study. For example, Okutama dataset [6]
and PANDA [96] only record tiny scale actors and covers a small group of human
daily activities.

Original spatiotemporal annotations in UCF-ROAD dataset (SAD), e.g., fencing     .

The spatiotemporal annotations are incomplete.
Expected spatiotemporal annotations for our ASAD, e.g., fencing     .

The spatiotemporal annotations are complete.

Actor 1
Actor 2
Actor 3
Actor 4

Actor 1
Actor 2
Actor 3
Actor 4

Figure 3.1: Comparison between SAD and ASAD spatiotemporal annotation
by using UCF101+ROAD [2] as an example. The annotation in ASAD should
complete the the spatiotemporal boundary for each actor in the entire video, no
matter if the defined action is finished or not.

Due to the above reasons, we are motivated to annotate a new ASAD dataset.
Compared with the SAD dataset, the ASAD dataset requires correct actor iden-
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Actor ID annotation in the original AVA dataset (SAD). Actor IDs are fragmented in one video.

Expected actor ID annotation in our ASAD. Actor IDs are consistent in one video.

Actor 2

Actor 1

Actor 3

Actor 2
Actor 1

Actor 3
Actor 4
Actor 5
Actor 6
Actor 7

Figure 3.2: Comparison between SAD and ASAD actor ID annotation by using
AVA [3] as an example. In a single video, while the existing SAD dataset may
assign multiple actor IDs to the same actor, our ASAD assigns the unique actor
ID the actor.

tities. As the AVA dataset [3] is a canonical SAD dataset and TAO dataset [97]
offers some actor identity annotations on it, we create an ASAD dataset based
on them (Figure 3.3). Due to the heavy annotation cost, among 430 AVA video
clips, we only selected 77 of them to make our new dataset. Note that, we mainly
selected video clips that have visible actors and multiple actors available. We
named our ASAD dataset A-AVA, which represents the Actor-identified AVA
dataset. A-AVA dataset contains 47 videos for training and 30 videos for testing.
Be the same as the AVA dataset, there are 80 action categories in the A-AVA
dataset, and, every 25 frames (i.e., around 1 second), the annotation is given
once. In the A-AVA dataset, the spatiotemporal boundaries, actor identities,
and corresponding actions are all annotated. More examples are illustrated in
Figure 3.4.

We present the historical role of our A-AVA dataset in Figure 3.5. As the
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Training Set: 47 videos (part of AVA dataset)

Testing Set: 30 videos (part of AVA dataset)

Actions Category: 80 actions (the same as AVA dataset)

Annotation Frequency: Every 25 frames (the same as AVA dataset)

Figure 3.3: We create a new ASAD dataset based on existing AVA dataset [4],
by assigning the unique actor identity to each actor.

first dataset that is specifically designed for the ASAD study, the A-AVA dataset
covers a rich diversity of video scenes, as indoor and outdoor, different times of
the day, various actor scales, and more. Those properties are not available in the
previous dataset (i.e., Okutama dataset). A-AVA dataset has bridged the gap
between the SAD dataset and actor identification dataset.

3.2. Evaluation Metrics for ASAD

When considering the multi-label action, ASAD evaluation could be a compli-
cated task. Unlike single-label SAD evaluation [4], it is challenging to simul-
taneously evaluate multi-label action classification and actor identification with
spatial detection. To address this issue, we suggest evaluating ASAD from three
aspects and then consider their overall performance. The three aspects include
Spatial Detection Evaluation, Actor Identification Evaluation, and Multi-label
Action Classification Evaluation (Figure 3.6).
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Figure 3.4: Illustration of our Actor-identified AVA dataset.

3.3. Spatial Detection Evaluation

We take the object detection metrics [98, 99, 100] to evaluate the spatial detection
performance. First, we calculate Intersection over Union (IoU), which is defined
by

IoU = bboxpred ∩ bboxtrue

bboxpred ∪ bboxtrue
(3.1)

where bboxpred and bboxtrue represent the predicted bounding box and the ground-
truth box, respectively.

Second, based on the IoU value, True Positive (TP), False Positive (FP), and
False Negative (FN) are defined by

• True Positive (TP): A correct detection with an IoU greater the threshold.

• False Positive (FP): A wrong detection with an IoU smaller than the thresh-
old.

• False Negative (FN): A ground truth not detected.
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Action Recognition Related Data Release Time

2012 2014 2016 2018 2020

Spatiotemporal 
Action Detection 

(SAD)

Actor-identified 
Spatiotemporal 

Action Detection 
(ASAD)

Action 
Recognition 

(AR)

Temporal Action 
Detection (TAD)

DALY 
[Weinzaepfel et al. ]

UCF101+ROAD 
[Singh et al. ]

AVA 
[Gu et al. ]

ActEV
[Yooyoung et al. ]

Actor-identified AVA
[Ours]

(originally designed for ASAD,
small-to-large size actor,

>100 actors,
movie videos,

80 actions)

AVA-Kinetics
[Li et al.]

Okutama
[Barekatain et al. ]

(originally designed for SAD,
small size actor,

10 actors, 
drone videos,

12 actions)

MBDB
[Kuehne

et al.] 

UCF101
[Soomro

et al.] 

Sport-1M
[Karpathy et al.] 

Kinetics-700
[Carreira et al.] 

ActivityNet
[Heilbron

et al.]

YouTube-8M 
[Abu-El-Haija

et al.]
THUMOS

[Idrees et al.]
HACS

[Zhao et al.]

Figure 3.5: A historical timeline overview of datasets intended for video action
recognition studies.

Spatial Detection 
Evaluation

Detections 
within the 
acceptable 
error ranges

pass

Multi-label Action 
Classification Evaluation

Actor Identification Evaluation

Yes

No

Failures

Figure 3.6: Overview of our ASAD metrics, which evaluate the performance of
spatial detection, action classification, and actor identification.

and the corresponding Precision and Recall are

Precision = TP

TP + FP

Recall = TP

TP + FN

(3.2)

By traversing through all thresholds for detection confidence, different pairs
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of precision and recall can generate the precision-recall curve, which indicates the
association between precision and recall. To reduce the affect of the wiggles in
the curve, the precision-recall curve is interpolated as pinterp. The pinterp at recall
score r is assigned with the highest precision for r > r

′ :

pinterp(r) = max
r>r′

p(r′) (3.3)

Since we only treat human as actor, there is only one class for the detec-
tion, and therefore we utilize Average Precision (AP), other than Mean Average
Precision (mAP), for the spatial detection evaluation. AP is the area under the
interpolated precision-recall curve, which can be calculated using the following
formula:

AP =
n−1∑
i=1

(ri+1 − ri)pinterp(ri+1) (3.4)

In this thesis, we assume any spatial detection with an IoU value larger than
0.5 is True Positive, and the corresponding metrics are represented as AP@0.5.

3.4. Actor Identification Evaluation

While actor classification has the pre-defined actor identities, actor identifica-
tion assigns each actor a unique identity and the number of actor identities is
non-parametric. Therefore, we utilized part of Multiple Object Tracking (MOT)
evaluation metrics for actor identification evaluation, as IDF1 (ratio of correctly
identified detections), MT (mostly tracked targets), ML (mostly lost targets),
and ID Switches. Those identification metrics were introduced by [10, 51] and
have been popularly utilized for a while. More specifically, the IDF1, MT, and
ML are respectively defined by

IDF1 = 2IDTP
2IDTP + IDFP + IDFN

(3.5)

where IDTP, IDFP, IDFN respectively represent the True Positive ID, the False
Positive ID, the False Negative ID.
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MT =
∑

i∈NTtrue

1{ len(T predi )
len(T truei ) > 0.8}

ML =
∑

i∈NTtrue

1{ len(T predi )
len(T truei ) 6 0.2}

(3.6)

where T predi and T truei respectively denote the predicted and the ground-truth
Tracklet i, the number of T truei is NTtrue . If the prediction matches for the ground
truth more than 80% of its life span, it is regraded as mostly tacked (MT). If the
prediction only matches for the ground truth less than 20% of total length, it is
regraded as mostly lost (ML).

3.5. Multi-label Action Classification Evaluation

It is intuitive to consider that each actor could take several actions simultaneously,
which are corresponding to multi-label actions. For instance, an actor could be
making a phone call and walking at the same time. Due to the lack of evaluation
metrics, conventional Action Recognition studies have been evaluated with only
the single-label action for a while [6, 4]. Therefore, we provide metrics for multi-
label ASAD evaluation, which considers the evaluations of multi-label multi-class
action classification and actor identification.

The evaluation metrics for actor detection and multi-label classification have
been well-studied separately [98, 101], but the problem remains on how to asso-
ciate them together for multi-label ASAD evaluation.

A simple approach could be evaluating the “actor” actor detection perfor-
mance for all detected samples and then evaluating the multi-label action recog-
nition performance for positively detected samples. For instance, assuming that
a predicted sample is positive when IoU ≥ 0.5 for the predicted and ground-truth
bounding boxes, we can apply HL@0.5, which corresponds to Hamming Loss
associated with IoU ≥ 0.5, to measure its multi-label classification performance.

Note that, due to the object occlusions, the IoU value between multiple ac-
tors could be larger than 0.5. To remove such ambiguity, we apply the Hungarian
Algorithm for bipartite matching between the predicted bounding boxes and the
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ground-truth bounding boxes before comparing their classification results. Mean-
while, a pair that has IoU< 0.5 will be excluded before calculating their Hamming
Loss. We illustrate these cases in Figure 3.7.

IoU = 0.52 IoU = 0.15 IoU = 0 IoU = 0
Bounding Boxes:

Matched Ground Truth [Green]
Ignored Ground Truth [Grey]

Matched Prediction [Red]
Ignored Prediction [Red]

IoU = 0.7
IoU = 0.5

IoU = 0.6
IoU = 0.5

Figure 3.7: Illustration of matching pair between the ground-truth and the pre-
dicted samples.

In detail, we utilize matrix Di,j to represent the matching distance between
each ground-truth bounding box (denoted by i) and predicted bounding box
(denoted by i), and we obtain Di,j by

Di,j =

 1, if IoUi,j < 0.5;
1− IoUi,j, otherwise.

(3.7)

Next, we employ linear assignment [102] to obtain the optimal assignment
M∗ with

M∗ = arg min
M

∑
i

∑
j

Di,jMi,j, (3.8)

whereM is a Boolean matrix. When row i (i.e., ground truth box i) is assigned
to column j (i.e., predicted box j), we haveMi,j = 1. Each row can be assigned
to at most one column and each column to at most one row.

Since matching pairs that have IoU value less than 0.5, we further process
M∗ by

M∗
i,j =

 0, if Di,j = 1;
M∗

i,j, otherwise.
(3.9)

Referring toM∗, we select matched pairs to evaluate the corresponding action
labels with Hamming Loss. The number of matching pairs are represented by
Nactors@0.5 (i.e.,M∗ = 1). Below, we show how the HL@0.5 is extended from the
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original Hamming Loss.

HL@0.5 = 1
Nactors@0.5

1
Nlabels

Nactor@0.5∑
i=1

Nlabels∑
l=1

Y i,l
true XOR Y i,l

pred , (3.10)

where XOR is an exclusive-or operation and Nlabels stands for the number of
action categories. Ytrue and Ypred are boolean arrays that denote the ground
truth and predicted labels, respectively. To help understand the above metrics,
we illustrate how HL@0.5 is calculated by a toy example in Figure 3.8.

IoU = 0.52 IoU = 0.15 IoU = 0 IoU = 0

1 0 1 0
1 0 0 1

HL@0.5 = 0.5 

1 0 1 0
1 0 0 1

1 0 1 0

1 0 0 1

Bounding Boxes:
Ground Truth [Green]

Prediction [Red]

Action Classes:
Ground Truth [Green]

Prediction [Red]
Not countNot countNot countNot count

Figure 3.8: An example of calculating HL@0.5. Only the first case with
IoU=0.52 is considered as a positively detected sample, and therefore the overall
HL@0.5=0.5.
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Chapter 4

Addressing the Bottleneck of
ASAD by Improving Multiple
Object Tracking

To approach ASAD, a simple pipeline could be performing Multiple Object Track-
ing (MOT) to obtain the Actor IDs and corresponding spatiotemporal boundaries
and then applying Action Classification (AC) to generate actions within those
spatiotemporal boundaries. In a simple pipeline, the MOT and the AC can work
independently, but MOT might be the bottleneck to improve the overall perfor-
mance in ASAD.

Multiple Object Tracking (MOT) is the key element to acquire actor IDs
and the corresponding spatiotemporal boundaries in videos. In this Chapter, we
focus on systematically exploring the data association strategies in MOT, aiming
to boost the MOT performance on various MOT datasets. In the next chapter
(i.e., Chapter 5), we will discuss how to apply our MOT method in the ASAD
framework and have experiments on our A-AVA dataset.

4.1. Overview

How would it be for an autonomous driving system to obtain trajectories of
surrounding objects and make a safe path planning? Or for a survey system
to track and count a herd of moving animals in the wild? Or for a virtual
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Observed Locations in Current Frame: 

Predicted Locations in Current Frame: 

Movements: 

Frame 1 Frame 2 Frame 3

closer

closer

closer

closer

closer

closer

closer closer

1

2

3

Figure 4.1: A demonstration that objects could be tracked fully by the appear-
ance feature but partially by the motion feature. ¬ The ideal scenarios that both
red and blue observations can be correctly associated by using either the motion
feature or the appearance feature. ­ Due to the faster motion, red and blue ob-
servations obtain incorrect motion initialization by only using the motion feature.
® Due to the unpredictable movement of the camera, blue and red observations
obtain incorrect motion initialization and then lose tacking by only using the
motion feature.
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game system to follow multiple players’ commands? Multiple Object Tracking
(MOT) is a core element to make these applications available and has drawn a
lot of attention from autonomous driving, animal survey, and human-computer
interaction.

Under the popular tracking-by-detection paradigm, MOT algorithms can be
roughly divided into two phases: object detection and data association. Given a
video data, object detection phase generates observations on each frame, with the
format of bounding boxes (e.g., [50]), instance masks (e.g., [52]), or object key
points (e.g., [103]). In the data association phase, observations that correspond
to the identical object are associated with a consistent set of trajectories, which
are also referred to as tracklets. In this thesis, we define our data association
phase also includes feature extraction and matching graph construction
processes, so that we do not introduce extra phases in this work.

To accomplish data association in MOT, the motion feature and the appear-
ance feature are generally used to distinguish a target object from others. The
motion feature represents the tendency of object movement, which could be the es-
timated object position and scale in the future frame. In general assumption, the
motion feature of the identical object should be consistent within adjacent frames,
and thereby the affinity of consecutive-frame motion feature can be used for deter-
mining the connection between observations. Among existing works, the motion
feature could be obtained from the recurrent neural network (RNN) [104] , opti-
cal flow [105] , and Kalman or Particle filters [106]. They take the advantage of
being robust to the presence of occlusion or extremely similar object appearance,
but fails when objects move unpredictably, due to the camera movements,
detection errors, or the deceptive movement in sports (Figure 4.1). Not
that, we assume that the motion feature is initialized after associating
at least two-frame observations, and therefore the estimated location
for the second frame is the same as the first frame’s.

Since different objects may have distinct visual appearances, the appearance
feature extracted from the object image is used as another important cue for
data association. The appearance feature is extremely useful to handle irregular
movement and long-term data association, where solely using the motion feature
is insufficient. The recent successes of utilizing deep-learning generated appear-
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ance feature in data association [61, 62, 56, 68, 73, 78, 71, 75, 76, 77] raise the
question to what degree does appearance feature contribute to data association.
Is the appearance feature alone sufficient for data association, and, in what kind
of scenarios it may fail? Since the appearance feature learning is generally for-
mulated as a Re-identification (ReID) problem [107, 108, 86, 109, 110, 111], we
propose a ReID-dominated data association with a focus on answering the above
questions.

We acknowledge that there are considerable discussions about applying ReID
in MOT tasks among existing works, but what is the proper way to integrate
ReID in MOT tasks is still an open problem. As a new practice, our ReID-
dominated data association covers both online and offline data association. In
particular, the online data association employs the motion feature to generate
adaptive temporal-spatial constraints, and only observations fitting constraints
are considered for consecutive-frame bipartite matching with the appearance fea-
ture. Note that, although DeepSORT [56] and JED [73] took advantage of a
similar mechanism, our method greatly alleviates their defects in tracking initial-
ization and forming motion-based constraints. On the other hand, online data
association is often incapable of handling detection failures and occlusions by
only utilizing the local spatio-temporal information. Thus, offline data associ-
ation is commonly applied to leverage global spatio-temporal information. Our
offline data association takes the Hierarchical Clustering (HC) [112] to associate
tracklets generated by our online data association. Compared with methods that
use Random Field [83] or Min-cost Flow [68], HC allows us to add associa-
tion constraints flexibly and obtain the corresponding hyper-parameter
from the statistical information automatically.

To our knowledge, however, the potentiality of HC was underrated in MOT
tasks for a while. Because the clustering decision is made by a sensitive distance
cutting threshold, on which heuristically selecting may lead to clustering errors in
MOT tasks [59, 82]. We revive the renaissance of HC in offline data association,
by proposing a novel method that automatically selects the cutting threshold
referring to the statistical information of tracklets.

Our contributions are two-fold:

• We analyzed some ignored defects in existing data association approaches,

26



including motion initialization failures and losing tracking when objects
move unpredictably. Since those defects could be caused by the over-reliance
on the motion feature, we proposed a ReID-dominated data association to
alleviate them (Section 4.2).

• From various perspectives, our experimentally demonstrated that our ReID-
dominated data association can achieve better robustness on multiple visual
MOT datasets (Section 4.3). The related mechanism also demonstrated
the effectiveness by winning two championships in recent MOT challenges:
BDD100K MOT of CVPR’20 WAD Workshop1 and Track 1 of CVPR’20
MOTS Workshop2.

4.2. Methodology

4.2.1 The Appearance Encoder

In our ReID-dominated data association method, only the appearance encoder is
a trainable neural network. Our appearance encoder is partially inherited from a
ReID work [86] and with necessary modifications, which is shown in Figure 4.2.

Specifically, a ResNet-50 [113] is used as the backbone, and its global-average-
pooling output, which is a 2048-dimension vector, is employed as the appearance
feature after an unbiased batch-normalization [114]. Refereeing to track IDs,
triplets are sampled and used in contrastive learning [115] (Eq. 4.1). The ap-
pearance features are mapped to corresponding one-hot identify label by a single
fully connected (FC) layer, in where the dimension of the output is equal to the
number of identities. And the cross-entropy loss is applied for the identity clas-
sification (Eq. 4.2). Note that, when multi-class objects are included, the entire
track IDs is the union of track IDs in each category. The identity predictions are
further mapped to object categories by another fully connected layer, in where
the dimension of the output is equal to the number of object categories. We
also apply the cross-entropy loss for the category classification (Eq. 4.3). The

1https://bdd-data.berkeley.edu/wad-2020.html
2https://motchallenge.net/workshops/bmtt2020/tracking.html
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Figure 4.2: Appearance Encoder to learn appearance features with identities and
classes. GAP and BN respectively represent Gap Average Pooling and Batch
Normalization. Batched-normalized Embedding Features are selected as the ap-
pearance features for data association.

corresponding equations are organized as follows.

