
NAIST-IS-DD1821003

Doctoral Dissertation

Decoding the representation of source code

categories in the brain of expert programmers

Yoshiharu Ikutani

March 1, 2021

Graduate School of Information Science

Nara Institute of Science and Technology

A Doctoral Dissertation

submitted to Graduate School of Science and Technology,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Yoshiharu Ikutani

Thesis Committee:

Professor Kenichi Matsumoto (Supervisor)

Professor Kazushi Ikeda (Co-supervisor)

Associate Professor Takatomi Kubo (Co-supervisor)

Associate Professor Takashi Ishio (Co-supervisor)

Assistant Professor Hideaki Hata (Co-supervisor)

Senior Researcher Shinji Nishimoto (NICT CiNet)

Decoding the representation of source code

categories in the brain of expert programmers∗

Yoshiharu Ikutani

Abstract

Expertise enables humans to achieve outstanding performance on domain-

specific tasks, and programming is no exception. Many studies have shown that

expert programmers exhibit remarkable differences from novices in behavioral

performance, knowledge structure, and selective attention. However, the under-

lying differences in the brain of expert and novice programmers are still unclear.

This thesis addresses the issue by associating the cortical representation of source

code with individual programming expertise using a data-driven decoding ap-

proach. The approach identified multiple distributed brain regions, located in

the frontal, parietal, and temporal cortices, that have a tight relationship with

programming expertise. In these brain regions, functional categories of source

code could be decoded from brain activity and the decoding accuracies were

significantly correlated with individual behavioral performances on a source-code

categorization task. The results suggest that programming expertise is built upon

fine-tuned cortical representations specialized for the domain of programming.

Keywords:

Programming expertise, program comprehension, brain decoding, functional mag-

netic resonance imaging, the neuroscience of programming

∗Doctoral Dissertation, Graduate School of Science and Technology, Nara Institute of Science

and Technology, March 1, 2021.

i

Contents

1. Introduction 1

1.1 Contributions . 4

1.2 Outline . 4

2. Related work 5

2.1 Expert programmers and programming expertise 5

2.2 Neuroscience of expertise . 8

3. Materials and Methods 9

3.1 Subjects . 9

3.2 Stimuli . 11

3.3 Experimental design . 12

3.4 MRI data acquisition . 16

3.5 MRI data preprocessing . 17

3.6 Multi-voxel pattern analysis . 20

3.7 Balancing visual confounding in decoding analysis 22

3.8 Data and code availability . 23

4. Results 24

4.1 Behavioral data . 24

4.2 Mutli-voxel activity patterns associated with programming expertise 26

4.3 Cortical representations of subcategory information 32

4.4 Decoding accuracy on the visual confounding controlled data . . . 37

5. Discussion 39

5.1 Summary of findings . 39

5.2 Cortical representations and programming expertise 40

5.3 Limitations of the study . 45

6. Conclusion and Future work 47

6.1 Conclusion . 47

6.2 Future work . 47

Acknowledgements 50

ii

References 51

Appendix 68

A. Toward Imitating Visual Attention of Expert Programmers 68

A.1 Introduction . 68

A.2 Proposed Framework . 70

A.3 Challenges . 72

A.4 Concluding remarks . 75

iii

List of Figures

1 Experimental design . 14

2 Example Java code snippets . 15

3 Correlations between behavioral performance and programming

expertise indicator . 25

4 Decoding accuracy for functional category of source code 28

5 Box plots of the voxel-level peak category decoding accuracies . . 29

6 Searchlight-based correlation analysis between behavioral perfor-

mances and decoding accuracies 30

7 Identifying searchlight centers that showed both significant decod-

ing accuracy and significant correlation to individual behavioral

performances . 31

8 Decoding accuracy for subcategory of source code 34

9 Box plots of the voxel-level peak subcategory decoding accuracies 34

10 Searchlight-based correlation analysis between behavioral perfor-

mances and subcategory decoding accuracies 35

11 Identifying searchlight centers that showed both significant subcat-

egory decoding accuracy and significant correlation to individual

behavioral performances . 36

12 Decoding accuracy of category using the visual confounding bal-

anced data . 38

13 Programmers’ eye movement as a demonstration for a state-action

sequence . 70

14 Overview of imitation learning agent that relies on expert’s gaze

data to perform source code comprehension tasks 72

List of Tables

1 Demographic information of recruited subjects 10

2 Statistics of Java code snippets for each category class 16

3 Statistics of Java code snippets for each subcategory class 17

4 Description of category classes provided to subjects 18

iv

5 Description of subcategory classes provided to subjects 19

6 Statistics of the balanced dataset for visual confounding control . 23

7 Behavioral performance of each category in the fMRI experiment 25

8 Clusters showing significant correlations between behavioral per-

formance and category decoding accuracy 27

v

1. Introduction

Programming expertise is one of the most notable capabilities in the current com-

puterized world. Since human software developers keep playing a central role in

software projects and directly impact their success, this relatively new type of

expertise is attracting increasing attention from modern industries [1,2] and edu-

cational institutes [3, 4]. Moreover, huge productivity variations were repeatedly

found even between programmers with the same level of experience [5,6]. Previ-

ous studies have shown the psychological characteristics of expert programmers

in their behaviors [7,8], knowledge structures [9,10], and eye movements [11–13].

Although these studies clearly illustrate the behavioral specificity of expert pro-

grammers, it remains unclear what neural bases differentiate expert programmers

from novices.

Recent studies have investigated the brain activity of programmers using func-

tional magnetic resonance imaging (fMRI). Siegmund et al. contrasted brain

activity during program output estimations against syntax error searches and

showed that the processes of program output estimations activated left-lateralized

brain regions; including the middle frontal gyrus, inferior frontal gyrus, inferior

parietal lobule, middle temporal gyrus [14,15]. Their results suggested that pro-

gram comprehension is associated with natural language processing, division of

attention, and verbal/numerical working memory. Peitek et al. reanalyzed the

same data as [14] to investigate the correlation between the BOLD activation

strength and individual programming experience, which was determined by sub-

ject’s self-estimation, but did not find any significant trend [16]. An exploratory

study argued that a correlation exists between activity pattern discriminability

and subjects’ grade point average (GPA) scores counting only courses from the

Computer Science department as a proxy for programming expertise [17]. How-

ever, the GPA scores would reflect a mixture of diverse factors (IQ, memory

ability, calculation skills, etc.) and the assumed relationship of the score to pro-

gramming expertise was difficult to be empirically validated. Further, the main

limitation of these prior studies is the use of a homogeneous subject group that

only covered a small range of programming expertise. Recruitment of more di-

verse subjects in terms of their programming expertise may enable the elucidation

of the potential differences of brain functions related to the expertise.

1

This thesis presents an fMRI study to identify the neural bases of program-

ming expertise that contribute to the outstanding performances of expert pro-

grammers. To begin the study, two fundamental factors were defined: an objec-

tively determined reference of programming expertise and a laboratory task that

exhibits experts’ superior performances under the general constraints of fMRI

experiments. First, the study adopted the programmers’ ratings in competitive

programming contests (AtCoder, https://atcoder.jp/), which are objectively

determined by the relative positions of their actual performances among thou-

sands of programmers. Top- and middle-rated programmers as well as novice

controls were recruited to cover a wide range of programming expertise in the

fMRI experiment. Second, the program categorization task was designed for the

study and was confirmed that behavioral performances of this task were signif-

icantly correlated with the adopted reference of programming expertise. This

confirmation allows us to expect an association between the outstanding per-

formances of expert programmers and brain activity patterns recorded by fMRI

while they performed this laboratory task.

The core hypothesis of the study is that higher programming expertise and

experts’ outstanding performances relate to specific multi-voxel pattern repre-

sentations, potentially influenced by their domain-specific knowledge and train-

ing experiences. This hypothesis is motivated by prior studies that contrasted

multi-voxel activity patterns of experts against novices and demonstrated that

domain-specific expertise generally associates with representational changes in

the brain [18–20]. For example, Bilalić et al. showed that the multi-voxel pat-

terns in expert radiologists’ fusiform face area are more sensitive in differentiating

X-ray images from control stimuli than novices [21]. Similarly, identifying the

multi-voxel pattern representations specific to expert programmers offers a good

starting point for understanding the cognitive mechanisms behind programming

expertise. From the previous studies on non-expert programmers and expertise

in other domains, the high-level visual and left fronto-parietal regions might be

inferred as potential neural correlates of programming expertise [14,22]. However,

to the best of our knowledge, there is no prior evidence that directly associates

programming expertise with specific brain regions. Thus, this thesis employs a

whole-brain searchlight analysis [23] to identify the regions related to program-

2

ming expertise.

This thesis demonstrates that the functional categories of source code can

be decoded from programmers’ brain activity and decoding accuracies in multi-

ple distributed brain regions are significantly correlated with individual behav-

ioral performances. In addition, the thesis shows that decoding accuracies of

subordinate-level categories on two brain regions are significantly correlated with

individual behavioral performance, even though such discriminations are not ex-

plicitly required by the tasks. These results suggest that expert programmers’

outstanding performances depend on fine-tuned cortical representations of source

code categories and such cortical representation refinements might be related to

the acquisition of advanced-level programming expertise.

3

1.1 Contributions

This thesis makes the following contributions.

• It presents a novel fMRI experiment to uncover the association between a

programmer’s brain activity and individual programming expertise.

• It confirms that individual programming expertise is significantly correlated

with behavioral performances of source code categorization task.

• It demonstrates that functional categories of source code can be decoded

from brain activity and the decoding accuracies on multiple distributed

brain regions are significantly correlated with individual behavioral perfor-

mances.

• It demonstrates that decoding accuracies of subordinate-level categories

on two brain regions are significantly correlated with individual behavioral

performance.

• It makes available the source code and de-identified fMRI dataset for future

study and replication.

1.2 Outline

The rest of the thesis is organized as follows: Section 2 views related studies

on expert programmers and programming expertise. Section 3 gives a detailed

description of materials and methods used in the fMRI experiment. Section 4 de-

scribes the results of the experiment and shows an association between experts’

outstanding performances and their domain-specific cortical representations. Sec-

tion 5 provides the interpretation and implication of the findings as well as the

potential limitations of the study. Section 6 presents the conclusion of this thesis

and promising future work.

4

2. Related work

2.1 Expert programmers and programming expertise

K. Anders Ericsson defines experts as “people who produce clearly above aver-

age performances on a regular basis” and expertise as “the characteristics, skills,

and knowledge that distinguish experts from novices and less experienced peo-

ple” [24]. In the domain of software engineering, many expertise studies have

been performed with different terminologies, such as programming skills [25],

programming experience [26], developer fluency [27]. For example, Baltes and

Diehl conducted an online survey on 355 professional software developers and

illustrated the cognitive and behavioral characteristics in expert programmers

toward building the theory of software development expertise [2]. In addition,

multiple experiments have investigated expert programmers and observed their

performances clearly higher than novices or non-expert programmers. The pio-

neering study conducted by Sackman et al. found huge variations in individual

programming productivity: Their experiment, in particular, showed the ratio of

initial coding time between best and worst subjects was 20:1 and debugging time

was 25:1 [28]. Later studies have also demonstrated that there is a significant pro-

ductivity variation between programmers, which can not be explained by simple

years of experience [5, 6]. This line of studies confirmed the general finding that

there are order-of-magnitude differences among programmers and drove many

researchers to investigate how expert programmers differ from novices and what

cognitive characteristics make experts as experts [29].

From the 1980s to the 1990s, researchers conducted several observational stud-

ies and investigated behavioral differences between expert and novice program-

mers. For example, Vessey et al. collected episodic data from 16 programmers

using a think-aloud protocol, which required subjects to say whatever comes into

their mind while they were performing the given task, and suggested several hy-

potheses on experts’ debugging processes [7]. Fix et al. recruited 20 novices and

20 expert programmers and asked them to answer a series of questions designed to

show cognitive characteristics in their program comprehension processes [9]. The

results obtained in these observational studies contributed to building classical

mental models of program comprehension processes (see [10], for a review). How-

5

ever, the results were often inconsistent across the studies and many researchers

suspected the validity and replicability of self-reports [30, 31].

In the early 2000s, several researchers have begun to employ eye-tracking

tools for quantifying experts’ program comprehension processes more objectively

(for review, see [32], [33]). Uwano et al. measured the eye movement of five

programmers while they reviewed six source code written in C language and

identified an eye movement pattern associated with high performance in code

reviews [12]. Busjahn et al. focused on the linearity of eye movement during

program comprehension processes and demonstrated that expert programmers

read source code less linearly than novices [13]. Eye-tracking methods provide

an objective measure of program comprehension processes and strengthen the

replicability of observed results. For example, the results obtained by Uwano

et al. [12] and Busjahn et al. [13] were replicated in later studies conducted by

different researchers [34,35]. Although eye-tracking methods successfully quantify

where the attention of an expert programmer is focused on, it has difficulty to

explain the cognitive characteristics underlying experts’ superior performances

because eye movement data ignores lots of cognitive computations in the brain.

From the early 2010s, many researchers have started to measure a program-

mer’s brain activity using an electroencephalogram [36, 37], near-infrared spec-

troscopy [38, 39], and fMRI [14, 15, 40, 41]. The original and replication studies

conducted by Siegmund et al. measured brain activity using fMRI while subjects

performed Java program output estimations and demonstrated that the processes

activated a set of left-lateralized brain regions [14, 15]. The studies have con-

firmed that brain activity measurements can be used as an objective indicator of

program comprehension processes with valid replicability. A recent fMRI study

has measured brain activity of programmers understanding Python programs,

suggesting the association between program comprehension and fronto-parietal

network that is functionally related to formal logical inference [40]. However, the

underlying differences in the brain between expert and novice programmers are

still unclear. Peitek et al. reanalyzed the same data as [14] to investigate the

correlation between the BOLD activation strength and individual programming

experience but did not find any significant trend [16]. Floyd et al. argued an as-

sociation between the pattern discriminability in fMRI signals and subjects’ GPA

6

scores [17] but the assumed relationship of the score to programming expertise

was not empirically validated. This thesis, therefore, aims to identify the neural

bases of programming expertise and provide evidence that associates individual

programming expertise with specific brain regions.

7

2.2 Neuroscience of expertise

Expertise enables humans to achieve outstanding performance on domain-specific

tasks. Many neuroscientists have been investigating how experts accommodate

such expertise in the brain [22]. Guida et al. reviewed neuroimaging studies on ex-

perts and suggested the association between expertise acquisition and functional

cortical reorganization, which is seen as the recruitment of new activation areas

and a shift in cognitive process underlying expert’s superior performance [42].

For example, Wan et al. scanned the brain activity of professional and amateur

players in a board game named shogi and found two professional-specific activa-

tions in the precuneus and caudate nucleus during quick generation of the best

next move [43]. Amalric and Dehaene demonstrated that reading mathematical

statements activated a reproducible set of bilateral frontal, intra-parietal, and

ventrolateral temporal regions only in professional mathematicians [44]. These

previous studies imply that expertise acquisition might be accompanied by the

recruitment of new activation areas. The evidence additionally suggests that

programming expertise might be associated with the recruitment of additional

activation areas observed only in the brain of expert programmers.

