
Doctoral Dissertation

Teaching Machines to Write from Data

Hayate Iso

February 26, 2021

Graduate School of Information Science
Nara Institute of Science and Technology

A Doctoral Dissertation
submitted to Graduate School of Information Science,

Nara Institute of Science and Technology
in partial fulllment of the requirements for the degree of

Doctor of ENGINEERING

Hayate Iso

Thesis Committee:
Professor Eiji Aramaki (Supervisor)
Professor Taro Watanabe (Co-supervisor)
Associate Professor Shoko Wakamiya (Co-supervisor)
Professor Hiroya Takamura (Advanced Industrial Science and Technology)

Teaching Machines to Write from Data∗

Hayate Iso

Abstract

In the eld of articial intelligence (AI), natural language generation (NLG)
has been studied to create automated language production systems. This crucial
research area has been vigorously studied since the dawn of AI. It poses criti-
cal perspectives for the development of general-purpose AI, such as represent-
ing non-linguistic forms of information in forms that machines can understand
and translating back into the form that humans can understand. Despite the
progress of NLG systems over the past decades, conventional NLG systems still
have great diculty in generating uent and diverse texts: many systems rely
on template-based generation systems, which require excessive human eort to
build a template database.
Recently advances in neural network-based language generation has led to the

production of texts that are so uent as to be indistinguishable from human-
written texts. However, neural network-based generation systems also pose new
challenges; they generate inconsistent sentences depending on input, and it be-
comes more challenging to process expressions with increasing input length.
This dissertation addresses problems involved in data-to-text generation sys-

tems and a text editing system related to the challenges described above. First,
we explore the construction of a data-to-text generation system that can generate
document-scale text from redundant data records [51]. Second, we introduce a
new text editing task, referred to as fact-based text editing, in which the goal is to
revise a given document to better describe facts in a knowledge base (e.g., several
triples) [52]. We also develop a more accurate, ecient, and interpretable model
for fact-based text editing compared to the standard encoder-decoder model.

∗Doctoral Dissertation, Graduate School of Information Science,
Nara Institute of Science and Technology, February 26, 2021.

i

Keywords:

Text Generation, Natural Language Generation, Data-to-Text Generation, Sum-
marization, Text Editing

ii

Contents

1 Introduction 4
1.1 A Brief Review of Text Generation 5

1.1.1 Data-to-Text Generations 5
1.1.2 Text-to-Text Generations 8

1.2 Thesis Outline . 9
1.2.1 Data-to-Document Generation 9
1.2.2 Fact-based Text Editing 10

2 Background 11
2.1 Neural Sequence Generations . 11

2.1.1 Autoregressive Language Models 11
2.1.2 Encoder-Decoder Models 13
2.1.3 Attention Mechanisms . 13
2.1.4 Copy Mechanisms . 14

2.2 Memory Networks . 14
2.3 Transition-based Architectures . 16
2.4 Evaluating Text Generation Systems 17

2.4.1 Evaluation via N -gram Matching 17
2.4.2 Evaluation via Information Extraction 19

3 Data-to-Document Generations 23
3.1 Data . 24

3.1.1 Data Sources . 24
3.1.2 Data Creation Procedure 26

3.2 Model . 27
3.2.1 Preliminaries . 27
3.2.2 Saliency-Aware Text Generation 28

iii

3.2.3 Incorporating Writer Information 34
3.2.4 Training . 35

3.3 Experiments . 35
3.3.1 Settings . 35
3.3.2 Baseline comparison . 36
3.3.3 Evaluation Metrics . 37
3.3.4 Results . 38

3.4 Conclusion . 48

4 Fact-based Text Editing 50
4.1 Data . 52

4.1.1 Data Sources . 52
4.1.2 Data Creation Procedure 53

4.2 Model . 55
4.2.1 Model Architecture . 56
4.2.2 Neural Network . 56
4.2.3 Training . 60
4.2.4 Time Complexity . 61

4.3 Experiments . 61
4.3.1 Settings . 61
4.3.2 Baseline . 63
4.3.3 Results . 64

4.4 Conclusion . 70

5 Conclusion 71
5.1 Future work . 71

Publication List 73

iv

List of Figures

3.1 Bar chart for the number of summaries for each writer, and box-
plots for the number of relations and the length of summary for
each writer. Horizontal axes are sorted by the median number of
relations retrieved by the information extractor. 27

3.2 Illustration of generation process consisting of hidden states of lan-
guage modeling, entity tracking, and dynamic entity representa-
tions as external memory. 30

3.3 Illustrations of static entity embeddings e. Players with colored
letters are listed in the ranking top 100 players for the 2016-17 NBA
season. Only LeBron James is in red and the other players in top
100 are in blue. Top-ranked players have similar representations
of e. 40

3.4 Illustrations of game-dependent entity embedding ē. Both left and
right gures are for Cleveland Cavaliers vs. Detroit Pistons, on dif-
ferent dates. LeBron James is in red letters. Entities with or-
ange symbols appeared only in the reference summary. Entities
with blue symbols appeared only in the generated summary.
Entities with green symbols appeared in both the reference
and the generated summary. The others are with red symbols.
2 represents a player who scored double digits, and 3 represents
a player who recorded a double-double. Players with — did not
participate in the game. ◦ represents other players. 41

v

3.5 Ratios of generated summaries with duplicate mentions of rela-
tions. Each label represents a number of duplicated relations
within each summary. While Wiseman et al. [122]’s model exhib-
ited 36.0% duplication and Puduppully et al. [91]’s model exhibited
15.8%, our model exhibited only 4.2%. 42

3.6 Probability sequences for entity and attribute selection. 44

4.1 Actions of FactEditor. 58
4.2 Model architectures of the baselines. All models employ attention

and copy mechanisms. 62

vi

List of Tables

2.1 An example of unsuccessful evaluation byN -gram matching, Bleu
score in this case. 20

3.1 Example of input and output data: task denes box score (3.1a)
used for input and summary of game (3.1b) used as output. Ex-
tracted entities are shown in bold face. Extracted values are
shown in green. 25

3.2 Statistics of RotoWire-Modified and RotoWire-FG, where
#D is the number of instances, and #W is the total numbers of
words in the summaries. 28

3.3 A running example of our model’s generation process. At every
time step t, the model predicts each random variable. The model
rstly determines if data records are to be referred to (Zt = 1) or
not (Zt = 0). If random variable Zt = 1, model selects entity Et,
its attribute At, and binary variables Nt if needed. For example,
at t = 202, the model predicts random variable Z202 = 1 and then
selects the entity Jabari Parker and its attribute Player Pts.
Given these values, the model outputs token 15 from the selected
data record. 29

3.4 Experimental result on the RotoWire-Modified. Each metric
evaluates whether important information (CS) is described accu-
rately (RG) and in correct order (CO). TR stands for table recon-
struction. 38

3.5 Experimental result on the RotoWire-FG. † are taken from
Wang [114]. TR stands for table reconstruction. 39

vii

3.6 Example summaries generated with Puduppully et al. [91]’s model
(left) and our model (right). Names in bold face are salient en-
tities. Blue numbers are correct relations derived from input
data records but are not observed in reference summary. Orange
numbers are incorrect relations. Green numbers are correct
relations mentioned in reference summary. 43

3.7 Eects of writer information. w indicates that Writer embed-
dings are used. Numbers in bold are the largest among the vari-
ants of each method. 45

3.8 Example summaries and their Bleu scores on the sample of the
development set. Blue numbers are correct relations derived
from input data records but are not observed in reference summary.
Orange numbers are incorrect relations. Green numbers are
correct relations mentioned in reference summary. 46

3.9 The generated summaries for the same game with dierent writer
embeddings. Green numbers are relations that appeared in both
summaries. Orange numbers are relations that appeared only
in the above and Red numbers are relations that appeared only
in the below. 47

4.1 Example of fact-based text editing. Facts are represented in triples.
The facts in green appear in both draft text and triples. The
facts in orange are present in the draft text, but absent from the
triples. The facts in blue do not appear in the draft text, but do
in the triples. The task of fact-based text editing is to edit the draft
text on the basis of the triples, by deleting unsupported facts
and inserting missing facts while retaining supported facts. . . 51

4.2 Examples for insertion and deletion, where words in green are
matched, words in gray are not matched, words in blue are
copied, and words in orange are removed. Best viewed in color. 54

4.3 Statistics of WebEdit and RotoEdit, where #D is the number
of instances, #Wd and #Ws are the total numbers of words in the
draft texts and the revised texts, respectively, and #S is total the
number of sentences. 55

viii

4.4 An example of action sequence derived from a draft text and re-
vised text. 61

4.5 Performance of FactEditor and baselines on two datasets in
terms of uency and delity. EM represents the exact match. . . 65

4.6 Relationship between editing diculty and editing performance. . 66
4.7 Evaluation results on 50 randomly sampled revised texts inWebE-

dit in terms of numbers of correct editing (CQT), unnecessary
paraphrasing (UPara), repetition (Rpt), missing facts (Ms), un-
supported facts (USup) and diering relations (DRel) 67

4.8 Example of generated revised texts given by EncDecEditor and
FactEditor on WebEdit. Entities in green appear in both
the set of triples and the draft text. Entities in orange only
appear in the draft text. Entities in blue appear in the revised
text but not in the draft text. 68

4.9 FactEditor performance with dierent oracle action creation
methods on validation dataset of WebEdit. 69

4.10 Runtime analysis (# of words/second). Table-to-Text always shows
the fastest performance (Bold-faced). FactEditor shows the
second fastest runtime performance (Underlined). 69

1

Acknowledgements

First, I must thank my advisor Dr. Eiji Aramaki, who is the exceptional professor
I’ve ever worked up until now and from now on. I have been impressed with the
research attitude that always being mindful of the real world’s impact. It will
continue to inuence my future life. I am also indebted for his understanding
that I have the chance to cooperate with talented researchers around the world
in various other research institutes.
I would like to extend thanks to Dr. Shoko Wakamiya. She spent countless

times revising my rst paper in 2016. Without her generous support, my rst
paper would never have been accepted.
I would like to thank Dr. Hiroya Takamura, who warmly served as a mentor at

AIST and a thesis committee. I started my career as a natural language genera-
tion researcher during the research stay at AIST. This opportunity dramatically
changed my life trajectory.
I would like to thank Dr. Taro Watanabe for agreeing to be on my thesis

committee and helping me through the proposal, the defense, and the nal version
of the thesis.
I am thankful to Dr. Hang Li, who generously served as a mentor at ByteDance.

I cannot thank him enough for discussing with me and supporting the life in China
despite his hectic schedule. His passion and foresight are also always inspiring.
The experience of working with him is one of the greatest fortunes of my Ph.D.
life.
I also have to thank many other people who kindly served as my mentors

during my research stays and have been incredibly generous with their time and
insights. From AIST: Yusuke Miyao, Naoaki Okazaki, Ichiro Kobayashi, Hiroshi
Noji. From ByteDance: Chao Qiao. From Megagon Labs: Wang-Chiew Tan,
Xiaolan Wang, Yoshihiko Suhara, Stefanos Angelidis. From Amazon: Xing Fan,

2

Xiangcheng Kong, Hosseini Roya.
I am grateful to the administrative sta, Masami Kaneko, who has helped

many paper works.
I would also like to thank the Japan Society for the Promotion of Science that

supported my research.
Finally, I would like to thank my family, who allowed me to go to graduate

school. My debt to them is unbounded.

3

1 Introduction

“The fundamental problem of communication is that of reproducing
at one point, either exactly or approximately, a message selected at
another point.”

—Claude Shannon (1948)

Language production is an expression of the fundamental human ability to
communicate with each other. We exchange ideas, knowledge, opinions, and
other information in the form of language every day. Especially in recent years,
information technology and the development of the global Internet has fostered
such communication with seemingly anyone, anytime, and anywhere, breaking
down limits in an unprecedented way.
In the eld of articial intelligence (AI), the problem of automating the lan-

guage production, called natural language generation (NLG), is one of the cru-
cial research areas, and it has been vigorously studied since the dawn of AI.
This problem poses critical questions in developing general-purpose AI, such as
those representing non-linguistic forms of information in forms that machines can
understand and translating them into forms humans can understand. From an
application standpoint, NLG systems can also be used to assist daily documenta-
tion tasks. The democratization of information has made it possible for people to
acquire and consume a great variety of information, and the need to obtain this
information in the form of language continues to grow. Accordingly, NLG systems
have continued to show promise as a tool to support such document creation.
Despite these advantages, a long-term study of NLG systems is yet to be con-

ducted, and in terms of potential real-world demand, the practical use of these
systems is still limited. They tend to eventually generate sentences inconsistent
with their input and have more diculty processing as input length increases.
In the following section, we will describe NLG research that has been conducted

4

to date. In particular, we will discuss two NLG research problems: data-to-text
generation (Section 1.1.1), and text-to-text generation (Section 1.1.2). We will
discuss tasks and approaches that have been undertaken so far, the accomplish-
ments of existing systems, and practical challenges. The main goal of this thesis
is to explore methods to improve data-to-text generation systems and text editing
systems (Section 1.2).

1.1 A Brief Review of Text Generation

1.1.1 Data-to-Text Generations
A data-to-text generation system is designed to automatically generate text from
non-linguistic data. These systems typically need to rst select what information
should be described in the output text, next, decide how to refer to that infor-
mation, and nally generate adequate, coherent, and uent text based on the
selected data in the determined order. Most existing data-to-text generation sys-
tems fall into one of the two subcategories: pipeline architectures and end-to-end
architectures, which we will discuss below.