Ltriplet = max
[
‖fa − fp‖2

2 − ‖fa − fn‖
2
2 + α, 0

]
, (4.1)

where fa, fp, and fn denote the embedding of the anchor, positive, and nega-
tive samples, respectively; E is the appearance encoder; α indicates the margin
between the positive and negative pairs and we empirically set α = 0.3 as [116]
suggested.

LID = −
Nid∑
i=1

ki log(k̂i), (4.2)

where ki and k̂i respectively represent the ground-truth identity label and esti-
mated identity label; Nid denotes the total number of unique object identities.

Lcls = −
Ncls∑
i=1

ci log(ĉi), (4.3)

where ci and ĉi respectively represent the ground-truth category label and esti-
mated category label; Ncls denotes the number of object categories.

For the labeled data, the Lsup is applied to train the appearance encoder, and,
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the optimization goal is to minimize

Lsup = Ltriplet + LID + Lcls. (4.4)

4.2.2 The Online Data Association

In online data association, the relationship of consecutive-frame observations
could be formulated as a bipartite graph. Specifically, the node of the bipartite
graph represents the observation and the edge signifies the distance between two
consecutive-frame observations. The goal is to find the optimal matching solution
in the bipartite graph. Such an approach is commonly applied in recent
MOT works [56, 73, 78] due to its simplicity and efficiency, though it
was proposed for MOT tasks around 40 years ago [117]. However, even
applying the same bipartite graph matching, how to form the bipartite graph
edges is still an open problem. And more importantly, a tiny difference of
bipartite graph edge setting may lead to totally disparate results.

As we discussed in Chapter 2, there are different combinations of utilizing
MOT features. Our approach brings the merit from both features — the appear-
ance feature plays the dominant role to form graph edges while the motion feature
is used as adaptive temporal-spatial constraints. The value of our bipartite graph
edge is the pair-wise appearance distance between two consecutive-frame obser-
vations under spatio-temporal constraints (Figure 4.3). Letting a matrix D rep-
resent bipartite graph edges and Dt,t+1

i,j denote the association distance between
observation i (at frame t) and j (at frame t+ 1), we define

Dt,t+1
i,j =


inf, if ci 6= cj;
inf, if IoU(πt+1

i , bt+1
j ) = 0;

1− f t
i f

t+1
j

‖f t
i‖‖f t+1

j ‖
, otherwise,

(4.5)

where f ti and f t+1
j are respectively the appearance feature of observation i and

j; ci and cj are the object class; πt+1
i is the adjustable matching window of

observation i and bt+1
j is the bounding box of observation j, when their IoU value

equals 0 (i.e., no overlap), we suppose the likelihood for their matching is low
and thus set the distance value as infinite.
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For the motion initialization, to be robust to the fast movement, we define
the transformation from bti = {xtb, ytb, wtb, htb} to πt+1

i = {xt+1
π , yt+1

π , wt+1
π , ht+1

π } as

xt+1
π = max(0, xtb − wtb(rw − 1)/2),
yt+1
π = max(0, ytb − htb(rh − 1)/2),

wt+1
π = min(rwwtb,Wimg − xt+1

π ),
ht+1
π = min(rhhtb, Himg − yt+1

π ),

(4.6)

where rw and rh respectively are the expanding scales for w and h, and their
default values are from the largest shifting scales in labeled data; Wimg and Himg

are the width and the height of a video frame respectively.
After the motion initialization, we can estimate the location b̂t+1 =

{x̂t+1
b , ŷt+1

b , ŵt+1
b , ĥt+1

b } in future frame t+ 1 by leveraging Klaman Filter or other
motion models. We conjecture that b̂t+1 may not be robust to unpredictable mo-
tions and instead we apply πt+1

i , with a new transformation from b̂t+1 to πt+1
i

as
xt+1
π = max

(
0,min

(
xtb − wtb(rw − 1)/2, x̂t+1

b

))
,

yt+1
π = max

(
0,min

(
ytb − htb(rh − 1)/2, ŷt+1

b

))
,

wt+1
π = min

(
Wimg,max

(
xt+1
b + rww

t
b, x̂

t
b + ŵtb

))
− xtπ,

ht+1
π = min

(
Himg,max

(
yt+1
b + rhh

t
b, ŷ

t
b + ĥtb

))
− yt+1

π .

(4.7)

Introducing the adjustable matching window is our main contribution, as dis-
tinct from previous methods that have a similar approach (e.g., DeepSORT [56]
and JDE [73]). DeepSORT [56] and JDE [73] take 9 default Mahalanobis gating
thresholds of Kalman Filter for spatio-temporal constraints, but the unpredictable
object shifting (e.g., camera movement) has not been considered. Our ad-
justable matching window is designed for compensating unpredictable
object shifting. As shown in Figure 4.3, identical observations could be ex-
cluded when the estimated motion acting as an incorrect spatio-temporal con-
straint. Nonetheless, removing the spatio-temporal constraint may increase the
likelihood of including more objects that have a similar appearance, which may
lead to association failures. Our proposed adjustable matching window attempts
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to make a trade-off between them. Supposing labeled videos share homogeneous
properties with the target unlabeled videos. When observed maximum shifting is
small in labeled videos, the value of rh and rw are closed to 1 and thus πt+1

i has
a similar value as bti in the motion initialization. After the motion initialization,
πt+1
i will be flexibly adjusted by referring to the online motion updating. We will

further demonstrate the effectiveness of using our adjustable matching window
in ablation studies.

Ped3
Ped1

Ped1

Ped2
Ped3

frame 1

frame 2

Camera Movement

Target Observation Location in The Previous Frame Adjustable Matching Window

Target Observation Location in The Current Frame

Estimated Target Observation Location in The Current Frame

Other Observation Locations in The Current Frame

Ped1

frame 2

frame 3

Ped1

Adjustable Matching Window after InitializationAdjustable Matching Window for Initialization

inf 0.1 0.4

Out of the adjustable
window: set inf.

0.1 0.6

Cosine 
Distance
of 
Appearance 
Features

Cosine 
Distance
of 
Appearance 
Features

Expanding Length

Estimated Movement

Figure 4.3: Illustration of our online data association. For the initialization,
the previous-frame location is extended to the adjustable matching window by
adding the maximum shifting distance obtained from the statistics of labeled
data (Eq. 4.6). After the initialization, a rectangle, that bounds the expanded
previous-frame box and the estimated current-frame box, is used as the adjustable
matching window (Eq. 4.7). Only observations, covered by the adjustable match-
ing window, are considered for data association by using appearance features,
which makes a trade-off between excluding impossible matching candidates and
including potential ones.
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Only applying spatio-temporal constraints may not filter all unwanted obser-
vations out in the data association. For instance, a new object, that just enters
the video scene, may have large appearance distances to tracked observations,
though, some times it may not be filtered out by spatio-temporal constraints.
Generally, we may be able to exclude such a new object if it has a large ap-
pearance distance to existing tracklets. However, it is challenging to heuristically
determine how large the appearance distance should be to exclude a new object.
We tackle this issue by proposing an adaptive appearance threshold, which is de-
noted as θapponline[t+ 1] when associating observations between frame t and frame
t+ 1. Without introducing heuristic parameters, θapponline[t+ 1] can be inferred
from the obtained trackets, the corresponding formula is

θapponline[t+ 1] = 1
N t+1(N t+1 − 1)

Nt+1Nt+1

i 6=j

(
1−

f t+1
i f t+1

j∥∥∥f t+1
i

∥∥∥ ∥∥∥f t+1
j

∥∥∥
)
, (4.8)

where N t+1 represents the number of observations at frame t+ 1.
In Eq. 4.8, we assume that intra-frame observations at frame t+ 1 belong to

different objects, and therefore their appearance distances should be larger than
identical observations’. In fact, θapponline[t+ 1] is the mean of appearance distances
for intra-frame observations at frame t + 1. Whenever the appearance distance
between a pair of cross-frame observations is lower than θapponline[t+ 1], we suppose
they are different objects. Consequently, after applying Eq. 4.5, we further process
Dt,t+1
i,j by letting

Dt,t+1
i,j =

 inf, if Dt,t+1
i,j < θapponline[t+ 1];

Dt,t+1
i,j , otherwise.

(4.9)

Unlike many MOT studies that focus on proposing new graph optimiza-
tion solutions, we concentrate on improving graph edges in our ReID-
dominated data association. Using the carefully designed association distance
matrix D (i.e., graph edges), without bells and whistles, we apply the linear as-
signment [102] to obtain the optimal assignmentM∗ with

M∗ = arg min
M

∑
i

∑
j

Di,jMi,j, (4.10)

where M is a Boolean matrix. When row i (i.e., observation i) is assigned to
column j (i.e., observation j), we haveMi,j = 1. Each row can be assigned to at
most one column and each column to at most one row.
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Since objects may dynamically move outside, or, into the video, we have to
aware that the bijective matching only happens when one-to-one correspondence
existing for cross-frame observations. While in other cases, we need to exclude
matching with small likelihood (i.e., with value infinite). Accordingly, we further
process the optimal assignmentM∗ with

M∗
i,j =

 0, Di,j = inf ;
M∗

i,j, otherwise.
(4.11)

To this end, based on M∗, we keep updating our tracklet records and move
forward to the next frame. To avoid being misled by unpredictable motion noise,
some related works [118, 105] utilized optical flow to guide their data association.
To some extent, the optical flow conducts cross-frame point-to-point matching,
it is essentially similar to cross-frame observation-to-observation matching in our
ReID-dominated approach. However, since the tracking target could be non-rigid
objects (e.g., pedestrians), it might be challenging to make a satisfactory optical
flow estimation in unseen videos. While performing observation-to-observation
matching could partially alleviate such a problem.

4.2.3 Offline Data Association

Offline data association can be used in MOT processing when latency is allowed.
Compared with the online data association, the offline data association not only
can access the global information of observations, but also fine-tune the appear-
ance encoder on target videos with pseudo tracklet labels.

We utilize the unlabeled target videos for self-supervised learning in our of-
fline data association. Our online data association results can be employed as
pseudo labels to refine the appearance encoder on unlabeled target videos. Such
a practice may not be applicable for real-time applications but be ideal to be
utilized in assisting MOT annotation works. Due to the estimation er-
rors in our online data association, different pseudo tracklets may have the same
identity, especially when they are separated in the temporal domain. Unlike the
previous work [63] ignores this issue when sampling pseudo labels for ReID train-
ing, we attempt to alleviate it by porpoising a new sampling strategy: within the
same video, we only gather triplets from temporally overlapped tracklets, witch
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means Πp ∩ Πq 6= ∅ for pseudo tracklet Tp and Tq. By doing this, we can reduce
the possibility of treating identical samples as negative pairs. The procedure of
constructing inputs is illustrated in Figure 4.4. During the training process, only
Eq. 4.1 is applied for pseudo-label samples, while Eq. 4.4 is applied for the labeled
samples.

forming a mini batch by the ratio 1:1 
for self-supervised training

P

N

P

N Ground-truth
Tracklets in

Labelled Videos

Random
Sampling

Random
Sampling

Estimated
Tracklets in

Unlabeled Videos

Figure 4.4: The illustration of constructing inputs for offline self-supervised learn-
ing. Within the same video, we only gather triplets from temporally overlapped
tracklets, as Πp∩Πq 6= ∅ for pseudo tracklet Tp and Tq. In a mini-batch of input,
the ratio between samples of labeled videos and unlabelled target videos is 1 : 1.

Previous offline MOT works [82, 83, 68] created short-term tracklets first and
then associated them to long-term tracklets with the global information. Given
that we now had the short-term tracklets obtained from our online data asso-
ciation, our offline data association can directly work on them. With improved
appearance features, associating online-obtained tracklets is cast as a Hierarchi-
cal Clustering (HC) [112] problem by optimizing an undirected graph W . Each
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𝜽𝒐𝒇𝒇𝒍𝒊𝒏𝒆
𝒂𝒑𝒑

cosine
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Figure 4.5: The histograms of cosine similarity for intra-frame and intra-tracklet
observations. By approximating the histogram as a normal distribution, the
boundary that maximally separates two histograms is selected as the offline ap-
pearance threshold θappoffline, which minimizes the sum of the false positives and
negatives of cosine similarity distributions..

node of this undirected graph represents a tracklet and an edge is defined as

Wp,q =



inf, if ci 6= cj;
inf, if p = q,

inf, if Πp ∩ Πq 6= ∅,
1

NpNq

∑
i∈Πp

∑
j∈Πq

(
1− fp

i f
q
j

‖fp
i ‖‖fq

j ‖
)
, otherwise,

(4.12)
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Figure 4.6: The Hierarchical Clustering is accommodated to associate short-term
tracklets into long-term tracklets. The cutting threshold is obtained from the
statistical information of splitting tracklets.

where respectively to tracklets Tp and Tq, Wp,q is the distance between them; cp
and cq are their corresponding object classes; Πp and Πq are their corresponding
frame sets, fpi and f qj are their appearance features at frame i and j; Np and Nq

are the number of observations within a tracklets.
We impose spatio-temporal constraints and appearance constraints to con-

struct undirected graph W . In Eq. 4.12, whenever the matching condition vio-
lates given constraints, we set their distance value to be infinite. Based on the
distance matrix, we accommodate HC to merge the split tracklets. Nonetheless,
the main challenge of applying HC in the MOT task is how to set the proper
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cutting threshold. We do not give a heuristic value but let the data speak for
itself. After pseudo-tracklet self-supervised learning, we generate cosine similar-
ity histograms for intra-frame and intra-split-tracklet, respectively. In the ideal
case, if the cosine similarity between two observations falls into the intra-frame
histogram, it represents these two observations have different identities, and vice
versa when it falls into the inter-frame histogram. We suppose that intra-frame
and intra-split-tracklet cosine similarity histograms can be maximally separated
at θappoffline (Figure 4.5), which minimizes the sum of the false positives and nega-
tives of cosine similarity distributions. Without access to the ground-truth, such
a threshold may distinguish objects adaptively based on appearance features.
Therefore, we set 1 − θappoffline as the cutting threshold in HC (Figure 4.6). An
advantage of our HC approach over [59, 82, 63] is its simplicity and the fact that
we can automatically generate an adaptive cutting threshold, without heuristi-
cally setting a static one. Note that, while we can directly obtain the threshold
from the statistical information in HC, it is challenging to apply such strategy
in multi-cut approaches [61], since its clustering is performed in the Laplacian
space. This could be another advantage of our method.

4.3. Experiments on MOT Datasets

We experimented on multiple MOT datasets from diverse perspectives. First, we
performed online data association evaluation on BDD100K MOT dataset [49].
Next, we conducted offline data association on MOTS20 dataset [52]. Finally, we
trained our appearance encoder on Market-1501 dataset [9] and explored both
online and offline MOT on MOT15-17 [50, 51] with their oracle detection.

4.3.1 Implementation Details

We implemented our proposed method by Pytorch. Since our contributions do
no depend on the object detector, we utilized the off-the-shelf object detector
— Mask R-CNN X152 [119] of Detectron2 [120], to generate bounding boxes and
masks. We ran Detectron2 with its default settings on 4 NVIDIA GTX1080Ti
GPUs. Our appearance encoder was modified from [86], which can be trained
and inferred on a single NVIDIA GTX1080Ti GPU. Referring to boxes/masks
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generated by the Mask R-CNN X152 of Detectron2, the cropped image of each
observation is resized to be 128×256 as the input of our appearance encoder. We
applied data augmentation strategies that include Random horizontal flipping,
random color jittering, and random affine transformation in the training. For
the appearance encoder optimization, we choose the Adam optimizer [121] with
a learning rate of 1 × 10−4. During the merging process, we applied the cen-
troid linkage criteria to determine the distance between newly merged tacklets in
Hierarchical Clustering.

4.3.2 Experimental Datasets

BDD100K MOT dataset [49] is a large-scale MOT dataset, which covers 2,000
fully annotated 40-second sequences under different weather conditions, time of
the day, and scene types. BDD100K MOT dataset contains 8 category of objects,
which are divided into three super-categories: “person” (with classes “pedestrian”
and “rider”), “vehicle” (“car”, “bus", “truck”, and “train”), and “bike” (“motor-
cycle” and “bicycle”). The evaluation quires correctly identify the instance ID
and class ID simultaneously. The evaluation of the testing set is performed on
the CodaLab website.

MOTS20 dataset [52] are Multi-Object Tracking and Segmentation (MOTS)
datasets. The evaluation of the testing set is performed on the MOTChallenge
website. As the name suggested, MOTS studies aim to track the object with the
instance segmentation. Since different objects may stay in the same bounding box
for MOT, MOTS utilizes masks to decrease the ambiguity for data association.
Although previous works [68, 69] attempted to work on MOTS, their evaluations
are based on MOT metrics. Specific MOTS evaluations metrics are proposed in
[52].

KITTI-MOTS datasets [53, 52] contain 29 videos in the training set, in
which instance masks are given. Compared with the MOTS20 dataset that only
has pedestrian objects, the object category of the KITTI-MOTS dataset covers
pedestrians and cars. The evaluation of the testing set is performed on the KITTI
website.

MOT15-17 datasets [50, 51] are a series of MOT datasets released from
2015 to 2017, where the testing set evaluation is performed on the MOTChallenge
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official website. The video length ranges from 3 seconds to 2 minutes, and each
dataset contains around 10 videos for training and testing, respectively. Besides,
video covers a rich diversity of scenes, as indoor and outdoor, different times of
the day, different image resolutions, and more. Although multi-class annotations
can be found in the training sets of MOTChallenge15-17 datasets, we generally
teat them as single-class MOT tasks since only the “pedestrian” class is evaluated
on the MOTChallenge website.

Challenge Rank sMOTA(%)↑

1st place
(Our Online Approach)

33.67

2nd place 31.64

3rd place 26.40

Table 4.1: The top-3 results for BDD100K MOT Challenge of CVPR 2020 Work-
shop on Autonomous Driving (June-13th-2020).

4.3.3 Evaluation Metrics

We evaluated the data association performance on box-based MOT tasks with
such widely recognized CLEAR MOT metrics as sMOTA (box-based soft MOT
accuracy), MOTA (MOT accuracy), IDF1 (ratio of correctly identified detec-
tions), MT (mostly tracked targets), ML (mostly lost targets), and ID Switches [50,
51]. For the mask-based MOT, we replaced sMOTA and MOTA with sMOTSA
(mask-based soft MOT accuracy) and MOTSA (mask-based MOT accuracy) [52],
respectively. In the BDD100K MOT dataset, there are 8-categories objects, and
therefore mMOTA (Mean MOT accuracy), which is the average of MOTA values
for the 8 categories, is employed as the dominant metric.

4.3.4 Online Data Association Evaluation

Table 4.1 reports the ranking of BDD100K MOT Challenge. By using our online
approach, we obtained the 1st place with the sMOTA score as 33.67%, which
outperformed the 2nd place by 2.03%. Our online approach was not proposed by

39



one shot, instead, we improved it step-by-step, which is illustrated in Table 4.2a.
For all our experiments on the BDD100K MOT dataset, we trained the Mask
R-CNN X152 of Detectron2 to estimate bounding boxes. And our appearance
encoder, which is described in Section 4.2.1, was also trained to generate appear-
ance features. That means, we applied identical features for all ablation settings,
so that we can focus on how to construct bipartite graph edges.