More recently, several studies demonstrated that expertise can alter the corti-

cal representations of domain-specific information. Bilalić et al. showed that the

multi-voxel patterns in expert radiologists’ Fusiform Face Area were more sensi-

tive in differentiating X-ray images from control stimuli than novices [21]. Brants

et al. scanned the brain activity of twelve human subjects using fMRI before

and after training of object categorization and differentiation [45]. Their results

showed that training to categorize or individuate specific objects strengthens pre-

existing cortical representations in the human object-selective cortex. Another

study applied multi-voxel pattern analysis on the brain activity of professional

cinematographers and sound designers [18]. As a result, they found the distinct

multi-voxel patterns specific to the modality of subjects’ expertise, suggesting

that modality-specific expertise can alter the representation of domain-specific

information. This thesis follows the line of expertise studies and hypothesize

that higher programming expertise and experts’ outstanding performances are

associated with specific multi-voxel pattern representations in the brain.

8

3. Materials and Methods

3.1 Subjects

For this study, three recruiting criteria were defined: Expert, top 20% rankers in

AtCoder who had an AtCoder rate equal to or higher than 1,200; Middle, 21-50%

rankers who had an AtCoder rate between 500 and 1,199; Novice, subjects who

had four years or less programming experience and no experience in competitive

programming. The recruiting messages were sent via mailing lists and messag-

ing applications with diverse graduate or undergraduate student communities in

Japan. Through this procedure, 95 programmers from 28 universities and three

companies completed the entry questionnaire to be registered as candidate sub-

jects. The list of candidate subjects consisted of 19 experts (all male), 43 middles

(one female), and 33 novices (nine females). Nine left-handed subjects and 20

subjects with less than half a year experience in Java programming were excluded

from the list. Five subjects aged under 20 years old were also excluded to avoid

additional bureaucratic processes. The remaining candidate subjects were asked

to participate the experiment basically on first-in-first-out strategy. Note that

setting Novice as programmers who had an AtCoder rate under 500 was another

potential recruiting criterion; but this study did not adopt the criterion because

low values in the rate reflects two indistinguishable factors: low programming

expertise or not enough contest participation. In addition, possession of AtCoder

rate itself could imply possession of moderate programming expertise. Thus,

the recruiting criteria set Novice as a programmer with shorter experience in

programming and no experience in competitive programming.

Thirty healthy subjects (two females, aged between 20 and 24 years) with

normal or corrected-to-normal vision participated in the experiment; see Table.1

for the demographic information of recruited subjects. All were right-handed

(assessed by the Edinburgh Handedness Inventory [46], laterality quotient = 83.6

± 24.0, ranged between +5.9 and +100) and understood basic Java grammars

with at least half a year experience in Java programming. The averaged At-

Coder rates (1,967 in Expert and 894 in Middle) were equivalent to the top

6.5% and 34.1% positions among 7,671 registered players based on the ranking

on July 1 2017, respectively. Higher AtCoder rate indicates higher expertise

9

Table 1. Demographic information of recruited subjects. The popula-

tion of middle and novice classes included one female subject each. Numerics

from 3rd (Age) to last columns denote ’MEAN ± SD’. Abbreviations: PE, pro-

gramming experience; JE, Java experience; CPE, competitive programming ex-

perience. Age, PE, JE, CPE are written in a year unit. Significant differences

were observed between PE of Expert - Novice, Middle - Novice; CPE of Expert

- Middle (two-sample t-test, p < 0.05 FDR-corrected).

Class N Age AtCoder rate PE (year) JE (year) CPE (year)

Expert 10 22.6 ± 1.1 1969 ± 467 6.9 ± 2.8 2.8 ± 2.4 4.1 ± 2.6

Middle 10 22.5 ± 0.8 894 ± 175 4.8 ± 1.7 1.1 ± 0.8 1.3 ± 0.8

Novice 10 21.7 ± 1.2 NA 2.8 ± 0.6 1.4 ± 1.0 NA

to win high scores in competitive programming contests and implies that high-

rated programmers possess greater skills in writing/reading source code and richer

domain-specific knowledge of efficient computer algorithms and data structures.

Seven additional subjects were scanned but not included in the analysis because

one (novice) showed neurological abnormality in MRI images, three (one expert

and two middles) retired from the experiment without full completion, three (one

expert and two novices) showed strongly-biased behavioral responses judged when

the behavioral performance of one or more choices did not reach chance-level in

the training experiments, signaling a strong response bias of sticking to a spe-

cific choice. This study was approved by the Ethics Committees of NAIST and

CiNet and subjects gave written informed consent for participation. The sample

size was chosen to match previous fMRI studies on human expertise with similar

behavioral protocols [18,21,44].

10

3.2 Stimuli

For this study 72 code snippets written in Java were collected from an open

codeset provided by AIZU ONLINE JUDGE (http://judge.u-aizu.ac.jp/

onlinejudge/); an online judge system where many programming problems are

listed and everyone can submit their own source code to answer those problems

online. Four functional categories (category) and eleven subordinate concrete al-

gorithms (subcategory) were selected based on two popular textbooks about com-

puter algorithms [47,48]; see Fig.1a for all category and subcategory classes. By

searching in the open codeset, 1251 candidates were found as Java code snippets

implementing one of the selected algorithms. To meet the screen size constraint

in the MRI scanner, code snippets with a number of lines of more than 30 and a

max number of characters per line of more than 120 were excluded. From all re-

maining snippets, a set of 72 code snippets was created with minimum deviations

of these numbers of lines and characters to minimize visual variation as experi-

mental stimuli; the mean and standard deviation of the number of lines and max

characters per line were 26.4± 2.4 and 59.3± 17.1, respectively (see Table 2 and

Table 3 for detailed statistics on each category and subcategory class). In the

codeset, 18 snippets each belonged to one of the category classes and six snippets

each belonged to one of the subcategory classes except for the linear search class

with twelve snippets. The indentation styles of code snippets were normalized

by replacing a tab-space with two white-spaces and user-defined functions were

renamed to neutral such as “function1” because some of the functions indicated

their algorithms explicitly (see Fig.2 for example snippets with normalized in-

dentation styles and function names). All code snippets were verified to have

no syntax error and run correctly without run-time error. The reasons why this

study focused on Java were because the language has been one of the most famous

programming languages and prior fMRI studies on programmers also used Java

code snippets as experimental stimuli [14–16].

11

3.3 Experimental design

The fMRI experiment consisted of six separate runs (9 min 52 sec for each run).

Each run contained 36 trials of the program categorization task (Fig.1b) plus one

dummy trial to avoid the undesirable effects of MRI signal instability. Seventy-

two code snippets were used as stimuli and each snippet was presented three

times through the whole experiment (216 trials in total), but the same snippet

appeared only once in a run. The experiment employed PsychoPy [49] (version

1.85.1) to display the code snippets in white text and a gray background without

syntax highlighting to minimize visual variations. In each trial of the program

categorization tasks, a Java code snippet was displayed for ten seconds after

a fixation-cross presentation for two seconds. Subjects then responded within

four seconds by pressing buttons placed under the right hand to indicate which

category class was most plausible for the code snippet and all response data were

automatically collected for the calculation of individual behavioral performance.

To clarify classification criteria, a brief explanation about each category class

was provided before the experiment started (see Table 4 for the provided descrip-

tion). The presentation order of the code snippets was pseudo-randomized under

balancing the number of exemplars for each category class across runs. The cor-

responding buttons for each answer choice were also randomized across trials to

avoid linking a specific answer choice with a specific finger movement. Subjects

were allowed to take a break between runs and to quit the fMRI experiment at

any time.

All subjects took two additional sessions, named “Training” and “Post-MRI”,

outside of the MRI scanner using a laptop computer and PsychoPy to display

source code stimuli. The training session was performed within ten days before

the fMRI experiment to mitigate potential confounds caused by task unfamiliar-

ity. The session consisted of three separate runs with the same program catego-

rization task as the fMRI experiment. A different set of 72 Java code snippets

from those used in the MRI experiment, which covered the same algorithms, was

used as stimuli in the training session; each snippet was presented once or twice

in the entire session but the same snippet did not appear twice in a run. The

post-MRI session was performed within ten days after the fMRI experiment for

assessment of individual ability in subcategory categorizations and was consisted

12

of two separate runs using the same codeset as the fMRI experiment. Before

the post-MRI session started, the existence of subcategory was explained to the

subjects (see Table 5 for the provided description) and assessed whether they rec-

ognized subcategory classes during the fMRI experiment using a questionnaire.

Program categorization tasks in the post-MRI session followed the same proce-

dure as the fMRI session. In each trial, a Java code snippet was displayed for

ten seconds after a fixation-cross presentation for two seconds. Then, within four

seconds, the subjects were asked to classify the given code snippet from two or

three choices of subcategory classes according to its superordinate category, e.g.,

“bubble sort”, “insertion sort”, and “selection sort” were displayed when the

snippet in “sort” category was presented.

Behavioral performance was calculated as the ratio of correct-answer-trials to

all-trials; unanswered trials, i.e. no button input within the response phase, were

regarded as “incorrect” for this calculation. Chance-level behavioral performance

was 25% in the training sessions and fMRI experiments and 37.25% in the post-

MRI sessions adjusted for imbalanced numbers of answer choices. Note that the

program categorization task was designed to quantify the ability to semantically

categorize source code snippets. Although the ability to understand a word, line,

and chunk (a set of multiple lines) in the given code snippet was required to

perform the task, these abilities were out of the experiment’s scope and were not

directly evaluated in this study.

13

Math

Power

Primality

test

Search

Binary

search

Linear

search

Sort

Bubble

sort

Insertion

sort

Selection

sort

String

Run length

encode

String sort

Substring

search

Category

Subcategory

Greatest

common divisor

public static void main(String[] args) {
long m = scan.nextLong();

long n = scan.nextLong();
System.out.println(function1(m, n, 100));

}
private static long function1(long m) {

long result = 1;

for (long i = 1; i <= n; i++) {
result *= m;

if (result >= M) {
result = result % M;
result = function1(result, (long) n / i, 100);

i = n - (n % i);
}

}
return result;

}

Sort

(3)

Search

(2)

Math

(1)

String

(4)

Response

4s

Source code

10s

Baseline

2s

tButton press

a

b

c

Figure 1. Experimental design. (a) Hierarchy of categories used in this study.

Category and Subcategory represent abstract functionality and concrete algo-

rithms, respectively, based on two popular textbooks of programming [47, 48].

(b) Program categorization task. (c) Overview of the decoding framework.

14

Greatest common divisor

public static void main(String[] arg) {

 if (a >= b) {

 function1(a, b);

 } else {

 function1(b, a);

 }

}

static void function1(int n, int m) {

 if ((n % m) == 0) {

 System.out.println(m);

 } else if (m == 1) {

 System.out.println(1);

 } else {

 int m1 = (n % m);

 function1(m, m1);

 }

}

Power

public static void main(String[] args) {

 long m = scan.nextLong();

 long n = scan.nextLong();

 System.out.println(function1(m, n, 100));

}

private static long function1(long m) {

 long result = 1;

 for (long i = 1; i <= n; i++) {

 result *= m;

 if (result >= M) {

 result = result % M;

 result = function1(result, (long) n / i, 100);

 i = n - (n % i);

 }

 }

 return result;

}

Primality test

public static void main(String[] args) {

 int n = input.nextInt();

 int res = 0;

 for (int i = 0; i < n; ++i) {

 int x = input.nextInt();

 if (function1(x))

 ++res;

 }

}

static boolean function1(int x) {

 if (x < 2)

 return false;

 for (int i = 2; i <= Math.sqrt(x); ++i) {

 if (x % i == 0)

 return false;

 }

 return true;

}

Binary search

public static void main(String[] args){

 Scanner input = new Scanner(System.in);

 int n, q;

 n = input.nextInt();

 ArrayList s = new ArrayList();

 for (int i = 0; i < n; ++i) {

 int x = input.nextInt();

 if (s.size() > 0)

 continue;

 s.add(x);

 }

 s.retainAll(t);

 System.out.println(s.size());

}

Linear search

public static void main(String args[]) {

 int n, q, T, cnt, ans = 0;

 int[] S = new int[10001];

 for (int i = 0; i < n; i++) {

 S[i] = sc.nextInt();

 }

 for (int i = 0; i < q; i++) {

 T = sc.nextInt();

 S[n] = T;

 cnt = 0;

 while (S[cnt] != T) {

 cnt++;

 }

 if (cnt < n) {

 ans++;

 }

 }

}

Bubble sort

public static void main(String args[]) {

 Scanner sc = new Scanner(System.in);

 ArrayList A = new ArrayList();

 n = sc.nextInt();

 for (int i = 0; i < n; i++) {

 A.add(sc.nextInt());

 }

 for (int i = 0; i < n - 1; i++) {

 for (int j = n - 1; j > i; j--) {

 if (A.get(j - 1) > A.get(j)) {

 temp = A.get(j - 1);

 A.set(j - 1, A.get(j));

 A.set(j, temp);

 cnt++;

 }

 }

 }

Insertion sort

public static void main(String[] args) {

 int[] A = new int[N];

 for (int i = 1; i < N; i++) {

 int key = A[i];

 int j = i - 1;

 while (j >= 0 && A[j] > key) {

 A[j + 1] = A[j];

 j--;

 }

 A[j + 1] = key;

 System.out.print(A[0]);

 for (int k = 1; k < N; k++) {

 System.out.print(" " + A[k]);

 }

 System.out.println();

 }

}

Selection sort

public static void main(String[] args) {

 for (int i = 0; i < n; i++)

 a[i] = In.nextInt();

 int count = 0;

 for (int i = 0; i < n - 1; i++) {

 int minj = i;

 for (int j = i; j < n; j++) {

 if (a[j] < a[minj]) {

 minj = j;

 }

 }

 if (minj != i) {

 int tmp = a[i];

 a[i] = a[minj];

 a[minj] = tmp;

 }

 }

}

Run length encode

public static void main(String[] args) {

 while (stdIn.hasNext()) {

for (int i = 0; i < t.length;) {

 if (t[i] != '@') {

i++;

 } else {

i += 2;

 int f = t[i - 1] - '0';

for (int j = 0; j < f; j++) {

 System.out.print(t[i]);

}

 i++;

}

 }

}

}

String sort

public static void main(String[] args) {

 int x, i;

String stock;

 if (x != 0) {

String[] data = new String[x];

 for (i = 0; i < x; i++) {

data[i] = scan.next();

 }

for (i = 1; i < x; i++) {

 if (data[0].compareTo(data[i]) > 0) {

stock = data[0];

 data[0] = data[i];

data[i] = stock;

 }

}

 }

}

Substring search

public static void main(String[] args){

 String w, t;

String[] strArray;

 int n = 0;

w = br.readLine().toLowerCase();

 while (!(t = br.readLine()).equals("EOF")) {

strArray = t.split(" ");

 for (int i = 0; i < strArray.length; i++) {

if (strArray[i].toLowerCase().equals(w)) {

 n++;

}

 }

}

 System.out.println(n);

}

Figure 2. Example Java code snippets. Each belonged to one subcategory

and its corresponding category shown in Figure.1a.

15

Table 2. Statistics of Java code snippets for each category class. Numerics

from 3rd (LOC) to last columns denote ’MEAN±SD’. Abbreviations: LOC: Lines

of code, CPL: Max number of characters per line. One-way ANOVA revealed

significant differences in mean values of LOC (F(3,68) = 10.33, p = 0.00004)

and number of total characters (F(3,68) = 8.14, p = 0.0002) across the categories;

but no significant difference in CPL (F(3,68) = 0.26, p = 0.85).