Pipeline Approaches

The most widely investigated approach to NLG is the pipeline approach, which
decomposes an NLG problem into several subproblems and then resolves each
task independently. The NLG problem of transforming input data into output
text in the pipeline approach requires solving the following three subproblems:
content selection, text planning, and surface realization.
The content selection problem is that of determining the information that

should be included in the output text. For example, consider automatically gen-
erating a summary of a basketball game from a database of game statistics. The
database contains a wide range of information about the game, including the
number of points scored by each team, the number of wins and losses, and statis-
tics about each player’s performance in that game. The game summary, however,
mentions only some of that vital information in the database. A content selec-
tion model aims to identify a subset of the database to be mentioned. However,

5

manually building such a content selection rule is generally considered dicult.
To overcome this issue, content selection models tend to rely on statistical

methods [111, 27, 5, 16, 68, 59]. Duboue and McKeown [27] address the statisti-
cal approach to content selection by solving the classication problem of whether
each input data is mentioned in the text, and Barzilay and Lapata [5] proposed
to extend the model to select the most likely combination of data based on the
co-occurrence pattern of each input data. More generally, researchers have also
considered automatically obtaining correspondences between data and text, also
known as grounded language acquisition. Liang et al. [68] introduce a generative
model that aims to derive text segmentation, fact identication, and alignment.
Koncel-Kedziorski et al. [59], in contrast, present a discriminative model to iden-
tify the most likely segmentation and alignment.
Once the content information has been determined, the content order needs to

be determined next. The text planning problem is that of deciding how the data
selected in the prior stage should be mentioned in the output text. In the example
of the basketball game summary, rst, the game results are provided, followed by
information on the players; subsequently, the schedule for the next game, and so
forth are provided. The text planning task is attempted in the data-to-text task as
well as in multi-document summarization [73, 7, 65, 6, 86, 32]. Barzilay and Lee
[6] have built a generative model, referred to as a content model, representing
topics and transitions between topics. Bollegala et al. [9], however, propose a
bottom-up method to obtain the best arrangement of sentences.
Surface realization is the nal task in NLG problems: forming natural text

from the content and order information obtained in the former stages. The most
straightforward approach is to create templates [98, 74], but this is not scalable
because signicant human resources are required to create linguistically varying
template texts (although templates are produced automatically from data in re-
cent attempts [123, 93, 30]). The predominant approach to surface realization in
recent years has been a statistical approach [120, 119, 91, 79]. Puduppully et al.
[91] and Moryossef et al. [79], for example, proposed a neural network-based text
generation model from selected contents.

6

End-to-End Approach

End-to-end NLG methods are intended to generate text from data directly. This
end-to-end model allows for generation considering past decisions. Angeli et al.
[2] proposed a unied framework that repeatedly selects data records and their
corresponding templates. Konstas and Lapata [61] dened a probabilistic context-
free grammar that can jointly consider the structure of data and text.
Recent progress in neural network-based language generations has led to the

production of uent texts that are indistinguishable from human-written texts.
In this line of research, end-to-end neural NLG models have been actively stud-
ied [60, 75, 55, 66, 122, 80, 84, 69, 92, 130, 135, 104, 115] with the use of encoder-
decoder architectures [110, 18, 3, 71, 113]. A neural encoder-decoder can easily
handle any modality of input, and data-to-text is no exception. Typically, the
encoder maps each input data record in an unordered fashion [132], and the de-
coder generates the text by referring to its input representation. Mei et al. [75],
for example, built a data-to-text model extending an attention mechanism by in-
troducing a pre-selector and a rener module in addition to a standard selector.
Liu et al. [69] proposed a structure-aware sequence-to-sequence model encoding
the structure of a table and content information for the data-to-text generation
task.
Owing to these advances in encoder-decoder architectures, signicant progress

has been made in data-to-text generation in recent years. However, this progress
is often limited to cases where the output is at most a few sentences long or
there is no redundancy in the input data [33, 85]. For example, if a model is
intended to generate long texts, it often generates the same content repeatedly [48,
118]. Alternatively, if a model aims to handle redundant data, it may refer to
erroneous data, resulting in the model generating inconsistent text [112, 24, 62,
63]. Moreover, this is often only recognized as a trivial error in the automatic
evaluation metric, like BLEU [88], so the automatic textual evaluation metric
often has a high score even though the model generates inconsistent text. This
thesis attempts to address these issues.

7

1.1.2 Text-to-Text Generations
Text-to-text generation is a NLG task that encompasses a wider range of elds
than a data-to-text generation, including machine translation [14], summariza-
tion [70], and others. The critical dierence between text-to-text and data-to-text
is concerning whether the input data are ordered. As this ordering information
is important in a text-to-text task, order-sensitive encoding, such as recurrent
neural networks [29, 47], or positional encoding [113, 102], is needed. Otherwise,
an end-to-end encoder-decoder model can be applied to the text-to-text task di-
rectly. Therefore, this chapter focuses on the text-to-text task, especially the text
editing task, rather than the technical details of the text-to-text model.

Text Editing

Text editing is to change the input text into the desired format by adding, delet-
ing, or rewriting a text’s content. In NLG, text editing tasks are tackled in the
form of paraphrase generations [25], text style transfer [49, 103], grammatical
error correction [83], automatic post editing [58, 105, 128], and text simplica-
tion [50, 124], and most of them can be performed naturally as text-to-text prob-
lems [67, 136, 137]. For example, Li et al. [67] introduce the deep reinforcement
learning technique that combines the generator and the evaluator to train the
paraphrase generation model. Zhao et al. [136] integrate paraphrasing rules with
the Transformer model for text simplication. Zhao et al. [137] propose a method
for English grammar correction using a Transformer and copy mechanism.
In contrast, text editing by humans can change the amount of information in

text, not only through paraphrasing but also by introducing new content based
on facts or removing content that contradicts with facts [126, 127, 128]. For
instance, Yang et al. [128] investigated editor intentions in Wikipedia revisions,
and they found that updating and introducing facts accounted for about 23% of
all edits, while paraphrasing and simplication accounted for 15%. This paper
addresses the issue and introduces a new text editing task to ll the gaps.

8

1.2 Thesis Outline
This dissertation addresses problems involved in data-to-text generation and text
editing systems. First, we explore the construction of a data-to-text generation
system that can generate document-scale text from redundant data records [51].
Second, we introduce a new text editing task, referred to as fact-based text

editing, in which the goal is to revise a given document to better describe facts
in a knowledge base (e.g., several triples) [52]. Furthermore, we develop a more
accurate, ecient, and interpretable model for fact-based text editing compared
to the standard encoder-decoder model.
We begin with background knowledge of neural sequence generation, memory

networks, transition systems, and evaluation metrics in Chapter 2. We discuss
the abovementioned problems for data-to-text generation in Chapter 3 and text
editing in Chapter 4. We conclude this dissertation and discuss future directions
for natural language generation research in Chapter 5.

1.2.1 Data-to-Document Generation
A data-to-text generation system should be able to select salient information and
generate uent and faithful text. However, if input data are too large to nd
the most salient parts, automated systems may select less critical information or
generate text inconsistent with the input data. In our opinion, the problem is the
inability to capture saliency transitions in the generative process. For example, as
mentioned in the text planning part of Section 1.1.1, it is natural that the saliency
of input data changes during the text generation process, and once that data is
referred to, the saliency of that data becomes less in subsequent process. Thus,
we need a model that nds salient parts, tracks their transitions, and expresses
information faithful to the input.
We propose to address this by introducing a memory architecture for an encoder-

decoder model that stores each input data’s saliency and updates each input state
during generation. Moreover, it was found that in the document-level generation
task, the saliency of input data can vary for dierent writers. Once we integrated
this information into the model, the model selected more salient data. This ap-
proach is based on the paper, Iso et al. [51], and will be detailed in Chapter 3.

9

1.2.2 Fact-based Text Editing
Text editing tasks involve many kinds of intentions, including paraphrasing and
simplication, among others. However, the current natural language processing
eld mainly focuses on text-to-text editing that does not cover addition, deletion,
or updates to semantic information.
To make the text editing system more practical, we introduce a new task, Fact-

based Text Editing, including fact addition, deletion, and updates. This task can
be considered as a data&text-to-text generation task. Researchers have developed
methods to deal with the problem of retrieving other texts as templates [42, 41,
90]. The dierence between the retrieval-based approach and fact-based text
editing is that the former focuses on table-to-text generation based on other texts,
while the latter focused on text-to-text generation based on structured data. This
study further proposes a model that can solve some of the key problems, allowing
fact-based text editing to be more interpretable, ecient, and accurate. This
chapter is based on the paper, Iso et al. [52], and will be detailed in Chapter 4.

10

2 Background

This chapter provides detailed background information on NLG, including neural
sequence generation models, memory networks, transition systems, and evalua-
tion metrics.

2.1 Neural Sequence Generations
Neural sequence generation is a current de facto standard framework in NLG
for generating a target sequence from source inputs using neural networks. For
example, the framework includes machine translation, which translates a text in
one source language to another target language, and summarization, which takes
a document as input and generates a summary.
We describe autoregressive language models, which form the basis of neural

sequence generation, and introduce encoder-decoder architectures as an extension
of these language models. Then, we present attention mechanisms and copy
mechanisms as a further extension of the encoder-decoder architectures.

2.1.1 Autoregressive Language Models
Language modeling is a task of modeling a probability distribution over a sequence
of words, which can be formally described as

p(y) =
|y|∏

t=1
p(yt | y1, . . . , yt−1),

where y = (y1, . . . , y|y|) is a sequence of words, and p(yt | y1, . . . , yt−1) denotes
the conditional probability of word yt given all preceding words, y1, . . . , yt−1. The
goal of language modeling is to obtain a model that can analyze the validity of

11

an arbitrary sequence of words as a probability, which has a crucial role even for
“generating” a valid sequence of words [101].
One approach to estimate this conditional probability p(yt | y1, . . . , yt−1) is

from relative frequency counts, which counts the number of sequence y1, . . . , yt−1

appearing on the training corpus and counts the number of the sequence followed
by yt as follows.

p(yt | y1, . . . , yt−1) =
C(y1, . . . , yt−1, yt)
C(y1, . . . , yt−1)

.

However, this approach naturally faces the sparsity problem, implying that the
conditional distribution p(yt | y1, . . . , yt−1) cannot be accurately estimated be-
cause most sequences of words rarely appear in the corpus. For this reason,
N -gram language models that only count the history of N words instead of con-
sidering the entire history of the sequence and the associated smoothing methods
have been developed so far [57, 17, 99, 108, 8, 11, 43, 15].
Autoregressive language models provide an intelligent solution to this problem,

in the form of an autoregressive neural network transforming an arbitrary length
of sequence, e.g., (y1, . . . , yt−1) into a xed sized vector ht−1, and then estimating
the probability of the next word yt from this vector

p(yt | y1, . . . , yt−1) = p(yt | ht−1)
ht−1 = φ(y1, . . . , yt−1)

p(yt | ht−1) =
exp(ht−1 ·wyt)
v∈V exp(ht−1 ·wv)

,

where φ is the autoregressive map function, V is the vocabulary set, and wv is
the trainable weight for word v ∈ V.
Mikolov et al. [78] rst proposed an autoregressive language model using a re-

current neural network (RNN) [29], and Zaremba et al. [133] used long short-term
memory (LSTM) [47, 38] with dropout regularization [107] to improve the autore-
gressive mapping, and many other variants of the autoregressive language model
using LSTM have been proposed [31, 36, 77, 76]. Recently, Dai et al. [22] pro-
posed an autoregressive language model that only uses an attention mechanism
(described in Section 2.1.3) without using RNN.

12

2.1.2 Encoder-Decoder Models
The encoder-decoder model is a conditional sequence generation model p(y | x),
which encodes a source input x and then decodes a target sequence y from this
encoded representation [54, 18, 110, 3, 113]. This model can be considered as
an extension of a language model that is a product of conditional distribution
p(yt | y1, . . . , yt−1,x) predicting the next target word yt based on the preceding
words, y1, . . . , yt−1, and source input x

p(y | x) =
|y|∏

t=1
p(yt | y1, . . . , yt−1,x).

The most basic form of the encoder-decoder model [54, 110] is one that encodes
the source input x into a single feature vector hx with a mapping function θ and
then generates the target sequence based on all preceding words y1, . . . , yt−1 and
the feature vector hx

hx = θ(x1, . . . , x|x|)

p(y | x) =
|y|∏

t=1
p(yt | y1, . . . , yt−1,hx).

2.1.3 Attention Mechanisms
The basic form of the encoder-decoder model utilizes a xed-length feature vector
hx obtained by one-shot feature mapping in an integrated generation process.
The fundamental problem with this approach is that it becomes increasingly
dicult to map all information to a single feature vector hx.
One powerful approach to address this issue is attention mechanism [3, 71, 87,

113, 132]. The attention mechanism can focus on a dierent subset of source
information at each timestep.
More formally, the attention module calculates attention weightsαt−1 = {αt−1,i}|x|i=1

to aggregate the source input information into the single context vector ct−1 at

13

t− 1

αt−1,i =
exp(γ(ht−1,hi))

|x|
j=1 exp(γ(ht−1,hj))

ct−1 =
|x|∑

i=1
αt−1,ihi

p(y | x) =
|y|∏

t=1
p(yt | y1, . . . , yt−1, ct−1),

where γ is a mapping function, ht−1 is the hidden state of decoder at time t− 1,
and ct−1 is a context vector that aggregates the source hidden states with atten-
tion weight αt−1.