We first tried SORT [66] (i.e., i) in Table 4.2) to associate bounding boxes
generated by Detectron2. Since BDD100K MOT dataset was captured by a
vehicle-mounted camera, the object movement could be much faster than those
of other MOT datasets. It brings the challenge of motion initialization when only
the motion feature is considered, because identical cross-frame observations may
have the Intersection over Union (IoU) values as 0. Besides, due to the occlu-
sion between observations, only comparing the motion similarity may insufficient
for correct data association. To leverage the appearance feature, we utilized
DeepSORT [56] in our following practice. We equipped DeepSORT with our ap-
pearance encoder (i.e., ii) in Table 4.2), which is stronger than the original one
in DeepSORT. Compared with setting i), we reached an improvement in setting
ii), from sMOTA value 19.50% to 22.42%. After investigating a vast of failure
cases, we supposed the tracklet initialization failure could be the main reason that
prevented us to obtain satisfactory results. It can be noticed that both i) and
ii) of Table 4.2 share the identical tracklet initialization strategy, which might be
unsuitable for fast-moving objects. To improve the tracklet initialization strat-
egy, we attempted to utilize the method proposed by JDE [73] and FairMOT [78]
(i.e., iii) in Table 4.2). The data association of JDE and FairMOT, though, were
inherited from DeepSORT, their tracklet initialization incorporated both motion
features and appearance features. Such a tiny chance significantly improved the
sMTOTA value from 22.42% to 30.53%. When the object movement is com-
plicated, we had verified the importance of utilizing appearance features in the
motion initialization process.

By looking at the results of settings i), ii), and iii), we realized the appear-
ance feature may play a key role to improve the MOT performance. To figure
out to what degree does appearance feature solely contribute to data association,
we designed setting iv), which only utilized the appearance feature for data as-
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sociation. Surprisingly, the sMOTA score of iv) is even higher than iii)’s. This
result could be attributed to that iv) avoided the side effect of inaccurate motion
features. Even object occlusion and various illumination existing, only
applying ReID in data association seemed to be more powerful than
we had expected. Nonetheless, removing the spatio-temporal constraint may
increase the likelihood of including more objects that have a similar appearance,
which may also lead to association failures. Thus, we were motivated to propose
an adjustable matching window (AMW) for utilizing motion features. Before
the BDD100K MOT challenge deadline, our approach could be summarized as
setting v). Referring to Eq. 4.6, the AMW was simply expanded from the ob-
served box and the predicted box in the tracklet initialization process and after
the tracklet initialization process, respectively. Compared with setting iii), set-
ting v) essentially leverages a more flexible spatio-temporal constraint in terms
of using motion features. Consequently, setting v) achieved an improved sMOTA
value of 33.67%. We did not stop our exploration after the BDD100K MOT
challenge deadline. Due to the motion estimation errors, we detected the desired
observations could locate outside of its corresponding AMW after the tracklet ini-
tialization. To address this issue, we compensated the object movement in AMW
after the tracklet initialization (i.e., vi) of Table 4.2a), which was formulated in
Eq. 4.7. Compared with our winner solution v), a superior result was achieved
in setting vi), with the sMOTA value of 34.36%. In addition, We illustrate the
qualitative results in Figure 4.7. Our method shows its effectiveness from diverse
perspectives, including variant camera movements, illumination conditions, and
object categories.

Through our investigation of the above results, we also found that an ob-
ject with a slower speed could be relatively easier to be tracked, because both
its location and appearance changes may be smaller at each frame. As it lacks
a systematic study on how the object speed affects the MOT performance in
existing works, we started to investigate it by conducting ablation studies in Ta-
ble 4.2c. We simulated the speed change by modifying the Frame Rates in videos.
The smaller Frame Rates leads to relatively faster object speed and vice versa.
On the validation set of BDD100K MOT dataset, we sampled original videos
and the ground-truth label with the Frame Rates of 1, 1/2, 1/4, 1/8. We mainly
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Data Association Approach
Ablation Study Settings

Object Detection Appearance Encoder Association for Track Init. Association after Track Init.

i): from SORT [66] (ICIP’16) Detectron2 [120] - IoU Matching IoU Matching for KF Predicted Locations

ii): from DeepSORT [56] (ICIP’17) Detectron2 [120] Section 4.2.1 IoU Matching Step1: KF gating + App. Matching,
Step2: IoU Matching for Unmatched

iii): from JDE [73] (ECCV’20) Detectron2 [120] Section 4.2.1 KF gating + App. Matching Step1: KF gating + App. Matching,
Step2: IoU Matching for Unmatched

iv) Detectron2 [120] Section 4.2.1 App. Matching App. Matching

v): our winner solution for
BDD100K MOT challenge)

Detectron2 [120] Section 4.2.1 App. Matching + Adjustable
Matching Window of Eq. 4.6

App. Matching + Adjustable
Matching Window of Eq. 4.6

vi): our improved solution
after the challenge deadline

Detectron2 [120] Section 4.2.1 App. Matching + Adjustable
Matching Window of Eq. 4.6

App. Matching + Adjustable
Matching Window of Eq. 4.7

(a) Ablation study settings for our online approach. App. and KF represent the appear-
ance feature and Kalman Filter, respectively.

Approach sMOTA(%)↑
MOTA(%)↑ # MT↑ # ML↓ # ID Sw.↓

all Person Vehicle Bike all Person Vehicle Bike all Person Vehicle Bike all Person Vehicle Bike

i) 19.50 36.55 21.34 42.14 11.16 2509.00 170.00 2366.00 11.00 12394.00 7781.00 7408.00 582.00 44800.00 8869.00 49118.00 389.00

ii) 22.42 38.93 25.85 47.36 15.81 2877.00 421.00 3584.00 38.00 8948.00 5694.00 6032.00 517.00 43262.00 8792.00 48978.00 391.00

iii) 30.53 53.75 42.05 60.82 27.83 16097.00 1843.00 15545.00 120.00 5123.00 1347.00 2896.00 287.00 43049.00 8271.00 43723.00 323.00

iv) 31.83 55.57 42.60 62.83 28.12 16739.00 1917.00 15178.00 123.00 5045.00 1353.00 2837.00 285.00 43762.00 7943.00 41982.00 347.00

v) 33.67 59.76 44.59 67.18 29.77 16774.00 1922.00 15191.00 123.00 5004.00 1344.00 2785.00 278.00 42901.00 7912.00 38558.00 277.00

vi) 34.36 60.44 45.63 67.83 30.74 16769.00 1922.00 15184.00 123.00 5009.00 1346.00 2786.00 280.00 36841.00 6743.00 33557.00 162.00

(b) Online MOT ablation study results on BDD100K MOT testing set. The original
video frame rates is utilized.

1/4

1/8

1/2

1

frame 1 frame 2 frame 3 frame 4 frame 5 frame 6 frame 7 frame 8 frame 9frame 
rates

(c) Online MOT ablation study results on BDD100K MOT validation set. We adjust
the video frame rates to verify the robustness of different online data association settings.

Table 4.2: Ablation studies for our online approach on BDD100K MOT Dataset.
The identical detection and appearance encoder are utilized in each approach. In
each column, Red and Blue represent the first and second results, respectively.

compared the MOTA values for each approach. The result is quite revealing in
several ways. First, the performance of settings i), ii) and iii) considerably drop
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when the Frame Rates is decreased (i.e., the object speed is increased). Second,
although the performance of settings iv), v), and vi) is also decreased, they hold
a superiority compared with settings i), ii) and iii), which could be attributed to
ReID-dominated data association are more robust to fast speed. The result is
consistent with our assumption.

4.3.5 Offline Data Association Evaluation

Rank Method sMOTSA↑ IDF1(%)↑ MOTSA(%)↑ MOTSP(%)↑ MODSA(%)↑ # MT↑ # ML↓ # ID Sw.↓

1st place ReMOTS [122] 69.9 75.0 83.9 84.0 85.1 248 12 388

2nd place PTPM 68.8 68.5 82.6 84.1 83.7 244 19 368

3rd place PT 68.4 64.9 82.6 83.9 84.4 248 10 569

Table 4.3: CVPR 2020 MOTS Track 1 Challenge (May 30th, 2020).

We applied our offline approach to win the 1st on CVPR 2020 MOTS Track
1 Challenge (Table 4.3). Our results outperformed the 2nd place result 1.1% and
6.5% for sMOTSA and IDF1, respectively. The notable margin of IDF1 indicates
that our approach can correctly associate a larger ratio of obtained masks.

After the challenge deadline, MOTS20 evaluation has been re-opened and
therefore we formed ablation studies on the testing set. Our ablation settings are
described in Table 4.4. Through utilizing the global information, the results of
our offline approaches are substantially better than our online ones, i.e., 3) v.s. 1)
and 4) v.s. 2). By respectively comparing settings 2), 5) and 6) to settings 1), 3)
and 4), we verified that using Adjustable Matching Window (AMW) can achieve
better results. This is consistent with what has been found in the ablation studies
of the BDD100K MOT dataset. In some application scenarios, for instance,
automatic MOT labeling, fine-tuning the appearance encoder on unlabeled videos
is practicable. Our results demonstrated that the fine-tuning process could further
improve the performance, as shown in 4) v.s. 3) and 6) v.s. 5).

The short-term tracklets, generated by our proposed online approach as in-
troduced in Section 4.2.3, can be linked to long-term tracklets in our offline ap-
proach. In TABLE 4.4b, we explicitly illustrate the change of tracklet number
after applying offline data association on the online-estimated results. It can
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be noticed that our offline data association significantly decreased the traklet
number. Consequently, some fragment tracklets, which could be caused by false-
negative detection, were successfully connected to complete ones. The qualitative
result is shown in Fig. 4.7.

We also evaluated on the MOT15-17 testing set and compared with state-of-
the-art methods to show the superiority of our ReID-dominated data association
(Table 4.5). Note that, our offline approach may not generate state-of-the-art
results for all cases. For instance, we experimented the KITTI-MOTS dataset
with our offline approach, and the corresponding results are shown in Table 4.6.
Since the quality of our estimated masks may not be compatible with other
methods, we only obtained acceptable performance on the KITTI-MOTS dataset.

Testing Datasets Approach MOTA(%)↑ IDF1(%)↑ # MT↑ # ML↓ # ID Sw.↓

MOT15 Test Set

Tube_TK [123] (CVPR 2020) 58.4 53.1 283 130 854
FairMOT [78] (ArXiv 2020) 60.6 64.7 343 79 591

Our Offline 63.6 67.0 382 96 445

MOT16 Test Set
Chained-Tracker [124] (ECCV 2020) 67.6 57.2 250 175 1897

FairMOT [78] (ArXiv 2020) 69.3 72.3 306 127 815
Our Offline 76.9 73.2 390 94 742

MOT17 Test Set
Chained-Tracker [124] (ECCV 2020) 66.6 57.4 759 570 5529

FairMOT [78] (ArXiv 2020) 73.7 72.3 1017 408 3303
Our Offline 77.0 72.0 1218 324 2853

Table 4.5: Compared with state-of-the-art methods on MOT15-17 testing sets
with private detection, where ↑(↓) indicates that the larger(smaller) the value is,
the better the performance.

4.3.6 Evaluation with Oracle Detection

In the above experiments, we applied the ReID-dominated data association to
imperfect detection. Corresponding to real scenarios, the perfect detection is
challenging to be obtained and we need to make our data association work on
noisy detection. However, to focus on the data association study itself, we also
would like to further experience our data association on oracle detection, to verify
the upbound performance of our data association proposal.
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Approach
sMOTA (%)↑ MOTSA (%)↑ MT (%)↑ ML (%)↓ # ID Sw.↓

car pedestrian car pedestrian car pedestrian car pedestrian car pedestrian

TrackR-CNN [52] (CVPR’19) 67.0 47.3 79.6 66.1 74.9 45.6 2.3 13.3 692 481

MOTSFusion [125] (ICRA’20) 75.0 58.7 84.1 72.9 66.1 47.4 6.2 15.6 201 279

PointTrack [126] (ECCV’20) 78.5 61.5 90.9 76.5 90.8 48.9 0.6 9.3 346 176

Our offline data association
+ Detectron2

78.0 66.6 90.4 81.9 90.8 61.5 0.6 5.2 533 150

Table 4.6: KITTI-MOTS Results. Red and Blue represent the first and second
results, respectively.

Datasets Approach MOTA (%)↑ IDF1 (%)↑MT (%)↑ML (%)↓# ID Sw.↓

MOT15-17 Train Oracle Tracklets 100.0 100.0 100.0 0.0 0

MOT15 Train
DeepSORT [56] 95.1 86.5 98.4 0.8 162

Our Online 97.6 90.1 100.0 0.0 98

Our Offline 98.7 92.2 100.0 0.0 50

MOT16 Train
DeepSORT [56] 98.2 88.8 99.1 0.2 653

Our Online 99.1 91.5 100.0 0.0 540

Our Offline 99.6 95.8 100.0 0.0 268

MOT17 Train
DeepSORT [56] 98.4 89.4 99.2 0.2 1934

Our Online 99.1 92.4 100.0 0.0 1698

Our Offline 99.8 96.3 100.0 0.0 809

Table 4.7: Evaluation performance on MOT15-17 train sets. All methods use the oracle
detection of MOT15-17 train sets. The appearance encoder is trained on Market-1501
dataset [9].

We utilized the training sets of MOT15-17 datasets to access their ground-
truth detection and tracklets. To treat the original training sets as our new testing
sets, we trained our appearance encoder on an extra ReID dataset — Market-
1501 dataset [9]. There could be domain gaps between the Market-1501 dataset
and MOT15-17 datasets, but we ignore them here. By applying both online and
offline ReID-dominated data association on the oracle detection of MOT15-17
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datasets, we obtained the results as shown in Table 4.7. We supposed the oracle
tracklets (i.e., MOT ground truth) perfected all MOT metrics (e.g., MOTA).
When oracle detection was given, both of our online and offline data associations
can generate nearly perfect results. Nonetheless, unlike the experiment on the
BDD100K MOT dataset, the margin between our solutions and DeepSORT [56]
is considerably diminished when oracle detection is given in MOT15-17. This
result indicates, when high-quality object detection can be easily achieved, we
may not increase the complicity of the data association for just improving a
limited performance. However, when the object detection is noisy and the object
movement is complicated, a more powerful data association could be considered.
This gives insight to properly select a data association strategy in real practice.

4.4. Discussion

We proposed a ReID-dominated data association to handle complicated object
movements in MOT tasks. In our online approach, the appearance feature gener-
ated by a ReID model dominates the matching process, while the motion feature
is cast to adaptive temporal-spatial constraints. In our offline approach, by utiliz-
ing improved appearance features, a modified Hierarchical Clustering is applied
to complete broken tracklets generated in our online approach. On multiple
MOT/MOTS datasets, our experimental results cast a new light on fusing the
appearance feature and the motion feature: using the ReID-dominated data as-
sociation has decisive advantages over previous works, it copes much better with
more complicated object movements and a better online data association perfor-
mance can be achieved. Currently, since only the RGB visual feature is applied
in our approach, it may not be robust to the poor illumination condition. For
future research, we recommend looking into how to include more visual features
(e.g., the infrared feature) to our ReID-dominated data association, when object
movements are complicated and the illumination condition is poor. The impact
of applying such MOT methods in ASAD framework will be discussed in the next
chapter.
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MOTS20-12 (stroller-mounted camera)

MOTS20-01 (static camera) 

KITTI-MOTS-0003 (car-mounted camera, turning scene) 

KITTI-MOTS-0018 (car-mounted camera, pedestrian-car scene) 

BDD100k MOT cabc30fc-fd79926f (car-mounted camera, multi-class scene)

BDD100k MOT cadfb2fe-f43878a3 (car-mounted camera, night-rainy high-speed scene)

MOTS20-06 (stroller-mounted camera)

MOT15-ETH-Crossing (stroller-mounted camera)

Figure 4.7: Qualitative results of ReID-dominated data association. We per-
formed online approach on BDD100K MOT dataset and offline approach on oth-
ers. Red arrows indicate the identical instance, which shows that the targets are
tracked robustly in diverse scenarios.
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Chapter 5

ASAD Benchmark

We set up the first benchmark for the ASAD study. Experiments are conducted
on our A-AVA dataset and evaluated by our ASAD metrics.

5.1. ASAD Framework

As we have discussed in Chapter 2, some SAD models, such as ROAD [2], Al-
phAction [7], and ACAM [8], are consist of Multiple Object Tracking (MOT) and
Action Classification (AC) modules. They could generate ASAD results but were
evaluated by the SAD protocol in the original works. Based on the evaluation
protocol of SAD, the annotation of actor identity may not be provided and the
actor identification has not been evaluated. In other words, there is no clear
boundary between ASAD and SAD in terms of the method, their difference more
lies in the data annotation and evaluation protocols.

Without changing the basic structure, letting the above SAD methods to out-
put actor identities with their original outputs can make ASAD frameworks. In
this study, we let the off-the-shelf SAD methods, as AlphAction [7] and ACAM [8],
to output actor identities that are generated by their MOT module. In this man-
ner, they can perform as ASAD frameworks. In Figure 5.1, we summarize the
basic structure of ASAD framework that is adapted from AlphAction [7] and
ACAM [8]. In this chapter, an ASAD framework takes RGB videos as the input
and outputs the bounding boxes, unique actor identity, and actions of each actor.

49



Object Detection

Data Association

Multiple Object Tracking

Action ClassificationVideos ASAD Results
(Spatiotemporal Boundaries,

Actions,
Actor IDs.)

Figure 5.1: Overview of the basic ASAD framework.

5.2. ASAD Experiments

By using our A-AVA dataset, the performance of spatiotemporal detection, action
classification, and actor identification can be jointly evaluated. We first evaluate
the off-the-shelf SAD methods AlphAction [7] and ACAM [8] with their actor
identification generation. We show the result of using our ASAD evaluation
metrics in Table 5.1. It can be noticed that the action identification performance
is unsatisfactory and become the bottleneck to obtain satisfactory ASAD results.

Approaches
Actor Detection Evaluation Action Classification Evaluation Actor Identification Evaluation

AP@0.5 (%)↑ HL@0.5 (0∼1)↓ IDF1 (%) ↑ MT (%)↑ ML (%)↓ # ID Sw.↓

AlphAction [7] 72.4 0.06 60.4 67.3 10.5 413

ACAM [8] 70.1 0.07 56.7 58.0 15.8 597

Table 5.1: Results of the default ASAD-adapted frameworks on our A-AVA
dataset by using our ASAD evaluation metrics, where ↑(↓) indicates that the
larger(smaller) the value is, the better the performance.

To solve this issue, we replace the default MOT module of AlphAction [7] and
ACAM [8] by our MOT methods (Chapter 4). In Table 5.2, we report two of
our MOT approaches that led to better actor identification result on our A-AVA
dataset. The first one is the adoption of our online MOT method (Section 4.2.2)
to AlphAction [7] and ACAM [8]. We found that the values of IDF1 and MT
slightly increase while the values of ML and ID Sw. lightly dropped down. It
shows our online MOT method is more robust in our A-AVA dataset. The second
one is the adoption of our offline MOT method (Section 4.2.2) to AlphAction [7]
and ACAM [8], which gave us a further gain in IDF1 and ML over their original
MOT module, and reduced the ML and ID Sw. Such results demonstrate the
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effectiveness of applying our offline MOT in the ASAD framework.