Category N LOC CPL Total characters

Math 18 25.5 ± 2.5 60.5 ± 16.0 373 ± 58.6

Search 18 26.1 ± 1.8 59.8 ± 20.9 446 ± 109.2

Sort 18 28.3 ± 1.5 60.6 ± 15.4 479 ± 76.0

String 18 25.6 ± 2.5 56.4 ± 16.6 386 ± 84.0

All 72 26.4 ± 2.4 59.3 ± 17.1 421 ± 93.0

3.4 MRI data acquisition

MRI data were collected using a 3-Tesla Siemens MAGNETOM Prisma scanner

with a 64-channel head coil located at CiNet. T2?-weighted multiband gradient

echo-EPI sequences were performed to acquire functional images covering the

entire brain (repetition time (TR) = 2000 ms, echo time (TE) = 30 ms, flip angle

= 75◦, field of view (FOV) = 192 × 192 mm2, slice thickness = 2 mm, slice gap

= 0 mm, voxel size = 2× 2× 2.01 mm3, multi-band factor = 3). A T1-weighted

magnetization-prepared rapid acquisition with a gradient-echo sequence was also

performed to acquire fine-structural images of the entire head (TR = 2530 ms,

TE = 3.26 ms, flip angle = 9◦, FOV = 256 × 256 mm2, slice thickness = 1 mm,

slice gap = 0 mm, voxel size = 1× 1× 1 mm3).

16

Table 3. Statistics of Java code snippets for each subcategory class.

Numerics from 3rd (LOC) to last columns denote ’MEAN±SD’. Abbreviations:

GCD: Greatest common divisor. One-way ANOVA revealed significant differ-

ences in mean values of LOC (F(10,61) = 5.44, p = 0.0004) and number of

total characters (F(10,61) = 2.99, p = 0.014) across the subcategories; but no

significant difference in CPL (F(10,61) = 0.44, p = 0.91).

Subcategory N LOC CPL Total characters

GCD 6 24.8 ± 2.2 59.7 ± 19.7 339 ± 51.7

Power 6 25.2 ± 3.4 57.2 ± 13.9 391 ± 73.4

Primality test 6 26.5 ± 1.5 64.8 ± 15.8 391 ± 37.9

Binary search 6 27.2 ± 2.4 63.5 ± 18.6 509 ± 102.7

Linear search 12 25.6 ± 1.2 57.9 ± 22.5 414 ± 101.5

Bubble sort 6 28.7 ± 1.8 62.0 ± 17.8 503 ± 89.9

Insertion sort 6 27.2 ± 0.8 65.8 ± 15.0 471 ± 66.9

Selection sort 6 29.2 ± 1.0 54.0 ± 13.0 463 ± 77.3

Run length encode 6 26.5 ± 3.2 55.0 ± 12.8 393 ± 74.5

String sort 6 25.0 ± 2.2 52.2 ± 14.4 344 ± 77.6

Substring search 6 25.2 ± 1.9 62.0 ± 22.4 422 ± 93.2

3.5 MRI data preprocessing

The Statistical Parametric Mapping toolbox (SPM12, http://www.fil.ion.

ucl.ac.uk/spm/) was used for preprocessing. The first eight scans in dummy

trials for each run were discarded to avoid MRI signal instability. The functional

scans were aligned to the first volume in the fourth run to remove movement

artifacts. They were then slice-time corrected and co-registered to the whole-

head T1 structural image. Both anatomical and functional images were spatially

normalized into the standard Montreal Neurological Institute 152-brain average

template space and resampled to a voxel size of 2 × 2 × 2 mm3. MRI signals at

each voxel were high-pass–filtered with a cutoff period of 128 seconds to remove

low-frequency drifts. A thick gray matter mask was obtained from the normal-

ized anatomical images of all subjects to select the voxels within neuronal tissue

17

Table 4. Description of category classes provided to subjects.

Category Description

Math Applying number theory processing on given inputs.

Search Identifying a specific item in a list of given inputs.

Sort Arranging given inputs into a certain order.

String Applying a specific operation on string inputs.

using the SPM Masking Toolbox [50]. For each subject independently, a general

linear model (GLM) was then fitted to estimate voxel-level parameters (β) linking

recorded MRI signals and conditions of source code presentations in each trial.

The fixation and response phases in each trial were not explicitly modeled. The

model also included motion realignment parameters to regress-out signal varia-

tions due to head motion. Finally, 216 beta estimate maps (36 trials × 6 runs)

per subject were yielded and used as input for the following multivariate pattern

analysis.

18

Table 5. Description of subcategory classes provided to subjects.

Subcategory Description

GCD Finding the greatest common divisor of two given natural

numbers.

Power Calculating the powers of two given integers m and n, i.e.

n-th power of m.

Primality test Judging whether the given natural number is a prime num-

ber or not.

Binary search A process to search for a value from the given input se-

quence that is equal to the target value. This process first

compares the target value with the middle value of the

given sequence and specify the half of the sequence that

potentially contains the target value. This process iterates

the comparison and sequence division until the target value

is found.

Linear search A process to search for a value from the given input se-

quence that is equal to the target value. This process ex-

amines in order from the first element of the given series.

Bubble sort Arranging given inputs in a certain order by exchanging

adjacent elements if they are in wrong order.

Insertion sort Arranging given inputs in a certain order by iteratively

picking up an element from the given input sequence and

insert it to the correct location.

Selection sort A process to arrange given inputs in a certain order. This

process first identify the smallest value of the given inputs

and exchange it with the value in the first order. Then,

identify the second smallest value and exchange it with

the value in the second order. This process iterates this

operation until the given inputs are correctly sorted.

Run length encode A process to compress the given string sequence by replac-

ing a sequence of the same character with the character and

the number of repetition. For example, the string sequence

‘AAAABBBAABBBB’ will be compressed as ‘4A3B2A4B’.

String sort Sorting the given words in lexicographic order.

Substring search Detecting where the given pattern appears in the given

string sequence.

19

3.6 Multi-voxel pattern analysis

This study used whole-brain searchlight analysis [23] to examine where significant

decoding accuracies exist using the Decoding Toolbox [51] (version 3.99) and

LIBSVM [52] (version 3.17). A four-voxel-radius sphered searchlight, covering

251 voxels at once, was systematically shifted throughout the brain and decoding

accuracy was quantified on each searchlight location (see Fig.1c for overview of the

entire framework). A linear-kernel support vector machine (SVM) classifier was

trained and evaluated using a leave-one-run-out cross-validation procedure, which

iteratively treated data in a single run for testing and the others for training.

In each fold, training data was first scaled to zero-mean and unit variance by

z-transform and test data was scaled using the estimated scaling parameters.

Outlier reduction using [-3, +3] as cut-off values was then applied and all scaled

signals larger than the upper cut-off or smaller than the lower cut-off were set

to the closest value of these limits. The SVM classifier was trained with three

cost parameter candidates [0.1, 1, 10], which control the tradeoff between margin

maximization and the tolerance of misclassification rate in the training step,

and the best parameter was chosen by a grid search in nested cross-validations.

The outlier boundary and cost parameter candidates were selected based on the

estimated computational load and the documents of tools employed. Specifically,

this study adopted a relatively small set of parameter candidates due to the

constraint of the high computational load of searchlight analysis. Finally, the

trained classifier predicted category or subcategory of seen source code from the

leave-out test data and decoding accuracy was calculated as a ratio of correct-

classifications out of all-classifications. Note that corrected misclassification cost

weights were used in subcategory decoding to compensate for the imbalanced

number of exemplars across subcategory classes.cite

The training and evaluation procedures were performed independently for

each subject and a whole-brain decoding accuracy map was obtained per subject.

Second-level analyses was then conducted to examine the significance of decod-

ing accuracies and the correlations between individual decoding accuracies and

behavioral performances. For this purpose, the decoding accuracy maps were

spatially smoothed using a Gaussian kernel of 6 mm full-width at half maximum

(FWHM) and submitted to random effects analysis as implemented in SPM12.

20

The analysis tested the significance of group-level decoding accuracy and Pear-

son’s correlation coefficient between individual decoding accuracies and behav-

ioral performances. A relatively strict statistical threshold of voxel-level p < 0.05

FWE-corrected was used for decoding accuracy tests and a standard threshold of

voxel-level p < 0.001 uncorrected and cluster-level p < 0.05 FWE-corrected was

used for correlation tests. The chance-level accuracy (25% in category decoding

and 9.72% in subcategory decoding; adjusted for imbalanced numbers of exem-

plar) and zero correlation were adopted as null hypotheses. Finally, the resultant

significant searchlight maps, i.e. decoding accuracy map and correlation map to

behavioral performance, were superimposed on a single cortical surface of the

ICBM152 template brain using BrainNet viewer [53]. This overlapping analysis

was performed to identify the searchlight centers that had both sufficient informa-

tion to represent functional categories of source code and significant correlation

to individual behavioral performance.

21

3.7 Balancing visual confounding in decoding analysis

A fundamental limitation of decoding analyses is the lack of direct measure for

interpreting which source of information drives decoding accuracy and it becomes

problematic when the target variable is confounded by variables that are not of

primary interest [54]. In the experiment, the primitive visual features in code

stimuli showed systematic difference: the mean values of LOC (F(3,68) = 10.33,

p = 0.00004) and number of total characters (F(3,68) = 8.14, p = 0.0002)

across category classes (see Table 2). From the view of subcategory, the similar

tendency of significant differences was found in mean values of LOC (F(10,61) =

5.44, p = 0.0004) and number of total characters (F(10,61) = 2.99, p = 0.014)

shown in Table 3. The observed systematic difference is problematic because the

target variables (i.e. category and subcategory) in the decoding framework are

confounded by the visual features that are not of our primary interest.

To isolate the potential effect of the visual confounding, this study created

another codeset in which the samples of each category class were balanced to

eliminate the systematic difference in the visual features. Specifically, nine snip-

pets in Sort category and one in Search category were excluded from the orig-

inal codeset. Table 6 shows the detailed statistics of the balanced codeset and

one-way ANOVA revealed that the dataset had no significant difference in the

visual features: the mean values of LOC (F(3,58) = 1.92, p = 0.137), CPL (

F(3,58) = 0.27, p = 0.850) and number of total characters (F(3,58) = 2.64, p

= 0.058) across category classes. For the difference across subcategory classes,

the balanced codeset showed no significant difference: the mean values of LOC (

F(10,51) = 1.20, p = 0.31), CPL (F(10,51) = 0.47, p = 0.90) and number of

total characters (F(10,51) = 1.66, p = 0.116).

This study built a balanced MRI dataset for each subject by collecting only

MRI data associated with the snippets in the balanced codeset. The balanced

dataset consisted of 186 samples (62 snippets × 3 trials) and searchlight analyses

were performed using the dataset on the same procedure as the original dataset.

The chance-level decoding accuracy on the balanced dataset was 26.48% adjusted

for imbalanced numbers of exemplar. If the visual confounding has little or limited

effect on decoding accuracies, similar results (i.e. decoding accuracy maps) will be

obtained from the searchlight analyses regardless of using the original or balanced

22

dataset.

3.8 Data and code availability

The experimental data and code used in the study are available from the reposi-

tory: https://github.com/Yoshiharu-Ikutani/DecodingCodeFromTheBrain.

Table 6. Statistics of the balanced dataset for visual confounding con-

trol. Numerics from 3rd (LOC) to last columns denote ’MEAN±SD’. No signif-

icant difference was observed in mean values of LOC (F(3,58) = 1.92, p = 0.137

), CPL (F(3,58) = 0.27, p = 0.850) and number of total characters (F(3,58) =

2.64, p = 0.058) across category classes. Numbers differed from original dataset

shown in Table 2 are written in bold.

Category N LOC CPL Total characters

Math 18 25.5 ± 2.5 60.5 ± 16.0 373 ± 58.6

Search 17 26.1 ± 1.9 58.3 ± 20.6 433 ± 100.1

Sort 9 27.4 ± 1.1 56.1 ± 14.7 437 ± 34.3

String 18 25.6 ± 2.5 56.4 ± 16.6 386 ± 84.0

All 62 26.4 ± 2.4 59.3 ± 17.1 421 ± 93.0

23

4. Results

4.1 Behavioral data

The relationship between the adopted reference of programming expertise and

behavioral performance on the program categorization task was first evaluated.

A significant correlation was observed between AtCoder rate (M = 954.3, SD =

864.6) and behavioral performance in the fMRI experiments (M = 76.0, SD = 13.5

[%]), r = 0.593, p = 0.0059, n = 20 (Fig.3a). The correlation remained significant

if the behavioral performances of non-rate-holders (i.e. novices) were included as

zero-rated subjects; r = 0.722, p = 0.000007, n = 30. A positive correlation was

found between AtCoder rate and behavioral performance on subcategory catego-

rization in the post-MRI experiments (M = 65.9, SD = 17.0 [%]), r = 0.688, p =

0.0008, n = 20 (Fig.3b). The significant correlation also remained significant if

non-rate-holder subjects were included; r = 0.735, p = 0.000004, n = 30. From

all behavioral data, this study concluded that behavioral performances on the

program categorization task significantly correlated with expertise of competitive

programming. The behavioral evidence allowed us to study the potential asso-

ciation between experts’ outstanding performances and brain activity patterns

measured using fMRI while subjects performed this task.

Difference in cognitive demands induced by code snippets of different category

classes was potential confounding variable for the decoding framework. Although

this study did not have a direct indicator of cognitive demands across category

classes, the difference in behavioral performances for each category can be a

clue to assess the extent of cognitive demand. Table.7 shows the group-wise

behavioral performances for each individual category class. One-way ANOVA

found no significant difference in behavioral performances between individual

classes of category for any potential grouping (Expert, F(3,36) = 1.38, p = 0.27;

Middle, F(3,36) = 2.99, p = 0.06; Novice, F(3,36) = 2.81, p = 0.07; All, F(3,116)

= 2.02, p = 0.12). Thus, this study considered that the difference in cognitive

demands induced by code snippets of different category classes did not have a

significant effect on the resulted decoding accuracies.

24

AtCoder rate

0 1000 2000 3000

100

90

80

70

60

50

B
e
h
a
v
io

ra
l
p
e
rf

o
rm

a
n
c
e

o
f
c
a
te

g
o
ry

 c
la

s
s
if
ic

a
ti
o
n
 [

%
]

Middle Novice

All subjects: r = 0.722 **

Rate holders: r = 0.593 *

a

100

80

60

40

B
e
h
a
v
io

ra
l
p
e
rf

o
rm

a
n
c
e

o
f
s
u
b
c
a
te

g
o
ry

 c
la

s
s
if
ic

a
ti
o
n
 [

%
]

All subjects: r = 0.735 **

Rate holders: r = 0.688 **

AtCoder rate

0 1000 2000 3000

bExpert Middle NoviceExpert

Figure 3. Correlations between behavioral performance and program-

ming expertise indicator. (a) Scatter plot of behavioral performances of cate-

gory classifications against the values of adopted expertise reference (i.e. AtCoder

rate). (b) Scatter plot of behavioral performances of subcategory classifications

against the values of the same expertise reference. Each dot represents an in-

dividual subject. Significance of the correlation coefficients (r) was denoted as

*, p < 0.05 and **, p < 0.005. The solid lines indicate a fitted regression line

estimated from all subject data.

Table 7. Behavioral performance of each category in the fMRI experi-

ment. Numerics from 3rd (Math) to last columns denote ’MEAN±SD’. One-way

ANOVA found no significant difference in behavioral performances between cat-

egories for any groupings (Expert, F(3,36) = 1.38, p = 0.27; Middle, F(3,36) =

2.99, p = 0.06; Novice, F(3,36) = 2.81, p = 0.07; All, F(3,116) = 2.02, p = 0.12).