2.1.4 Copy Mechanisms
An intrinsic drawback of the neural sequence generation model is the inability to
generate out-of-vocabulary words, which are not included in the list of pre-dened
vocabulary [72]. A copy mechanism [39, 40, 100] is one sophisticated solution that
directly copies the word from the source input.
Technically, the encoder-decoder model with the copy module computes the

probability distribution of the next word with the convex combination of esti-
mated word distribution and copy probability of source words as follows.

pcopy = 1
1 + exp (−ψ(yt<,x))

pgen(yt | ht−1) =
exp(υ(ht−1,wyt))
v∈V exp(υ(ht−1,wv))

p(yt | y1, . . . , yt−1, x) = (1− pcopy) ∗ pgen(yt | ht−1) + pcopy ∗
∑

i:xi=yt

δt,xi
.

ψ and υ are mapping functions, pcopy ∈ [0, 1] is the probability of switching
between generation and copy probability, and δt,i is the copy probability for source
word xi, where

|x|
i=1 δt,xi

= 1.

2.2 Memory Networks
Memory networks [121, 109, 37, 44] are modules that maintain and update rep-
resentations of memory components. These memory network modules have been

14

applied to natural language understanding tasks to maintain a track of entity
states [46, 10].
Recently, entity tracking has become popular for generating coherent text in

NLG elds as well [55, 53, 129, 20]. Kiddon et al. [55] proposed a neural checklist
model updating pre-dened item states, and Ji et al. [53] proposed an entity rep-
resentation for the language model that updated entity tracking states when an
entity was introduced. Herein, we describe a versatile yet straightforward frame-
work for memory-augmented language modeling, the reference-aware language
model [129].

Reference-aware language models

The reference-aware language model introduces a new random variable z =
(z1, . . . , z|y|), controlling the decision of which input to generate output from
at each timestep t, as follows.

p(y, z) =
|y|∏

t=1
p(yt, zt | y<t, z<t)

=
|y|∏

t=1
p(yt | y<t, zt)p(zt | y<t),

where z<t = (z1, . . . , zt−1) represents the preceding decision histories.
For example, in document-level language modeling, it is typically challenging to

remember all previously appearing entity states, leading to low language model
quality. The reference-aware language model maintains a list of entities that
appeared in past timesteps < t in memory and determines whether the next
word yt is an entity in the list. If an entity is referenced, the memory is updated
depending on whether it has appeared before. If an entity has never appeared
before, this entity information is newly allocated to memory. Otherwise, the
memory of that entity is updated using the language model’s state at that time.
Notably, this model selects the salient entity state, whereas our model extends

this entity tracking module for data-to-text generation tasks. The entity tracking
module selects the salient entity, and the appropriate attribute in each timestep
updates its state and generates coherent summaries from the selected data record.

15

2.3 Transition-based Architectures
A transition-based model consists of a set of congurations and transition actions.
The model incrementally selects a transition action based on the congurations’
latest state until it reaches a terminal conguration. Transition-based systems
decompose complex problems into incremental action selection problems that can
be solved eciently. More formally, these models predict a sequence of actions
a = (a1, . . . , a|a|) given an input sequence x as follows

p(a | x) =
|a|∏

t=1
p(at | ξ(ct)),

where ct is a conguration at time t, and ξ is a mapping function of conguration.
The transition-based system has been applied to a variety of tasks, including

dependency parsing [117, 56], constituency parsing [116, 21], word segmentation
and part-of-speech tagging [134], named entity recognition [64], and sentence
compression [1]. This thesis provides technical details of a transition-based system
with stacked long short-term memory [28], which is a simple but highly exible
model.

Stack LSTM

This stacked LSTM is a component of the transition system used in Ballesteros
et al. [4], which is augmented with a stack pointer pointing to the latest state.
Our transition-based dependency parsing system with stacked LSTM has one
buer of words to be parsed b and two stacks, one for the partially structured
syntactic elements s and another for the action history a, and it also has Shift,
Reduce-Right, and Reduce-Left actions. The model predicts an action at

at each timestep t by referring to stack pointers for each conguration and using
the corresponding LSTM state as feature representations

ξ(ct) = τ (W ξ[st; bt;at] + bξ) ,

where st, bt,at are the latest states at action step t, τ is a nonlinear function, e.g.
hyperbolic tangent (tanh) or rectied linear unit [81], and W ξ, bξ are trainable
weights. If the model selects the Shift action, the latest state is popped from the

16

buer fed to the stack. For Reduce actions, the model composes a dependency
tree fragment with a recursive neural network [106, 45].

2.4 Evaluating Text Generation Systems
Along with architecture, evaluating the generated text’s quality plays an impor-
tant role in the text generation systems. Once a model has been improved, we
need to measure how the improvement contributes to the quality of the generated
text. Notably, without ecient text evaluation methods, good text generation
models cannot be built.
However, unlike other natural language processing problems such as text classi-

cation, there is no single correct answer to the text generation problem. For ex-
ample, in machine translation, there may be many possible correct answers when
translating one sentence into another language. However, the manual evaluation
also costs considerable time and money and signicantly slows the development
and improvement cycles of text generation systems.
This section describes automatic evaluation metrics quantifying the quality of

the generated text, such as BLEU and SARI scores and extractive evaluation
metrics.

2.4.1 Evaluation via N -gram Matching
BLEU

Bleu stands for bilingual evaluation understudy, which is one of the most well-
known methods for assessing the quality of machine-generated text [88]. It was
developed for machine translation tasks and has recently been used in other text
generation tasks.
To measure the quality of the generated text using the BLEU score, we pre-

pare a reference text and then evaluate the generated text’s quality by N -gram
matching between the generated and reference texts. More precisely, this ap-
proach counts N -gram matches between the generated text ygen and the reference
text yref and then measures N -gram precision, i.e., the ratio of correct N -grams
compared to the sum of generated N -grams as follows.

17

PrecN =


GN ,RN∈Ygen
N ×Yref

N
|GN

⋂RN |


GN∈Ygen
N

|GN |
,

where GN and RN are bags (or multisets) of N -grams for the generated and
reference texts, and Ygen

N and Yref
N are sets of the bags GN and RN , respectively.

The drawback of directly using this PrecN score is— it results in inaccurately
higher scores if the generated text is short. To prevent this problem, the BLEU
score is dened by combining the PrecN score with the brevity penalty (BP),
which penalizes the generated text if it is shorter than the reference text as follows.

Bleu-N = BP ∗ exp
N∑

n=1
λn logPrecn

BP = min
(
1, exp

(
1−


G∈Ygen


ygen∈G |ygen|

R∈Yref


yref∈R |yref|

))
,

where λN is the weight for the PrecN . In most cases, the Bleu-N score with
N = 4 and λn = 1

4 for all n ∈ {1, . . . , 4} is used as Bleu score, and this study
uses this conguration unless otherwise mentioned.

SARI

Sari stands for system output against references and against the input sen-
tence [125]. The Sari score measures the ability of Keep, Add, and Delete
by the system. The most signicant dierence between this and the Bleu score
is that BLEU just uses the reference text yref, while Sari score uses input text
x as well as reference text yref to evaluate the output text ygen.
The Sari score is formally dened as:

Sari-N =
∑

op∈{Keep,Add,Delete}
λop ∗ F1-N op

Prec-N op = 1
N

N∑

n=1
Precop

n

Rec-N op = 1
N

N∑

n=1
Recop

n

F1-N op = 2 ∗Prec-N op ∗Rec-N op

Prec-N op +Rec-N op
,

18

where λop is the weight of each operation∗. The Sari score can be represented
as the weighted sum of F1-N scores for Keep, Add, and Delete operations.
Hereafter, we assume that the N = 4 and λop = 1

|{Keep,Add,Delete}| = 1
3 for all

operations unless otherwise noted.
The Sari score obtains the Precision and Recall scores in dierent ways for

each operation. First, the Keep score presents a reward if the system correctly
keeps text that appears in both the input and reference sentences dened as:

PrecKeep
N = |IN

⋂GN
⋂RN |

|IN
⋂GN |

RecKeep
N = |IN

⋂GN
⋂RN |

|IN
⋂RN |

,

where IN is the bag of N -grams for the input text x.
However, the Add score is used to present a reward if the system correctly adds

text that appears in the reference text but does not appear in the input text, and
the Delete score is used to present a reward if the system correctly deletes text
that appears in the input text but not in the reference text, calculated as follows.

PrecAdd
N = |(GN\IN)

⋂RN |
|GN\IN |

RecAdd
N = |(GN\IN)

⋂RN |
|RN\IN |

PrecDelete
N = |(IN\GN)

⋂(IN\RN)|
|IN\GN |

RecDelete
N = |(IN\GN)

⋂(IN\RN)|
|IN\RN |

.

2.4.2 Evaluation via Information Extraction
As mentioned above, N -gram matching-based text evaluation metrics are often
used because they can be evaluated by simply preparing a reference text. How-
ever, in the context of data-to-text generation, the adequacy of whether the gen-
erated text is consistent with the input data is also an important issue, but it is
generally dicult to measure with N -gram matching metrics.

∗In the paper in which the SARI score was rst proposed by Xu et al. [125], the Prec-NDelete

score was used instead of the F1-NDelete , but in this study, the F1-N score is used in all
operations to calculate Sari-N score.

19

Player Pts Reb Ast Blk Stl Min . . .

LeBron James 24 5 4 2 2 25 . . .
. . .

Ref.
LeBron James posted 24 points , ve rebounds , four as-
sists , and two steals .

Bleu RG CS CO

Sys A
LeBron James posted 20 points , ve rebounds , four as-
sists , one steal and one block .

48.59 40.00 44.44 40.00

Sys B
LeBron James scored 24 points , four assists , ve re-
bounds , one steal in 25 minutes .

34.82 80.00 68.57 40.00

Table 2.1: An example of unsuccessful evaluation by N -gram matching, Bleu
score in this case.

The example shown in Table 2.1 indicates that the text generated by system
A has a high Bleu score, even though it includes considerable information con-
tradictory to the input data.
In contrast, the text generated by system B produces text consistent with the

input data but uses a dierent vocabulary or data that do not appear in the
reference text. In this case, the Bleu score decreases, although it contains very
little inconsistent text with the input data.
Therefore, evaluation metrics that consider consistency with the input data are

becoming more critical, especially in data-to-text generation tasks [122, 24]. In
this study, we explain the extractive evaluation metrics proposed by Wiseman
et al. [122] using an external information extractor to obtain entity-value pairs
and their types from the text to evaluate the adequacy. More concretely, the in-
formation extractor retrieves sequences of triples from texts. For example in the
reference shown in Table 2.1, the sequence of retrieved triples becomes ((LeBron
James, FIRST_NAME, 24), . . . , (LeBron James, STL, 2)). The same extrac-
tion is applied to the generated text and the reference, and then the following
metrics are computed by comparing with the input data or between the extracted
sequences.

20

Relation Generation

Relation generation (RG) is a measure of the faithfulness of the generated text to
the input data. To examine whether the system is able to generate text consistent
with the input data, it compares the triples extracted from the generated text
with the input data as follows.

PrecRG =


Tgen,X∈Sgen×D |Tgen
⋂X|


Tgen∈Sgen |Tgen|

,

where X is the set of input data, D is the set of input datasets, Tgen is the sequence
of extracted triples from the generated text, and Sgen is the set of these sequences.
In the example of system B in Table 2.1, four out of ve extracted data points

are consistent with the input data. Thus, the precision of the RG score becomes
80.00.

Content Selection

Content selection (CS) measures whether the system generates essential informa-
tion by comparing the input information and the reference text. Technically, it
calculates the precision, recall, and f1 score of the relations extracted from the
generated text against those of the reference text as follows.

PrecCS =


Tgen,Tref∈Sgen×Sref |Tgen
⋂ Tref|

Tgen∈Sgen |Tgen|

RecCS =


Tgen,Tref∈Sgen×Sref |Tgen
⋂ Tref|

Tref∈Sref |Tref|

F1CS = 2 ∗PrecCS ∗RecCS

PrecCS +RecCS .

For example, if the information about points, assists, and rebounds is correctly
generated in the output text by system B in Table 2.1, the precision, recall, and
F1 scores for content selection become 60.00, 80.00, 68.57, respectively.

Content Ordering

Content ordering (CS) measures whether the data generated are used in the
correct order. To be more precise, it compares the sequences of triples extracted

21

from the generated text and the reference text using the normalized Damerau-
Levenshtein Distance (DLD) [12] as.

CO = 1
|S|

∑

Tgen,Tref∈Sgen×Sref

normalized DLD(Tgen, Tref),

where |S| = |Sgen| = |Sref| is the total number of sets. The content ordering
scores are better when the system describes the input data in the same order as
the reference text.