Approaches
Actor Detection Evaluation Action Classification Evaluation Actor Identification Evaluation

AP@0.5 (%)↑ HL@0.5 (0∼1)↓ IDF1 (%) ↑ MT (%)↑ ML (%)↓ # ID Sw.↓

AlphAction [7]
w/ the original MOT

72.4 0.06 60.4 67.3 10.5 413

AlphAction [7]
w/ our online MOT

72.4 0.06 60.8 69.5 10.5 459

AlphAction [7]
w/ our Offline MOT

72.4 0.06 71.4 88.4 5.2 273

ACAM [8]
w/ the original MOT

70.1 0.07 56.7 58.0 15.8 597

ACAM [8]
w/ our online MOT

70.1 0.07 58.4 67.4 11.6 520

ACAM [8]
w/ our Offline MOT

70.1 0.07 70.2 86.3 6.3 288

Table 5.2: Comparison of using different MOT module in ADAD frameworks. We
utilize our A-AVA dataset and ASAD evaluation metrics, where ↑(↓) indicates
that the larger(smaller) the value is, the better the performance.

In the above experiment, the actor detection is obtained from an object detec-
tor, which inevitably contains noise and error. Next, we would like to experience
the ASAD framework with the oracle actor detection, to verify the upbound per-
formance of our actor identification proposal. The results are shown in Table 5.3.
Compared with the results of Table 5.2, the actor identification improvement is
not significant by using the oracle actor detection. Such results indicate that actor
detection may not be the main factor that hampers the actor identification per-
formance. To generate a better actor identification result, we may need to focus
on the data association strategy in MOT, as we have explored in Chapter 4.

By using the oracle actor detection, we illustrate some of actor identification
result for visualization in Figures 5.2 and 5.3. In those figures, the identical actor
is located by bounding boxes of the same color crossing frames. Whenever the
viewpoint suddenly changed in videos, it is challenging to track the correct actor
identities by the original MOT module in ACAM [8]. Our online MOT solution
is more robust in such scenarios but cannot handle all cases. Our offline MOT
approach can be used in MOT processing when the latency is allowed. Compared
with the online approach, our offline MOT approach not only can access the
global information of observations but also fine-tune the appearance encoder on
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Approaches
Actor Identification Evaluation

IDF1 (%) ↑ MT (%)↑ ML (%)↓ # ID Sw.↓

ACAM MOT module 62.1 61.1 12.6 463

AlphaAction MOT module 64.8 91.6 4.2 386

Our Online MOT 65.1 94.7 1.1 425

Our Offline MOT 75.3 100.0 0.0 237

Table 5.3: Results of actor identification on our A-AVA dataset with oracle actor
detection, where ↑(↓) indicates that the larger(smaller) the value is, the better
the performance.

Ground Truth for Actor Identification

The result of using the original MOT module inACAM

The result of using our offline MOT

The result of using our online MOT

ID Switch

ID Switch

Figure 5.2: Visualization of actor identification results in the A-AVA dataset
(1/2). The identical actor is located by bounding boxes of the same color.
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Ground Truth for Actor Identification

The result of using the original MOT module inACAM

The result of using our offline MOT

The result of using our online MOT

ID Switch ID Switch
ID Switch

ID Switch

ID Switch

ID Switch

ID Switch

Figure 5.3: Visualization of actor identification results in the A-AVA dataset
(2/2). The identical actor is located by bounding boxes of the same color.

target videos with pseudo tracklet labels. Consequently, the tracking performance
can be significantly improved. Although it’s noteworthy to achieve better actor
identification results with our offline MOT approach, it made mistakes in actor
occlusion scenarios where the actor can be easily tracked by humans (Figure 5.3).
We still have space to improve the MOT method for better actor identification.

5.3. Discussion

For static camera recording, motion consistency is an important cue for data as-
sociation. In contrast, for non-static camera recording, the motion consistency
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assumption could be failed. This issue frequently happens in the movies and
phone-recorded videos (Figure 5.4). The original MOT strategies that were ap-
plied in AlphAction [7] and ACAM [8] may over reply on the motion consistency
and therefore cause failure cases in our A-AVA dataset. Our online MOT solu-
tion alleviates this issue by determining the correspondence between observations
more by their appearance similarity. Moreover, our offline MOT solution utilizes
the global information to further reduce ID switches and generate robust actor
identification results.

Static camera recording:

Non-static camera recording:

Figure 5.4: The difference of motion consistency in static camera recording videos
and non-static camera recording videos.
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Chapter 6

Conclusions and Future Work

6.1. Conclusions

In this thesis, we introduced a novel task, Actor-identified Spatiotemporal Action
Detection (ASAD), which marks the first effort in the computer vision community
to jointly study spatiotemporal boundaries, actor identities, and corresponding
actions. ASAD is ideal for action recognition applications when multiple actors
are included, such as Human-computer Interaction, basketball/soccer games, and
grocery operations monitoring, etc. We believe considering actor identification
with spatiotemporal action detection could promote the research on video under-
standing and beyond. We are excited to engage with the research community to
explore ASAD deeper.

In summary, we have made following contributions:

• To study ASAD, we are excited to offer a corresponding A-AVA dataset.
A-AVA dataset contains 47 videos for training and 30 videos for testing. Be
the same as the AVA dataset [3], there are 80 action categories in the A-
AVA dataset, and, every 25 frames (i.e., around 1 second), the annotation
is given once. In the A-AVA dataset, the spatiotemporal boundaries, actor
identities, and corresponding actions are all annotated. As the first dataset
that is specifically designed for the ASAD study, the A-AVA dataset covers
a rich diversity of video scenes, as indoor and outdoor, different times of
the day, various actor scales, and more. Those properties are not available
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in the previous dataset (i.e., Okutama dataset [6]). Our A-AVA dataset
has bridged the gap between the SAD dataset and the actor identification
dataset.

• In existing SAD evaluation metrics, the evaluation of multi-label action clas-
sification and actor identification are not available. To evaluate the perfor-
mance of ASAD, we also proposed ASAD evaluation metrics by considering
multi-label actions and actor identification. We suggest evaluating ASAD
from three aspects and then consider their overall performance. The three
aspects include Spatial Detection Evaluation, Actor Identification Evalu-
ation, and Multi-label Action Classification Evaluation. We provided the
first evaluation metrics in ASAD such a complicated task.

• Since current MOT performance could be the bottleneck to obtain sat-
isfactory ASAD results. In Chapter 4, we improved the data association
strategies in MOT to boost the MOT performance. In Chapter 5, we proved
that applying our MOT method to the ASAD framework can significantly
improve the actor identification result and may slightly improve the ac-
tion classification performance. Except for the ASAD dataset, our MOT
method also achieved the state-of-the-art performance on multiple public
MOT datasets and demonstrated its effectiveness by winning two MOT-
related challenges, i.e., BDD100K MOT of the CVPR’20 WAD Workshop,
and Track 1 of the CVPR’20 MOTS Workshop.

Besides the above success, it is important to note that our ASAD study also
suffers some limitations:

• Considering the high annotation cost, the size of our proposed ASAD dataset
is still relatively small. Meanwhile, since the definition of action labels could
be ambiguous, the action annotation may not be accurate. For instance,
it is difficult to judge the boundary between “walk” and ”running” in the
continuous temporal domain. In addition, without including the audio in-
formation, it is challenging to decide who is speaking, and, whether actors
are chatting or quarreling. Such issues may impair the ASAD study. To
cope with this issue, it is necessary to perform high-quality annotations
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with more annotators involved. Furthermore, encouraging the community
to join the ASAD study may help to improve the ASAD dataset.

• Because evaluating the ASAD result is complicated, we separately evaluated
spatial detection, actor identification, and multi-label action classification.
Consequently, the overall ASAD performance is represented by multiple
metric values. However, in an ideal case, we hope to utilize a single metric
value to represent the overall ASAD performance. Considering that each
of our ASAD metrics (e.g., HL@0.5) is obtained from a complex formula,
it is challenging to integrate them into a single metric value. To find a
solution, further exploration is needed. Since we have raised this question
in the ASAD task, it might be solved in future works.

• Although we have made a significant improvement in the actor identification
by using our MOT method, the result still has a large margin to be perfect.
Therefore, further detailed investigation of the remaining errors and further
exploration on MOT usage shall be performed to find a better solution and
future advancement in MOT research.

6.2. Future Works

This thesis is not the end, but rather the starting steps, there are more potential
works worth exploring. Besides the achievements we summarized in the above
section, we would like to introduce some remaining issues in our ASAD and
discuss the possible solutions. The roadmap to Actor-identified Spatiotemporal
Action Detection (ASAD) is outlined in Figure 6.1.

6.2.1 Short-term Future Work

6.2.1.1 Addressing the Limitations in Our Contributions

In the above section, we have analyzed the limitations in our contributions. For
the next step, we will start to find solutions to alleviate them and construct a
better ASAD benchmark.
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Figure 6.1: Roadmap to Actor-identified Spatiotemporal Action Detection
(ASAD).

6.2.1.2 Improving the Action Classification

We supposed that Multiple Object Tracking (MOT) and Action Classification
(AC) are two fundamental elements to approach ASAD. In this thesis, although
we have significantly improved the MOT module, it can be observed that the
action classification performance may not be satisfactory in Chapter 5. To im-
prove the AC module in the ASAD framework, the difficulties may arise from
two aspects: i) how to model spatiotemporal interaction without exponentially
increasing the computation costs as time goes; ii) how to learn the interaction rep-
resentations since the interaction labels could be sparse in a huge spatiotemporal
domain.

For potential solutions, we may explore the adaptation of Transformer [127]
in the action classification of ASAD. Using the Transformer to model the sparse
action interaction in the huge spatiotemporal domain might be efficient.

58



6.2.2 Middle-term Future Work

6.2.2.1 Integrating MOT and AC

In our current ASAD framework, multiple object tracking (MOT) and action
classification (AC) are independent, although they work together to approach
ASAD. Setting MOT and AC independently enables the flexible training strat-
egy, which reduces the annotation cost and simplifies the data augmentation.
However, it might be more efficient by unifying the MOT and AC into a single
network model and jointly training them. In the possible solution, integrating
MOT and AC may avoid redundant computation and may significantly improve
the speed of the ASAD framework.

6.2.2.2 Integrating 3D MOT and Fine-grained Hand Action Detection

While we have shown some encouraging works (e.g., 3D MOT) in Chapter Ap-
pendix, much work remains to be done to adapt those works to our ASAD frame-
work. In the future, we may integrate 3D MOT, fine-grained hand action detec-
tion, skeleton-based action classification, and drone-recorded videos in our ASAD
framework (Figure 6.2).

Actor 4
stand
carry/hold (an object)

Actor 3
run/jog

Actor 1
walk
Actor 2
lie/sleep
work on a computer

Z

X

Y

2D MOT For Actors 3D MOT For Actors

3D Hand Tracking 
For Actors

RGB-AC

Actor 2’s Right Hand
tap PC control panelSkeleton-AC

RGB Tube

Skeleton
Tube

Actor 1

Actor 2

Actor 3

Actor 4

Actor 2’s 
Right 
Hand

Drone Video

Selected Zoom In

Figure 6.2: Integrating 3D MOT, fine-grained hand action detection, skeleton-
based action classification, and drone-recorded videos in our ASAD framework.
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6.2.3 Long-term Future Work

In this work, only RGB data is utilized in the ASAD study, however, to make
ASAD more useful, richer multi-modal features could be incorporated in the
ASAD task. In movies, for instance, the audio may also be included. The audio
not only can be used to assist actor identification [128], but also benefit for the
action classification [129, 130]. For example, we can utilize the audio to decide
who is speaking, and, whether actors are chatting or quarreling. Besides, after
getting the permission of users, the mobile data (e.g., inertial measurement unit
data) can be employed in action classification [131]. Since ASAD is a new task,
the corresponding multi-modal data does not exist, and therefore, we need to
create a multi-modal ASAD dataset by considering the audio data and mobile
data. For the evaluation, our proposed ASAD metrics can be directly applied
since the outputs of multi-modal ASAD are identical to the RGB-based ASAD
dataset.
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Appendix

A.

A.1 Appendix Overview

Since Action Recognition (AR) covers a broad range of sub topics, we introduce
our explorations on some of these topics, which could be used to extend Actor-
identified Spatiotemporal Action Detection (ASAD) for the future work.

Specifically, we may integrate 3D MOT, fine-grained hand action detection,
skeleton-based action classification, and drone-recorded videos in our ASAD frame-
work (Figure A.1).
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Figure A.1: Integrating 3D MOT, fine-grained hand action detection, skeleton-
based action classification, and drone-recorded videos in our ASAD framework.
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A.2 Hand Pose/Skeleton Tracking

A.2.1 Overview

Generally, if we only focus on the entire body of an actor for Actor-identified
Spatiotemporal Action Detection (ASAD), it could be challenging to recognize
fine-grained level actions, since most of the fine-grained level actions may be
performed by hands. Hands are essential for human beings to interact with the
surrounding environment and play an important role in video action recogni-
tion. Hand related applications, such as Virtual/Augmented Reality, are growing
rapidly. To approach these applications, 3D hand pose plays an essential role to
make the interaction between human hands and devices available. In order to
obtain 3D hand poses, plenty of models have been developed. However, most of
the existing works only focus on the pose estimation step, and simply suppose
the segmented hand is given, or, can be directly acquired by a depth threshold
[132, 133, 134, 135, 136]. In this work, we focus on a more realistic situation,
where complex background exist (see Fig.A.2) and the aforementioned methods
may not be suitable.

To segment hand in a complex background, machine learning approaches are
commonly applied on a single depth image [137, 138, 139, 140]. In real applica-
tions, we obtain depth videos more than a single depth image, and the temporal
information could be employed to improve the hand segmentation performance.

Therefore, we propose a Soft Proposal Segmentation Network (SPS-net), which
utilizes the temporal information when performing hand segmentation on depth
videos. More technically, SPS-Net generates a soft proposal (detection proposal)
in the current frame, meanwhile, another soft proposal (tracking proposal) is gen-
erated by a Kalman filter from the previous frame. The final hand segmentation
is guided by the merging result of these two soft proposals.

We run segmentation experiments on NYU Hand Dataset [137] and CVAR
Dataset [141] to demonstrate the superiority of SPS-Net on segmentation accu-
racy and generalization ability. Furthermore, by using SPS-Net for segmentation
and a simple 3D hand pose estimator, we obtain the new state-of-the-art on the
Hand2017 Challenge - 3D Hand Pose Tracking Task1.

1https://competitions.codalab.org/competitions/17356results
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Front View

Egocentric View

Figure A.2: Examples of hand location in depth images, where the target
hand is inside the red box. In the egocentric view case, the hand is not
the nearest object to depth cameras, so that it cannot be separated from the
background through depth threshold.

A.2.2 Background

Most of existing works segment the hand first before performing pose estima-
tion [133, 142, 143, 137, 138, 144, 139, 132, 140, 135, 145, 134, 136]. Such a
common choice was mainly driven by three practical considerations. First, it
is easier to be extended to multi-hand pose estimation case [139, 140]. Second,
when considering the input resolution and model capacity together, only using
the hand region as the input is more economic [135, 145]. Third, when depth
data is available, once the hand region is correctly obtained, one can normalize
the hand size by its depth to eliminate the scale variation problem (see Fig.A.3).

Depth images take a great advantage in the hand segmentation. Compared
to the RGB image, the depth image is robust to texture and light intensity
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Figure A.3: Normalizing hand scale after segmentation.

variations. Moreover, obtaining the ground truth of the hand region is easier
for depth image. For instance, thin gloves with special color could be used to
generate the hand masks efficiently without polluting the data itself [139, 140]
(see Fig.A.4). Furthermore, since we aim to obtain accurate 3D hand pose by
depth images, without further introducing RGB images can reduce the cost of
storage and computation.

Figure A.4: Obtaining hand segmentation ground truth by using gloves.
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However, for depth images, hand segmentation is commonly treated as a triv-
ial problem, a typical assumption is that the hand is always the closest object to
the camera, so that the hand can be easily segmented by certain depth thresh-
olds [142, 132]. Apparently, this solution only works for the very restricted
scenario: when a single hand in frontal view. A more general and sophisti-
cated method uses random forests together with hand-crafted features [137, 138].
As commonly realized, effective and robust hand-crafted features are hard to
get, and thus they usually have relatively limited performance. Hence, recently
more efforts have been paid to tailoring powerful deep learning models, such
as U-net [146] or Fully Convolution Network (FCN) [147], for hand segmenta-
tion [139, 140]. While existing works [139, 140] treat each depth image isolated,
our SPS-Net employs the temporal information to further improve the hand seg-
mentation performance on depth videos.

A.2.3 Methodology
FEM MM

Depth Image

Mask

Soft Proposal 
Generator

Mask
Generator Segmented Hand

𝑯𝒊
𝒅 𝑯𝒊

𝒕

Figure A.5: The architecture of SPS-Net. The � represents element-wise
multiplication. Hd

i and H t
i are soft proposals generated at frame i.
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Figure A.6: The details of each components in SPS-Net. “2D Res-
Bolock_64” denotes an 2D residual residual convolutional block with kernel size
64. “Max pool, /2” means maxpooling operation with stride = 2. The⊕ denotes
element-wise summation.

Soft Proposal Segmentation Network (SPS-net) mainly includes four network
components: Feature Extraction Module (FEM), Merging Module (MM), Soft
Proposal Generator, and Mask Generator (see Fig.A.5). In addition, an auxiliary
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algorithm cooperates with SPS-Net to generate one of the soft proposals (see
Algorithm 1).

More specifically, FEM starts with a CNN layer, followed by two CNN Resid-
ual Blocks [113] and Max pooling (see Fig.A.6.(1)). MM performs merging and
normalization operation to two soft proposals (see Fig.A.6.(2)), which are gen-
erated by the Soft Proposal Generator and the Kalman filter (see Algorithm 1),
respectively. Soft Proposal Generator and Mask Generator have the same ar-
chitecture (see Fig.A.6.(3)), which is modified from U-net [146]. Except for the
last CNN layer of Soft Proposal Generator and Mask Generator that use Sigmoid
Activation, other CNN layers in SPS-Net all use Relu Activation.

Soft Proposal Generator is applied to generate a hand proposal heat map
Hd
i at frame i (i.e., the detection proposal). To some extent, Hd

i is a spatial
self-attention that can guide the hand segmentation. The ground-truth of Hd

i is
HGT
i , which is generated by

HGT
i (r, c) = exp

(
−

(
r − pGTi (r)

)2
+
(
c− pGTi (c)

)2

2σ2
i

)
, (6.1)

where r and c are the row index and column index of the heat map, respectively;
pGTi is the ground-truth hand center with 2D coordinates [pGTi (r), pGTi (c)]; σi is a
Gaussian Covariance for frame i, which can be adjusted by the projection scale
si.

Referenced to Fig.A.3, the projection scale si can be calculated as follows:

si = f

dhandi

, (6.2)

where dhandi is the depth of hand mass center in frame i, and f is the focal length
of depth camera. The scale of the hand si is inversely proportional to dhandi , i.e.,
the distance between the hand center and the camera.

Assuming the proper Gaussian covariance at the focal point is σf , which will
be determined empirically, the corresponding σi at frame i is calculated by

σi = σf · si . (6.3)

During the training process, we try to minimize the divergence between the
Hd
i and HGT

i by the cross-entropy loss.
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Due to the complex background, nonetheless, improper Hd
i could be estimated

so that the hand segmentation could be misguided. Inspired by [148], we intro-
duce a soft tracking proposal H t

i to build a more robust soft proposal. H t
i is

generated by

H t
i (r, c) = exp

(
−

(
r − pti(r)

)2
+
(
c− pti(c)

)2

2σ2
i

)
. (6.4)

The equation of generating H t
i is similar to HGT

i . The difference is that pti is
the tracked hand center with 2D coordinates [pti(r), pti(c)], which are obtained in
Algorithm 1.