N Math Search Sort String

Expert 10 93.8 ± 11.4 89.4 ± 11.8 84.8 ± 9.2 86.3 ± 8.4

Middle 10 68.1 ± 15.0 77.8 ± 16.2 70.2 ± 15.6 83.1 ± 9.5

Novice 10 72.2 ± 15.2 53.0 ± 20.1 60.4 ± 19.1 72.2 ± 12.5

All 30 78.1 ± 17.7 73.4 ± 22.1 71.8 ± 17.9 80.6 ± 11.6

25

4.2 Mutli-voxel activity patterns associated with program-

ming expertise

This study next examined where the functional categories of source code can be

decoded from programmers’ brain activity. Fig.4 visualizes the searchlight cen-

ters that showed significantly higher decoding accuracy than chance as estimated

from all subject data using a relatively strict whole-brain statistical threshold

(voxel-level p < 0.05 FWE-corrected). The figure shows that significant decoding

accuracies were observed in the broad areas of the bilateral occipital cortices,

parietal cortices, posterior and ventral temporal cortices, as well as the bilateral

frontal cortices around inferior frontal gyri. The variances of peak decoding ac-

curacies across individual subjects on six widely distributed brain regions were

depicted in Figure 5. The figure ensured that the decoding accuracies of all or

almost all subjects were higher than the chance-level accuracy with a reasonable

margin. Given these results, this study confirmed that functional categories of

source code were represented in the widely distributed brain areas and the cor-

tical representations of each category class were linearly separable by a simple

SVM classifier.

To associate the cortical representation of source code with individual pro-

gramming expertise, a linear correlation was investigated between behavioral per-

formances and decoding accuracies for each searchlight location. Fig.6a visualizes

the searchlight centers that showed significantly high correlation coefficients using

thresholds of voxel-level p < 0.001 uncorrected and cluster-level p < 0.05 FWE-

corrected. Significant correlations were observed in the areas of bilateral inferior

frontal gyri pars triangularis (IFG Tri), right superior frontal gyrus (SFG), left

inferior parietal lobule (IPL), left middle and inferior temporal gyrus (MTG /

IT); see the slice-width visualization shown as Fig.6b and Table 2 for the list of

significant clusters. In this correlation analysis, the right IFG Tri showed the

highest peak correlation coefficient. These results provided evidence that corti-

cal representations in the distinct brain areas mainly located in frontal, parietal,

and temporal cortices were significantly associated with experts’ outstanding be-

havioral performances on the program categorization task. In contrast, cortical

representations in the bilateral occipital cortices including early visual areas did

not show a significant correlation to individual behavioral performances, while

26

Table 8. Clusters showing significant correlations between behavioral

performance and category decoding accuracy (voxel-level p < 0.001 and

cluster-level p < 0.05, FWE-corrected). Region names were identified using Au-

tomated anatomical labelling atlas 2 [55].

MNI coordinates

Region name X Y Z Corr. (r) T-value Extent

R IFG (p. Triangularis) 46 22 8 0.789 6.81 369

L Posterior-Medial Frontal -12 0 66 0.711 5.36 298

R Superior Medial Gyrus 6 52 42 0.699 5.17 587

L Inferior Parietal Lobule -56 -28 50 0.698 5.16 649

R Superior Frontal Gyrus 24 4 60 0.675 4.84 428

L IFG (p. Triangularis) -52 30 24 0.671 4.79 346

L Inferior Temporal Gyrus -50 -54 0 0.635 4.35 347

significant decoding accuracies were broadly observed in the cortices (see Fig.4).

The previous analyses separately showed where significant decoding accuracies

exist and whether the decoding accuracies significantly correlate with behavioral

performances. To achieve more validated evidence for the cortical representations

associated with programming expertise, these two analyses were integrated to find

the searchlight centers that had sufficient information to represent functional cat-

egories of source code and their decoding accuracies significantly correlated with

individual behavioral performance. Specifically, the two significant searchlight

maps, i.e. decoding accuracy map and correlation map to behavioral perfor-

mance, were superimposed on a single cortical surface to investigate the over-

lap between them. As a result, 1205 searchlight centers (equal to 0.79%) were

survived from both statistical thresholds of decoding accuracy and correlation

to behavioral performances; shown as red-colored dots in Fig.7a. The survived

searchlight centers were mainly observed in the bilateral IFG Tri, left IPL, left

supramarginal gyrus (SMG), left MTG/IT, and right middle frontal gyrus (MFG)

as shown in Fig.7b. These results revealed a tight association between superior

behavioral performances of expert programmers and improvement of decoding

accuracy in these distributed brain regions.

27

18

5.6

LEFT RIGHT

t

Figure 4. Decoding accuracy for functional category of source code.

Significant searchlight locations estimated from all subject data (N = 30). Heat

colored voxels denote the centers of searchlights with significant decoding accu-

racy (voxel-level p < 0.05, FWE corrected). The brain surface visualizations were

performed using BrainNet viewer, version 1.61 [53].

28

25

30

35

40

IFG TriITMTGIPLSMGCalcarine

Left Right Left Right Left Right LeftLeft Right Right Left Right

t = 18.4

p < 10
-18

t = 11.3

t = 10.0 t = 9.8

t = 8.9

t = 11.4 t = 10.0

t = 7.6

t = 10.4

p < 10

p < 10 p < 10

p < 10

p < 10 p < 10

p < 10

p < 10

t = 18.0

p < 10
-17

t = 8.5

p < 10
-9

t = 10.0

p < 10
-11

-12

-11 -11

-10

-12 -11

-9

-11

C
a
te

g
o
ry

 d
e
c
o
d
in

g
 a

c
c
u
ra

c
y
 [

%
]

Figure 5. Box plots of the voxel-level peak category decoding accura-

cies. Each dot represents decoding accuracy of individual subject. The dashed

line indicates chance-level accuracy (25%). Abbreviations: SMG, Supramarginal

gyrus; IPL, Inferior parietal lobule; MTG, Middle temporal gyrus; IT, Inferior

temporal gyrus; IFG Tri, Inferior frontal gyrus pars triangularis.

29

LEFT RIGHT

a

b
t

6.8

3.0

-52

+50 0 +46

T
IPL

IT

IFG TriIFG Orb
MFG

SFG

MCC

c
L IFG Tri at [-52, 30, 24] L IPL at [-56, -28, 50] R IFG Tri at [46, 22, 8]

100

90

80

70

60

50B
e
h
a
v
io

ra
l
p
e
rf

o
rm

a
n
c
e
 [

%
]

20 25 30 35 20 25 30 35 20 25 30 35

Decoding accuracy [%]

Expert

Middle

Novice

Figure 6. Searchlight-based correlation analysis between behavioral per-

formances and decoding accuracies. (a) Locations of searchlight showing

significant correlations. Significance was determined by a threshold of voxel-level

p < 0.001 and cluster-level p < 0.05, FWE corrected for the whole brain. (b)

Slice-wise visualizations of the significant clusters using bspmview. (c) Correla-

tion between behavioral performance and decoding accuracy. Each dot represents

an individual subject data. Abbreviations: SMG, Supramarginal gyrus; IPL, In-

ferior parietal lobule; MTG, Middle temporal gyrus; IT, Inferior temporal gyrus;

SFG, Superior frontal gyrus; MFG, middle frontal gyrus; IFG Tri, Inferior frontal

gyrus pars triangularis; IFG Orb, Inferior frontal gyrus pars orbitalis; MCC, me-

dial cingulate cortex.

30

0.8

0.4

0

-0.4

-5 0 5 10 15 20

Both significant

Only correlation

Only accuracy

Non-significant

C
o
r
r
e
la

ti
o
n

 c
o
e
ff

ic
ie

n
t

(r
)

b
e
tw

e
e
n

b
e
h

a
v
io

r
a
l
p

e
r
fo

r
m

a
n

c
e
 a

n
d

 d
e
c
o
d

in
g

 a
c
c
u

r
a
c
y

Decoding accuracy (t-value converted)

Null distribution

by random-shuffling

subject identities

Observed data

a

b

LEFT RIGHT

Both significant Only correlation

MTG / IT
IFG Tri

IPL / SMG
MFG

IFG Tri

IFG Tri

Observed data

Null distribution by

a simulated random classifier

Figure 7. Identifying searchlight centers that showed both significant

decoding accuracy and significant correlation to individual behavioral

performances. (a) Scatter plot of searchlight results. The observed distri-

butions of decoding accuracies and correlations are respectively shown on top-

and right-sides of the figure accompanied with null distributions calculated by

randomized simulations. (b) Locations of searchlight centers that showed both

significant decoding accuracy and significant correlations to individual behavioral

performances.

31

4.3 Cortical representations of subcategory information

This study next investigated where the subcategory of source code can be decoded

from programmers’ brain activity to examine finer-level cortical representations.

In the experiment, subjects responded ‘sort’ when they had been presented with

the code snippets implementing one of three different sorting algorithms; i.e.

bubble, insertion, and selection sorts (see Fig.1a). This cognitive process could

be considered as a generalization process that incorporates different but simi-

lar algorithms (subcategory) into a more general functionality class (category).

Additionally, several psychologists indicated that experts specifically show high

behavioral performances in subordinate-level categorizations as well as basic-level

categorizations [56]. In fact, the behavioral evidence demonstrated that the abil-

ity to differentiate subcategory classes significantly correlated to programming

expertise in competitive programming (see Fig.3b). This observation implies that

the detailed difference of source code functionalities might be represented in pro-

grammers’ brain activity patterns. The decoding accuracy of subcategory may be

correlated with programming expertise, even though they classified only category

classes, not subcategory, of given code snippets and the existence of subcategory

classes had never been revealed until the end of the fMRI experiment.

Searchlight analysis was employed with the same setting as used in the pre-

vious analysis to reveal the spatial distribution of significant subcategory de-

coding accuracies and significant correlations to behavioral performances. Fig.8

illustrates the searchlight centers that showed significantly higher subcategory

decoding accuracy than chance (9.72%; corrected for imbalanced exemplars) us-

ing a threshold of voxel-level p < 0.05 FWE-corrected. The variances of peak

subcategory decoding accuracies across individual subjects on six widely dis-

tributed brain regions were depicted in Figure 9. The linear correlation between

subcategory decoding accuracies and individual behavioral performances was then

assessed using thresholds of voxel-level p < 0.001 uncorrected and cluster-level

p < 0.05 FWE-corrected. Fig.10 visualizes the result and indicates that only a

cluster on the left SMG and superior temporal gyrus (STG) showed a significant

correlation; the peak correlation coefficient was observed in the left STG. Finally,

the results from decoding and correlation analysis of subcategory were integrated

and demonstrated that 120 searchlight centers (equal to 0.08%) on the left SMG

32

and STG survived from both statistical thresholds of decoding accuracy and cor-

relation to behavioral performances; shown as red-colored dots in Fig.11a. These

results suggest that cortical representations of fine functional categories on the

left SMG and STG may play an important role in achieving advanced-level pro-

gramming expertise, even though the representations are not explicitly required

by the tasks.

33

18

5.6

LEFT RIGHT

t

Figure 8. Decoding accuracy for subcategory of source code. Searchlight

locations showing significant subcategory decoding accuracy than chance esti-

mated from all subject data (N = 30). Heat colored voxels denote the centers of

searchlights with significant subcategory decoding accuracy (voxel-level p < 0.05,

FWE corrected).

9

12

15

18

IFG TriITMTGIPLSMGCalcarine

Left Right Left Right Left Right LeftLeft Right Right Left Right

t = 18.4

p < 10
-18

t = 10.3

t = 13.6

t = 9.2

t = 8.5

t = 9.3 t = 7.9

t = 9.9

t = 10.0

p < 10

p < 10

p < 10

p < 10

p < 10 p < 10

p < 10

p < 10

t = 20.0

p < 10
-19

t = 8.2

p < 10
-9

t = 12.8

p < 10
-14

-11

-14

-10

-9

-10 -9

-11

-11

S
u

b
c
a
te

g
o
ry

 d
e
c
o
d
in

g
 a

c
c
u
ra

c
y
 [

%
]

Figure 9. Box plots of the voxel-level peak subcategory decoding accu-

racies. Each dot represents decoding accuracy of individual subject. The dashed

line indicates chance-level accuracy (9.72%). Abbreviations are same as Fig.5.

34

LEFT RIGHT

a

b
t

5.5

3.0

-52

-60 -28 +12

STG

SMG

STGSTG

STG

SMG

c
L STG at [-52, -36, 12] L STG at [-64, -28, 18] L SMG at [-60, -30, 38]

100

90

80

70

60

50B
e
h
a
v
io

ra
l
p
e
rf

o
rm

a
n
c
e
 [

%
]

7.5 10 12.5 15

Subcategory decoding accuracy [%]

7.5 10 12.5 15 7.5 10 12.5 15

Expert

Middle

Novice

Figure 10. Searchlight-based correlation analysis between behavioral

performances and subcategory decoding accuracies. (a) Locations of

searchlight showing significant correlations. Significance was determined by a

threshold of voxel-level p < 0.001 and cluster-level p < 0.05, FWE corrected

for the whole brain. (b) Slice-wise visualizations of the significant clusters. (c)

Correlation between behavioral performance and decoding accuracy. Each dot

represents an individual subject data. Only one cluster (extent = 501 voxels)

had significant correlation in this analysis and three peak correlations in the

cluster were shown here. Abbreviations: STG, Superior temporal gyrus.

35

0.8

0.4

0

-0.4

-5 0 5 10 15 20

Both significant

Only correlation

Only accuracy

Non-significant

C
o
r
r
e
la

ti
o
n

 c
o
e
ff

ic
ie

n
t

(r
)

b
e
tw

e
e
n

b
e
h

a
v
io

r
a
l
p

e
r
fo

r
m

a
n

c
e
 a

n
d

 d
e
c
o
d

in
g

 a
c
c
u

r
a
c
y

Decoding accuracy (t-value converted)

Null distribution

by random-shuffling

subject identities

Observed data

Observed data

a

LEFT RIGHT

Both significant Only correlation

b SMG

STG

Null distribution by

a simulated random classifier

Figure 11. Identifying searchlight centers that showed both significant

subcategory decoding accuracy and significant correlation to individ-

ual behavioral performances. (a) Scatter plot of searchlight results. The

observed distributions of subcategory decoding accuracies and correlations are

respectively shown on top- and right-sides of the figure accompanied with null

distributions calculated by randomized simulations. (b) Locations of searchlight

centers that showed both significant subcategory decoding accuracy and signifi-

cant correlations to individual behavioral performances.

36

4.4 Decoding accuracy on the visual confounding controlled

data

This study additionally performed searchlight analysis using the visual confound-

ing balanced dataset to quantify the effects of primitive visual features in the

code stimuli (see Section 3.7). Figure 12a visualizes the searchlight centers that

showed significantly higher category decoding accuracy than chance (26.48%;

corrected for imbalanced exemplars) using a threshold of voxel-level p < 0.05

FWE-corrected. The result obtained from the balanced dataset seemed to be

almost the same as the result from the original dataset shown as Fig.4. The

decoding accuracies on the bilateral occipital cortices, parietal cortices, posterior

and ventral temporal cortices, as well as the bilateral frontal cortices remained

significant if the systematic differences in the primitive visual features were re-

moved. Figure 12b shows the difference in t-value maps obtained using original

and balanced datasets. The figure suggests that the operation of visual con-

founding control mainly decreased the decoding accuracies on the primary visual

areas. This observation was not surprising because the representations of primi-

tive visual features in experimental stimuli are typically reflected in the primary

visual areas [57]. These results indicate that the decoding accuracies observed in

this study were not significantly driven by the primitive visual features including

LOC, CPL, and number of total characters. Note that the visualization of dif-

ference in t-value maps (Fig.12b) was created only for visualization purpose and

was not tested in their significance because a valid statistical test was not found

to examine the difference in t-value maps obtained from whole-brain searchlight

analyses.