22

3 Data-to-Document
Generations

Although encoder-decoder models oer the ability to generate high-quality text
for data-to-text generation [75, 66, 69], generating a long and coherent summary
from large-scale data remains a challenge [122]. One challenge is that the input
data are too large for a naive encoder-decoder model for nding their salient part,
i.e., to determine which part of the data should be mentioned. Furthermore,
the salient part moves as data are delineated by summary. For example, when
generating a summary of a basketball game (Table 3.1 (b)) from the box score
(Table 3.1 (a)), the input contains numerous data records regarding the game:
e.g., Jordan Clarkson scored 18 points. Existing models often refer to the same
data record multiple times [91]. However, these models may mention an incorrect
data record, e.g., Kawhi Leonard added 19 points when the summary should
mention LaMarcus Aldridge, who scored 19 points. Thus, we need a model that
nds salient parts, tracks their transitions, and expresses information faithful to
the input.
This chapter proposes a novel data-to-text generation model with two mod-

ules, one for saliency tracking and another for text generation. The tracking
module tracks saliency in the input data so that when the module detects a
saliency transition, the tracking module selects a new data record∗ and updates
its state. The text generation module generates a summary conditioned on the
current tracking state. The model proposed here could be considered to be a
neural network-based variant of an end-to-end data-to-text generation model se-
lecting input information and maintaining decision histories while generating the
report [2]. A signicant dierence from the conventional model is using a re-

∗We use "data record" and "relation" interchangeably.

23

current neural network. Our model employs a recurrent neural network-based
saliency tracking module for maintaining decision histories as continuous vectors
instead of explicitly retaining all decision history.
Moreover, some writer-specic patterns and characteristics, i.e., how data records

are selected to be referred to, how data records are represented as text, e.g., the
order of data records and the word usages, are also issues. Thus, writer informa-
tion was added to the model.
The experimental results demonstrate that, even without writer information,

our proposed model achieves the best performance among all previous models
across all evaluation metrics with a 91.98% precision of relation generation, 43.31
F1 scores of content selection, 21.56% normalized Damerau-Levenshtein Distance
(DLD) of content ordering, and a BLEU score of 15.74. It was also conrmed
that adding writer information further improved performance.

3.1 Data

3.1.1 Data Sources
In this study, we use the box-score and summary pairs of an NBA game dataset.
One of the most famous datasets is RotoWire dataset, which is introduced
by Wiseman et al. [122]. The summary in this dataset as shown in Table 3.1b
contains numerical information such as the win/loss of each team (e.g., (Knicks,
Win, 16)), and the points and rebounds scores by each player, (e.g., (Carmelo
Anthony, Reb, 11)), stored as a form of the box-score shown in Table 3.1a.
Note that most of the records for box-score were not used in summary, and the
alignment between input records and the output text is not given explicitly†. In
other words, the main problem in this task is to select the salient information
from the box-score and transform them into a consistent summary.
However, we found an issue: in this dataset, some NBA games had two sum-

maries, one of which was sometimes in the training data, and the other was in
the testing or validation data. Such summaries are similar to each other, though

†As described in Section 3.3.1, it is possible to obtain noisy alignments between the input box-
score and the output summary using an information extractor.

24

Team H/V Win Loss Pts Reb Ast Fg_Pct Fg3_Pct . . .

Knicks H 16 19 104 46 26 45 46 . . .

Bucks V 18 16 105 42 20 47 32 . . .

Player H/V Pts Reb Ast Blk Stl Min City . . .

Carmelo Anthony H 30 11 7 0 2 37 New York . . .

Derrick Rose H 15 3 4 0 1 33 New York . . .

Courtney Lee H 11 2 3 1 1 38 New York . . .

Giannis Antetokounmpo V 27 13 4 3 1 39 Milwaukee . . .

Greg Monroe V 18 9 4 1 3 31 Milwaukee . . .

Jabari Parker V 15 4 3 0 1 37 Milwaukee . . .

Malcolm Brogdon V 12 6 8 0 0 38 Milwaukee . . .

Mirza Teletovic V 13 1 0 0 0 21 Milwaukee . . .

John Henson V 2 2 0 0 0 14 Milwaukee . . .

. .

(a) Box score: Top contingency table shows number of wins and losses and summary
of each game. Bottom table shows statistics of each player such as points scored
(Player’s Pts), and total rebounds (Player’s Reb).

The Milwaukee Bucks defeated the New York Knicks, 105-104, at Madison Square
Garden on Wednesday. The Knicks (16-19) checked in to Wednesday’s contest looking to
snap a ve-game losing streak and heading into the fourth quarter, they looked like they
were well on their way to that goal. . . . Antetokounmpo led the Bucks with 27 points,
13 rebounds, four assists, a steal and three blocks, his second consecutive double-double.
Greg Monroe actually checked in as the second-leading scorer and did so in his customary
bench role, posting 18 points, along with nine boards, four assists, three steals and a
block. Jabari Parker contributed 15 points, four rebounds, three assists and a steal.
Malcolm Brogdon went for 12 points, eight assists and six rebounds. Mirza Teletovic
was productive in a reserve role as well, generating 13 points and a rebound. . . . Courtney
Lee checked in with 11 points, three assists, two rebounds, a steal and a block. . . . The
Bucks and Knicks face o once again in the second game of the home-and-home series,
with the meeting taking place Friday night in Milwaukee.

(b) NBA basketball game summary: Each summary consists of victory or
defeat of the game and highlights of valuable players.

Table 3.1: Example of input and output data: task denes box score (3.1a) used
for input and summary of game (3.1b) used as output. Extracted
entities are shown in bold face. Extracted values are shown in green.

25

not identical. Additionally, Wang [114] found that summaries in the RotoWire
dataset had only about 60% of their content grounded in the box-scores.

3.1.2 Data Creation Procedure
To conduct more reliable experiments, we use two datasets,RotoWire-Modified
and RotoWire-FG, instead of the original RotoWire dataset.
The RotoWire-Modified dataset is a cleaned version of the original Ro-

toWire dataset. The script provided by Wiseman et al. [122] was run, which
was used for crawling the RotoWire website for NBA game summaries. The
script collected approximately 78% of the summaries in the original dataset; the
remaining summaries were removed. The box-scores associated with the collected
summaries were also collected. It was observed that some of the box-scores dif-
fered from the original RotoWire dataset.
The dataset contains 3,738 instances (i.e., pairs of a summary and box-scores).

However, the four shortest summaries were an announcement regarding the post-
ponement of a match. Thus four instances such as these were deleted, and 3,734
instances were left in the dataset. We followed Wiseman et al. [122] to split
our dataset into training, development, and test data. Finally, the sizes of the
RotoWire-Modified ’s training, development, and test datasets were respec-
tively 2705, 532, and 497. On average, each summary had 384 tokens and 644
data records. Each match had only one summary in the dataset.
Information on the writer for each summary was also collected, and the dataset

contained 31 dierent writers. The most prolic writer in the dataset wrote 607
summaries. Some writers wrote less than ten summaries; on average, each writer
wrote 117 summaries. The statistics of the number of relations and the length
of summary for each writer were also calculated. As shown in Figure 3.1, each
writer had a remarkable tendency for the number of retrieved relations and the
length of the summary.
TheRotoWire-FG dataset Wang [114] introduced is an enlarged and puried

RotoWire dataset. They enlarged the dataset by crawling the summaries of
50% more games than the original RotoWire dataset, and then, they puried
the collected summaries to be more grounded. More precisely, by retaining the
sentences, if any numerical score was associated with the box score. Table 3.2

26

Figure 3.1: Bar chart for the number of summaries for each writer, and boxplots
for the number of relations and the length of summary for each writer.
Horizontal axes are sorted by the median number of relations retrieved
by the information extractor.

gives the statistics of the datasets.

3.2 Model

3.2.1 Preliminaries
The aim of the data-to-text generation task is to generate a summary y1:T =
(y1, . . . , yT) given a set of records x = {ri}|x|i=1. The most straightforward approach
to constructing a data-to-text generation model is to use an attentional encoder-
decoder model with a copy mechanism, p(y1:T | x) [122], but this model is known

27

RotoWire-Modified RotoWire-FG

Train Valid Test Train Valid Test

#D 2,705 532 497 5,340 1,147 1,148
#W 1.0M 207k 196k 1.8M 397k 399k

Table 3.2: Statistics of RotoWire-Modified and RotoWire-FG, where #D
is the number of instances, and #W is the total numbers of words in
the summaries.

to encounter a text hallucination problem, producing factually incorrect text by
referencing incorrect data.
A well-known approach to mitigate this problem, the two-stage data-to-text

generation model proposed by Puduppully et al. [91] decomposes the model into
content selection and planning modules p(z1:|z| | x) and a text generation mod-
ule p(y1:T | x, z1:|z|), where z1:|z| is the latent variables for content selection and
planning. This approach improved the adequacy performance by a large mar-
gin compared to the attentional encoder-decoder, but there remains room for
improvement compared to the template-based model.
This study introduces a new data-to-text model that keeps track of a salient

entity while generating the summary. The most crucial dierence is that our
model dynamically updates the input states on every timestep, while previous
models use xed input representations once encoded throughout generations.

3.2.2 Saliency-Aware Text Generation
At the core of this model is a neural language model with a hidden state hLM ∈ Rh

to generate a summary y1:T given a set of data records x, where h is the size of
hidden states. This model has another hidden state hEnt ∈ Rh, which is used
to remember the data records that have been referred to. hEnt is also used to
update hLM, meaning that the referred data records aect the text generation.
Our model decides whether to refer to x, which data record r ∈ x to mention,

and how to express a number. The selected data record is used to update hEnt.

28

t 199 200 201 202 203 204 205 206 207 208 209

Yt Jabari Parker contributed 15 points , four rebounds , three assists

Zt 1 1 0 1 0 0 1 0 0 1 0

Et
Jabari Jabari

-
Jabari

- -
Jabari

- -
Jabari

-
Parker Parker Parker Parker Parker

At First Name Last Name - Player Pts - - Player Reb - - Player Ast -
Nt - - - 0 - - 1 - - 1 -

Table 3.3: A running example of our model’s generation process. At every time
step t, the model predicts each random variable. The model rstly
determines if data records are to be referred to (Zt = 1) or not (Zt = 0).
If random variable Zt = 1, model selects entity Et, its attribute At,
and binary variables Nt if needed. For example, at t = 202, the model
predicts random variable Z202 = 1 and then selects the entity Jabari
Parker and its attribute Player Pts. Given these values, the model
outputs token 15 from the selected data record.

Formally, we use four variables.

1. Zt: A binary variable determining whether the model refers to input x at
time step t (Zt = 1).

2. Et: At each time step t, this variable indicates the salient entity (e.g.,
Hawks, LeBron James).

3. At: At each time step t, this variable indicates the salient attribute to be
mentioned (e.g., Pts).

4. Nt: If attribute At of the salient entity Et is a numeric attribute, this
variable determines if a value in the data records should be output in Arabic
numerals (e.g., 50) (Nt = 1) or in English words (e.g., ve) (Nt = 0).

Our model predicts these random variables at each time step t through its sum-
mary generation process to keep track of the salient entity. A running example of
our model is shown in Table 3.3. For a concise description, we omit the condition
for each probability notation. <BoS> and <EoS> represent “beginning of the
summary” and “end of the summary,” respectively.

29

Derrick Rose

Courtney Lee

Carmelo Anthony

…

Reb

Ast

Pts

…

Derrick Rose

Courtney Lee

Carmelo Anthony

…

Zt = 1

, two rebound

hENT

hLM

Zt = 0

Et = Courtney Lee At = Reb

Figure 3.2: Illustration of generation process consisting of hidden states of lan-
guage modeling, entity tracking, and dynamic entity representations
as external memory.

In the following, we explain the model’s initialization procedure, predict these
random variables, and generate a summary. An illustration of our proposed model
is shown in Figure 3.2.
Before discussing our method, we describe the notations used. Let E and A

denote the sets of entities and attributes, respectively. Each record r ∈ x consists
of entity e ∈ E , attribute a ∈ A, and its value x[e, a], and is therefore represented
as r = (e, a,x[e, a]). For example, the box-score in Table 3.1 has a record r such
that e = Anthony Davis, a = Pts, and x[e, a] = 20.

Initialization
Let r ∈ Rd denote the embedding of data record r ∈ x, where d is the dimension
of the embeddings. Let ē denote the embedding of entity e. Note that ē depends
on the set of data records, i.e., it depends on the game. We also use e for the
static embedding of entity e, which does not depend on the game.
Given the embedding of entity e, attribute a, and its value v, we use the

concatenation layer to combine the information from these vectors to produce
the embedding of each data record (e, a, v), denoted as re,a,v as follows.

re,a,v = tanh

e+ a+ v + bR


, (3.1)

30

where bR ∈ Rd denotes a bias vector.‡

We obtain a game-dependent entity embedding ē in the set of data records x,
by summing all the data-record embeddings transformed by a matrix as follows

ē = tanh
(∑

a∈A
WA

a re,a,x[e,a] + bAa

)
, (3.2)

where WA
a ∈ Rd×d is a weight matrix, and bAa ∈ Rd is a bias vector for attribute

a, respectively. As ē depends on the game as above, ē is supposed to represent
how entity e played in the game.
To initialize the hidden state of each module, we use embeddings of <SoD>

for hLM and averaged embeddings of ē for hENT.