Algorithm 1: Auxiliary algorithm
1 Input: Depth image Ii, H t

i , pti−1 [1] Hd
i , handmaski = SPS-Net (Ii, H t

i )
Obtain the peak point of Hd

i as pdi
2 if |pdi − pti−1| < t1 and max(Hd

i ) > t2 then

3 Update Kalman filter with pdi ; pti = pdi ; j = 0 else

4 j > t3 and max(Hd
i ) > t2 p

t
i = pdi ; j = 0 else

5 Predict pti by Kalman filter; j++ endif endif
6 Segment hand as handi = Ii � handmaski Update dhandi+1 by calculating the
mean depth of handi Update σi+1 by dhandi+1 using Eq.(6.10) and Eq.(6.11)
Obtain H t

i+1 by pti and σi+1, using Eq.(6.23) Output: handi, handmaski ,
H t
i+1, pti and dhandi+1 .

In Algorithm 1, it is natural to suppose the hand center should shift less
than a threshold t1 between two adjacent frames. In addition, the intensity
of H t

i presents the confident level of where the hand center is located. When
the maximum intensity of H t

i is smaller than a threshold t2, most likely, we
obtain an improper detection proposal. Hence, we will predict the hand center
by the Kalman filter instead. However, the Kalman filter cannot keep a long time
tracking without correct updating. For this reason, we re-initialize the tracking
proposal after t3 frames. Here, t1, t2, t3 are determined empirically.

After obtaining Hd
i and H t

i , MM is designed to merge them. The merging
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function is
Hmerge
i = λHd

i ⊕ (1− λ)H t
i , (6.5)

where ⊕ means element-wise sum; λ is a coefficient to weight the importance of
Hd
i and H t

i . We set λ = 0.5 as default.
We further normalize Hmerge

i by

Hmerge
i = Hmerge

i −min(Hmerge
i )

max(Hmerge
i )−min(Hmerge

i ) . (6.6)

The input of Mask Generator is the result of element-wise multiplication be-
tween Hmerge

i and output of FEM, while the output is a binary hand mask, where
the hand part is represented by value 1 and the background is 0.

For the segmentation process, all depth images are normalized to be 240×320
as inputs. After obtaining the hand mask, we rescale it back to the original size of
the depth image. By applying another element-wise multiplication between the
hand mask and raw depth image, the segmented hand is obtained (see Fig.A.5).

A.2.4 Experiments

A.2.4.1 Other models used in experiment
Although we focus on hand segmentation in this thesis, it should be clarified

that the hand segmentation servers for the 3D hand pose estimation. Thus, after
confirming our SPS-Net can achieve high performance in the segmentation task,
we further check the weather a hand the estimator can use the segmentation
result to generate accurate 3D hand poses. We, therefore, use the volumetric
representations from [149], and apply a shallow 3D U-Net [150] to build a hand
pose estimator, which is modified from [135].

To explore the impacts of soft proposals in SPS-Net, we compare the segmen-
tation performance by removing soft proposals in the ablation study. Referred to
Fig.A.5, we construct three ablation networks as SPS-Net (without Hd), SPS-Net
(without H t), and SPS-Net (without Hd&H t). The Soft Proposal Generator and
MM module may or may not be used based on the needs.

To compare the hand segmentation performance, Randomized Decision Forest
(RDF) [137], U-Net [146] and Mask-RCNN [119] are used in our experiment.
Besides, we suppose the normal hand length is 250 mm and use it as a depth
threshold to perform hand segmentation.
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RDF and U-Net directly segment the hand, while Mask-RCNN predicts a
hand region box first, and then segment the hand within the box. To some ex-
tent, SPS-Net uses soft proposals while Mask-RCNN applies hard proposals (i.e.,
the box). The advantage of using soft proposal is that it can be seamlessly fused
across frames, which helps to utilize the temporal information. In addition, the
hand segmentation is more changeable than the body segmentation: firstly, there
is no clear boundary to distinguish the hand so that it is hard to generate hard
proposals; secondly, using hard proposals may exclude fingers before segmenta-
tion, this will significantly affect the hand pose estimation performance. Soft
proposals, nonetheless, only give a likelihood of hand location, could alleviate the
aforementioned issues.
A.2.4.2 Implementation Details

On experimental datasets, we create the hand mask referring to the given
3D hand poses. In the training, we simulate the hand movement by randomly
shifting pti away from the ground-truth hand center. Whereas, in the testing, we
follow the procedure in Algorithm 1 to generate pti.

Since our network is simple, it can be trained from scratch. During the train-
ing, all of the training samples are included in one epoch. The Adam [121]
optimizer with a learning rate 1−3 is applied for the first 5 epochs and then the
learning rate is changed to be 1−4 for another 5 epochs. The batch size is set up
to be 16. We jointly perform data augmentation on depth images and their cor-
related ground truth, which includes shifting, rotation, and scaling. We perform
the training and testing on a single NVIDIA Titan X GPU.
A.2.4.3 Datasets

NYU [137] CVAR [141] Hand2017 Challenge [151]
Observation Views Left, right, front Egocentric Front, egocentric
Number of samples 81,009 ×3(3 views) 4,332 1,251,000
Evaluation task Hand segmentation Hand segmentation 3D pose tracking

Sequential training data Yes Yes No
Sequential testing data Yes Yes Yes

Table A.1: Properties of experimental datasets.

We perform our experiment on three datasets: NYU Hand Dataset [137],
CVAR Dataset [141], and Hand2017 Challenge Dataset [151]. Their properties
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are illustrated in Table.A.1.
The NYU Hand Dataset maintains the sequential ordering, realistic back-

ground, as well as the given 3D hand pose for generating the ground-truth hand
area. It covers the left view, the right view, and the front view. The CVAR
Dataset [141] offers sequential depth videos and corresponding 3D hand poses
from an egocentric view. The CVAR Dataset includes 6 videos, which entirely
contains 4,332 frames of depth videos and corresponding 3D hand pose. It is rela-
tively small and only contains egocentric view cases, which is missing NYU Hand
Dataset. We perform leave-one-out cross-validation in it. Samples from BigHand
2.2M Dataset [152] and First-Person Hand Action Dataset [153] are combined
to make the Hand2017 Challenge Dataset [151], it, therefore, covers the front
view and egocentric view scenarios. In the testing set of tracking tasks, there are
99 videos. In each video, depth images are organized by sequence. However, in
the training set, samples are disordered, which increases the difficulty of employ-
ing temporal information during training. Nonetheless, our SPS-Net still can be
trained on such non-sequential data but utilize temporal information during the
testing.
A.2.4.4 Evaluation Metrics

The mean of Intersection over Union (mIoU) is commonly used in image
segmentation evaluation. At frame i, supposing Xi is the ground-truth hand
mask and Yi is the predicted hand mask by SPS-Net, mIoU can be calculated by

mIoU = 1
N

N∑
i=1

|Xi ∩ Yi|
|Xi|+ |Yi| − |Xi ∩ Yi|

; (6.7)

where N is the number of frames.
In 3D hand pose estimation, the evaluation metric is the average Euclidean-

distance error (ADE) between estimated 3D hand poses and ground truth, and
the unit is a millimeter in general.

ADE = 1
NM

N∑
i=1

M∑
j=1
||xji − y

j
i ||2; (6.8)

where N and M are the number of frames and joints, respectively. For joint j
at frame i, xji and y

j
i are the ground-truth and predicted 3D coordinates, respec-

tively.
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A.2.4.5 Evaluation Results

Models mIoU
By Depth Threshold = 250 mm 0.36

RDF 0.82
U-net 0.87

Mask-RCNN 0.82
SPS-Net (without Hd&H t) 0.86
SPS-Net (without Hd) 0.84
SPS-Net (without H t) 0.88

SPS-Net 0.94

Table A.2: Hand segmentation results on NYU Hand Dataset.

Models mIoU
By Depth Threshold = 250 mm 0.43

RDF 0.82
U-net 0.84

Mask-RCNN 0.83
SPS-Net (without Hd&H t) 0.83
SPS-Net (without Hd) 0.82
SPS-Net (without H t) 0.85

SPS-Net 0.89

Table A.3: Hand segmentation results on CVAR Dataset.

RANK TEAMS ALL (mm) SEEN (mm) UNSEEN (mm)
1 Ours (SPS-Net + Hand Pose Estimator) 10.48 8.28 12.26
2 NVIDIA Research and UMontreal 10.51 8.21 12.37
3 THU VCLab 13.65 11.02 15.70
4 Baseline from Organizer [151] 20.63 16.04 24.36

Table A.4: The top-4 results of the Hand2017 Challenge - 3D Hand Pose Tracking
Task. ALL denotes ADE of all joints; SEEN denotes ADE over visible joints;
UNSEEN denotes ADE over occluded joints.

For NYU Hand Dataset, the quantitative results and qualitative hand seg-
mentation performance are shown in Table.A.2 and Fig.A.1, respectively. The
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Figure A.1: Qualitative results of hand segmentation on the NYU Hand Dataset.

performance of each model on the CVAR Dataset is given in Table.A.3. We list
the current leader board of 3D hand poses tracking task as Table.A.4 shows.
Additionally, its qualitative results are shown in Fig.A.2.
A.2.4.6 Result Analysis

Overall, our SPS-Net can achieve superior results to other methods on three
experiential datasets. In contrast, simply using depth threshold for hand segmen-
tation, which is commonly applied in existing works, could be failed in NYU Hand
Dataset and CVAR Dataset, when side-view and egocentric-view cases existing.
In Hand2017 Challenge - 3D Hand Pose Tracking Task, The ADE of all joints
that our 3D hand tracking system achieves is as low as 10.48 mm. This indicates
that SPS-Net can generate high-quality segmented hands, which intermediately
helps the 3D hand pose estimator to generate accurate 3D hand poses.

In ablation studies, we can further inspect that using two soft proposals gen-
erates better segmentation performance than only using one of them or none of
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Figure A.2: Qualitative results of 3D hand pose tracking on the Hand2017 Chal-
lenge.

them. This suggests that both of the soft proposals contribute to improving the
segmentation performance. The Soft Proposal Generator module generates the
soft proposal Hd by using the entire spatial context. Compared to Mask-RCNN,
which utilizes hard proposals (i.e., boxes), SPS-Net (without H t) can generate
better hand segmentation result by using soft proposals.

However, when ambiguous contexts existing, Hd may not be correctly gener-
ated. The segmentation performance could be compromised by solely using Hd.
Through introducing H t, the improper Hd could be corrected by using temporal
information. Despite that, H t are purely based on temporal information, without
Hd, its confidence will decrease as the frame increasing. To obtain a robust soft
proposal, both of H t and Hd are needed to work collaboratively. From Fig.A.1
and Fig.A.2, it can be noticed that the center of the merged hand proposal is
close to the hand center, while the soft proposal region matches the hand region.
Therefore, the hand can be properly segmented under the guidance of the merged
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soft proposal.

A.2.5 Discussion

In this thesis, we argue that hand segmentation from depth data is an essential
process for accurate 3D hand pose estimation, while it is a non-trivial problem.
Although most related works suppose that the hand can be easily segmented
by a depth threshold, we take experiments to demonstrate it does not have the
generalization in real scenarios, where the complex background exists. Our Soft
Proposal Segmentation Network (SPS-Net) is proposed to serves real scenarios.
On NYU Hand Dataset and CVAR Dataset, which cover samples from the front
view, side view, and egocentric view, our SPS-Net outperforms other related mod-
els. In the ablation study, we further confirm that SPS-Net could improve the
hand segmentation performance by utilizing the temporal information in depth
videos. With the high-quality segmentation results from SPS-Net, we are able to
estimate accurate 3D hand poses and achieve the leading result on the Hand2017
Challenge - 3D Hand Pose Tracking Task. Moreover, hand segmentation is a pre-
process which can serve for a wide range of post-hoc applications, and integrating
SPS-Net into other application framework is available.
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A.3 Skeleton-based Action Classification

A.3.1 Overview

After applying MOT to obtain the spatiotemporal boundary for a specific actor,
we can utilize the visual information within an actor’s spatiotemporal boundary
to estimate the action categories. We will discuss the skeleton-based AC in this
part since skeleton-based AC is a more complicated but useful case for action
recognition studies.
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Figure A.3: Concerned skeleton sequence properties.

Skeleton-based action classification has been widely used in real applications,
such as human-computer interaction [155], human behavior understanding [156]
and medical assistive applications [157]. However, most of the existing methods
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may suffer from a large model size and slow execution speed [158, 159, 160, 95, 93].
In real applications, a desirable skeleton-based action classification model

should run efficiently by using a few parameters, and, also be adaptable to var-
ious application scenarios (e.g., hand/body, 2D/3D skeleton, and actions relat-
ed/unrelated to global trajectories). To achieve this goal, we investigate skele-
ton sequence properties to propose a lightweight Double-feature Double-motion
Network (DD-Net), which is equipped with a Joint Collection Distances (JCD)
feature and a two-scale global motion feature.

More specifically, we conduct research on four types of skeleton sequence prop-
erties (see Fig. A.3): (a) location-viewpoint variation, (b) motion scale variation,
(c) related/unrelated to global trajectories, (4) uncorrelated joint indices. To ad-
dress challenges caused by these properties, previous works may prone to propose
complicated neural network models, which end up with a large model size.

In contrast, we address these challenges by simplifying both the input feature
and the network structure. Our JCD feature contains the location-viewpoint in-
variant information of skeleton sequences. Compared with other similar features,
it can be easily computed and includes fewer elements. Since global motions can-
not be incorporated into a location-viewpoint invariant feature, we introduce a
two-scale global motion feature to improve the generalization of DD-Net. Besides,
its two-scale structure makes it robust to the motion scale variance. Through an
embedding process, DD-Net can automatically learn the proper correlation of
joints, which is hard to be predefined by joint indices.

Compared to methods relying on complicated model structures, DD-Net pro-
vides higher action classification accuracy and demonstrates its generalization
on our experiential datasets. With its efficiency both in terms of computational
complexity and the number of parameters, DD-Net is sufficient to be applied in
real applications.

A.3.2 Background

Nowadays, with the fast advancement of deep learning, skeleton acquisition is
not limited to use motion capture systems [161] and depth cameras [162]. The
RGB data, for instance, can be used to infer 2D skeletons [163, 164] or 3D skele-
tons [165, 149] in real-time. Moreover, even WiFi signals can be used to estimate
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skeleton data [166, 167]. Those achievements have made skeleton-based action
classification available on a huge amount of multimedia resources and therefore
have stimulated the model’s development.

In general, in order to achieve a better performance for skeleton-based action
classification, previous studies attempt to work on two aspects: introduce new
features for skeleton sequences [168, 169, 170, 171, 172, 93, 173], and, propose
novel neural network architectures [174, 175, 176, 177, 159, 160, 178].

A good skeleton-sequence representation should contain global motion infor-
mation and be location-viewpoint invariant. However, it is challenging to satisfy
both requirements in one feature. The studies [169, 171, 93, 173] focused on global
motions without considering the location-viewpoint variation in their features.
Other studies [168, 170, 172], on the contrary, introduced location-viewpoint in-
variant features without considering global motions. Our work bridges their gaps
by seamlessly integrating a location-viewpoint invariant feature and a two-scale
global motion feature together.

Although Recurrent Neural Networks (RNNs) are commonly used in skeleton-
based action classification [179, 180, 181, 182, 183, 172], we argue that it is rela-
tively slow and difficult for parallel computing, compared with methods [174, 159,
173] that use Convolutional Neural Networks (CNNs). Since we take the model
speed as one of our priorities, we utilize 1D CNNs to construct the backbone
network of DD-Net.

A.3.3 Methodology

The network architecture of Double-feature Double-motion Network (DD-Net) is
shown in Fig. A.4. In the following, we explain our motivation for designing input
features and network structures of DD-Net.
A.3.3.1 Modeling Location-viewpoint Invariant Feature by Joint Collection Distances

(JCD)
For skeleton-based action classification, two types of input features are com-

monly used: the geometric feature [168, 172] and the Cartesian coordinate fea-
ture [181, 182, 184, 160, 95]. The Cartesian coordinate feature is variant to
locations and viewpoints. As Fig. A.3 (a) shows, when skeletons are rotated or
shifted, the Cartesian coordinate feature can be significantly changed. The geo-
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Figure A.4: The network architecture of DD-Net. “2×CNN(3, 2*filters), /2”
denotes two 1D ConvNet layers (kernel size = 3, channels = 2*filters) and a
Maxpooling (strides = 2). Other ConvNet layers are defined in the same format.
GAP denotes Global Average Pooling. FC denotes Fully Connected Layers (or
Dense Layers). We can change the model size by modifying filters.

metric feature (e.g., angles/distances), on the other hand, is location-viewpoint
invariant, and thereby it has been utilized for skeleton-based action classifica-
tion for a while. However, existing geometric features may need to be heavily
redesigned from one dataset to another [168, 172], or, contain redundant ele-
ments [183]. To alleviate these issues, we introduce a Joint Collection Distances
(JCD) feature.

We calculate the Euclidean distances between a pair of collective joints to
obtain a symmetric matrix. To reduce the redundancy, only the lower triangular
matrix without the diagonal part is used as the JCD feature (see Fig. A.5). Hence,
the JCD feature is less than half the size of [183].

In more detail, we assume the total frame number is K (K = 32 as the
default setting) and there are totally N joints for one subject. At frame k, the
3D Cartesian coordinates of joint n is represented as Jki = (x, y, z), while the 2D
Cartesian coordinates is represented as Jki = (x, y). Put all of joints together,
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Figure A.5: An example of Joint Collection Distances (JCD) feature at frame k,
where the number of joints is N .

we have a joint collection Sk = {Jk1 , Jk2 , ..., JkN}. The formula for calculating the
JCD feature of Sk is:

JCDk =



∥∥∥∥−−−→Jk2 J
k
1

∥∥∥∥
2... . . .

... · · · . . .∥∥∥∥−−−→JkNJ
k
1

∥∥∥∥
2
· · · · · ·

∥∥∥∥−−−−−→JkNJ
k
N−1

∥∥∥∥
2


; (6.9)

where
∥∥∥∥−−−→Jki J

k
j

∥∥∥∥
2
(i 6= j) denotes the Euclidean distance between Jki and Jkj .

In our processing, the JCD feature is flattened to be a one-dimensional vector
as our model’s input. The dimension of flattened JCD is

(
N
2

)
.

A.3.3.2 Modeling Global Scale-invariant Motions by a Two-scale Motion Feature
Although the JCD feature is location-viewpoint invariant, the same as other

geometric features, it does not contain global motion information. When actions
are associated with global trajectories (see Fig. A.3 (c)), solely using the JCD
feature is insufficient. Unlike previous works that only utilize either the geometric
feature [168, 172] or the Cartesian coordinate feature [174, 175, 176, 177], our
DD-Net seamlessly integrates both of them.