37

18

5.6

LEFT RIGHT

t

4.0

-4.0

1.5

-1.5

Decrease by visual
confounding control

Increase by visual
confounding control

D
iff. in

 t v
a
lu

e
(o

rig
in

a
l - b

a
la

n
c
e
d
)

a

b

Figure 12. Decoding accuracy of category using the visual confounding

balanced data. (a) Searchlight locations showing significant category decoding

accuracy than chance using balanced data controlling for visual confounding.

Heat colored voxels denote the centers of searchlights with significant subcategory

decoding accuracy (N = 30; voxel-level p < 0.05, FWE corrected). (b) Difference

in t value between results using original and balanced datasets. The image of

t-value difference is only for visualization purpose.

38

5. Discussion

5.1 Summary of findings

This thesis demonstrated that functional categories of source code can be decoded

from programmers’ brain activity measured using fMRI. Decoding accuracies on

the bilateral inferior frontal gyrus pars triangularis, left inferior parietal lobule,

left supramarginal gyrus, left middle and inferior temporal gyri, and right mid-

dle frontal gyrus were significantly correlated with individual behavioral perfor-

mances on the program categorization task. Furthermore, decoding accuracies

of subcategory on the left supramarginal and superior temporal gyri were also

strongly correlated with the behavioral performances while the subordinate-level

representations were not directly induced by the performing tasks. The results

revealed an association between the outstanding performances of expert program-

mers and domain-specific cortical representations in these brain areas widely dis-

tributed in the frontal, parietal, and temporal cortices.

39

5.2 Cortical representations and programming expertise

Previous fMRI studies on programmers have aimed at characterizing how pro-

gramming related activities, such as program comprehension and bug detection,

take place in the brain [14–17, 58, 59]. Exceptionally, an exploratory study re-

ported that BOLD signal discriminability between code and text comprehension

was negatively correlated with participants’ GPA scores in a university [17]. How-

ever, the relationship between GPA scores and programming expertise was am-

biguous and the observed correlation was relatively small (r = -0.44, p = 0.016,

n = 29). The aim in the present study was substantially different: This study

sought the neural bases of programming expertise that contribute to expert pro-

grammers’ outstanding performances. To address the goal, the study adopted

an objectively-determined reference of programming expertise and recruited a

population of subjects covering a wide range of programming expertise. Despite

the difference in research aims, a subset of brain regions specified in this study

was similar to those specified by prior fMRI studies on programmers [14–16]. In

particular, this study associated the left IFG, MTG, IPL, SMG with program-

ming expertise while previous studies related them with program comprehension

processes. This commonality may suggest that both program comprehension

processes and its related expertise depend on the same set of brain regions.cite

The potential roles of the specified brain regions in this study should be ad-

dressed to orient future researches on programming activity and expertise. First,

the left IFG Tri and the left posterior MTG are frequently involved in seman-

tic selecting/retrieving tasks [60–63]. Several studies indicated that these two

regions are sensitive to cognitive demands for directing semantic knowledge re-

trieval in a goal-oriented way [64–66]. The involvement of the two regions may be

induced by similar demands specialized for the retrieval of program functional cat-

egories and suggest that higher programming expertise is related to the abilities of

goal-oriented knowledge retrieval. Second, many neuroscientists have shown the

left IPL and SMG to be functionally related to visual word reading [67–69] and

episodic memory retrieval [70–72]. Both cognitive functions potentially relate to

the program categorization task used in the experiment. Visual word reading can

be naturally engaged since source code is comprised of many English-like words

and subjects may have actively recollected previously-acquired memories to com-

40

pensate for insufficient clues because they had only ten seconds to categorize the

given code snippet. The involvements of the left IPL and SMG suggest that ex-

pert programmers might possess different reading strategies and/or depend more

on domain-specific memory retrieval than novices.

The set of IFG and IPL has been frequently discussed together as a fronto-

parietal network and they often show synchronous activity in a wide range of

tasks [73, 74]. Importantly, a recent fMRI study on programmers suggested an

association between program comprehension and fronto-parietal network that was

functionally related to formal logical inference [40]. The results observed in this

study are consistent with these findings, implying that the fronto-parietal network

plays a key role in experts’ program comprehension processes. In addition, this

thesis showed the involvement of the left MTG in programming expertise. Martin

et al. demonstrated that recall of action words associated with a tool activated

a region in the left MTG selectively [75] and several studies suggest that object

categories, especially for tools, are potentially represented in the left MTG [76,77].

From this point of view, the finding suggest that the region might represent

categorical knowledge that maps the given code snippet onto its corresponding

functionality, in a similar way to a mapping from a tool to its functionality.

Other novel findings in the present study included potential involvement of the

left IT, right MFG, and right IFG Tri with programming expertise. Importantly,

these regions were not specified by previous studies focusing on the relation-

ship between brain activity and program comprehension processes of non-expert

subjects [14–17], suggesting that the regions might be more related to expert pro-

grammers’ program comprehension processes. Because the left IT is well known

for the function in high-level visual processing including word recognition and cat-

egorical object representations [78–80], the results may suggest that the high-level

visual cortex in expert programmers could be fine-tuned by their training experi-

ence to realize faster program comprehension process. From another perspective,

the observed map involving the left IFG Tri, IPL, and MTG/IT (Fig.6a) could be

associated with a semantic system in the brain [81,82]. The results might suggest

that an expert programmer’s brain recruits a similar language-related network

for both natural language processing and program comprehension.

In contrast, the primary visual area showed significant decoding accuracy but

41

no correlation to programming expertise. Multiple studies demonstrated that

visual perceptual learning can occur for task-irrelevant stimulus features and can

unconsciously modulate the activity patterns in primary visual area [83,84]. Such

visual perceptual learning might have occurred in our study and made us find

significantly high decoding accuracies on the primary visual area regardless of in-

dividual levels of programming expertise. From another perspective, the primary

visual area mainly reflects primitive visual features such as color, contrast, spatial

frequency [57] while computations in the high-level visual cortex are character-

ized by both bottom-up (i.e. how stimuli are visually represented) and top-down

(how the representation is used for a cognitive task) effects [85]. Previous studies

indicated that fine-tuned representations in the high-level visual cortex, rather

than in the primary visual area, could be associated with visual expertise [21] and

reading skill [86]. In the experiment, the primary visual area represented a large

amount of visual information regardless of programming expertise levels because

all subjects were presented with the same set of code snippets inducing similar

visual patterns on their retinas. Therefore, the information in the primary visual

area was sufficient to decode category and subcategory classes but the decod-

ing accuracies were not necessarily to be correlated with individual behavioral

performances. Meanwhile, the amount of information represented in the high-

level visual cortex might be modulated by individual programming expertise. In

line with previous expertise studies, this study imply that expertise in program

comprehension could be mainly associated with high-level visual perception.

The right MFG and IFG Tri are functionally related to stimulus-driven at-

tention control [87, 88]. The involvement of these two regions suggests that pro-

grammers with high-level programming expertise may employ different attention

strategies than less-skilled ones. Moreover, additional engagements of right hemi-

sphere regions in experts are common across expertise studies. For example, chess

experts [89] and abacus experts [90, 91] showed additional right hemisphere re-

gion involvements when performing their domain-specific tasks. Several fMRI

studies further suggest that such activation shifts from left to right hemisphere

may be related to experts’ cognitive strategy changes [89, 92]. Cognitive strat-

egy changes have been observed repeatedly in comparisons between expert and

novice programmers: A major characteristic is a transition from bottom-up (or

42

textual-driven) to top-down (or goal-driven) program comprehension, which be-

comes feasible by experts’ domain-specific knowledge [8–10]. The involvement of

the right MFG and IFG Tri observed in this study might be related to such cog-

nitive strategy differences between programmers in the program categorization

task. From another perspective, activations in the prefrontal and parietal regions

including bilateral IFG/MFG and left IPL have been associated with the extent

of cognitive demands [93]. While this study did not have a direct indicator of

cognitive demands across categories, the difference in behavioral performances

for each category can be a clue to assess the extent of cognitive demand across

the categories. This study used the one-way ANOVA to test the difference in

mean behavioral performances between categories but no significant difference

was found for any groupings (see Table 7). Although these results do not provide

a direct indication of cognitive demands across categories, there is no positive

evidence that the extent of cognitive demands had a significant effect on the

observed decoding accuracies.

The results associated programming expertise with decoding accuracies of

not only category but also subcategory, even though the subordinate-level cat-

egorizations were not explicitly required by the performing task. This study

observed that individual behavioral performances were significantly correlated

with subcategory decoding accuracies on the left STG and SMG. These two

regions are functionally related to pre-lexical and phonological processing in nat-

ural language comprehension [60, 94, 95]. Interestingly, a significant correlation

was found between behavioral performances and category decoding accuracies on

the temporal regions (left MTG and IT) associated with more semantical process-

ing [63,64,66]. If these functional interpretations could be adaptable to program

comprehension processes, it would be intuitive that subordinate concrete con-

cepts (i.e. subcategory) of source code are processed in the left STG/SMG and

more semantically abstract concepts (i.e. category) are represented in the left

MTG/IT. Further, Mkrtychian et al. have associated STG, MTG, and IFG with

the processing of abstract concepts in their review on concreteness effects [96],

implying that representations in these three regions could reflect relative differ-

ences in abstractness between the category and subcategory in this study. These

interpretations might suggest a hypothesis that an expert programmer’s brain

43

has a hierarchical semantic processing system to obtain mental representations

of source code for multiple levels of abstraction.

44

5.3 Limitations of the study

The results obtained via the present study were limited to a specific type of pro-

gramming expertise evaluated by the expertise reference and laboratory task used

in the experiment. The study particularly examined the ability to semantically

categorize source code that correlated with programming expertise to win high

scores in competitive programming contests. Perhaps there is a qualitative gap

between expertise in competitive programming and practical/industrial software

development. For example, the ability to write efficient SQL programs, for ex-

ample, may be an explicit indicator of another type of programming expertise;

but this study did not cover such type of programming expertise. The program

categorization task used in this study primarily evaluated the skill in recognizing

algorithms quickly and accurately, which was one aspect of a wide range of cog-

nitive skills that constitute programming expertise. The evaluated skill is related

to program comprehension and is also connected to skills in code refactoring and

debugging because these processes require a deep understanding of algorithms or

how the code works; while its relation to writing code is not assessed in this study.

Thus, the results should not be taken to imply the relationship between the neu-

ral correlates revealed here and other types of programming expertise that could

not be examined by this experiment. However, it is also a fact that nobody can

investigate the neural bases of programming expertise without a clear definition

of expertise indicator and laboratory task that well fit the general constraints

of fMRI experiments. To mitigate the potentially inevitable effects caused by

this limitation, this study adopted the objectively-determined reference of pro-

gramming expertise that directly reflects programmers’ actual performances and

recruited a population of subjects covering a wide range of programming exper-

tise. This study can be a baseline for future researches to investigate the neural

bases of programming expertise and related abilities.

The experiment described in the thesis, which was designed to fit the general

constraints of fMRI measurement, might embrace several caveats to external va-

lidity. First, this study used the relatively small code snippets with 30 lines at

maximum due to the constraint of the MRI screen size. Behavioral performances

on system-level source code were not assessed in the study. Thus, generaliz-

ing the results to the expertise in systems-level program comprehension was not

45

guaranteed. Second, only Java code snippets were used as experimental stimuli

in this study. The results obtained via the experiments might be biased by the

programming language selected; for example, Python has more natural-language-

like syntax than Java and might induce more activation in language-related brain

regions. While a recent fMRI study has examined brain activities elicited by

code written in two programming languages (Python and ScratchJr) [41], it is

still unclear whether the choice of a specific programming language can alter an

expert’s brain activity pattern. The relationship between programming expertise

and types of programming languages (e.g. procedural vs. functional languages)

is expected to be examined in future work.

Another potential concern of the present study was the unavoidable gender

balance in the subject population. While 95 programmers completed the en-

try questionnaire to be registered as candidate subjects, only one middle-level

woman candidate and zero woman expert were found (see Subjects section in

Materials and Methods). From this situation, the unavoidable gender bias was

recognized in the target population. To properly cover a wide range of program-

ming expertise, this study was forced to give up on maintaining gender balance at

each expertise level. However, several fMRI studies have reported possible gen-

der differences in behavior, cognitive function, and neuroimaging data [97, 98].

The results obtained via this study might be biased by the gender imbalance of

the subject population. Future work should investigate whether behavioral and

cognitive differences would be found between man and woman programmers. In

addition, while the sample size in this study was determined in line with previous

expertise studies, ten subjects for each expertise level was not a big population

and were insufficient to show statistically significant results between different ex-

pertise classes. Therefore, making mention of comparison between novice-middle

or middle-expert must be with great caution. Larger samples would be desirable

in future replication or follow-up studies.

46

6. Conclusion and Future work

6.1 Conclusion

This thesis reveals an association between programming expertise and cortical

representations of program source code in a programmer’s brain. The results

demonstrate that functional categories of source code can be decoded from pro-

grammer’s brain activity and the decoding accuracies on the multiple distributed

brain regions in the frontal, parietal, and temporal cortices were significantly cor-

related with individual behavioral performances. The results additionally sug-

gest that cortical representations of fine functional categories (subcategory) on

the left SMG and STG might be associated with advanced-level programming

expertise. Although research on the neural basis of programming expertise is still

in its infancy, the findings extends the existing human expertise literature into

the domain of programming by demonstrating that top-level programmers have

domain-specific cortical representations.

6.2 Future work

This thesis investigated the neural bases of programming expertise and found the

association between individual programming expertise and cortical representa-

tions of source code. During the work, I encountered promising future research

directions as noted below.

Extension with distributed feature vectors of source code.

The decoding framework specialized for the functional category of source code

could be extended by the recent advances of decoding/encoding approaches in

combination with distributed feature vectors [99]. Several researchers have demon-

strated frameworks to decode arbitrary objects using a set of computational visual

features representing categories of target objects [100] and to decode perceptual

experiences evoked by natural movies using word-based distributed representa-

tions [101]. Other studies have also used word-based distributed representations

to systematically map semantic selectivity across the cortex [102,103]. Meanwhile,

researchers in the program analysis domain have proposed distributed represen-

47

tations of source code based on abstract syntax tree (AST) [104,105]. Alon et al.,

for instance, have presented continuous distributed vectors representing the func-

tionality of source code using AST and path-attention neural network [106]. The

combination of recent decoding/encoding approaches and distributed representa-

tions of source code may enable us to build a computational model of program

comprehension that connects semantic features of source code to programmers’

perceptual experiences.

Assessment of information flows in the brain of expert programmers.

This thesis demonstrated that individual behavioral performances were signifi-

cantly correlated with decoding accuracies on the multiple distributed brain re-

gions, located in the frontal, parietal, and temporal cortices. The finding con-

sequently offers a new question about the information flows across these brain

regions. In other words, we should ask how the cortical representation of source

code is constructed in the network of the spatially distributed brain regions.

For answering these questions, combining fMRI data with a high time resolution

modality such as magnetoencephalography could be a promising solution [107].

The methods to identify networks of regions with synchronous responses, such

as functional or informational connectivity [108,109], might be another potential

candidate. Understanding both of activation and information flow in the brain of

expert programmers will provide a comprehensive understanding of programming

expertise.