Saliency Transition
Generally, the saliency of text changes during text generation. We assume that
the saliency is represented as the entity and its attribute being discussed in our
work. Therefore, we propose a model that refers to a data record at each timestep
and transits to another as the text is processed.
To determine whether to transit to another data record at time t, the model

calculates the following probability

p(Zt = 1 | hLM
t−1,h

Ent
t−1) = σ(w¤

z (hLM
t−1 ⊕ hEnt

t−1) + bz), (3.3)

where wz ∈ R2d is a weight vector, ⊕ indicates the concatenation of vectors, and
σ(·) is the sigmoid function. If p(Zt = 1 | hLM

t−1,h
Ent
t−1) is high, the model transits

to another data record.
When the model decides to transit to another data record, it determines which

entity and attribute to refer to and generates the next word. However, if the
model decides not to, it generates the next word without updating the tracking
states hEnt

t = hEnt
t−1 .

Selection and Tracking
When the model refers to a data record (Zt = 1), it selects an entity and corre-
sponding attribute. It also tracks the saliency by placing the information on the

‡We also add embedding vectors representing whether the entity is a home or away team.

31

selected entity and attribute into the tracking vector hEnt. The model selects the
subject entity and updates the entity states if it changes.
Specically, the model rst calculates the probability of selecting an entity et

that is referred at time step t as follows.

p(Et = e | hLM
t−1,h

Ent
t−1) ∝




exp


hEnt¤

s WOldhLM
t−1


if e ∈ Et−1

exp

ē¤WNewhLM

t−1


otherwise

, (3.4)

where WOld ∈ Rh×h and W new ∈ Rd×h are weight matrices, Et−1 is the set of
entities that have already been referred to by time step t, and s is dened as
s = max{s : s ≤ t− 1, e = es}, indicating the time step when this entity was last
mentioned.
The model selects the most probable entity as the next salient entity and

updates the set of entities that have appeared (Et = Et−1 ∪ {et}).
If the salient entity changes (et ”= et−1), the model updates the hidden state of

the tracking model hEnt using a recurrent neural network with a gated recurrent
unit (Gru) [19]:

hEnt′
t =





hEnt
t−1 if et = et−1

GruE(ē,hEnt
t−1) else if et ”∈ Et−1

GruE(W ShEnt + bS,hEnt
t−1) otherwise,

(3.5)

where hEnt′
t is the intermediate entity tracking representation, W S ∈ Rd×h is a

weight matrix, and bS ∈ Rd is a bias vector. Notably, if the selected entity at time
step t, et, is identical to the previously selected entity et−1, the hidden state of
the tracking model is not updated. If the selected entity et is new (et ”∈ Et−1), the
hidden state of the tracking model is updated with the embedding ē of entity et

as input. In contrast, if entity et has already appeared in the past (et ∈ Et−1) but
is not identical to the previous (et ”= et−1), we use hEnt

s (i.e., the tracking state
when this entity last appeared) to fully exploit the local history of this entity.
Given the updated hidden state of the tracking model hEnt′

t , we next select the
attribute of the salient entity at time t, at, using the following probability.

p(At = a | et,hLM
t−1,h

Ent′
t) (3.6)

∝ exp

r¤
et,a,x[et,a]W

Attr(hLM
t−1 ⊕ hEnt′

t)

,

32

where WAttr ∈ Rd×2h is a weight matrix. After selecting at, i.e., the most
probable attribute of the salient entity, the tracking model updates the state
hEnt

t with the embedding of the data record ret,at,x[et,at] as given below.

hEnt
t = GruA(ret,at,x[et,at],h

Ent′
t). (3.7)

Note that we used dierent GRU units (GRUE and GRUA) to update the track-
ing model because they accept dierent types of embeddings for the input.
As described in Fig. 4.1, embeddings of previously selected entities could be

seen as being overwritten by the most recently referred states of entity tracking
modules hEnt

s . Hence, from this point of view, we can consider each entity’s
embeddings as external memories updated by the tracking module states hs.

Summary Generation
Given the two hidden states, one for language model hLM

t−1 and the other for
tracking model hEnt

t , the model generates the next word yt. We also incorporate
a copy mechanism that copies the value of the salient data record x[et, at].
If the model refers to a data record (Zt = 1), it directly copies the value of

the data record x[et, at]. However, the values of numerical attributes can be
expressed in at least two dierent styles: Arabic numerals (e.g., 14) and English
words (e.g., fourteen). A straightforward solution would be to follow the basic
English rule that uses English words for single digits and Arabic numerals for
double digits. However, in real descriptions, we found many irregular usages that
did not conform to the basic English rule. Thus, we decide which one to use by
the following probability.

p(Nt = 1 | hLM
t−1,h

Ent
t) = σ(wN¤(hLM

t−1 ⊕ hEnt
t) + bN), (3.8)

where wN ∈ R2h is a weight vector. The model then updates the hidden states
of the language model as follows.

h′
t = tanh


WH(hLM

t−1 ⊕ hEnt
t) + bH


, (3.9)

where WH ∈ Rh×2h is a weight matrix, and bH ∈ Rh is a bias vector.

33

If the model does not refer to a data record (Zt = 0), it predicts the next word
yt via a probability over words conditioned on the context vector h′

t.

p(Yt | h′
t) = softmax(W Yh′

t), (3.10)

where WY ∈ R|V|×h is a weight matrix and |V| is the size of the vocabulary.
Subsequently, the hidden state of language model hLM is updated in the same

manner.

hLM
t = LSTM(yt ⊕ h′

t,h
LM
t−1), (3.11)

where yt ∈ Rd is the embedding of the word generated at time step t.§

3.2.3 Incorporating Writer Information
For the document-level data-to-text generation task, we hypothesize that each
writer would select dierent entity information from the table and describe the
summary in their writing style. To test our hypothesis, we also incorporate the
writers’ information into our model to study how external style information aects
the language generation model. Specically, instead of using Equation (3.9), we
concatenate the embedding w of a writer to hLM

t−1 ⊕ hEnt
t to construct context

vector h′
t

h′
t = tanh


W ′H(hLM

t−1 ⊕ hEnt
t) +w + b′H


. (3.12)

Because this new context vector h′
t is used to calculate the probability over words

in Equation (3.10), the writer information is expected to directly aect word gen-
eration, which is regarded as surface realization in terms of traditional text gen-
eration. Simultaneously, context vector h′

t enhanced with the writer information
is used to obtain hLM

t , the hidden state of the language model, and is further used
to select the salient entity and attribute as mentioned. Therefore, in our model,
the writer information aects both surface realization and content planning.

§In our initial experiment, we observed a word repetition problem when the tracking model was
not updated while generating each sentence. To avoid this problem, we also update the tracking
model with special trainable vectors vREFRESH to refresh these states as follows after our model
generates a period.hEnt

t = GruA(vRefresh,h
Ent
t)

34

3.2.4 Training
We applied a fully supervised training maximizing the following log-likelihood.

log p(Y1:T , Z1:T , E1:T , A1:T , N1:T | x) =
T∑

t=1
log p(Zt = zt | hLM

t−1,h
Ent
t−1)

  
Switching objective

+
∑

t:Zt=1
log p(Et = et | hLM

t−1,h
Ent
t−1)

  
Entity selection objective

+
∑

t:Zt=1
log p(At = at | et,hLM

t−1,h
Ent′
t)

  
Attribute selection objective

+
∑

t:Zt=1,atis num_attr
log p(Nt = nt | hLM

t−1,h
Ent
t)

  
Number selection objective

+
∑

t:Zt=0
log p(Yt = yt | h′

t)
  

Conditional language model objective

3.3 Experiments

3.3.1 Settings
We used the RotoWire-Modified and RotoWire-FG datasets in our exper-
iments, as described in Section 3.1. We also used the recently introduced dataset,
RotoWire-FG [114], which is an enlarged, enriched, and puried dataset based
on the original RotoWire dataset. The most signicant dierence with the
RotoWire-Modified is the inclusion of unsupported sentences by the box-
scores. In the RotoWire-FG dataset, all of the numbers written in English
words are converted into Arabic numbers. Thus, we do not have to introduce
the random variable Nt to determine the selected number’s surface realization for
this dataset. We used the ocial split for training, development, and test data,
respectively.
As we assume a supervised training approach, we need the annotations of the

random variables (i.e., Zt, Et, At, and Nt) in the training data, as shown in
Table 3.3. Instead of simple lexical matching with r ∈ x, which is prone to er-
rors in the annotation, we use information extraction systems. For RotoWire-
Modified dataset, we used the information extraction model provided by Wise-
man et al. [122] and for RotoWire-FG dataset, we used the hard-coded infor-
mation retrieval system provided by Wang [114]. The former model shows 93.4%
for precision and 75.0% for recall, and the latter shows 98% for precision and 95%

35

for recall. These annotation performances directly aect model performance. Al-
though the model-based system is trained on noisy rule-based annotations, we
conjecture that it is more robust to errors because it is trained to minimize the
marginalized loss function for ambiguous relations. However, the model only
considers sentence-level relation extractions, so it fails to extract relations across
sentences.
We set the size of embeddings to 128 and those of the hidden states to 512.

All of the parameters were initialized with the Xavier initialization [35]. We set
the maximum number of epochs to 30 and chose the model with the highest
Bleu score on the development data. The initial learning rate is 2e-3, and
AMSGrad was also used for automatically adjusting the learning rate [97]. Our
implementation used DyNet [82].

3.3.2 Baseline comparison
We compare our model¶ against the following baseline models.

• ED-CC: this model consists of an attention-based encoder-decoder model
with a conditional copy mechanism used by Wiseman et al. [122].

• Hierarchical: this model consists of an encoder with hierarchical atten-
tion proposed by Rebuel et al. [96]

• NCP: this model rst predicts the sequence of data records and then gen-
erates a summary conditioned on the predicted sequences, proposed by
Puduppully et al. [91].

• ENT: this model is contemporary with our proposed model extending the
encoder-decoder model with memory modules as proposed by Puduppully
et al. [92].

ED-CC model refers to all data records every timestep, while NCP model refers
to a subset of all data records, which is predicted in the rst stage. Unlike these
models, our model uses one tracking vector hEnt

t tracking the history of the data
records during generation. We retrained the baselines on our new dataset. We

¶Our code is available from https://github.com/aistairc/sports-reporter

36

also present the performance of Gold and Templates summaries. The Gold
summary is identical with the reference summary, and eachTemplates summary
is generated in the same manner as Wiseman et al. [122].
In the latter half of our experiments, we examine the eect of adding informa-

tion on writers. In addition to our model enhanced with writer information, we
include writer information to the NCP model by Puduppully et al. [91]. Their
method consists of two stages corresponding to content planning and surface real-
ization. Therefore, by incorporating writer information in each of the two stages,
we can distinguish which part of the writer’s model contributes. For NCP model,
we attach the writer information in the following three ways:

1. concatenating writer embedding w with the input vector for LSTM in the
content planning decoder (stage 1);

2. concatenating writer embedding w with the input vector for LSTM in the
text generator (stage 2);

3. using both 1 and 2 above.

For more details about each decoding stage, readers can refer to Puduppully et al.
[91].

3.3.3 Evaluation Metrics
As evaluation metrics, we use BLEU score [88] and the extractive metrics pro-
posed by Wiseman et al. [122], i.e., relation generation (RG), content selection
(CS), and content ordering (CO). The extractive metrics measure how well the
relations extracted from the generated summary match the correct relations‖:

- RG: the ratio of the correct relations to all the extracted relations, where
correct relations refer to those found in the input data records x. Further-
more, the average number of extracted relations is reported.

‖The model for extracting relation tuples was trained on tuples made from the entities (e.g.,
team name, city name, player name) and attribute values (e.g., “Lakers”, “92”) extracted from
the summaries, and the corresponding attributes (e.g., “Team Name”, “Pts”) found in the
box- or line-scores. The precision and the recall of this extraction model are respectively 93.4%
and 75.0% on the test data.

37

Model
RG CS CO

Bleu
P% P% R% F1% DLD%

Gold 27.36 93.42 100. 100. 100. 100. 100.
Templates 54.63 100. 31.01 58.85 40.61 17.50 8.43

ED-CC 20.28 61.76 27.20 29.76 28.42 15.88 15.26
Hierarchical 26.34 78.74 35.74 39.04 37.32 20.36 15.40

ENT 32.41 91.13 37.05 43.06 39.83 20.62 15.23
NCP 34.05 82.55 32.30 43.74 37.16 16.67 14.82

NCP+TR 29.39 83.64 36.10 41.57 38.64 18.53 14.27

Proposed 31.66 91.98 40.44 46.63 43.31 21.56 15.74

Table 3.4: Experimental result on the RotoWire-Modified. Each metric eval-
uates whether important information (CS) is described accurately
(RG) and in correct order (CO). TR stands for table reconstruction.

- CS: precision and recall of the relations extracted from the generated sum-
mary against those from the reference summary.

- CO: edit distance measured with normalized Damerau-Levenshtein Dis-
tance (DLD) between the sequences of relations extracted from the gen-
erated and reference summaries.

3.3.4 Results
We rst focus on the tracking model’s quality and entity representation, using
the model without writer information. Then we examine the eect of writer
information.