We calculate the temporal differences (i.e., the speed) of the Cartesian co-
ordinate feature to obtain global motions, which is location-invariant. For the
same action, however, the scale of global motions may not be exactly identical.
Some might be faster, and others might be slower (see Fig. A.3 (b)). To learn a
robust global motion feature, both fast and slow motions should be considered.
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Conferring this intuition to DD-Net, we employ a fast global motion and a slow
global motion to form a two-scale global motion feature. This idea is inspired by
the two-scale optical flows proposed for RGB-based action classification [185].

Technically, the two-scale motions can be generated by the following equation:

Mk
slow = Sk+1 − Sk for k ∈ {1, 2, 3, ..., K − 1};
Mk

fast = Sk+2 − Sk for k ∈ {1, 3, ..., K − 2};
(6.10)

where Mk
slow and Mk

fast denote the slow motion and the fast motion at frame
k, respectively. Sk+1 and Sk+2 are behind the Sk of one frame and two frames,
respectively. Corresponding to S[1,...,K], we haveM [1,...,K−1]

slow andM [1,...,K/2−1]
fast when

K is an even number.
To generate an one-dimensional input at each frame, we reshape Mk

slow and
Mk

fast as Mk
slow ∈ RDmotion and Mk

fast ∈ RDmotion , respectively, where Dmotion is the
dimension of flattened vector. To match the frame number of the JCD feature, we
perform linear interpolation to resize M [1,...,K−1]

slow and M [1,...,K/2−1]
fast as M [1,...,K]

slow and
M

[1,...,K/2]
fast , respectively. Consequently, two-scale global motion feature is com-

posed of M [1,...,K]
slow ∈ RK×Dmotion and M

[1,...,K/2]
fast ∈ R(K/2)×Dmotion . Such a process

can be done in our DD-Net, and only the Cartesian coordinate feature is needed
as the input.
A.3.3.3 Modeling Joint Correlations by an Embedding

Fig. A.3 (d) shows that the joint indices (i.e., the IDs of the head, left and
right hands, etc.) are not locally correlated. Moreover, in different actions, the
correlation of joints could be dynamically changed. Hence, the difficulty arises
when we try to pre-define the correlation of joints by manually ordering their
indices.

Since most neural networks inherently assume that inputs are locally corre-
lated, directly processing the locally uncorrelated joint feature is inappropriate.
To tackle this problem, our DD-Net embeds the JCD feature and the two-scale
motion feature into latent vectors at each frame. The correlation of joints is au-
tomatically learned through the embedding. As another benefit, the embedding
process also reduces the effect of skeleton noise.

More formally, let embedding representations of JCDk, Mk
slow and Mk

fast to
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be εkJCD, εkMslow
and εkMfast

, respectively, the embedding operation is as follows,

εkJCD = Embed1 (JCDk);
εkMslow

= Embed1 (Mk
slow);

εkMfast
= Embed2 (Mk

fast).
(6.11)

where the Embed1 is defined as Conv1D(1, 2 ∗ filters)→ Conv1D(3,
f ilters)→ Conv1D(1, filters), and the Embed2 is defined as
Conv1D(1, 2 ∗ filters)→ Conv1D(3, filters)→ Conv1D(1, filters)
→ Maxpooling(2), because JCDk and Mk

slow have twice the temporal length of
Mk

fast.
DD-Net futher concatenates embedding features to a representation εk by

εk = εkJCD ⊕ εkMslow
⊕ εkMfast

,

w.r .t. εk ∈ R(K/2)×filters;
(6.12)

where ⊕ is the concatenation operation.
After the embedding process, subsequent processes are not affected by the

joint indices, and therefore DD-Net can use the 1D ConvNet to learn the temporal
information as Fig. A.4 shows.

A.3.4 Experiments

A.3.4.1 Experimental Datasets
We select two skeleton-based action classification datasets, as SHREC dataset [158]

and JHMDB dataset [154], to evaluate our DD-Net from different perspectives
(see Table A.5).

Although other information (e.g., RGB data) is available, only the skeleton
information is used in our experiments. 3D skeletons are given by the SHREC
dataset, which is derived from RGB-D data and contain more spatial information.
In the JHMDB dataset, 2D skeletons are interpreted from RGB videos, which can
be applied in more general cases where inferring the depth information may be
hard or impossible. Besides, actions in SHREC dataset are strongly correlated
to the subject’s global trajectories (e.g., a hand swipes a ‘V’ shape), while the
JHMDB dataset may have a weak connection with global trajectories. We show
how these properties affect the performance and demonstrate the generalization
of DD-Net in our ablation studies.
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SHREC JHMDB

Dataset Dataset

Number of samples 2,800 928

Training/ 1 Training Set 3 Split Training/

Testing Setup 1 Testing Set Testing Sets

Dimension of skeletons 3 2

subject hand body

Number of actions 14 and 28 21

Actions are strongly

correlated to 3 7

global trajectories

Table A.5: Properties of experimental datasets

A.3.4.2 Evaluation Setup
The SHREC dataset is evaluated in two cases: 14 gestures and 28 gestures.

The JHMDB dataset is evaluated by using the manually annotated skeletons, and
we average the results from three split training/testing sets.

In ablation studies, we explore how each DD-Net component contributes to
the action classification performance by removing one component while remaining
the others unchanged. Furthermore, we also explore how the performance varies
with different model sizes by adjusting the value of filters in Fig. A.4.
A.3.4.3 Implementation Details

Since the DD-Net is small, it is feasible to put all of the training sets into one
batch on a single GTX 1080Ti GPU. We choose Adam (β1 = 0.9, β2 = 0.999)
[121] as the optimizer, with an annealing learning rate that drops from 1−3 to
1−5. During the training, DD-Net only takes a temporal augmentation, which
randomly selects 90% of all frames.

To demonstrate the superiority of DD-Net, we do not apply any ensemble
strategy or pre-trained weights to boost the performance. To make DD-Net easily
deployable to real applications, we implement it by Keras [186] with Tensorflow
backend, which is “notorious” for its slow execution speed. Using other neural
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network frameworks may make DD-Net even faster.
A.3.4.4 Result Analysis

The action classification results of SHREC dataset are presented in Table A.6
and more details are listed in their confusion matrix. The confusion matrix of
14 actions and 28 actions are Fig. A.6 and Fig. A.7, respectively. The action
classification results of JHMDB dataset are presented in Table A.7.

Methods Parameters 14 28 Speed

Gestures Gestures on GPU

Dynamic hand [169] (CVPRW16) - 88.2% 81.9% -

Key-frame CNN [158] (3DOR17) 7.92 M 82.9% 71.9% -

3 Cent [171] (STAG17) - 77.9% - -

CNN+LSTM[187] (PR18) 8-9 M 89.8% 86.3% 238 FPS

Parallel CNN [159] (RFIAP18) 13.83 M 91.3% 84.4% -

STA-Res-TCN [160] (Gesture18) 5-6 M 93.6% 90.7% 303 FPS

MFA-Net [173] (Sensor19) - 91.3% 86.6% 361 FPS

DD-Net (filters=64, w/o global fast&slow motion) 1.70 M 55.2% 41.6% -

DD-Net (filters=64, w/o global slow motion) 1.76 M 92.7% 90.2% -

DD-Net (filters=64, w/o global fast motion) 1.76 M 93.3% 90.5% -

DD-Net (filters=64) 1.82 M 94.6% 91.9% 2,200 FPS

DD-Net (filters=32) 0.50 M 93.5% 90.4% 3,100 FPS

DD-Net (filters=16) 0.15 M 91.8% 90.0% 3,500 FPS

Table A.6: Results on SHREC (Using 3D skeletons only)

Overall, although DD-Net takes fewer parameters, it can achieve superior
results on SHREC dataset and JHMDB dataset. The confusion matrix also shows
that DD-Net is robust to each action class. Despite the data property divergence
existing, DD-Net demonstrates its generalization ability, which suggests it can
accommodate a wide range of skeleton-based action classification scenarios.

From ablation studies, we can inspect that when actions are strongly corre-
lated to global trajectories (e.g., SHREC dataset), just using the JCD feature
cannot produce a satisfactory performance. When actions are not strongly cor-
related to global trajectories (e.g., JHMDB dataset), the global motion feature
still helps to improve the performance, but not as significant as the previous case.
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Methods Parameters Manually Speed

annotated on GPU

skeletons

Chained Net [95] (ICCV17) 17.50 M 56.8% 33 FPS

EHPI [178] (ITSC19) 1.22 M 65.5% 29 FPS

PoTion [93] (CVPR18) 4.87 M 67.9% 100 FPS

DD-Net (filters=32, w/o global fast&slow motion) 0.46 M 71.4% -

DD-Net (filters=32, w/o global slow motion) 0.48 M 74.9% -

DD-Net (filters=32, w/o global fast motion) 0.48 M 75.8% -

DD-Net (filters=32) 0.50 M 78.0% 3,100 FPS

DD-Net (filters=64) 1.82 M 77.8% 2,200 FPS

DD-Net (filters=16) 0.15 M 74.7% 3,500 FPS

Table A.7: Results on JHMDB (Using 2D skeletons only)

Such results agree with our assumptions: although the JCD feature is location-
viewpoint invariant, it is isolated from global motions. The results also show that
using the two-scale motion feature generates higher classification accuracy than
only using a one-scale motion feature, which suggests that our proposed two-scale
global motion feature is more robust to scale variation of motions. With the same
components, DD-Net can adjust its model size by modifying the value of filters
in CNN layers. We select 64, 32 and 16 as the values of filters to perform ex-
periments. When DD-Net reaches the best performance on SHREC and JHMDB
datasets, the values of filters are 64 and 32, respectively. It is worth noting that
DD-Net can generate comparable results by only using 0.15 million parameters.

In addition, since DD-net employs one-dimensional CNNs to extract the fea-
ture, it is much faster than other models that use RNNs [181, 172, 182, 175] or
2D/3D CNNs [159, 188, 95, 93, 178]. During its inferences, DD-Net’s speed can
reach around 3,500 FPS on one GPU (i.e., GTX 1080Ti), or, 2,000 FPS on one
CPU (i.e., Intel E5-2620). While RNN-based models face great challenges for par-
allel processing (due to sequential dependency), our DD-Net does not have this
issue because CNNs are used. Therefore, whether low-computational (e.g., on
small devices) or high-computational applications (e.g., on parallel computing
stations) are concerned, our DD-Net enjoys significant superiority.
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Figure A.6: Confusion matrix of SHREC dataset (14 hand actions) obtained by
DD-Net.

A.3.5 Discussion

By analyzing the basic properties of skeleton sequences, we propose two features
and a DD-Net for efficient skeleton-based action classification. Although DD-Net
only contains a few parameters, it can achieve state-of-the-art performance on our
experimental datasets. Due to the simplicity of DD-Net, many possibilities exist
to enhance/extend it for broader studies. For instance, online action classification
can be approached by modifying the frame sampling strategies; RGB data or
depth data could be used to further improve the action classification performance;
it is also possible to extend it for temporal action detection by adding temporal
segmentation related modules.
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Figure A.7: Confusion matrix of SHREC dataset (28 hand actions) obtained by
DD-Net.
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A.4 3D Multiple Object Tracking

A.4.1 Overview

In the previous section, we have introduced our work in 2D MOT, however,
in reality, we understand surrounding visual scenes in a 3D environment. For
instance, we usually decide how to interact with surrounding people by first lo-
calizing and tracking them in a 3D egocentric coordinate: when we are walking
down the street, we plan our path to avoid collisions by analyzing the trajectories
of the surrounding people; when we see friends walking towards us, we might
also walk to them and have a greeting. For applications (e.g., social robotics)
that also require visual scene understanding, performing multi-person localiza-
tion and tracking in a 3D coordinate is strongly desired. With a study on the
3D Panoramic MOT, we can extend our Actor-identified Spatiotemporal Action
Detection (ASAD) framework to the realistic 3D world.

A.4.2 Background

Typical single-view 3D coordinate localization methods fall into two cate-
gories: using depth sensors, or, using object size and camera geometry. Previous
studies [189, 190] relied on depth sensors (e.g., LiDAR) and instance segmentation
to obtain the target location in a 3D camera coordinate. In practice, however,
the instance person segmentation algorithm is imperfect in crowd scenes, result-
ing in the assigning of incorrect locations to a target person. To some extent,
these methods are more suitable for multiple vehicle tracking [191], since they
are rigid objects with known shapes and the distance between them is generally
larger. In contrast, other methods [192, 193] infer 3D camera-coordinate loca-
tions by object bounding box size and camera geometry. However, there is a scale
variance between standing persons and sitting persons in terms of bounding box
height. Moreover, when a person is near the camera, only the upper body can
be observed. Consequently, simply taking the bounding box height as a reference
is inappropriate. Recently, a study [194] demonstrated that using the skeleton
length can obtain more accurate locations than using bounding boxes. We em-
brace this idea into our framework to obtain target locations in a single-view 3D
camera coordinate.
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Conventional multi-person tracking takes two stages. The first detects
each person by an object detector, and the second associates the cross-frame iden-
tities by considering their appearance similarity and trajectory trend [195, 196].
Most existing studies work on 2D/3D single-view [190, 193], or, 2D panoramic
multi-target tracking [197, 198]. However, previous works have limitations: the
2D tracking results could not be directly used in some applications (i.e., robotics)
since the real-world coordinate in 3D; it is easy to lose the tracking target in a 3D
narrow-angle-view coordinate since it only covers a part of the surrounding envi-
ronment. Therefore, we propose 3D panoramic multi-target tracking to address
the aforementioned issues.
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Figure A.8: Our framework for 3D panoramic multi-person localization and track-
ing.

We propose a novel framework for multi-person localization and
tracking in a 3D panoramic coordinate with panoramic RGB videos.
In our framework, 2D human poses are estimated for each person to obtain the
2D location and body height. Utilizing single-view intrinsic camera parameters,
a person’s 3D location can be approximated by assuming the body height is a
constant. We further transform locations from a 3D single-view camera coordi-
nate to a 3D panoramic coordinate using extrinsic camera parameters. Unlike
in a 2D image coordinate, the real-scale location and motion are preserved in
a 3D coordinate. As a benefit, it is easier to harness the power of the Kalman
filter to model human trajectories. To further address issues like occlusion and
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miss detection, we associate the appearance similarity and the trajectory trend
together to approach multi-person tracking.

We annotated a Multi-person Panoramic Localization and Tracking (MPLT)
dataset to evaluate our framework. We also compared our framework with others
on the KITTI dataset [199] and the 3D MOT dataset [200], where only single-view
3D localization and tracking results are provided.

A.4.3 Methodology

Our framework includes four modules: Pose Detection Module, Geometry Trans-
formation Module, Appearance Re-identification Module, and Tracking Module
(see Fig. A.12). They work seamlessly together to achieve the target goal.
A.4.3.1 Obtain 2D Person Poses

Similar to previous work [194], we use off-the-shelf PifPaf [201] as our Pose
Detection Module to estimate 2D human poses. Depends on the need, 2D person
poses can be obtained either by a top-down approach or a bottom-up approach.
In the former, an object detector (e.g., YOLO [202]) is used to acquire the 2D
bounding box for each person, and then PifPaf estimates 2D poses within each
single bounding box. Alternatively, PifPaf can simultaneously estimate 2D poses
for all persons and assign them to each person, which is a bottom-up approach.
Compared with the top-down approach, the bottom-up approach is faster but
less accurate.
A.4.3.2 Coordinate Transformation

We build a Geometry Transformation Module to map person locations from
2D image coordinates to a 3D panoramic coordinate. In our setting, four single-
view cameras are used to capture panoramic videos. By removing the overlapping
areas, we obtain four single-view images with a 90◦ Horizontal Field of View at
each frame. Following a clockwise path, we can assign each single-view image
with view angle θ, where θ ∈ {0◦Y , 90◦Y , 180◦Y , 270◦Y }.

Let [uθ, vθ]T be a point in the 2D image coordinate and let [Xθ, Yθ, Zθ]T be
the corresponding point in the 3D camera coordinates of each single view. Then,
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we have 
uθ

vθ

1

 = K


Xθ

Yθ

Zθ

 , (6.13)

where K is the intrinsic matrix.
To transform locations from 3D camera coordinates to a 3D panoramic coor-

dinate, we construct an extrinsic matrix:R t
0T 1

 ≡ [R|t] ∈ R4×4|R ∈ SO(3), t ∈ R3, (6.14)

where SO(n) denotes a Special Orthogonal Group with dimension n; 0 indicates
a zero vector; R and t are the 3D rotation matrix and the translation matrix. In
our settings, all single-view coordinate centers are close to each other, so that t
can be approximated by a zero vector and R only contain Y-axis rotation.

Accordingly, for location [X, Y, Z]T in a 3D panoramic coordinate, the com-
plete projection matrix can be defined:

Pθ = K[R(θ)|t], (6.15)

and we have 
uθ

vθ

1

 = Pθ


X

Y

Z

1

 . (6.16)

At first glance, [X, Y, Z]T cannot be determined by [uθ, vθ]T in the above
equation. However, we assume that real-world body height Hbody is a constant
value. Since the corresponding body height in a 2D image coordinate (i.e., hbody)
can be obtained by a pose estimator, for each person, the corresponding X and
Z can be calculated by solving


uθ

hbody

1

 = Pθ


X

Hbody

Z

1

 ,∃Hbody ≈ constant. (6.17)

Hence, we can transform a target from a 2D single-view image coordinate to a
3D panoramic coordinate. Since most real applications focus on the ground plane
scenario, we treat Y = 0 for all the persons in the 3D panoramic coordinate.
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A.4.3.3 Matching Cost
The appearance of people can be utilized as an important tracking cue to al-

leviate the occlusion issue in tracking. Although existing works exploit the entire
body appearance [195, 196], we suppose that only using the upper body appear-
ance can alleviate occlusion problems in crowd scenes. We further demonstrate
this point in our experimental results of Table A.11. Since 2D body poses are es-
timated in this work, the upper body image patches can be cropped accordingly.
We use an off-the-shelf model [203] as our Appearance Re-identification Mod-
ule. Given an upper-body image patch, it extracts the correspondent appearance
embedding vector.

In the tracking processes, appearance similarly is used to re-identify each
person in the spatio-temporal domain. More specifically, the appearance cost
between two consecutive frames is formulated as

Capp
i,j = 1− aiaj

‖ai‖ ‖aj‖
, i ∈ {1, . . . , Ni}, j ∈ {1, . . . , Nj} (6.18)

where Capp
i,j is the appearance cost of instance i of the previous frame to instance

j of the current frame; Ni and Nj are the corresponding number of instances; ai
and aj are the appearance embedding vectors with dimension 2048.

Apart from the appearance cue, the trajectory trend is also a critical cue to
track targets. With regard to previous works [195, 196], Kalman filter [204] is
commonly used to model the trajectory trend. In contrast with modeling the
trajectory trend in a 2D image coordinate, modeling it in a 3D coordinate can
alleviate the position and motion distortions, which simplifies the procedure of
applying Kalman filter to model trajectories. To be consistent with Capp at value
range 0 − 1, we apply an exponential kernel to calculate the distance between
detected locations and Kalman filter estimated locations that are normalized by
Hbody. The trajectory cost between two consecutive frames is defined by

Ctraj
i,j = 1− exp

(
− (X̂i −Xj)2 + (Ẑi − Zj)2

H2
body

)
(6.19)

where Ctraj
i,j is the trajectory cost of instance i of the previous frame to instance j

of current frame. Additionally, [X̂i, Ẑi] denotes the estimated location of instance
i at current frame by Kalman filter, while Lj,: = [Xj, Zj] presents the detected
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location of instance j at current frame, where L denotes the location values of all
the detected instances.