Holistic processing of source code underlying programming expertise.

A subject with the highest AtCoder rate in the fMRI experiment said that only

two seconds were enough to recognize the algorithm implemented in Java source

code. It means that the subject could recognize the implemented algorithm based

on 6-8 gaze points since a human produces 3-4 gaze fixations on average every

second during visual search [110]. Although this is just anecdotal evidence with

no valid observational data, it might suggest that top-level players in competitive

programming have superiority in visual perception of source code. This perspec-

tive is also supported by the finding that individual behavioral performances were

significantly correlated with decoding accuracies on the high-level visual cortex.

48

A potential explanation could be built on holistic processing, which refers to the

ability to process complex stimuli as a semantic chunk or a whole unit [22], in a

similar way as expertise in other domains [111,112]. Future work should investi-

gate the association between programming expertise and skills in domain-specific

holistic processing.

Biases and differences in program comprehension associated with age,

gender, mother tongue.

Cognitive abilities (e.g. working memory capacity [113], number sense [114])

are different between individuals and biased by age, gender, mother tongue [97].

However, this thesis does not cover such potential biases and differences in pro-

gram comprehension associated with the biological profiles across individuals.

The fMRI study presented in this thesis only recruited the subjects who were

native Japanese speakers of similar ages ranging from 20 to 24 years old (see

Section 3.1 for more details). Future work is expected to clarify the effects of age,

gender, mother tongue on program comprehension activities.

Utilization of human programming expertise for artificial agents.

This study, together with previous studies on expert programmers, has demon-

strated that biometric data obtained from human programmers can be used as

a biomarker that indicates domain-expertise in software development tasks. A

next step will be injecting these insights into an autonomous agent to efficiently

perform software development tasks. Recent studies used human brain activity to

improve the generalization ability of feature representations in machine-learning

models [115,116]. I and colleagues also proposed a conceptual framework of neu-

ral autonomous agents based on the visual attention of an expert programmer

(see Appendix A for details). Future work should evaluate to what extent utiliza-

tion of human programming expertise improves performances of artificial agents

on software development tasks.

49

Acknowledgements

I would like to thank all people participating the fMRI experiment. I am grateful

to professor Takatomi Kubo and Hideaki Hata for their persistent supports to

the entire study. I am also grateful to professor Shinji Nishimoto and Satoshi

Nishida for critical advices and great supports on the entire study. This research

would never be realized without collaboration with professor Shinji Nishimoto

and Satoshi Nishida. I would like to express my gratitude to professor Takashi

Ishio, Hidetake Uwano, Takao Nakagawa, and Nishanth Koganti for constructive

advices regarding the improvement of the entire study. Discussions with Toshiki

Hirao, Takeshi D Itoh, Yuki Ueda, Kiyoka Ikeda, Toyomi Ishida, Keisuke Murai

gave me lots of insight and improved the entire work. Finally, I greatly appre-

ciate the valuable feedbacks and immense supports offered by professor Kenichi

Matsumoto and Kazushi Ikeda.

50

References

[1] Paul Luo Li, Andrew J Ko, and Jiamin Zhu. What makes a great software

engineer? Proceedings of the IEEE/ACM 37th International Conference on

Software Engineering, pages 700–710, 2015.

[2] Sebastian Baltes and Stephan Diehl. Towards a theory of software develop-

ment expertise. Proceedings of the ACM 26th Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of

Software Engineering, pages 187–200, 2018.

[3] Fredrik Heintz, Linda Mannila, and Tommy Färnqvist. A review of models

for introducing computational thinking, computer science and computing

in K-12 education. Proceedings of the IEEE 46th Frontiers in Education

conference, pages 1–9, 2016.

[4] Sofia Papavlasopoulou, Kshitij Sharma, and Michail N Giannakos. How

do you feel about learning to code? investigating the effect of children’s

attitudes towards coding using eye-tracking. International Journal of Child-

Computer Interaction, 17:50–60, 2018.

[5] Barry W Boehm and Philip N. Papaccio. Understanding and controlling

software costs. IEEE Transactions on Software Engineering, 14(10):1462–

1477, 1988.

[6] Tom DeMarco and Tim Lister. Peopleware: Productive Projects and Teams,

Third Edition. Addison-Wesley Professional, 2013.

[7] Iris Vessey. Expertise in debugging computer programs: A process analysis.

International Journal of Man-Machine Studies, 23(5):459–494, 1985.

[8] Jürgen Koenemann and Scott P Robertson. Expert problem solving strate-

gies for program comprehension. Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, pages 125–130, 1991.

[9] Vikki Fix, Susan Wiedenbeck, and Jean Scholtz. Mental representations of

programs by novices and experts. Proceedings of the INTERACT’93 and

51

CHI’93 conference on Human factors in computing systems, pages 74–79,

1993.

[10] Anneliese Von Mayrhauser and A Marie Vans. Program comprehension

during software maintenance and evolution. Computer, 28(8):44–55, 1995.

[11] Martha E Crosby, Jean Scholtz, and Susan Wiedenbeck. The roles beacons

play in comprehension for novice and expert programmers. Proceedings of

the 14th Workshop of the Psychology of Programming Interest Group, pages

58–73, 2002.

[12] Hidetake Uwano, Masahide Nakamura, Akito Monden, and Kenichi Mat-

sumoto. Analyzing individual performance of source code review using

reviewers’ eye movement. Proceedings of the Eye tracking Research and

Applications Symposium, pages 133–140, 2006.

[13] Teresa Busjahn, Roman Bednarik, Andrew Begel, Martha Crosby, James H

Paterson, Carsten Schulte, Bonita Sharif, and Sascha Tamm. Eye move-

ments in code reading: Relaxing the linear order. Proceedings of the IEEE

23rd International Conference on Program Comprehension, pages 255–265,

2015.

[14] Janet Siegmund, Christian Kästner, Sven Apel, Chris Parnin, Anja Beth-

mann, Thomas Leich, Gunter Saake, and André Brechmann. Understand-

ing understanding source code with functional magnetic resonance imaging.

Proceedings of the IEEE/ACM 36th International Conference on Software

Engineering, pages 378–389, 2014.

[15] Janet Siegmund, Norman Peitek, Chris Parnin, Sven Apel, Johannes

Hofmeister, Christian Kästner, Andrew Begel, Anja Bethmann, and André

Brechmann. Measuring neural efficiency of program comprehension. Pro-

ceedings of the 11th Joint Meeting on Foundations of Software Engineering,

pages 140–150, 2017.

[16] Norman Peitek, Janet Siegmund, Sven Apel, Christian Kästner, Chris

Parnin, Anja Bethmann, Thomas Leich, Gunter Saake, and André Brech-

52

mann. A look into programmers’ heads. IEEE Transactions on Software

Engineering, 46(4):442–462, 2018.

[17] Benjamin Floyd, Tyler Santander, and Westley Weimer. Decoding the

representation of code in the brain: An fMRI study of code review and

expertise. Proceedings of the IEEE/ACM 39th International Conference on

Software Engineering, pages 175–186, 2017.

[18] Aline W de Borst, Giancarlo Valente, Iiro P Jääskeläinen, and Pia Tikka.

Brain-based decoding of mentally imagined film clips and sounds reveals

experience-based information patterns in film professionals. NeuroImage,

129:428–438, 2016.

[19] Farah Martens, Jessica Bulthé, Christine van Vliet, and Hans Op de Beeck.

Domain-general and domain-specific neural changes underlying visual ex-

pertise. NeuroImage, 169:80–93, 2018.

[20] Jesse Gomez, Michael Barnett, and Kalanit Grill-Spector. Extensive child-

hood experience with pokémon suggests eccentricity drives organization of

visual cortex. Nature Human Behaviour, 3(6):611, 2019.

[21] Merim Bilalić, Thomas Grottenthaler, Thomas Nägele, and Tobias Lindig.

The faces in radiological images: fusiform face area supports radiological

expertise. Cerebral Cortex, 26(3):1004–1014, 2016.

[22] Merim Bilalić. The Neuroscience of Expertise. Cambridge Fundamentals of

Neuroscience in Psychology. Cambridge University Press, 2017.

[23] Nikolaus Kriegeskorte, Rainer Goebel, and Peter Bandettini. Information-

based functional brain mapping. Proceedings of the National Academy of

Sciences, 103(10):3863–3868, 2006.

[24] K Anders Ericsson, Robert R Hoffman, and Aaron Kozbelt. The Cambridge

handbook of expertise and expert performance. Cambridge University Press,

2006.

53

[25] G. R. Bergersen, D. I. K. Sjøberg, and T. Dyb̊a. Construction and validation

of an instrument for measuring programming skill. IEEE Transactions on

Software Engineering, 40(12):1163–1184, 2014.

[26] Janet Siegmund, Christian Kastner, Jorg Liebig, Sven Apel, and Stefan

Hanenberg. Measuring and modeling programming experience. Empirical

Software Engineering, 19(5):1299–1334, 2014.

[27] Minghui Zhou and Audris Mockus. Developer fluency: Achieving true mas-

tery in software projects. pages 137–146, 2010.

[28] Harold Sackman, Warren J Erikson, and E Eugene Grant. Exploratory

experimental studies comparing online and offline programing performance.

Technical report, SYSTEM DEVELOPMENT CORP SANTA MONICA

CA, 1966.

[29] Andy Oram and Greg Wilson. Making software: What really works, and

why we believe it. O’Reilly, 2010.

[30] Paul A Mabe and Stephen G West. Validity of self-evaluation of ability: A

review and meta-analysis. Journal of applied Psychology, 67(3):280, 1982.

[31] Philip M Podsakoff and Dennis W Organ. Self-reports in organizational

research: Problems and prospects. Journal of management, 12(4):531–544,

1986.

[32] Zohreh Sharafi, Zéphyrin Soh, and Yann-Gaël Guéhéneuc. A systematic

literature review on the usage of eye-tracking in software engineering. In-

formation and Software Technology, 67:79–107, 2015.

[33] Unaizah Obaidellah, Mohammed Al Haek, and Peter C-H Cheng. A survey

on the usage of eye-tracking in computer programming. ACM Computing

Surveys, 51(1):1–58, 2018.

[34] Bonita Sharif, Michael Falcone, and Jonathan I Maletic. An eye-tracking

study on the role of scan time in finding source code defects. In Proceedings

of the Symposium on Eye Tracking Research and Applications, pages 381–

384. ACM, 2012.

54

[35] Norman Peitek, Janet Siegmund, and Sven Apel. What drives the reading

order of programmers? an eye tracking study. Proceedings of the IEEE 28th

International Conference on Program Comprehension, 2020.

[36] SeolHwa Lee, Andrew Matteson, Danial Hooshyar, SongHyun Kim, Jae-

Bum Jung, GiChun Nam, and HeuiSeok Lim. Comparing programming

language comprehension between novice and expert programmers using eeg

analysis. Proceedings of the IEEE 16th International Conference on Bioin-

formatics and Bioengineering, pages 350–355, 2016.

[37] Seolhwa Lee, Danial Hooshyar, Hyesung Ji, Kichun Nam, and Heuiseok

Lim. Mining biometric data to predict programmer expertise and task

difficulty. Cluster Computing, 21(1):1097–1107, 2018.

[38] Yoshiharu Ikutani and Hidetake Uwano. Brain activity measurement during

program comprehension with NIRS. Proceedings of the 15th IEEE/ACIS

International Conference on Software Engineering, Artificial Intelligence,

Networking and Parallel/Distributed Computing, pages 1–6, 2014.

[39] Takao Nakagawa, Yasutaka Kamei, Hidetake Uwano, Akito Monden,

Kenichi Matsumoto, and Daniel M German. Quantifying programmers’

mental workload during program comprehension based on cerebral blood

flow measurement: a controlled experiment. Proceedings of the IEEE/ACM

36th International Conference on Software Engineering, pages 448–451,

2014.

[40] Yun-Fei Liu, Judy Kim, Colin Wilson, and Marina Bedny. Computer code

comprehension shares neural resources with formal logical inference in the

fronto-parietal network. eLife, 9:e59340, 2020.

[41] Anna A Ivanova, Shashank Srikant, Yotaro Sueoka, Hope H Kean, Riva

Dhamala, Una-May O’Reilly, Marina U Bers, and Evelina Fedorenko. Com-

prehension of computer code relies primarily on domain-general executive

brain regions. eLife, 9:e58906, 2020.

[42] Alessandro Guida, Fernand Gobet, Hubert Tardieu, and Serge Nicolas. How

chunks, long-term working memory and templates offer a cognitive explana-

55

tion for neuroimaging data on expertise acquisition: a two-stage framework.

Brain and cognition, 79(3):221–244, 2012.

[43] Xiaohong Wan, Hironori Nakatani, Kenichi Ueno, Takeshi Asamizuya,

Kang Cheng, and Keiji Tanaka. The neural basis of intuitive best next-

move generation in board game experts. Science, 331(6015):341–346, 2011.

[44] Marie Amalric and Stanislas Dehaene. Origins of the brain networks for ad-

vanced mathematics in expert mathematicians. Proceedings of the National

Academy of Sciences, 113(18):4909–4917, 2016.

[45] Marijke Brants, Jessica Bulthé, Nicky Daniels, Johan Wagemans, and Hans

P Op de Beeck. How learning might strengthen existing visual object repre-

sentations in human object-selective cortex. NeuroImage, 127:74–85, 2016.

[46] R. C Oldfield. The assessment and analysis of handedness: The Edinburgh

inventory. Neuropsychologia, 9:97–113, 1971.

[47] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford

Stein. Introduction to Algorithms, Third Edition. The MIT Press, 2009.

[48] Robert Sedgewick and Kevin Wayne. Algorithms, Forth Edition. Addison-

Wesley Professional, 2011.

[49] Jonathan W Peirce. Psychopy—psychophysics software in python. Journal

of Neuroscience Methods, 162:8–13, 2007.

[50] Gerard R Ridgway, Rohani Omar, Sébastien Ourselin, Derek LG Hill, Ja-

son D Warren, and Nick C Fox. Issues with threshold masking in voxel-

based morphometry of atrophied brains. NeuroImage, 44(1):99–111, 2009.

[51] Martin N Hebart, Kai Görgen, and John-Dylan Haynes. The decoding

toolbox (TDT): a versatile software package for multivariate analyses of

functional imaging data. Frontiers in Neuroinformatics, 8:88, 2015.

[52] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support

vector machines. ACM Transactions on Intelligent Systems and Technology,

2(3), 2011.

56

[53] Mingrui Xia, Jinhui Wang, and Yong He. BrainNet Viewer: a network

visualization tool for human brain connectomics. PLoS One, 8(7):e68910,

2013.

[54] Lukas Snoek, Steven Miletić, and H Steven Scholte. How to control for con-

founds in decoding analyses of neuroimaging data. NeuroImage, 184:741–

760, 2019.

[55] Edmund T Rolls, Marc Joliot, and Nathalie Tzourio-Mazoyer. Implemen-

tation of a new parcellation of the orbitofrontal cortex in the automated

anatomical labeling atlas. Neuroimage, 122:1–5, 2015.

[56] James W Tanaka and Marjorie Taylor. Object categories and expertise: Is

the basic level in the eye of the beholder? Cognitive Psychology, 23(3):457–

482, 1991.

[57] Frank Tong. Primary visual cortex and visual awareness. Nature Reviews

Neuroscience, 4(3):219–229, 2003.