Saliency Tracking-Based Model
As shown in Table 3.4, our model outperforms all baselines across all evaluation
metrics on RotoWire-Modified. While ENT shows similar performance, our

38

Model
RG CS CO

Bleu
P% P% R% F1% DLD%

Gold 29.36 95.17 100. 100. 100. 100. 100.
Templates† 51.80 98.89 23.98 43.96 31.03 10.25 12.09

ED-CC† 30.28 82.16 35.84 38.40 37.08 18.45 20.80
Hierarchical 34.83 88.33 38.57 47.52 42.58 18.57 21.64

ENT† 35.69 93.72 39.04 49.29 43.57 17.50 21.23
NCP† 35.99 94.21 43.31 55.15 48.52 23.46 23.86

NCP+ TR† 37.49 95.70 42.90 56.91 48.92 24.47 24.41

Proposed 40.74 98.36 43.38 62.53 51.22 20.64 24.23

Table 3.5: Experimental result on the RotoWire-FG. † are taken from Wang
[114]. TR stands for table reconstruction.

model achieves noticeable improvement on the F1 score for content selection.
We also show the result on the RotoWire-FG dataset in Table 3.5. Our

model outperforms the relation generation and the content selection scores and
shows the second-highest performance on theBleu score. However, theNCP+TR
model clearly shows the best performance on the content ordering and Bleu
score.
These two experimental results demonstrate the following properties. (1) The

entity-centric models, which are the ENT model and our proposed model, per-
form better than the baselines under the noisy data-to-text setting (RotoWire-
Modified). (2) Explicit annotation, used by the NCP model and our proposed
model, is benecial under the clean data-to-text setting (RotoWire-FG). In
other words, our proposed model can be perceived as having the best character-
istics of both the ENT and the NCP models.

39

Figure 3.3: Illustrations of static entity embeddings e. Players with colored let-
ters are listed in the ranking top 100 players for the 2016-17 NBA
season. Only LeBron James is in red and the other players in top 100
are in blue. Top-ranked players have similar representations of e.

Qualitative Analysis of Entity Embedding
Our model has the game-dependent entity embedding ē, which depends on the
box score for each game in addition the to static entity embedding e. Now we
analyze the dierence between these two types of embeddings.
We present a two-dimensional visualization of both embeddings produced using

principal component analysis (PCA) [89]. As shown in Figure 3.3, which is the
visualization of static entity embedding e, the top-ranked players are located
close to one another.
We also present visualizations of game-dependent entity embeddings ē in Fig-

ure 3.4. Although we did not carry out feature engineering specic to the NBA
(e.g., whether a player scored double-digits)∗∗ for the game-dependent entity em-
bedding ē, the embeddings of the players who performed well for each game have
similar representations. Furthermore, changes in the same player’s embeddings
were observed depending on the box-scores for each game. For instance, Le-

∗∗In the NBA, a player who accumulates a double-digit score in one of ve categories (points,
rebounds, assists, steals, and blocked shots) in a game, is regarded as a good player, if a player
had a double in two of those ve categories, it is referred to as double-double.

40

Figure 3.4: Illustrations of game-dependent entity embedding ē. Both left and
right gures are for Cleveland Cavaliers vs. Detroit Pistons, on dier-
ent dates. LeBron James is in red letters. Entities with orange
symbols appeared only in the reference summary. Entities with
blue symbols appeared only in the generated summary. Entities
with green symbols appeared in both the reference and the gen-
erated summary. The others are with red symbols. 2 represents
a player who scored double digits, and 3 represents a player who
recorded a double-double. Players with — did not participate in the
game. ◦ represents other players.

Bron James recorded a double-double in a game on April 22, 2016. Then, the
embedding is located close to the embedding of Kevin Love, who also scored a
double-double. However, he did not participate in the game on December 26,
2016. His embedding for this game became closer to those of other players who
also did not participate.

Duplicate Ratios of Extracted Relations
As Puduppully et al. [91] pointed out, a generated summary may mention the
same relation multiple times. Such duplicated relations are not favorable in terms
of the brevity of the text.
Figure 3.5 shows the ratios of the generated summaries with duplicate men-

tions of relations in the development data. While the models by Wiseman et al.
[122] and Puduppully et al. [91] respectively showed 36.0% and 15.8% as dupli-

41

Figure 3.5: Ratios of generated summaries with duplicate mentions of relations.
Each label represents a number of duplicated relations within each
summary. While Wiseman et al. [122]’s model exhibited 36.0% dupli-
cation and Puduppully et al. [91]’s model exhibited 15.8%, our model
exhibited only 4.2%.

cate ratios, our model exhibited 4.2%, suggesting that our model dramatically
suppressed the generation of redundant relations. We speculate that the tracking
model successfully memorized which of the input records were selected in hEnt

s .

Qualitative Analysis of Output Examples
Table 3.6 shows the generated examples from validation inputs with Puduppully
et al. [91]’s model and our model. Although both appear to be uent, the sum-
mary of Puduppully et al. [91]’s model includes erroneous relations colored in
orange.
More precisely, for example, the description of Derrick Rose ’s relations, "15

points, four assists, three rounds and one steal in 33 minutes.", is also used for
other entities (e.g., John Henson and Willy Hernagomez). This is because
Puduppully et al. [91] ’s model has no tracking module, unlike our model, which
mitigates redundant references and, therefore, rarely contains erroneous relations.
However, when complicated expressions such as parallel structures are used,

our model also generates erroneous relations, as illustrated by the underlined
sentences describing two players who scored the same number of points. For

42

The Milwaukee Bucks defeated the New York Knicks, 105-104, at Madison Square Garden on Wednes-
day evening. The Bucks (18-16) have been one of the hottest teams in the league, having won ve of their
last six games, and they have now won six of their last eight games. The Knicks (16-19) have now won
six of their last six games, as they continue to battle for the eighth and nal playo spot in the Eastern
Conference. Giannis Antetokounmpo led the way for Milwaukee, as he tallied 27 points, 13 rebounds,
four assists, three blocked shots and one steal, in 39 minutes . Jabari Parker added 15 points, four
rebounds, three assists, one steal and one block, and 6-of-8 from long range. John Henson added two
points, two rebounds, one assist, three steals and one block. John Henson was the only other player
to score in double digits for the Knicks, with 15 points, four assists, three rebounds and one steal, in 33
minutes. The Bucks were led by Derrick Rose, who tallied 15 points, four assists, three rebounds and
one steal in 33 minutes. Willy Hernangomez started in place of Porzingis and nished with 15 points,
four assists, three rebounds and one steal in 33 minutes. Willy Hernangomez started in place of Jose
Calderon (knee) and responded with one rebound and one block. The Knicks were led by their starting
backcourt of Carmelo Anthony and Carmelo Anthony, but combined for just 13 points on 5-of-16
shooting. The Bucks next head to Philadelphia to take on the Sixers on Friday night, while the Knicks
remain home to face the Los Angeles Clippers on Wednesday.

(a) Puduppully et al. [91]

The Milwaukee Bucks defeated the New York Knicks, 105-104, at Madison Square Garden on Sat-
urday. The Bucks (18-16) checked in to Saturday’s contest with a well, outscoring the Knicks (16-19)
by a margin of 39-19 in the rst quarter. However, New York by just a 25-foot lead at the end of the
rst quarter, the Bucks were able to pull away, as they outscored the Knicks by a 59-46 margin into the
second. 45 points in the third quarter to seal the win for New York with the rest of the starters to seal the
win. The Knicks were led by Giannis Antetokounmpo, who tallied a game-high 27 points, to go along
with 13 rebounds, four assists, three blocks and a steal. The game was a crucial night for the Bucks’
starting ve, as the duo was the most eective shooters, as they posted Milwaukee to go on a pair of low
low-wise (Carmelo Anthony) and Malcolm Brogdon. Anthony added 11 rebounds, seven assists and two
steals to his team-high scoring total. Jabari Parker was right behind him with 15 points, four rebounds,
three assists and a block. Greg Monroe was next with a bench-leading 18 points, along with nine re-
bounds, four assists and three steals. Brogdon posted 12 points, eight assists, six rebounds and a steal.
Derrick Rose and Courtney Lee were next with a pair of {11 / 11} -point eorts. Rose also supplied
four assists and three rebounds, while Lee complemented his scoring with three assists, a rebound and
a steal. John Henson and Mirza Teletovic were next with a pair of {two / two} -point eorts. Tele-
tovic also registered 13 points, and he added a rebound and an assist. Jason Terry supplied eight points,
three rebounds and a pair of steals. The Cavs remain in last place in the Eastern Conference’s Atlantic
Division. They now head home to face the Toronto Raptors on Saturday night.

(b) Our model

Table 3.6: Example summaries generated with Puduppully et al. [91]’s model
(left) and our model (right). Names in bold face are salient entities.
Blue numbers are correct relations derived from input data records
but are not observed in reference summary. Orange numbers are
incorrect relations. Green numbers are correct relations mentioned
in reference summary.

43

(a) Transition of probabilities of entity p(Et = e).

(b) Transition of probabilities of attribute p(At = a).

Figure 3.6: Probability sequences for entity and attribute selection.

example, “11-point eorts” is correct for Courtney Lee but not for Derrick
Rose. As a direction for future research, it is necessary to develop a method to
handle such complicated relations.
We also show the sequences of probabilities of selecting an entity p(Et = et)

and an attribute p(At = at) in Figure 3.6. The model rst refers to the game’s
general information and then starts to look for salient players. Once the model
selects a player, it consistently selects the same player until it nishes mentioning
this player’s important information. After this, the model rarely refers to that
entity, suggesting that the model successfully learns to guide the consistent entity
reference and maintains its saliency discussed above.

Use of writer information
We rst look at the results of an extension of Puduppully et al. [91]’s model with
writer information w in Table 3.7. By adding w to content planning (stage 1),

44

Method
RG CS CO

Bleu
P% P% R% F1% DLD%

NCP 34.05 82.55 32.30 43.74 37.16 16.67 14.82
+ w in stage 1 30.26 85.54 42.33 49.38 45.58 21.26 18.01
+ w in stage 2 32.42 83.35 33.28 42.92 37.49 16.73 16.57
+ w in stage 1 & 2 28.16 84.09 43.63 47.75 45.60 21.96 18.57

Proposed 31.66 91.98 40.44 46.63 43.31 21.56 15.74
+ w 29.44 93.32 51.76 55.21 53.42 24.97 20.62

Table 3.7: Eects of writer information. w indicates that Writer embeddings
are used. Numbers in bold are the largest among the variants of each
method.

the method obtained improvements in CS (37.16 to 45.58), CO (16.67 to 21.26),
and BLEU score (14.82 to 18.01). By adding w to the component for surface
realization (stage 2), the method obtained an improvement in BLEU score (14.82
to 16.57), while the eects on the other metrics were not very signicant. By
adding w to both stages, the method scored the highest BLEU, while the other
metrics were not signicantly dierent from those obtained by adding w to stage
1. This result suggests that writer information contributes to content planning
and surface realization when appropriately used, and improvements in content
planning lead to much better surface realization performance.
Our model showed improvements in all metrics and showed the best perfor-

mance by incorporating writer information w. As discussed in Section 3.2.3, w
is supposed to aect both content planning and surface realization. Our experi-
mental result is consistent with the discussion.
We show generated examples of the Proposed model with and without writer

information in Table 3.8. The summary generated by the Proposed model
with writer information shares more similar vocabulary usage with the Gold
summary than the summary generated by the Proposed model without writer
information.

45

Summary Bleu

Gold The Denver Nuggets defeated the host Orlando Magic, 121-113, at Amway Center on Sat-
urday. In a game between two struggling teams, Orlando could n’t quite keep up in their fourth
game in ve nights. That was clearly evident late, as the Nuggets ended the game on a 17-5 run
to pull o the comeback. While the defense struggled all night, Denver held Orlando to just 18
points in the fourth quarter, while scoring 29 points on their end. The Nuggets oense was on
point, as they shot 57 percent from the eld and recorded 25 assists in the victory. Rebounding
was key as well, with Denver winning that battle, 44-31. Denver (9-15) rode one of their best
oensive performances here to an impressive road win. While no player on the Nuggets had more
than 21 points, they had six players score at least 14. Danilo Gallinari led the team in scoring,
tallying 21 points, six rebounds and three assists. Jusuf Nurkic scored 17 points and grabbed
eight boards on 8-of-11 shooting in just 20 minutes of action. Kenneth Faried was huge o
the bench, dropping 19 points and 10 rebounds on 9-of-10 from the eld. Nikola Jokic and
Juancho Hernangomez each scored {14/14} a piece o the bench. On deck for the Nuggets
is a road matchup against the Dallas Mavericks on Monday.. Orlando (10-15) had to play this
game without Nikola Vucevic and it clearly hurt their defense. Evan Fournier did all he could
against his former team, as he led the Magic with 24 points, four rebounds and six assists. Serge
Ibaka was n’t far behind, accumulating 22 points, four rebounds and four blocks in the defeat.
Je Green was questionable coming in to this game with an ankle injury, but provided 17 points
o the bench. Orlando ’s next game is on Tuesday in a road matchup against the Atlanta Hawks.

–

Proposed The Denver Nuggets defeated the host Orlando Magic, 121-113, at Amway Center on
Wednesday. The Nuggets (9-15) checked in to Friday with only seven road wins in 23 tries
per game and had a road win behind the Magic (10-15). However, their second-highest scorer
in Kenneth Faried ’s head-high 21 combined attempts from the T-Wolves. He went o to grab a
win for two of the Nuggets ’ points in the victory, despite shooting 57 percent from the eld and
42 percent from three-point range. They did turn up on the defensive side of the ball, turning
the ball over two times and a pair of rebounds of an impressive 19 points. Faried supplemented
his total double-double on the night, tallying 10 boards and dishing out one assist. Danilo
Gallinari and Will Barton were next with a pair of {16/16}-point eorts. Gallinari added
six rebounds, and three assists, while the backcourt was also a perfect night for the starting
shooting night. Nikola Jokic continued his strong play in reserve roles, supplying 14 points,
six rebounds, six assists and a block. Jusuf Nurkic continued his stretch of strong play down
low, posting 17 points, eight rebounds, one block and one block. Evan Fournier continued
his recent stretch of strong play with 24 points, four rebounds, six assists and one steal. Serge
Ibaka totaled 22 points, four rebounds, one steal and four blocks. Aaron Gordon provided
11 points, six boards, three assists and one steal. Bismack Biyombo tallied 12 points, six
rebounds, four assists and one block. Barton added four rebounds and a block, while Juan
Hernangomez and Je Green supplied matching {14/14}-point eorts, with the former also
hauling in four boards and recording zero boards, and the latter posting four rebounds and
one assist. The Nuggets head back home to tangle with the Philadelphia 76ers on Wednesday
evening, while the Magic remain home to take on the Magic on Friday evening as well.