We can simply associate Capp
i,j and Ctraj

i,j by letting

Ci,j = Ctraj
i,j + Capp

i,j , (6.20)

where Ci,j is the associate cost of matching instance i of the previous frame to
instance j of the current frame. Then optimal assignment M∗ is obtained by
minimizing the total cost

M∗ = arg min
M

∑
i

∑
j

Ci,jMi,j, (6.21)

where M is a Boolean matrix. When row i is assigned to column j, we have
Mi,j = 1. Note that, each row can be assigned to at most one column and each
column to at most one row. The optimization can be done by the Hungarian
method.
A.4.3.4 Multi-person Tracking

In the Tracking Module, we create a tracking set T to store and update tracked
instances. At the k-th tracked frame, we obtain a set of 3D panoramic locations
L by Eq. (6.17) and the cost matrix C by Eq. (6.20). In the first frame, all the
observed locations are assigned to a tracking set. After that, the across-frame
connections are determined by Mi,j and Ci,j. When Mi,j = 1 and Ci,j is smaller
than a threshold ε, the instance i of frame k − 1 is likely to be the instance j of
frame k. However, across-frame instances may not always be perfectly matched.
For unmatched instance j, we assign it to T as a new instance. For unmatched
instance i, which is already recorded in T, we reduce its lifespan by 1. While new
instances come into the tracking area, old instances may also leave. Therefore,
we delete unseen instances in the tracking set after 10 frames. We summarize
this process in Algorithm 3.

A.4.4 Experiments

Experimental Datasets. We annotate a Multi-person Panoramic Localiza-
tion and Tracking (MPLT) Dataset to enable model evaluation on 3D panoramic

124



multi-person localization and tracking. It represents real-world scenarios and
contains a crowd of people in each frame. And, over 1.8K frames and densely
annotated 3D trajectories are included. For comparison with related works, we
also evaluate our framework on the KITTI [199] and 3D MOT [200] datasets.
The properties of three experimental datasets are listed as follows:

Algorithm 2: Tracking algorithm
Input : k (current tracked frame number), C (association cost matrix), L (instance

location matrix), T (active instance set), ε (matching cost threshold)
1 if k = 1 then
2 Initialize active instance set T← ∅.
3 for j ← 1 to Nj do
4 Tj [location]← Tj [location] ∪ {Lj,:}.
5 Tj [lifespan] = 10.

6 else
7 Obtain M∗ by optimizing Eq. (6.21) with the Hungarian method.
8 Initialize the Nj × 1 dimensional matching indicator vector m = 0 for current

frame k.
9 for i← 1 to Ni do

10 Ti[lifespan] = Ti[lifespan]− 1.
11 for j ← 1 to Nj do
12 if M∗

i,j = 1 and Ci,j < ε then
13 Ti[location]← Ti[location] ∪ {Lj,:}.
14 Ti[lifespan] = 10.
15 mj = 1.

16 for j ← 1 to Nj do
17 if mj = 0 (i.e., instance j is unmatched) then
18 Add one more active instance to T:
19 T|T|+1[location]← T|T|+1[location] ∪ {Lj,:}.
20 T|T|+1[lifespan] = 10.

21 if Ti[lifespan] = 0 then
22 Remove Ti from T.

23 for l← 1 to |T| do
24 Update Kalman filter with Tl[location].
25 Tl[location_estimated] = [X̂l, Ẑl], estimated using the updated Kalman filter.

Output: T
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Table A.8: Properties of experimental datasets.

Dataset 3D single-view 3D single-view 3D panoramic
localization localization& localization&

tracking tracking

KITTI [199] 4

3D MOT [200] 4

MPLT 4

Experimental Setup. Since off-the-shelf pose detector and appearance extrac-
tor are applied, we do not train any models in this work. For the KITTI and
MPLT datasets, we apply the bottom-up pose estimation approach. For 3D MOT
dataset, we apply the top-down pose estimation with the given public bounding
boxes. Based on the properties of each dataset, we evaluate the model perfor-
mance from different perspectives.
Experimental Results. In Table A.9, we report the localization precision
under three thresholds for the KITTI Dataset. It was analyzed in work [2]:
“MonoDepth neural network primarily uses the vertical position of objects in
the image to estimate their depth, rather than their apparent size”. Training
on the KITTI dataset, therefore, can give a strong prior to estimating the 3D
location of a person rather than using the camera geometry and person size.
We show the generalization of our method without using any KITTI data for
training. In Table A.10, we compare our framework with others on the 3D
MOT Benchmark2, which targets at 3D single-view localization and tracking. We
achieve the state-of-the-art performance (i.e., 1st place of the public leaderboard)
on the dominant criterion (i.e., MOTA [10]), which outperforms the second place
method by 1.5. For our proposal dataset MPLT, we list the performance of our
framework and make it as a baseline (see Table A.11). Furthermore, we also
show, due to the occlusion, selecting the whole body appearance may impair
the model performance. The qualitative evaluation results are available on our
project page 3.

2https://motchallenge.net/results/3D_MOT_2015/
3https://github.com/fandulu/MPLT
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Table A.9: Monocular-camera-based localization precision on KITTI Dataset. If
distance felom predicted locations to ground-truth location is within a threshold,
it is correctly predicted.

Methods
Localization precision by threshold
< 0.5m < 1.0m < 2.0m

Mono3D [205] (trained on KITTI) 13.2% 23.3% 39.0%
SAMono[206] (trained on KITTI) 19.8% 33.9% 48.5%
MonoDepth [207] (trained on KITTI) 20.6% 35.4% 50.7%
MonoLoco [194] (trained on KITTI&COCO) 29.0% 49.6% 71.2%
MPLT (trained on COCO) 22.0% 39.4% 63.5%

Table A.10: 3D MOT Benchmark. ↑(↓) indicates that the larger(smaller) the
value is, the better the performance. Multiple Object Tracking Accuracy (MOTA)
is the dominant criterion. The details of the evaluation metrics were previously
explained in [10].

Methods MOTA↑ MT↑ ML↓ FP↓ FN↓

AMIR3D [208] 25.0 3.0% 27.6% 2,038 9,084
MCFPHD [209] 39.9 25.7% 16.8% 3,029 6,700
GPDBN [210] 49.8 25.7% 17.2% 1,813 6,300
MOANA [211] 52.7 28.4% 22.0% 2,226 5,551
MPLT w/ DeepSORT 54.2 30.6% 20.9% 2,385 4,930

Table A.11: Comparing using features of the whole body and the upper body on
the MPLT dataset. We evaluate localization and tracking performance within 10
m of the coordinate center.

Appearance Selection Threshold MOTA↑

Whole body < 0.5m 62.4
Whole body < 1.0m 70.2

Upper body < 0.5m 65.2
Upper body < 1.0m 74.9
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A.4.5 Discussion

We proposed a simple yet effective solution for 3D panoramic multi-person local-
ization and tracking with panoramic videos. On two existing datasets, the effec-
tiveness of our method is demonstrated by the promising performance. Mean-
while, a strong baseline is offered for our new benchmark dataset. Since our
method can faithfully keep the realistic locations and motions for tracking tar-
gets in a 3D panoramic coordinate, it can help human-related video understanding
applications. In future work, we plan to integrate our framework with a previ-
ous work [39] for automatically detecting human activities in a 3D panoramic
coordinate.
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A.5 Actor-specified Spatiotemporal Action Detection (ASAD)
for 4K-resolution Aerial Videos

ASAD might be applied to 4K-resolution videos (e.g., surveillance system). It is
difficult to directly process large size videos and downscale the video may lose
the detailed information for action recognition. We consider this issue to propose
an efficient ASAD framework for 4K-resolution videos.

A.5.1 Overview

Surveillance cameras are commonly installed in city regions to increase pub-
lic safety. However, it is inapplicable to densely set up surveillance cameras
in sparsely populated regions (e.g., suburb), while the safety concern is needed
therein. Because some of the sparsely populated regions are not covered by tall
trees or buildings, it is possible to periodically take surveillance videos by drones.
Due to drones’ mobility, a wide range of sparsely populated regions can be moni-
tored at a low cost. Aerial surveillance videos have some special properties, which
include: (1) to capture visual details from the sky, each frame of aerial surveil-
lance videos is preferred to be an 4K-resolution image (e.g., 2160× 3840); (2)
relative to the entire aerial image, each actor appears to be a tiny object but
could still contain a large amount of pixels, which are sufficient for obtaining
his/her actions; (3) actors are sparsely located; (4) the drone could move fast,
resulting in significant relative position shift of the targets even in adjacent
frames; (t) the actor should be identified to know “who is doing what” in videos.

To address above issues, we specifically designed a ASAD framework for 4K-
resolution drone videos (see Figure A.9). Although we treat MOT and AC as two
fundamental element of ASAD, MOT could be further divided to actor detection
phase and data association phase (Chapter 4). actor detection aims to locate
each actor in a spatial domain by bounding boxes. An 4K-resolution aerial image,
however, is too large to be the input of normal object detectors [212, 213, 214,
215], while down-scaling it could impair detection performance. As an alternative
approach, an 4K-resolution aerial image could be cropped into smaller patches
before performing actor detection. Some existing methods divide the entire aerial
image into patches by a sliding window [216, 217, 218]. Although such methods

129



Detection

Tracking

Action	
Recognition

Generate
Patches

Downscale

Multi-label
Actions

Ultra-high-resolution Aerial Image
2160 x 3840 

Patches 608 x 608

Cropping

Actor IDs

Figure A.9: Overview of our ASAD framework.

have considerably improved actor detection performance, they are inefficient when
target objects are sparsely located. We propose a Clustering Region Proposal
Network (C-RPN) to alleviate this issue. C-RPN works by only selecting patches
that may include target objects. Subsequently, the number of selected patches
could be fewer than using a sliding window when actors are sparsely located.
Despite that ASAD estimates actions at each frame (i.e., “is doing what”), spatio-
temporal context is needed to obtain the actor motion information. Previous
works [38, 40] obtain spatio-temporal tubes by extending bounding boxes from
the central frame to nearby ones. In drone-recorded aerial videos, even if the
absolute location of a actor is static, its relative location may shift remarkably due
to the drone movement. To eliminate the effect of drones’ movement, we construct
spatio-temporal tubes by a multi-object tracking method [51], and then align a
spatio-temporal tube referred to its first frame. Since non-target objects might
be included in the spatio-temporal tubes, action recognition performance could
be affected. To tackle this issue, we assume the target actor can be consistently
observed in his/her spatio-temporal tube while others may not. Based on this
assumption, we propose a novel Spatio-temporal Attention Module (STAM) to
obtain attention for the target actor in the spatio-temporal tube.
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In summary, our contributions include: (1) we proposed a novel task, Actor-
identified Spatiotemporal Action Detection (ASAD), to bridge the gap between
existing SAD studies and the new demand of identifying actors. (2) we proposed
a novel framework for multi-label ASAD on aerial surveillance videos, which
outperforms other methods in our experiments.

A.5.2 Background

In this part, we briefly discuss related works of actor detection on aerial videos,
model structures that could be potentially used for ASAD, and related datasets.
A.5.2.1 Actor Detection on Aerial Videos

Detecting tiny objects is a nontrivial problem and many studies are trying to
tackle it. There could be two cases in tiny actor detection. One is the entire image
has a low resolution and thereby the tiny objects only contain a few numbers of
pixels. To improve the detection performance, amplification [219] and resolution
enhancement [220] are applied. In another case, the object itself has plenty of
pixels, but the object only constitutes a very small portion of the entire image so
that it is relatively tiny. An 4K-resolution aerial image belongs to the second case
and performing actor detection on the original image size is desired (Figure A.10).

Although the idea of transforming each frame of aerial videos into smaller
patches for actor detection has been around for some time [216, 217, 218], it is
only recently that region proposals and clustering have been jointly applied to
reduce the number of patches when objects are sparsely located [221]. Using
the downsized aerial image, promising regions that may contain objects can be
learned by density map regression. Based on the predefined patch size, these
regions can be further clustered by their relative distances.

We assume that a good clustering strategy should satisfy two conditions:
first, reducing the number of patches; second, keeping the object ap-
pearance complete in patches. However, to some extent, these two conditions
work against each other. Solely satisfying the first condition may lead to an ob-
ject being partially cropped, while assigning each object to a patch can effectively
satisfy the second condition but may introduce redundant patches. In the pre-
vious study [221], grid-based clustering is used. Nevertheless, it is limited by
predefined grid size and location, and thus objects may be incompletely cropped
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and further affect the bounding box detection. To resolve this issue, peak point
Non-Max Suppression (NMS) and hierarchical clustering are used in our C-RPN,
attempting to make every object complete in at least one patch.

Actor 1
Calling,
Walking

2160 x 3840

608 x 608 608 x 608
Patch 1 Patch 2

Figure A.10: Illustration of our room-in detection.

A.5.2.2 Applicable Model Structures for Multi-stage ASAD
Several models that can be used for ASAD are illustrated in Figure A.11. Fig-

ure A.11a, Figure A.11c and Figure A.11d learn actions and boxes by networks
with end-to-end training, while Figure A.11b and Figure A.11e use independent
detectors to generate boxes, and then connect boxes by MOT. This means gen-
erating spatio-temporal tubes and predicting actions are separate steps. Actions
and boxes are jointly generated in Figure A.11a, and boxes are linked to form
tubes by an offline tracking. To better model the spatio-temporal information,
Figure A.11c and Figure A.11d learn features by a 3D ConvNet. The main dif-
ference is that Figure A.11c generates boxes and performs 2D Region of Interest
(RoI) pooling for each frame, while Figure A.11d extends the central frame boxes
to adjacent frames. Additionally, Figure A.11c and Figure A.11d.i) apply tempo-
ral pooling to fuse features, while Figure A.11d.ii) uses a 3D ConvNet to process
features and obtain a better action recognition performance.

Owing to the divergence of the patch’s local coordinate and the entire image’s
global coordinate, our inputs can only be aligned at the box level. Therefore,
it is challenging to jointly detect bounding boxes and actions in our framework.
Similar to Figure A.11b, our framework (i.e., Figure A.11e) generates boxes by
an independent detector and then connects boxes in the temporal domain by a
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Figure A.11: Applicable model structures for ASAD when only RGB
data is used. L denotes the number of frames used in the model. i) and ii)
represent different models that share the same structure at the beginning.

independent MOT algorithm. Moreover, we propose a STAM to focus on the
target object at each frame and use a 3D ConvNet for action recognition.
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A.5.2.3 Related Datasets
The primary focus of conventional aerial video study are actor detection and

tracking [224, 225, 226]. In this thesis, however, we concentrate on multi-label
ASAD in aerial videos. We utilize Okutama-action dataset [6] for our experi-
ments. The dataset comprises 43 minute-long drone-recorded aerial videos, with
fully annotated bounding boxes in each frame and corresponding multi-label ac-
tion classes. In all, there are 12 categories of human actions: Handshaking, Hug-
ging, Reading, Drinking, Pushing/Pulling, Carrying, Calling, Running, Walking,
Lying, Sitting and Standing. In the multi-label action annotation, one action
class could associate with another one. For instance, “Reading” and “Sitting”
could be assigned to the same actor at the same time. Besides, the actor ID (i.e.,
track ID) is given in this dataset.

A.5.3 Methodology

Our proposed framework coherently generates patches, bounding boxes, spatio-
temporal tubes, 2D CNN features, attention maps, and multi-label action classes
(see Figure A.12). Using a video frame of size 2160 × 3840, our C-RPN first
generates patches of size 608 × 608. Based on selected patches, normal detec-
tors (e.g., YOLOv3-tiny [215]) can generate fine-grained bounding boxes for each
actor. After that, fine-grained bounding boxes are connected to form spatio-
temporal tubes by a MOT algorithm (e.g., Deep SORT [196]). Next, we sample
L frames from spatio-temporal tubes and obtain their corresponding 2D CNN
features. STAM then takes 2D CNN features to generate attention maps that
focus on target actors. In the end, the concatenation of 2D CNN features and
their multiplication with attention maps, are used to estimate multi-label action
classes by a 3D ConvNet. For the overall processing, it is a special multi-label
SAD that serves for aerial surveillance videos.
A.5.3.1 Clustering Region Proposal Network (C-RPN)

The Clustering Region Proposal Network (C-RPN) takes downsized aerial
images (544 × 960) as its input. Since each actor is relatively tiny compared
with the aerial image, the coarse position of actor could be modeled by a 2D
Gaussian density map. The mean of 2D Gaussian is the centroid of a actor
and the covariance represents the uncertainty of this position, which is set to
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Figure A.12: Architecture of the proposed framework. Given each 4K-
resolution aerial image of size 2160 × 3840, C-RPN is utilized to select patches
(608×608) that might contain actors. Based on selected patches, normal detectors
are used to generate fine-grained bounding boxes for each actor. After that,
fine-grained bounding boxes are further connected to be spatio-temporal tubes
by a MOT algorithm. Next, we sample L frames from spatio-temporal tubes
and obtain their corresponding 2D CNN features. STAM then takes 2D CNN
features to generate attention maps that focus on target actors. In the end, the
concatenation of 2D CNN features and their multiplication with attention maps,
are used to estimate multi-label action classes by a 3D ConvNet.

be roughly half of the bounding box size. Thus, coarse actor locations can be
learned by density map regression. Based on the predefined patch size, coarse
actor locations can be further clustered by their relative distances and patches
that may contain actors are generated (see Figure A.13).

At frame k, let the network output of C-RPN be Hpred
k and its ground truth

be H true
k . When both Hpred

k and H true
k have a row number of R and a column

number of C, we can represent them by

Hpred
k =

R⋃
r=1

C⋃
c=1

hpredkrc , H
true
k =

R⋃
r=1

C⋃
c=1

htruekrc , (6.22)

where r and c are the row index and column index of the heat map, respectively;
hpredkrc and htruekrc denote the pixel at position [r, c] of Hpred

k and H true
k , respectively.

135



The htruekrc is generated by

htruekrc =
N∑
i=1

exp

(
−

(
r − pki(x) ∗ s1 ∗ s2

)2
+
(
c− pki(y) ∗ s1 ∗ s2

)2

2σ2
ki

)
;

htruekrc =

 1, if htruekrc > 1;
htruekrc , else.

(6.23)

where [pki(x), pki(y)] are the center coordinates of the ith ground-truth bounding
box. Since the overlapping boxes may generate values larger than 1, we clip the
maximum value of htruekrc at 1. The downscale factor from original image to C-
RPN input is denoted as s1, and the down-sampling factor from C-RPN input to
C-RPN output is denoted as s2. In this work, we set s1 ≈ 1/4 (to be divisible by
s2) and s2 = 1/8.

More specifically, σki, pki(x) and pki(y) are generated by

σki =s1 ∗ s2

4

(
(xmaxki − xminki ) + (ymaxki − yminki )

)
;

pki(x) =s1 ∗ s2

2 (xmaxki + xminki );

pki(y) =s1 ∗ s2

2 (ymaxki + yminki );

(6.24)

where [xminki , yminki , xmaxki , ymaxki ] are corner positions of the ith ground-truth bound-
ing box at frame k. Here, σki is roughly half size of the bounding box i at frame
k.