[58] Joao Castelhano, Isabel C Duarte, Carlos Ferreira, Joao Duraes, Henrique

Madeira, and Miguel Castelo-Branco. The role of the insula in intuitive

expert bug detection in computer code: an fMRI study. Brain Imaging and

Behavior, 13(3):623–637, 2019.

[59] Norman Peitek, Janet Siegmund, Chris Parnin, Sven Apel, Johannes C.

Hofmeister, and André Brechmann. Simultaneous measurement of program

comprehension with fMRI and eye tracking: A case study. Proceedings

of the ACM/IEEE 12th International Symposium on Empirical Software

Engineering and Measurement, 2018.

[60] Jean-François Demonet, Francois Chollet, Stuart Ramsay, Dominique

Cardebat, Jean-Luc Nespoulous, Richard Wise, André Rascol, and Richard

Frackowiak. The anatomy of phonological and semantic processing in nor-

mal subjects. Brain, 115(6):1753–1768, 1992.

[61] Sharon L Thompson-Schill, Mark D’Esposito, Geoffrey K Aguirre, and

Martha J Farah. Role of left inferior prefrontal cortex in retrieval of se-

57

mantic knowledge: a reevaluation. Proceedings of the National Academy of

Sciences, 94(26):14792–14797, 1997.

[62] Alan Simmons, Daniel Miller, Justin S Feinstein, Terry E Goldberg, and

Martin P Paulus. Left inferior prefrontal cortex activation during a se-

mantic decision-making task predicts the degree of semantic organization.

NeuroImage, 28:30–38, 2005.

[63] Cathy J Price. A review and synthesis of the first 20 years of PET and

fMRI studies of heard speech, spoken language and reading. NeuroImage,

62(2):816–847, 2012.

[64] Jennifer M Rodd, Matthew H Davis, and Ingrid S Johnsrude. The neural

mechanisms of speech comprehension: fMRI studies of semantic ambiguity.

Cerebral Cortex, 15(8):1261–1269, 2005.

[65] Brice A Kuhl, Nicole M Dudukovic, Itamar Kahn, and Anthony D Wag-

ner. Decreased demands on cognitive control reveal the neural processing

benefits of forgetting. Nature Neuroscience, 10(7):908, 2007.

[66] Carin Whitney, Elizabeth Jefferies, and Tilo Kircher. Heterogeneity of the

left temporal lobe in semantic representation and control: priming multiple

versus single meanings of ambiguous words. Cerebral Cortex, 21(4):831–844,

2010.

[67] Susan Y Bookheimer, Thomas A Zeffiro, Teresa Blaxton, William Gaillard,

and William Theodore. Regional cerebral blood flow during object naming

and word reading. Human Brain Mapping, 3(2):93–106, 1995.

[68] Lisa E Philipose, Rebecca F Gottesman, Melissa Newhart, Jonathan T

Kleinman, Edward H Herskovits, Mikolaj A Pawlak, Elisabeth B Marsh,

Cameron Davis, Jennifer Heidler-Gary, and Argye E Hillis. Neural regions

essential for reading and spelling of words and pseudowords. Annals of

Neurology : Official Journal of the American Neurological Association and

the Child Neurology Society, 62(5):481–492, 2007.

58

[69] Cornelia Stoeckel, Patricia M Gough, Kate E Watkins, and Joseph T De-

vlin. Supramarginal gyrus involvement in visual word recognition. Cortex,

45(9):1091–1096, 2009.

[70] Anthony D Wagner, Benjamin J Shannon, Itamar Kahn, and Randy L

Buckner. Parietal lobe contributions to episodic memory retrieval. Trends

in Cognitive Sciences, 9(9):445–453, 2005.

[71] Kaia L Vilberg and Michael D Rugg. Memory retrieval and the parietal

cortex: a review of evidence from a dual-process perspective. Neuropsy-

chologia, 46(7):1787–1799, 2008.

[72] Akira R O’Connor, Sanghoon Han, and Ian G Dobbins. The inferior pari-

etal lobule and recognition memory: expectancy violation or successful re-

trieval? Journal of Neuroscience, 30(8):2924–2934, 2010.

[73] Christine E Watson and Anjan Chatterjee. A bilateral frontoparietal net-

work underlies visuospatial analogical reasoning. Neuroimage, 59(3):2831–

2838, 2012.

[74] Radek Ptak, Armin Schnider, and Julia Fellrath. The dorsal frontoparietal

network: a core system for emulated action. Trends in cognitive sciences,

21(8):589–599, 2017.

[75] Alex Martin, James V Haxby, Francois M Lalonde, Cheri L Wiggs, and

Leslie G Ungerleider. Discrete cortical regions associated with knowledge

of color and knowledge of action. Science, 270(5233):102–105, 1995.

[76] Michael S Beauchamp, Kathryn E Lee, James V Haxby, and Alex Martin.

Fmri responses to video and point-light displays of moving humans and

manipulable objects. Journal of cognitive neuroscience, 15(7):991–1001,

2003.

[77] Michael S Beauchamp and Alex Martin. Grounding object concepts in per-

ception and action: evidence from fmri studies of tools. Cortex, 43(3):461–

468, 2007.

59

[78] Leonardo Chelazzi, Earl K Miller, John Duncan, and Robert Desimone.

A neural basis for visual search in inferior temporal cortex. Nature,

363(6427):345–347, 1993.

[79] Anna C Nobre, Truett Allison, Gregory McCarthy, et al. Word recognition

in the human inferior temporal lobe. Nature, 372(6503):260–263, 1994.

[80] Nikolaus Kriegeskorte, Marieke Mur, Douglas A Ruff, Roozbeh Kiani, Jerzy

Bodurka, Hossein Esteky, Keiji Tanaka, and Peter A Bandettini. Matching

categorical object representations in inferior temporal cortex of man and

monkey. Neuron, 60(6):1126–1141, 2008.

[81] Karalyn Patterson, Peter J Nestor, and Timothy T Rogers. Where do you

know what you know? the representation of semantic knowledge in the

human brain. Nature reviews neuroscience, 8(12):976–987, 2007.

[82] Jeffrey R Binder, Rutvik H Desai, William W Graves, and Lisa L Conant.

Where is the semantic system? a critical review and meta-analysis of 120

functional neuroimaging studies. Cerebral Cortex, 19(12):2767–2796, 2009.

[83] Takeo Watanabe, José E Náñez, and Yuka Sasaki. Perceptual learning

without perception. Nature, 413(6858):844–848, 2001.

[84] Zhiyan Wang, Masako Tamaki, Kazuhisa Shibata, Michael S Worden,

Takashi Yamada, Yuka Sasaki, Mitsuo Kawato, and Takeo Watanabe. Vi-

sual perceptual learning of a primitive feature in human v1/v2 as a result of

unconscious processing, revealed by decoded fmri neurofeedback (decnef).

bioRxiv, 2020.

[85] Kendrick N Kay and Jason D Yeatman. Bottom-up and top-down compu-

tations in word-and face-selective cortex. Elife, 6:e22341, 2017.

[86] Emily C Kubota, Sung Jun Joo, Elizabeth Huber, and Jason D Yeatman.

Word selectivity in high-level visual cortex and reading skill. Developmental

Cognitive Neuroscience, 36:100593, 2019.

60

[87] Maurizio Corbetta, Gaurav Patel, and Gordon L Shulman. The reorienting

system of the human brain: from environment to theory of mind. Neuron,

58(3):306–324, 2008.

[88] Shruti Japee, Kelsey Holiday, Maureen D Satyshur, Ikuko Mukai, and

Leslie G Ungerleider. A role of right middle frontal gyrus in reorienting

of attention: a case study. Frontiers in Systems Neuroscience, 9:23, 2015.

[89] Merim Bilalić, Andrea Kiesel, Carsten Pohl, Michael Erb, and Wolfgang

Grodd. It takes two–skilled recognition of objects engages lateral areas in

both hemispheres. PLoS One, 6(1):e16202, 2011.

[90] Satoshi Tanaka, Chikashi Michimata, Tatsuro Kaminaga, Manabu Honda,

and Norihiro Sadato. Superior digit memory of abacus experts: an event-

related functional MRI study. NeuroReport, 13(17):2187–2191, 2002.

[91] Takashi Hanakawa, Manabu Honda, Tomohisa Okada, Hidenao Fukuyama,

and Hiroshi Shibasaki. Neural correlates underlying mental calculation in

abacus experts: a functional magnetic resonance imaging study. NeuroIm-

age, 19(2):296–307, 2003.

[92] Satoshi Tanaka, Keiko Seki, Takashi Hanakawa, Madoka Harada, Sho K

Sugawara, Norihiro Sadato, Katsumi Watanabe, and Manabu Honda. Aba-

cus in the brain: a longitudinal functional MRI study of a skilled abacus

user with a right hemispheric lesion. Frontiers in Psychology, 3:315, 2012.

[93] Philippe-Olivier Harvey, Philippe Fossati, Jean-Baptiste Pochon, Richard

Levy, Guillaume LeBastard, Stéphane Lehéricy, Jean-François Allilaire, and

Bruno Dubois. Cognitive control and brain resources in major depression:

an fmri study using the n-back task. Neuroimage, 26(3):860–869, 2005.

[94] Caroline J Moore and Cathy J Price. Three distinct ventral occipitotem-

poral regions for reading and object naming. NeuroImage, 10(2):181–192,

1999.

[95] Martha W Burton, Douglas C Noll, and Steven L Small. The anatomy

of auditory word processing: individual variability. Brain and language,

77(1):119–131, 2001.

61

[96] Nadezhda Mkrtychian, Evgeny Blagovechtchenski, Diana Kurmakaeva,

Daria Gnedykh, Svetlana Kostromina, and Yury Shtyrov. Concrete vs. ab-

stract semantics: from mental representations to functional brain mapping.

Frontiers in human neuroscience, 13:267, 2019.

[97] Sean P David, Florian Naudet, Jennifer Laude, Joaquim Radua, Paolo

Fusar-Poli, Isabella Chu, Marcia L Stefanick, and John PA Ioannidis. Po-

tential reporting bias in neuroimaging studies of sex differences. Scientific

reports, 8(1):1–8, 2018.

[98] Yu Huang, Kevin Leach, Zohreh Sharafi, Nicholas McKay, Tyler Santander,

and Westley Weimer. Biases and differences in code review using medical

imaging and eye-tracking: Genders, humans, and machines. Proceedings of

the ACM 28th Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering, 2020.

[99] Jörn Diedrichsen and Nikolaus Kriegeskorte. Representational models:

A common framework for understanding encoding, pattern-component,

and representational-similarity analysis. PLoS computational biology,

13(4):e1005508, 2017.

[100] Tomoyasu Horikawa and Yukiyasu Kamitani. Generic decoding of seen and

imagined objects using hierarchical visual features. Nature Communica-

tions, 8:15037, 2017.

[101] Satoshi Nishida and Shinji Nishimoto. Decoding naturalistic experiences

from human brain activity via distributed representations of words. Neu-

roImage, 180:232–242, 2018.

[102] Alexander G Huth, Wendy A de Heer, Thomas L Griffiths, Frédéric E

Theunissen, and Jack L Gallant. Natural speech reveals the semantic maps

that tile human cerebral cortex. Nature, 532(7600):453, 2016.

[103] Francisco Pereira, Bin Lou, Brianna Pritchett, Samuel Ritter, Samuel J

Gershman, Nancy Kanwisher, Matthew Botvinick, and Evelina Fedorenko.

Toward a universal decoder of linguistic meaning from brain activation.

Nature Communications, 9(1):963, 2018.

62

[104] Uri Alon, Omer Levy, and Eran Yahav. code2seq: Generating sequences

from structured representations of code. Proceedings of the 7th International

Conference on Learning Representations, 2019.

[105] Jean Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and

Xudong Liu. A novel neural source code representation based on abstract

syntax tree. Proceedings of the IEEE/ACM 41th International Conference

on Software Engineering, pages 783–794, 2019.

[106] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. Code2vec:

Learning distributed representations of code. Proceedings of the 46th ACM

SIGPLAN Symposium on Principles of Programming Languages, 3, 2019.

[107] Francesco De Pasquale, Stefania Della Penna, Abraham Z Snyder, Christo-

pher Lewis, Dante Mantini, Laura Marzetti, Paolo Belardinelli, Luca

Ciancetta, Vittorio Pizzella, Gian Luca Romani, et al. Temporal dynamics

of spontaneous meg activity in brain networks. Proceedings of the National

Academy of Sciences, 107(13):6040–6045, 2010.

[108] Martijn P Van Den Heuvel and Hilleke E Hulshoff Pol. Exploring the brain

network: a review on resting-state fmri functional connectivity. European

neuropsychopharmacology, 20(8):519–534, 2010.

[109] Marc N Coutanche and Sharon L Thompson-Schill. Informational con-

nectivity: identifying synchronized discriminability of multi-voxel patterns

across the brain. Frontiers in human neuroscience, 7:15, 2013.

[110] Alasdair DF Clarke, Matthew J Stainer, Benjamin W Tatler, and Amelia R

Hunt. The saccadic flow baseline: Accounting for image-independent biases

in fixation behavior. Journal of vision, 17(11):12–12, 2017.

[111] Harold L Kundel, Calvin F Nodine, Emily F Conant, and Susan P Wein-

stein. Holistic component of image perception in mammogram interpreta-

tion: gaze-tracking study. Radiology, 242(2):396–402, 2007.

[112] Merim Bilalić, Robert Langner, Rolf Ulrich, and Wolfgang Grodd. Many

faces of expertise: fusiform face area in chess experts and novices. Journal

of Neuroscience, 31(28):10206–10214, 2011.

63

[113] Edward K Vogel and Maro G Machizawa. Neural activity predicts individ-

ual differences in visual working memory capacity. Nature, 428(6984):748–

751, 2004.

[114] Justin Halberda, Michèle MM Mazzocco, and Lisa Feigenson. Individual

differences in non-verbal number acuity correlate with maths achievement.

Nature, 455(7213):665–668, 2008.

[115] Dan Schwartz, Mariya Toneva, and Leila Wehbe. Inducing brain-relevant

bias in natural language processing models. Proceedings of the Thirty-third

Conference on Neural Information Processing Systems, pages 14123–14133,

2019.

[116] Satoshi Nishida, Yusuke Nakano, Antoine Blanc, Naoya Maeda, Masataka

Kado, and Shinji Nishimoto. Brain-mediated transfer learning of convolu-

tional neural networks. Proceedings of the Thirty-Fourth AAAI Conference

on Artificial Intelligence, pages 5281–5288, 2020.

[117] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning.

A survey of robot learning from demonstration. Robotics and autonomous

systems, 57(5):469–483, 2009.

[118] Jiakai Zhang and Kyunghyun Cho. Query-efficient imitation learning for

end-to-end autonomous driving. Proceedings of the Thirty-First AAAI Con-

ference on Artificial Intelligence, pages 2891–2897, 2017.

[119] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning

in robotics: A survey. The International Journal of Robotics Research,

32(11):1238–1274, 2013.

[120] Nishanth Koganti, Abdul Rahman H. A. G., Yusuke Iwasawa, Kotaro

Nakayama, and Yutaka Matsuo. Virtual reality as a user-friendly inter-

face for learning from demonstrations. Proceedings of the CHI Conference

on Human Factors in Computing Systems, pages D310:1–D310:4, 2018.

[121] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Pro-

ceedings of the Advances in Neural Information Processing Systems, pages

2692–2700, 2015.

64

[122] Ralf Engbert, Antje Nuthmann, Eike M Richter, and Reinhold Kliegl. Swift:

a dynamical model of saccade generation during reading. Psychological

review, 112(4):777, 2005.