22.03

Proposed + w The Denver Nuggets defeated the host Orlando Magic, 121-113, at Amway Center on
Wednesday. The Nuggets were expected to win this game easily, but they were n’t able to
prevail with a win. In fact, the Nuggets led by 10 after the rst quarter, outscoring Orlando,
33-14. Defense was key for the Nuggets, as they held the Magic to 49 percent from the eld
and 5-of-28 from three-point range. Los Angeles were able to pull out a huge rebound, as they
held the Magic to just 18 points in the nal quarter. The Nuggets (9-15) have been one of the
best teams in the league right now and they simply could n’t get enough of a rhythm to win.
Danilo Gallinari led the team in scoring, as he tallied 21 points, six rebounds and three assists
on 5-of-8 shooting. Kenneth Faried was second on the team, as he accrued 19 points and 10
rebounds on 9-of-10 shooting o the bench. Jusuf Nurkic was second on the team, with his 17
points and eight rebounds on 8-of-11 shooting. Juan Hernangomez was a nice spark o the
bench, as he amassed 14 points, four rebounds and two assists. On deck for Denver is a home
matchup against the Los Angeles Lakers on Wednesday. The Magic (10-15) have been one of
the surprises of the season and a comeback performance from their worst team. Evan Fournier
had his best game of the season, as he tallied 24 points and four rebounds on 9-of-19 shooting.
Serge Ibaka was second on the team, as he accrued 22 points, four rebounds and four blocks.
Aaron Gordon was a nice spark o the bench, providing 11 points, six rebounds and three
assists. Orlando will look to keep rolling on Monday in a home matchup against the Cleveland
Cavaliers.

30.58

Table 3.8: Example summaries and their Bleu scores on the sample of the devel-
opment set. Blue numbers are correct relations derived from input
data records but are not observed in reference summary. Orange
numbers are incorrect relations. Green numbers are correct rela-
tions mentioned in reference summary.

46

Player H/V Pts Reb Ast Blk Stl Min City . . .

LeBron James H 33 11 11 0 0 33 Cleveland . . .

Will Barton V 27 4 1 0 2 26 Denver . . .

JR Smith H 15 4 5 0 4 29 Cleveland . . .

Channing Frye H 14 3 2 1 0 25 Cleveland . . .

. .

The Cleveland Cavaliers defeated the Denver Nuggets , 124 - 91 , at Quicken Loans Arena on Sat-
urday . The Cavaliers were expected to win this game easily and they left no doubt with this result . The
second quarter is when Cleveland really turned it on , as they outscored the Nuggets , 33 - 18 , in the second
half . The Nuggets (29 - 42) had to play this game without Kevin Love and Kenneth Faried , but they
did n’t have enough bullets to make up with the rest of the game . Cleveland shot 56 percent from the
eld , while Denver shot 40 percent . The assist - to - turnover ratio was decisive as well , with Cleveland
winning that battle , 52 - 32 . The Nuggets had a tough task here with a win . Will Barton led the team
with 27 points and four rebounds , but he also had two steals and zero turnovers . Jusuf Nurkic was
the only other player in double gures , as he tallied 11 points , seven rebounds , three assists and three
blocks . The Nuggets will look to keep up this good form against the Los Angeles Clippers on Monday .
The Cavaliers played this game without Kevin Love and Jameer Nelson and they simply didn ’ t miss them
. LeBron James did all he could though , as he accumulated 33 points , 11 rebounds and 11 assists in
the win . Channing Frye also nished with 14 points and zero shots , while Kyrie Irving scored
eight points in 24 minutes . Up next for the Cavaliers is a matchup against the Los Angeles Lakers on
Monday .

The Cleveland Cavaliers (50 - 20) defeated the visiting Denver Nuggets (29 - 42) on Wednesday
, 124 - 91 . The Cavaliers have now won three straight games and now sit two in a row . However , the
team’s top advantage is a strong one for the Cavaliers , as the team shot 56 percent from the eld and
hit 11 three - pointers . The Nuggets had a tough night on the glass , going just 5 - 37 on the night . The
Cavaliers were able to maintain the lead on the boards , however , thanks in large part to strong oense in
the second half of the season . Denver had been out of its previous three games with three games in a row
. The Nuggets saw solid performances from their bench , as veteran Will Barton leading the team with
27 points . The team shot just 42 percent from the eld and dished out 13 - of - 26 three - point attempts
. Cleveland’s oense was able to get o to a hot start in the second half , allowing the team to pull away
with the second half of the season . The Cavaliers , meanwhile , have now lost seven of their last seven ,
and are now just one game ahead of the Clippers for the top draft seed in the Eastern Conference . The
team will face the Clippers on Friday , while the Nuggets will host the Lakers on Wednesday .

Table 3.9: The generated summaries for the same game with dierent writer em-
beddings. Green numbers are relations that appeared in both sum-
maries. Orange numbers are relations that appeared only in the
above and Red numbers are relations that appeared only in the be-
low.

47

In addition to the text style, the writer information is useful for choosing similar
relations with the Gold summary. Although the Proposed model without
writer information mentions a more signicant number of relations by generating a
more extended summary, the Proposed model with writer information mentions
a similar number of relations with the Gold summary. Specically, the Gold
summary contains the 31 relations and summaries generated by the Proposed
model with or without writer information contain 46, 34 relations, and shares 20,
24 correct relations with those in the Gold summary respectively.
We also examined the writer bias eects for the model. In particular, we

examined the number of mentions of LeBron James, one of the most famous
players in the NBA, by the model with each writer’s information. The model
generates summaries for all writers for all 36 games in which LeBron James
played in the development set. As a result, about 70% of writers mentioned
LeBron James more than 30 games. In particular, three of these writers describe
LeBron in all games he played.
On the other hand, one of these writers mentioned LeBron James in just 13

out of 36 matches.
Considering the game shown in Figure 3.9 as an example, LeBron James is

considered one of the most active players in the game because he scored the
most points in this game. In the generated summaries using the dierent author
information, the above summary mentions LeBron James in detail, while the
below only mentions another active player, Will Barton.
We can also see that the summaries are written in dierent writing styles. This

example also indicates the stylistic dierence using the dierent writer informa-
tion in the model.

3.4 Conclusion
This chapter proposed a new data-to-text model producing a summary text while
tracking the salient information. As a result, our model outperformed the existing
models in all evaluation measures on theRotoWire-Modified dataset. We also
explored the eects of incorporating writer information into data-to-text models.
With writer information, our model successfully generated the highest quality

48

summaries, scoring 20.62 points on BLEU score.

49

4 Fact-based Text Editing

Automatic editing of text by computers is an important application that can help
human writers write better in terms of accuracy, uency, etc. This task is easier
and more practical than an automatic generation of texts from scratch and has
been recently attracting attention [128, 131]. In this chapter, we consider a new
and specic setting of this problem, referred to as fact-based text editing, in which
a draft text and several facts (represented in triples) are given, and the system
aims to revise the text by adding missing facts and deleting unsupported facts.
Table 4.1 gives an example of the task.
As far as we know, no previous work has addressed this problem. In a text-

to-text generation, given a text, the system automatically creates another text,
where the new text can be a text in another language (machine translation), a
summary of the original text (summarization), or a text in better form (text
editing). In a table-to-text generation, given a table containing facts in triples,
the system automatically composes a text describing the facts. The former is
a text-to-text problem, and the latter a table-to-text problem. In comparison,
fact-based text editing can be viewed as a ‘text&table-to-text’ problem.
First, we devise a method for automatically creating a dataset for fact-based

text editing. Recently, several table-to-text datasets have been created and re-
leased, consisting of pairs of facts and corresponding descriptions. We leverage
such data in our method. We rst retrieve facts and their descriptions. Next, we
consider the descriptions as revised texts and automatically generate draft texts
based on the facts using several rules. We build two datasets for fact-based text
editing on the basis of WebNLG [33] and RotoWire, consisting of 233k and
37k instances respectively [122] ∗.
Second, we propose a model for fact-based text editing called FactEditor.

∗The datasets are publicly available at https://github.com/isomap/factedit

50

Set of triples
{(Baymax, creator, Douncan_Rouleau),
(Douncan_Rouleau, nationality, American),
(Baymax, creator, Steven_T._Seagle),
(Steven_T._Seagle, nationality, American),
(Baymax, series, Big_Hero_6),
(Big_Hero_6, starring, Scott_Adsit)}

Draft text
Baymax was created by Duncan_Rouleau, a winner of
Eagle_Award. Baymax is a character in Big_Hero_6 .

Revised text
Baymax was created by American creators
Duncan_Rouleau and Steven_T._Seagle . Baymax is
a character in Big_Hero_6 which stars Scott_Adsit .

Table 4.1: Example of fact-based text editing. Facts are represented in triples.
The facts in green appear in both draft text and triples. The facts
in orange are present in the draft text, but absent from the triples.
The facts in blue do not appear in the draft text, but do in the
triples. The task of fact-based text editing is to edit the draft text on
the basis of the triples, by deleting unsupported facts and inserting
missing facts while retaining supported facts.

51

One could employ an encoder-decoder model to perform such a task. Encoder-
decoder models implicitly represent the actions for transforming the draft text
into a revised text. In contrast, FactEditor explicitly represents the actions for
text editing, including Keep, Drop, and Gen, which imply retention, deletion, and
generation of word respectively. The model utilizes a buer for storing the draft
text, a stream to store the revised text, and a memory for storing the facts. It
also employs a neural network to control the entire editing process. FactEditor
also has a lower time complexity than the encoder-decoder model, and thus it
can edit a text more eciently.
Experimental results show that FactEditor outperforms the baseline encoder-

decoder approach in terms of delity and uency and shows that FactEditor
can perform text editing faster than the encoder-decoder model.

4.1 Data
In this section, we describe our method of data creation for fact-based text editing.
The method automatically constructs a dataset from an existing table-to-text
dataset.

4.1.1 Data Sources
There are two benchmark datasets for table-to-text language processing,WebNLG [33]†

and RotoWire[122]‡. We create two constructed datasets on the basis of these
two, referred to as WebEdit and RotoEdit respectively. In these datasets,
each instance consists of a table (structured data) and an associated text (un-
structured data) describing almost the same content.§.
For each instance, we consider the table as triples of facts and the associated

text as a revised text, and we automatically create a draft text. The set of triples

†The data is available at https://github.com/ThiagoCF05/webnlg. We utilize version 1.5.
‡We utilize the RotoWire-modified data provided by Iso et al. [51] available at https:
//github.com/aistairc/rotowire-modified. The authors also provide an information ex-
tractor for processing the data.

§In RotoWire, we discard redundant box-scores and unrelated sentences using the information
extractor and heuristic rules.

52

is represented as T = {t}. Each triple t consists of subject, predicate, and object,
denoted as t = (subj, pred, obj). For simplicity, we refer to the nouns or noun
phrases of subject and object simply as entities. The revised text is a sequence
of words denoted as y. The draft text is a sequence of words denoted as x.
Given the set of triples T and the revised text y, we aim to create a draft text

x, such that x is not following T , in contrast to y, and therefore text editing
from x to y is needed.

4.1.2 Data Creation Procedure
Our method rst creates templates for all the sets of triples and revised texts and
then constructs a draft text for each set of triples and revised text based on their
related templates.

Creation of templates

For each instance, our method rst delexicalizes the entity words in the set of
triples T and the revised text y to obtain a set of triple templates T ′ and a re-
vised template y′. For example, given T ={(Baymax, voice, Scott_Adsit)} and
y =“Scott_Adsit does the voice for Baymax”, it produces the set of triple tem-
plates T ′ ={(AGENT-1, voice, PATIENT-1)} and the revised template y′ =“AGENT-
1 does the voice for PATIENT-1”. Our method then collects all the sets of triple
templates T ′ and revised templates y′ and retains them in a key-value store with
y′ being a key and T ′ being a value.

Creation of draft text

Next, our method constructs a draft text x using a set of triple templates T ′ and
a revised template y′. For simplicity, it only considers the use of either insertion
or deletion in text editing, and one can easily extend it to a more complex setting.
Note that the process of data creation is the reverse of that of text editing.
Given a pair of T ′ and y′, our method retrieves another pair denoted as T̂ ′ and

x̂′, such that y′ and x̂′ have the longest common subsequences. We refer to x̂′ as
a reference template. There are two possibilities; T̂ ′ is a subset or a superset of
T ′. (We ignore the case in which they are identical.) Our method then manages

53

y′ AGENT-1 performed as PATIENT-3 on BRIDGE-1 mission that was operated by PATIENT-2 .
x̂′ AGENT-1 served as PATIENT-3 was a crew member of the BRIDGE-1 mission .
x′ AGENT-1 performed as PATIENT-3 on BRIDGE-1 mission .