We modify a penalty-reduced pixel-wise logistic regression with focal loss [227]
and let it be our loss function Lraw_pos,k as follows:

Lraw_pos,k = −
R∑
r=1

C∑
c=1



(
1− hpredkrc

)α
log

(
hpredkrc

)
,

if htruekrc = 1;

(1− htruekrc )β
(
hpredkrc

)α
log

(
1− hpredkrc

)
,

otherwise;

(6.25)

where α and β are hyper parameters for focal loss and we follow work [227] to
set α and β to be 2 and 4, respectively.

Ideally, each object center is a peak point on this density map, thus, we can
apply peak point Non-Max Suppression (NMS) to obtain corresponding peak
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points. Nonetheless, there is no magic in the network of C-RPN, and it is still
suffering the dilemma of detectors in setting a confidence threshold: better pre-
cision, or better recall. In C-RPN, although false-positive (FP) peak points may
generate redundant patches, such a redundancy has little effect on the final fine-
grained actor detection. Therefore, we set a low confidence threshold for peak
point NMS to obtain peak points, regardless of it may end up with low precision
and high recall.

Because peak points could be sparsely distributed, grouping neighboring peak
points to guide patch generalization can reduce the number of patches. As we have
discussed in related works, grid-based clustering may not fit our requirements as
it may incompletely crop actor appearance in all patches. To make a trade-off
between reducing the number of patches and preserving the objects appearance,
we choose hierarchical clustering. In hierarchical clustering, by adjusting the
threshold distance to generate suitable overlapping regions dynamically, we could
make actor appearance complete in at least one patch.

We do not need to specify how many actors are included in each patch, because
another object detector (e.g., YOLOv3) will take patches as inputs to generate
bounding box for each actor. Since overlapping patches could be generated, we
not only have duplicated boxes in the same patch, but also have duplicated boxes
on the overlapping regions between patches. In our approach, therefore, we only
perform bounding box NMS once after transferring bounding boxes from the
patch coordinate to the original aerial image coordinate.
A.5.3.2 The Multiple Object Tracking Module

In our approach, we first employed Deep SORT [196], a traditional MOT
method, to link bounding boxes into spatio-temporal tubes. Deep SORT takes
an IoU (Intersection over Union) descriptor, an appearance descriptor, and a
Kalman filter to perform bipartite bounding box assignments across frames. The
appearance descriptor, which is used to overcome occlusion and long-time tracking
issues, is a CNN network trained on a actor re-identification dataset [228] by a
Cosine Softmax Classifier [229]. We then utilized our proposed Offline ReID-
dominated MOT (Chapter 4) to show an improved results.
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Figure A.13: The demonstration of generating patches by C-RPN. The
downscale factor s1 ≈ 1/4, and the down-sampling factor s2 = 1/8.

A.5.3.3 The RGB-based Action Classification Module
After obtaining the spatio-temporal tube for each actor, we obtain their ac-

tions at each frame by a novel Attention Action Classification Network (AACN).
Since ASAD focuses on instantaneous actions other than long-term actions, we
only take a short-term temporal context and sample L frames from each spatio-
temporal tube for action recognition. Frames within 2 seconds (i.e., 60 frames in
30 FPS videos) ahead of the target frame are excluded. For a actor whose track
ID is n, we denote the earliest and latest frames in the corresponding spatio-
temporal tube as kmin and kmax, respectively. Setting kmax as the target frame,
then L frames are sampled to form a set {xn0 , xn1 , ..., xnL} ∈ Xn

kmax
for action

recognition. The details of our online sampling strategy are described in Algo-
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Adjacent frames Optical flow map

Figure A.14: Visualizations of optical flow maps generated by PWC-Net [5], using
Okutama-action Dataset. Due to the tiny size of actor and the drone camera
movement, it is challenging to obtain actor motion information from the optical
flow.

rithm 3.

Algorithm 3: On-line sampling from a spatio-temporal tube
Input : Spatio-temporal tube Tn

[kmin:kmax]

1 if len(Tn
[kmin:kmax]) < L then

2 Xn
kmax

← {Tn
[kmin:kmax] + Repeat Padding with Tn

kmax
};

3 else
4 δ = len(Tn

[max(kmin,kmax−60):kmax])//L;
5 Xn

kmax
← {Randomly choose L frames from Tn

[max(kmin,kmax−60):kmax] with the
interval δ}.

Output: Xn
kmax

Instead of directly processing RGB data Xn
kmax

by 3D ConvNet, we extract
their corresponding 2D CNN features {fn1 , fn2 , ..., fnL} ∈ F n

kmax
at the first step.

Then, we proposed a Spatio-temporal Attention Module (STAM), which is a 3D
encoder-decoder with skip connections, to generate attentions maps {an1 , an2 , ..., anL} ∈
Ankmax

by encoding and decoding the global spatio-temporal representation of
F n
kmax

. After that, we perform element-wise multiplication between F n
kmax

and
Ankmax

, and concatenate with F n
kmax

to obtain a representation that can selectively
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Figure A.15: An illustration of proposed Attention Action Classifica-
tion Network (AACN), with its Spatio-temporal Attention Module
(STAM). Three frames are used in this illustration, where {xnL−2, x

n
L−1, x

n
L} are

RGB features sampled by Algorithm 3, and they are fed to 2D ConvNet to gener-
ate 2D CNN features {fnL−2, f

n
L−1, f

n
L}. STAM takes stacking 2D CNN features to

obtain corresponding attention maps {anL−2, a
n
L−1, a

n
L}. The multiplication results

of 2D CNN features and attention maps are concatenated with 2D CNN features
again, and then be used to estimate multi-label actions by a 3D ConvNet.

focus on the target actor across all frames. Finally, aforementioned 2D CNN
features are stacked to be 3D CNN features, which are then fed to a 3D ConvNet
to estimate multi-label action classes (see Figure A.15).

Although it is common to utilize optical flow for action recognition, we do
not use it in our framework. In drone-recorded aerial videos, even if the absolute
location of an instance is static, its relative location may have a huge change across
nearby frames, which is caused by the drone camera movement and tiny object
size. In Okutama-action data, we use a state-of-the-art optical flow generator [5]
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to produce optical flows between nearby frames, and show them in Figure A.14.
We can see, it is hard to identify the movement of each actor in the optical flow
map.

A.5.4 Experiments

A.5.4.1 Training and Testing Setup
By following the previous work [6], Okutama-action dataset is split into a

training set with 33 aerial videos and a testing set with 10 aerial videos.
For C-RPN, the Adam [121] optimizer with a learning rate 0.001 is applied for

the first 50 epochs and then the learning rate is changed to be 0.0001 for another
150 epochs. The batch size is set up to be 8. Images and their corresponding
density maps are jointly augmented by Albumentations [230].

We perform a peak point detection on a validation set (i.e., 20% of the training
set) and find that a density map can reach the confidence of 0.5 ∼ 1.0 and
0.0 ∼ 0.1 at the target and the non-target positions, respectively. To reach a
high recall on the testing set, we set the peak point NMS confidence threshold
as 0.3. We search the maximum actor bounding boxes size in Okutama-action
dataset to decide the distance threshold in peak point NMS. More specifically,
the maximum actor bounding box size is about 200 on the original size image.
Considering the total downscale from the original size image (2160×3840) to the
output density map (68 × 120) is about 32, the maximum actor size on output
density map is about 6. Since distance threshold should be an odd number, we
take value 5 here. Using Python code, peak point NMS can easily be implemented
by

1 from sc ipy . ndimage import maximum_filter
2 Peaks_map = (H_pred>0.3)∗
3 (H_pred==maximum_filter (H_pred ,
4 f o o t p r i n t = np . ones ( ( 5 , 5 ) ) ) )

Listing 6.1: Peak piont NMS

For other detectors used for comparison, as R-FCN-ResNet50 [213], Retinanet-
ResNet50 [214], SSD-ResNet50 [212] and YOLOv3-tiny [215], we take their pre-
trained weights on COCO dataset [99] and fine-tune them on our experimental
datasets by their default training strategy.
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Method AP@0.5↑
Speed for entire
image (FPS)

↑ Average patches↓

Using entire downscale image of size 608× 608
R-FCN-ResNet50 [213] 53.5 6 -

Retinanet-ResNet50 [214] 56.3 10 -
SSD-ResNet50 [212] 52.3 18 -
YOLOv3-tiny [215] 52.4 120 -

Using Patches of size 608× 608 (without downsizing)
Sliding (stride=388,404) [218]+YOLOv3-tiny 82.0 3 45.0
Sliding (stride=580,580) [218]+YOLOv3-tiny 79.4 5 28.0

C-RPN (Grid:gridsize=216× 384) [221]+YOLOv3-tiny 77.5 25 3.9
C-RPN (Grid:gridsize=270× 480) [221]+YOLOv3-tiny 78.3 28 3.7
C-RPN (Hierarchical:dthreshold = 128)+YOLOv3-tiny 85.0 26 3.8
C-RPN (Hierarchical:dthreshold = 320)+YOLOv3-tiny 85.2 30 3.1
C-RPN (Hierarchical:dthreshold = 512)+YOLOv3-tiny 82.9 38 2.2

Table A.12: Actor spatial detection performance on Okutama-action
dataset. The symbol ↑(↓) indicates that the larger(smaller) the value, the better
the performance.

To train AACN, we equally sample 64 ground-truth spatio-temporal tubes
from each action class, and then sample Xn

kmax
from each spatio-temporal tube

(see Algorithm 3). As only part of the training samples are included in one epoch
training, it takes more iterations to get converged. We also apply the Adam
optimizer for it, with learning rate 0.001, 0.0001, and 0.00001 for each 500 epochs.
The batch size is set up to be 16. We perform the same data augmentation, i.e.,
flipping, rotation, resizing, and cropping to all samples in Xn

kmax
. During the

inference process, Algorithm 3 is applied again to obtain inputs for the inference
process.

Even though we are working on ASAD with large-size aerial videos, our frame-
work decomposes the whole problem into multiple simple tasks. Thus, all our
experiments can be implemented on a single NVIDIA TITAN X GPU.
A.5.4.2 Performance Evaluation

Our proposed metrics evaluate the multi-label ASAD performance by two
steps. Firstly, we evaluate actor detection performance, by using the AP@0.5
metrics [99]. Secondly, we evaluate multi-label action recognition performance
for positively detected samples (i.e., a sample with mAP > 0.5). We jointly
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inspect the performance of two steps to obtain the overall multi-label ASAD
performance.
A.5.4.3 Actor Spatial Detection Evaluation

For the actor spatial detection evaluation, our main purpose is to verify three
assumptions: (1) compared with detectors that work on the downsized aerial im-
age (608×608 with padding), although using our proposed C-RPN may take more
running time, it should improve the actor detection performance; (2) compared
with partitioning the entire aerial image (2160 × 3840) into patches with a slid-
ing window [218], our C-RPN should be faster when actors are sparsely located;
(3) in contrast to grid-based clustering [221], using hierarchical clustering with a
proper distance threshold can keep the complete appearance in at least one patch
so that our method can achieve better actor detection performance.

2.2.1-f250 2.2.1-f300 2.2.1-f350

1.2.3-f300 1.2.3-f400 1.2.3-f500

Figure A.16: Patch proposals in Okutama-action testing sets, which are
generated by C-RPN. Generated peak points are marked by red, and patches
are enclosed by colorful rectangles. The first row shows three sequential frames
(i.e., 300, 400 and 500) in video 1.2.3. The second row shows three sequential
frames (i.e., 250, 300 and 350) in video 2.2.1. To efficiently cover target actors,
clusters automatically merge and split, based on the relative distance within peak
points.

For detectors that take the entire aerial image as input, we standardize their
input size to be 608 × 608 by padding, since it is difficult to train and test a
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detector with larger input size. When the sliding window passes the aerial image
margin, we pad zeros to the inputs. To reach a fast speed, we choose YOLOv3-
tiny [215] as the base detector in our framework. Although our default setting
is hierarchical-clustering C-RPN, for a fair comparison with previous work [221],
we form a grid-clustering C-RPN by solely replacing the clustering method.

To further check the generalization of our C-RPN, we perform patch genera-
tion on VisDrone dataset [226], which has a complicated background. Since our
target object is “actor”, we select objects with label “pedestrian” and “people”
from VisDrone dataset, and then define them as label “actor” in our experiment.
The network of C-RPN is trained by the training set, and the patch generation
is performed on the testing set, where the ground-truth has not been unreleased
yet.

The qualitative results of dense map estimation and patch generation are
shown in Figure A.17, Figure A.18 and Figure A.19. By using a low confident
threshold value, the rough locations of “actor” objects could be successfully de-
tected from complex backgrounds. Meanwhile, a few of redundant patches are
generated. However, the overall results coincide with our aims: reducing the
number of patches but keeping the object appearance complete in a least one
patch.

The qualitative results of our patch generation and bounding box estimation
are shown in Figure A.16 and Figure A.20, respectively. The quantitative re-
sults of the Okutama-action testing set are shown in TABLE A.12. Taking the
original-size aerial images (2160 × 3840), our C-RPN + YOLOv3-tiny achieves
85.2 AP@0.5 in terms of “actor” actor detection, which remarkably outperforms
detectors that utilize downsized aerial images. Besides, by using C-RPN, the final
actor detection performance is even better than using a sliding window, since some
ambiguous background might be excluded by C-RPN in advance. Last but not
least, because we try to make the actor appearance complete in at least one patch,
the performance of hierarchical-clustering C-RPN outperforms grid-clustering C-
RPN [221]. Moreover, we quantitatively calculate the average number of patches
generated by each method in Okutama-action testing set. When hierarchical-
clustering C-RPN reach the best detection performance, it only generates 3.1
patches averagely on Okutama-action testing set, which is more efficient than
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Figure A.17: Visualizations of dense map estimation and patch genera-
tion on VisDrone testing dataset (1/3). The size of above aerial images is
1080 × 1920 and the patch size is 608 × 608. Proposal patches are bounded by
colorful rectangles.

145



Figure A.18: Visualizations of dense map estimation and patch genera-
tion on VisDrone testing dataset (2/3). The size of above aerial images is
1080 × 1920 and the patch size is 608 × 608. Proposal patches are bounded by
colorful rectangles.
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Figure A.19: Visualizations of dense map estimation and patch genera-
tion on VisDrone testing dataset (3/3). The size of above aerial images is
1080 × 1920 and the patch size is 608 × 608. Proposal patches are bounded by
colorful rectangles.
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sliding window approach and similar to the grid-clustering C-RPN. Therefore,
our approach can achieve a comparable speed of 30 FPS on the full resolution
data.
A.5.4.4 Multi-label Action Classification Evaluation

We modify Better-AVA model [40] to jointly estimate multi-label actions and
bounding boxes. Its inputs are L frames of downscale aerial images (608 × 608
with padding), which are sampled near the target frame. Due to the limitation
of our computational resource, we choose L = 5 for it.

Pred: Carrying, Standing
True: Carrying, Standing

Pred: Carrying, Standing
True: Carrying, Standing

Pred: Reading, Sitting
True: Reading, Sitting

Pred: Reading, Standing
True: Reading, Standing

Pred: Pushing/Pulling, Walking
True: Pushing/Pulling, Walking

Pred: Walking
True: Calling, Walking

Pred: Standing
True: Carrying, Standing

Pred: Carrying, Walking
True: Carrying, Walking

Pred: Sitting
True: Sitting

Pred: Walking
True: Carrying, Walking

Pred: Pushing/Pulling, Walking
True: Pushing/Pulling, Walking

Pred: Reading, Sitting
True: Reading, Sitting

Pred: Lying
True: Lying

Pred: Sitting
True: Reading, Sitting

Figure A.20: Examples of multi-label action classification results in our
framework.

To inspect whether our AACN can improve the action recognition perfor-
mance by introducing spatio-temporal attention, we construct an ablation study
by replacing AACN with I3D [87] and Lite ECO [88] in our framework. The
results of applying our proposed metrics are shown in Table A.13.

Compared with Better-AVA, our framework achieves better performance in
both actor detection and multi-label action recognition. Besides, our framework
is faster than Better-AVA on our target task. Considering our framework de-
composes the whole pipeline into several independent steps, less memory cost is
needed in our framework.
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Method HL@0.5↓ AP@0.5↑ Speed (FPS)↑
Off-line multi-label ASAD

Input: L× 608× 608 (L frames of
downsized aerial images with padding)

Better-AVA [40] (L=5) 0.20 0.54 8
On-line multi-label ASAD

Input: L× 96× 96 (L frames of cropped
images from spatio-temporal tube)

Replacing AACN by I3D [87]
in our framework (L=8)

0.14 0.85 14

Replacing AACN by Lite ECO [88]
in our framework (L=8)

0.15 0.85 15

Our framework (L=8) 0.13 0.85 14

Table A.13: Multi-label ASAD results. Action Identification perfor-
mance will be separately evaluated. The symbol ↑(↓) indicates that the
larger(smaller) the value, the better the performance. Only RGB data is used in
this test. Note, we choose L = 5 for Better-AVA due to computation memory
limitation and it has to be an odd number. While other models utilize L = 8
since instantaneous actions are defined in ASAD. Except for Better-AVA, other
action detection models use bounding boxes that are generated by C-RPN +
YOLOv3-tiny, which achieves AP@0.5=85.2.

Through introducing spatio-temporal attentions, our AACN performs better
than I3D and Lite ECO, in terms of action recognition in our target task. Ex-
amples of attention maps generated by STAM can be visualized in Figure A.21,
which shows that STAM can learn to focus on the target actor in an unsupervised
manner.

A.5.5 Actor Identification Evaluation

To compensate for the actor identification evaluation, we utilized part of MOT
evaluation metrics for actor identification evaluation, as IDF1 (ratio of correctly
identified detections), MT (mostly tracked targets), ML (mostly lost targets),
and ID Switches [50, 51]. The actor identification performance are shown in
Table A.14. By sacrificing a little speed, our framework can generate better
detection and leads to better actor identification. By using our ReID-dominated
MOT (Chapter 4), the actor identification is improved compared with using the
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Figure A.21: Visualization of attentions for the target actor. We assume that the
target actor consistently appears in his/her spatio-temporal tube while others
may not. The attention mask is learned in an unsupervised manner.

DeepSORT [56].

Approach IDF1 (%)↑MT (%)↑ML (%)↓# ID Sw.↓

entire downscale image of size 608× 608
Retinanet-ResNet50 [214] & DeepSORT [56] 53.8 32.0 32.7 234
YOLOv3-tiny [215] & DeepSORT [56] 47.4 27.4 34.6 256

Using Patches of size 608× 608 (without downsizing)
Our framework w/ YOLOv3-tiny [215] & DeepSORT [56] 62.8 45.0 15.8 198
Our framework w/ YOLOv3-tiny [215]
& Our Offline ReID-dominated MOT (Chapter 4)

63.9 46.2 14.5 186

Table A.14: Evaluation performance on actor identification by referring selected
MOT metrics.

Note that, in our designing, the overall Actor-identified Spatiotem-
poral Action Detection (ASAD) performance should consider multiple
metrics, including Table A.12, Table A.13, Table A.14.

A.5.6 Discussion

To automatically perform Actor-identified Spatiotemporal Action Detection (ASAD)
in 4K-resolution drone videos, we specifically propose a novel multi-label ASAD
framework and corresponding evaluation metrics. Our framework gives the flex-
ibility to replace its detector and tracker based on the need, which makes it
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possible to train and infer all modules on a single GPU. Thus, our framework can
be more suitable than existing solutions for multi-label ASAD in aerial videos.
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