[123] Erik D Reichle, Alexander Pollatsek, and Keith Rayner. E–z reader: A

cognitive-control, serial-attention model of eye-movement behavior during

reading. Cognitive Systems Research, 7(1):4–22, 2006.

[124] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. Deepfix:

Fixing common C language errors by deep learning. Proceedings of the

Thirty-First AAAI Conference on Artificial Intelligence, pages 1345–1351,

2017.

[125] Pengcheng Yin and Graham Neubig. A syntactic neural model for general-

purpose code generation. Proceedings of the 55th Annual Meeting of the

Association for Computational Linguistics, pages 440–450, 2017.

[126] Hideaki Hata, Emad Shihab, and Graham Neubig. Learning to gener-

ate corrective patches using neural machine translation. arXiv preprint

arXiv:1812.07170, 2018.

[127] Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin,

and Daniel Tarlow. Deepcoder: Learning to write programs. Proceedings

of the 5th International Conference on Learning Representations, 2017.

[128] Paige Rodeghero, Collin McMillan, Paul W McBurney, Nigel Bosch, and

Sidney D’Mello. Improving automated source code summarization via an

eye-tracking study of programmers. Proceedings of the IEEE/ACM 36th

International Conference on Software Engineering, pages 390–401, 2014.

[129] Tobias Roehm, Rebecca Tiarks, Rainer Koschke, and Walid Maalej. How

do professional developers comprehend software? Proceedings of the 34th

International Conference on Software Engineering, pages 255–265, 2012.

[130] Jamie Starke, Chris Luce, and Jonathan Sillito. Searching and skimming:

An exploratory study. Proceedings of the 25th IEEE International Confer-

ence on Software Maintenance, pages 157–166, 2009.

65

[131] Tianhao Zhang, Zoe McCarthy, Owen Jowl, Dennis Lee, Xi Chen, Ken

Goldberg, and Pieter Abbeel. Deep imitation learning for complex manip-

ulation tasks from virtual reality teleoperation. Proceedings of the IEEE

International Conference on Robotics and Automation, pages 1–8, 2018.

[132] Ronghang Hu, Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Kate

Saenko. Learning to reason: End-to-end module networks for visual ques-

tion answering. Proceedings of the IEEE International Conference on Com-

puter Vision, pages 804–813, 2017.

[133] Pannavat Terdchanakul, Hideaki Hata, Phannachitta Passakorn, and

Kenichi Matsumoto. Bug or not? bug report classification using n-gram idf.

Proceedings of the IEEE International Conference on Software Maintenance

and Evolution, pages 534–538, 2017.

[134] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning.

In Advances in Neural Information Processing Systems, pages 4565–4573,

2016.

[135] Yunzhu Li, Jiaming Song, and Stefano Ermon. InfoGAIL: interpretable

imitation learning from visual demonstrations. Proceedings of Advances in

Neural Information Processing Systems, pages 3812–3822, 2017.

[136] Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu, and Charles Sut-

ton. A survey of machine learning for big code and naturalness. ACM

Computing Surveys, 51(4):81:1–81:37, 2018.

[137] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa.

A survey on software fault localization. IEEE Transactions on Software

Engineering, 42(8):707–740, 2016.

[138] Kamel Alreshedy, Dhanush Dharmaretnam, Daniel M. German, Venkatesh

Srinivasan, and T. Aaron Gulliver. SCC: Automatic Classification of Code

Snippets. Proceedings of the 18th IEEE International Workshop on Source

Code Analysis and Manipulation, pages 203–208, 2018.

66

[139] Yao Wan, Zhou Zhao, Min Yang, Guandong Xu, Haochao Ying, Jian Wu,

and Philip S. Yu. Improving automatic source code summarization via

deep reinforcement learning. Proceedings of the IEEE 33rd International

Conference on Automated Software Engineering, pages 397–407, 2018.

[140] Siyuan Jiang, Ameer Armaly, and Collin McMillan. Automatically gener-

ating commit messages from diffs using neural machine translation. Pro-

ceedings of the IEEE/ACM 32nd International Conference on Automated

Software Engineering, pages 135–146, 2017.

[141] Ricardo Chavarriaga and José del R Millán. Learning from eeg error-related

potentials in noninvasive brain-computer interfaces. IEEE transactions on

neural systems and rehabilitation engineering, 18(4):381–388, 2010.

[142] Marta Kutas and Steven A Hillyard. Reading senseless sentences: Brain

potentials reflect semantic incongruity. Science, 207(4427):203–205, 1980.

[143] Angela D Friederici and Martin Meyer. The brain knows the difference: Two

types of grammatical violations. Brain research, 1000(1-2):72–77, 2004.

67

Appendix

A. Toward Imitating Visual Attention of Expert

Programmers

This thesis, together with previous studies on expert programmers, has demon-

strated that biometric data obtained from human programmers can be used as

a biomarker that indicates domain-expertise in software development tasks. In

particular, we have gained a lot of insight in the last three decades by knowing

where a programmer is allocating visual attention, which can be inferred from

eye movement data [32, 33]. A next step will be injecting these insights into an

autonomous agent to efficiently perform software development tasks. As a po-

tential research idea, this appendix presents a conceptual framework of neural

autonomous agents based on imitation learning, which enables an agent to mimic

the visual attention of an expert via his/her eye movement.

A.1 Introduction

Imitation learning (IL) is an emerging paradigm where autonomous agents learn

from human demonstration to perform complex task [117]. IL views a human

demonstration as an exemplar of prior knowledge in their working system and

leverages a set of human demonstrations to work on tasks whose reward functions

are hard to be defined a priori. The paradigm has been successfully applied to

several applications such as autonomous driving [118] and an initialization for

reinforcement leaning in robotics [119]. In such applications, eye movement is a

major representation that can bridge human physical demonstrations and training

of virtual agents [120].

This appendix presents a conceptual framework of neural autonomous agents

based on imitation learning, which enables an agent to mimic the visual attention

of an expert via his/her eye movement. In this framework, the agent is repre-

sented by a context-based attention model that consists of encoder/decoder net-

work [121]. The framework regard programmers’ gaze-fixation as a state-action

sequence that represents how a programmer addressed the output that he/she

68

finally made. Figure 13 shows an example of state-action sequence inferred from

gaze-fixation data. The state-action sequences are created for every task period

and used to train the autonomous agent to imitate the visual attention of an ex-

pert. Historically, several mathematical models have been proposed to describe

dynamics of eye movement behavior [122] [123]. Their main goals were to get

a biologically plausible model that can well account for real data. In compari-

son with the models, a primary goal of the IL framework is to maximize agents’

performance on a specific task using expert eye movements as a prior knowledge.

Many studies have described how to build an agent which can automatically

perform a software development task, e.g. bug fix [124], semantic parsing [125],

patch generation [126], and code generation [127]. In most cases they used only

feature representations based on textual characteristics, but a few additionally

utilized human gaze-fixation data [128]. It has already been demonstrated that

programmers use attention strategies to save time for program comprehension

and maintenance [129]. For example, expert programmers tend to automatically

concentrate their attention onto informative parts of a program [11] and skim

only the relevant keywords in source code [130]. Incorporating gaze-fixation data

allows autonomous agents to learn attention strategies that are hard to learn

solely from textual characteristics. IL-based agents can fully utilize the valu-

able information sources with less information loss and potentially improve their

performances on a variety of software development tasks.

69

Figure 13. Programmers’ eye movement as a demonstration for a state-

action sequence. The state-action sequence represents how a programmer ad-

dressed the output that he/she finally made.

A.2 Proposed Framework

This study proposes IL for training an agent to mimic the visual attention of

an expert programmer toward performing several software development tasks.

The agent can be trained using the Behavioral Cloning (BC) algorithm which

is commonly used in robotics [131] and natural language processing [132]. The

code snippet or the environment for the agent can be considered as a sequence of

tokens or keywords and the agent needs to focus on a particular subset of tokens

that mimics an expert programmers’ visual attention. Using demonstration by

an expert, the agent can be adapted to perform specific tasks such as bug fixing

or algorithm detection which can be considered as an auxiliary task of the agent.

This study formulates a task in IL as a sequence of states and actions. For

a software development task, the state (st) is a feature representation of the

current token being attended to and the action (at) is a reference to the next

token. The agent performs the task using a policy function, commonly referring

to the strategy used by the agent. The policy takes as input the current state

and should output the desired action. The representations used for the state

and action are crucial to ensure good performance of the network. The policy

70

can also provide task-relevant outputs on attending to the code snippet (oT). For

example, for the task of algorithm classification, the task output can be a discrete

label indicating the correct algorithm class.

This study proposes to represent the agents’ policy using deep neural net-

works, capable of learning complex feature mappings, as shown in Fig. 14. As

source code is a text sequence, insights from natural language processing can be

used to design the agent. The study proposes an agent that consists of two com-

ponents. The first component is a recurrent neural network (RNN) that can be

used to encode the global context of the code snippet. The second component

is a task-specific decoder model using an RNN that takes as input the encoded

context vector at a particular token and outputs the next token to attend as the

action. The task decoder also provides a task-relevant output such as a discrete

label indicating algorithm class or a token index in the code snippet indicating

the bug location. Typically code snippets can be of variable lengths and requires

attention over variable length sequences. To address this problem of variable

size input, this study proposes the use of Pointer Networks [121], which is a

hard-attention mechanism capable of handling sequences of variable lengths.

In BC, the agent is trained using two loss functions. A primary loss function

is used to train the agent so as to mimic the visual attention of an expert for a

particular code snippet. Depending on the task, auxiliary loss functions can be

included to perform the specific task:

LBC(at, ât) = wattLatt(at, ât) + wauxLaux (1)

where at, ât are the predicted action and expert action respectively. The attention

loss function Latt can be a cross entropy loss with one-hot vectors representing

the true and predicted tokens for attention. For the auxiliary loss function, Laux,

cross-entropy loss can be used to match the algorithm class or a particular token in

the code snippet sequence. The weights assigned to each loss function (watt, waux)

are assigned depending on the relative importance of the attention mechanism

and task-specific output.

71

Figure 14. Overview of imitation learning agent that relies on expert’s

gaze data to perform source code comprehension tasks. This study pro-

poses an agent that consists of two recurrent neural networks that one encodes

global context of the code snippet and the other decodes the context vector at a

particular token and outputs the next token to attend as the action.

A.3 Challenges

The prospective challenges to implement an IL-based autonomous agent special-

ized for software development task were discussed below.

Feature Representations

A common challenge with effective implementation of IL is the state correspon-

dence problem where the expert and agent might have different feature repre-

sentations. The feature representation should sufficiently capture the functional

meaning of the code without adding any redundant information not considered

by the expert. Several state representations can be considered for the analysis.

Source code unlike natural language is structured and so binary feature repre-

72

sentations such as Bag-of-Words (BoW) and bag-of-n-grams [133] could prove

effective. Word embeddings such as code2vec [106] can be considered to handle

long term dependencies common for source code. For the action representation,

considering spatial coordinates in the image space could be ineffective as this

could vary depending on irrelevant factors such as code formatting. An effective

action could be location to a particular token index or to a group of tokens that

represent a functional unit in the code.

Data Efficiency for Imitation Learning

One of the challenges of using BC is that it requires a large number of demon-

strations to avoid covariate shift where the state space encountered by the agent

could be drastically different from expert demonstrations. However, collecting a

large dataset involving expert eye-gaze information could be prohibitive. To im-

prove the data efficiency of IL, this study considered several strategies. A typical

gaze-fixation of the human is usually on a group of tokens. This uncertainty in

gaze fixation can be exploited to perform data-augmentation where a single trial

can result in multiple state-action sequences by assigning different weights to the

group of tokens. An alternate approach is to learn a distribution over the expert

demonstrations rather than to just mimic the actions. This can be performed

by using Generative Adversarial Imitation Learning (GAIL) [134] which is based

on generative adversarial training where a generator neural network is trained to

model the distribution of expert demonstrations. This has been shown to pro-

vide superior performance over traditional IL in several application domains. The

data-efficiency can be further improved by learning from multiple experts. How-

ever, different experts could be using different strategies and it is important to

disambiguate between such latent factors. This can be performed by using tech-

niques such as InfoGAIL [135] which can learn to disambiguate between multiple

experts through a learned discrete latent representation.

Possible Software Development Tasks

The intersection of machine learning and software engineering is an emerging hot

research topic [136]. The IL-based framework will open up a new way of building

intelligent systems/agents.

73

Fault localization. Fault localization is the act of identifying the locations

of faults in a program. To support this time-consuming task, many machine-

learning based approaches have been proposed [137]. By designing a token index

in the code as the task-relevant output, this study can propose new systems

incorporating the art of identifying bugs by experts. Preparing experimental

settings for collecting experts’ eye-movements is also an important challenge.

With similar approaches, this study may target identifying performance issues,

vulnerabilities, etc.

Classification. Classification is a fundamental machine learning technique and

can be applied to specific applications, such as language detection [138], algorithm

identification. Task-relevant outputs will be discrete labels indicating classes.

Description generation and code generation. Generating the description

of code or code changes based on deep neural networks is a promising active re-

search topic, such as code summarization [139], commit message generation [140],

etc. Generating (part of) code with deep neural networks [124–127] is another

hot topic. Although the current concept of using Pointer Networks does not

work for generating sequences, the idea of incorporating experts’ visual attention

is also interesting for these tasks. Designing an appropriate imitation learning

framework is a desired future challenge.

Extension with Electroencephalography as Auxiliary Input

It may be possible to complement the system above with electroencephalogra-

phy (EEG) to reflect the human cognition other than visual attention [141]. For

example, event-related potentials (ERPs) including error-related potentials re-

flect events where a human subject feels wrong or strange. It is known that

ERPs can reflect semantic incongruity grammatical violoations in language pro-

cessing [142, 143]. ERPs could be informative for programming comprehension,

especially for bug fix. To integrate gaze data and EEG data, multiple ways can

be considered. One is independent subsystem from the imitation learning, and

the other is modification of the architecture to include the EEG data as an aux-

iliary input. Especially, the latter will be a tough challenge, but it will also be an

attractive topic not only for software engineering but also for artificial intelligence

and modelling of human cognition.

74

A.4 Concluding remarks

A baby learns numerous things from the demonstration by parents without any

lingual explanations because demonstrations can represent more than language

descriptions. So far, researchers investigated eye movements of programmers and

typically converted them into human-understandable numbers and descriptions,

such as fixations and saccades. However, this conversion has caused consider-

able information loss. This study proposes neural attention models trained using

expert programmers’ eye movements as a means of implicit learning without in-

formation loss. The study presented a plausible framework to achieve this goal

using IL and discussed several challenges that will need to be addressed to make

the framework practical. IL-based agents can fully utilize the valuable informa-

tion sources with less information loss and potentially improve their performances

on a variety of software development tasks.

75

Publication list

The early version of the work in this thesis was published as listed below.

- Yoshiharu Ikutani, Takatomi Kubo, Satoshi Nishida, Hideaki Hata, Kenichi

Matsumoto, Kazushi Ikeda, and Shinji Nishimoto. Expert programmers

have fine-tuned cortical representations of source code. eNeuro, volume 8,

Issue 1, 2020.

- Yoshiharu Ikutani, Nishanth Koganti, Hideaki Hata, Takatomi Kubo, and

Kenichi Matsumoto. Toward imitating visual attention of experts in soft-

ware development tasks. Proceedings of the IEEE/ACM 6th International

Workshop on Eye Movements in Programming, 2019.

76