(a) Example for insertion. The revised template y′ and the reference template x̂′

share subsequences. The set of triple templates T \T̂ is {(BRIDGE-1, operator,
PATIENT-2)}. Our method removes “that was operated by PATIENT-2” from the
revised template y′ to create the draft template x′.

y′ AGENT-1 was created by BRIDGE-1 and PATIENT-2 .
x̂′ The character of AGENT-1 , whose full name is PATIENT-1 , was created by BRIDGE-1 and PATIENT-2 .
x′ AGENT-1 , whose full name is PATIENT-1 , was created by BRIDGE-1 and PATIENT-2 .

(b) Example for deletion. The revised template y′ and the reference template x̂′

share subsequences. The set of triple templates T̂ \T is {(AGENT-1, fullName,
PATIENT-1)}. Our method copies “whose full name is PATIENT-1” from the
reference template x′ to create the draft template x′.

Table 4.2: Examples for insertion and deletion, where words in green are
matched, words in gray are not matched, words in blue are
copied, and words in orange are removed. Best viewed in color.

to change y′ to a draft template denoted as x′ on the basis of the relation between
T ′ and T̂ ′. If T̂ ′ (T ′, then the draft template x′ created is for insertion, and if
T̂ ′) T ′, then the draft template x′ created is for deletion.
For insertion, the revised template y′ and the reference template x̂′ share sub-

sequences, and the set of triples T \T̂ appear in y′ but not in x̂′. Our method
keeps the shared subsequences in y′, removes the subsequences in y′ on T \T̂ , and
copies the rest of words in y′, to create the draft template x′. Table 4.2a gives
an example. The shared subsequences “AGENT-1 performed as PATIENT-3 on
BRIDGE-1 mission” are retained. The set of triple templates T \T̂ is {(BRIDGE-
1, operator, PATIENT-2)}. The subsequence “that was operated by PATIENT-2”
is removed. Note that the subsequence “served” is not copied because it is not
shared by y′ and x̂′.
For deletion, the revised template y′ and the reference template x̂′ share sub-

sequences. The set of triples T̂ \T appear in x̂′ but not in y′. Our method
retains the shared subsequences in y′, copies the subsequences in x̂′ about T̂ \T ,
and copies the rest of words in y′, to create the draft template x′. Table 4.2b

54

WebEdit RotoEdit

Train Valid Test Train Valid Test

#D 181k 23k 29k 27k 5.3k 4.9k
#Wd 4.1M 495k 624k 4.7M 904k 839k
#Wr 4.2M 525k 649k 5.6M 1.1M 1.0M
#S 403k 49k 62k 209k 40k 36k

Table 4.3: Statistics of WebEdit and RotoEdit, where #D is the number of
instances, #Wd and #Ws are the total numbers of words in the draft
texts and the revised texts, respectively, and #S is total the number
of sentences.

gives an example. The subsequences “AGENT-1 was created by BRIDGE-1 and
PATIENT-2” are retained. The set of triple templates T̂ \T is {(AGENT-1, full-
Name, PATIENT-1)}. The subsequence “whose full name is PATIENT-1” is
copied. Note that the subsequence “the character of” is not copied because it is
not shared by y′ and x̂′.
After obtaining the draft template, x′, our method lexicalizes it to obtain a

draft text x, where the lexicons (entity words) are collected from the correspond-
ing revised text y.
We obtain two datasets with our method, referred to as WebEdit and Ro-

toEdit. Table 4.3 presents the statistics of the datasets.
In the WebEdit data, sometimes entities only appear in the subj’s of triples.

In such cases, we also make them appear in the obj’s. To do so, we introduce an
additional triple (ROOT, IsOf, subj) for each subj, where ROOT is a dummy entity.

4.2 Model
In this section, we describe our proposed model for fact-based text editing, re-
ferred to as FactEditor.

55

4.2.1 Model Architecture
FactEditor transforms a draft text into a revised text based on given triples.
The model consists of three components, a buer for storing the draft text and its
representations, a stream for storing the revised text and its representations, and
a memory for storing the triples and their representations, as shown in Figure 4.1.
FactEditor scans the text in the buer, copies the parts of text from the

buer into the stream if they are described in the triples in the memory, deletes
the parts of the text if they are not mentioned in the triples, and inserts new
sections of text into the stream which are only present in the triples.
The architecture of FactEditor is inspired by those in sentence parsing Dyer

et al. [28], Watanabe and Sumita [116]. The actual processing of FactEditor
generates a sequence of words into the stream from the given sequence of words
in the buer and the set of triples in memory. A neural network is employed to
control the entire editing process.

4.2.2 Neural Network
Initialization

FactEditor rst initializes the representations of content in the buer, stream,
and memory.
There is a feed-forward network associated with the memory, utilized to create

the embeddings of triples. Let M denote the number of triples. The embedding
of triple tj, j = 1, · · · ,M is calculated as

tj = tanh(W t[esubj
j ; epred

j ; eobj
j] + dt),

where W t and dt denote parameters, esubj
j , epred

j , eobj
j denote the embeddings of

subject, predicate, and object of triple tj, and [;] denotes vector concatenation.
There is a bi-directional LSTM associated with the buer, utilized to create

the embeddings of words of draft text. The embeddings are obtained as b =
BiLSTM(x), where x = (x1, . . . ,xN) is the list of embeddings of words and
b = (b1, . . . , bN) is the list of representations of words, where N denotes the
number of words.

56

An LSTM associated with the stream for representing the hidden states of the
stream exists. The rst hidden state is initialized as

s1 = tanh
(
W s

[N
i=1 bi
N

;
M

j=1 tj

M

]
+ ds

)

where W s and ds are parameters.

Action prediction

FactEditor predicts an action at each time t using the LSTM. There are three
types of action, namely Keep, Drop, and Gen. First, it composes a context vector
t̃t of triples at time t using attention

t̃t =
M∑

j=1
αt,jtj

where αt,j is a weight calculated as

αt,j ∝ exp (vα · tanh (W α[st; bt; tj]))

where vα and W α are parameters. Then, it creates the hidden state zt for action
prediction at time t

zt = tanh

W z[st; bt; t̃t] + dz



where W z and dz are parameters. Next, it calculates the probability of action at

p(at | zt) = softmax(W azt)

where W a denotes parameters and chooses the action having the largest proba-
bility.

Action execution

FactEditor takes action based on the prediction result at time t.
For Keep at time t, FactEditor pops the top embedding bt in the buer, and

feeds the combination of the top embedding bt and the context vector of triples
t̃t into the stream, as shown in Figure 4.1a. The state of stream is updated with

57

Stream Bufferst bt

poppush

tt
~

(a) The Keep action, where the top embedding of the buer bt is popped and the
concatenated vector [t̃t; bt] is pushed into the stream LSTM.

Stream Bufferst bt

pop

(b) The Drop action, where the top embedding of the buer bt is popped and the state
in the stream is reused at the next time step t+ 1.

Stream Buffer

tt

st bt

Wp yt
~

push

(c) The Gen action, where the concatenated vector [t̃t;W pyt] is pushed into the stream,
and the top embedding of the buer is reused at the next time step t+ 1.

Figure 4.1: Actions of FactEditor.

58

the LSTM as st+1 = LSTM([t̃t; bt], st). FactEditor also copies the top word
in the buer into the stream.
For Drop at time t, FactEditor pops the top embedding in the buer and

proceeds to the next state, as shown in Figure 4.1b. The state of stream is
updated as st+1 = st. Note that no word is input into the stream.
For Gen at time t, FactEditor does not pop the top embedding in the buer.

It feeds the combination of the context vector of triples t̃t and the linearly pro-
jected embedding of word w into the stream, as shown in Fig. 4.1c. The state
of stream is updated with the LSTM as st+1 = LSTM([t̃t;W pyt], st), where
yt is the embedding of the generated word yt, and W p denotes parameters. In
addition, FactEditor copies the generated word yt into the stream.
FactEditor continues the actions until the buer becomes empty, and then

the text stored in the stream is considered as the revised text.

Word generation

FactEditor generates a word yt at time t, when the action is gen,

pgen(yt | zt) = softmax(W yzt)

where W y represents the parameters.
To avoid generation of OOV words, FactEditor exploits the copy mechanism.

It calculates the probability of copying the object of triple tj

δt,oj ∝ exp (vc · tanh(W c[zt; tj]))

where vc and W c denote parameters, and oj is the object of triple tj. It also
calculates the probability of getting

pcopy = sigmoid(w·
gzt + bg)

where wg and bg are parameters. Finally, it calculates the probability of gener-
ating a word wt through either generation or copying,

P (yt | zt) = (1− pcopy) ∗ pgen(yt | zt) + pcopy ∗
M∑

j=1:oj=yt

δt,oj ,

where it is assumed that the triples in the memory have the same subject and
thus only objects need to be copied.

59

4.2.3 Training
The conditional probability of sequence of actions a = (a1, a2, · · · , aT) given the
set of triples T , and the sequence of input words x can be written as

P (a | T ,x) =
T∏

t=1
P (at | zt)

where P (at | zt) is the conditional probability of action at given state zt at time
t and T denotes the number of actions.
The conditional probability of sequence of generated words y = (y1, y2, · · · , yT)

given the sequence of actions a can be written as

P (y | a) =
T∏

t=1
P (yt | at) (4.1)

where P (yt | at) is the conditional probability of generated word yt given action
at at time t, which is calculated as

P (yt | at) =




P (yt | zt) if at = Gen

1 otherwise
(4.2)

Note that not all positions have a generated word. In such a case, yt is simply a
null word.
The training of the model is carried out via supervised learning. The objective

of learning is to minimize the negative log-likelihood of P (a | T ,x) and P (y | a)

L(θ) = −
T∑

t=1
{logP (at | zt) + logP (yt | at)}

where θ denotes the parameters.
A training instance consists of a pair with draft text and revised text, as well

as a set of triples, denoted as x, y, and T respectively. For each instance, our
method derives a sequence of actions denoted as a, in a similar way as that in [26].
It rst nds the longest common sub-sequence between x and y, and then selects
an action of Keep, Drop, or Gen at each position, according to how y is obtained
from x and T (cf., Table 4.4). Action Gen is preferred to action Drop when both
are valid.

60

Draft text x Bakewell_pudding is Dessert that can be served
Warm or cold .

Revised text y Bakewell_pudding is Dessert that originates
from Derbyshire_Dales .

Action sequence a Keep Keep Keep Keep Gen(originates) Gen(from)
Gen(Derbyshire_Dales) Drop Drop Drop Drop Keep

Table 4.4: An example of action sequence derived from a draft text and revised
text.

4.2.4 Time Complexity
The time complexity of inference in FactEditor is O(NM), where N is the
number of words in the buer, and M is the number of triples. Scanning data in
the buer is of complexity O(N). The generation of action needs the execution
of attention, which is of complexity O(M). Usually, N is much larger than M .

4.3 Experiments
We conduct experiments to compare FactEditor and the baselines using the
two datasets WebEdit and RotoEdit.

4.3.1 Settings
The primary baseline is the encoder-decoder model EncDecEditor, as ex-
plained above. We further consider three baselines, No-Editing, Table-to-Text,
and Text-to-Text. In No-Editing, the draft text is directly used. In Table-to-Text,
a revised text is generated from the triples using encoder-decoder. In Text-to-
Text, a revised text is created from the draft text using the encoder-decoder
model. Figure 4.2 illustrates the baselines.
We evaluate the results of texts revised by the models from the viewpoint of

uency and delity. We utilize ExactMatch (EM), Bleu [88] and Sari [125]

61

Table Encoder Decoder

yT

(a) Table-to-Text

T

Text Encoder Decoder

yx

(b) Text-to-Text

Table Encoder Text Encoder Decoder

yxT

(c) EncDecEditor

Figure 4.2: Model architectures of the baselines. All models employ attention
and copy mechanisms.

62

scores¶ as evaluation metrics for uency. Further, we utilize precision, recall, and
F1 score as evaluation metrics for delity. For WebEdit, we extract the entities
from the generated text and the reference text and then calculate the precision,
recall, and F1 scores. For RotoEdit, we use the information extraction tool
provided by Wiseman et al. [122] for calculation of the scores.
For the embeddings of subject and object for both datasets and the embedding

of the predicate for RotoEdit, we use the embedding lookup table. For the
embedding of the predicate for WebEdit, we rst tokenize the predicate, lookup
the embeddings of lower-cased words from the table, and use averaged embedding
to deal with the OOV problem [79].
We tune the hyperparameters based on the Bleu score on a development set.

For WebEdit, we set the sizes of embeddings, buers, and triples to 300 and
the stream’s size to 600. For RotoEdit, we set the size of embeddings to 100
and the sizes of buers, triples, and stream to 200. The initial learning rate is
2e-3, and AMSGrad is used for automatically adjusting the learning rate [97].
Our implementation makes use of AllenNLP [34].

4.3.2 Baseline
We consider a baseline method using the encoder-decoder architecture, which
takes the set of triples and the draft text as input and generates a revised text.
We refer to the method as EncDecEditor. The encoder of EncDecEditor
is the same as that of FactEditor. The decoder is the standard attention and
copy model, which creates and utilizes a context vector and predicts the next
word.
The time complexity of inference in EncDecEditor is O(N 2+NM) (cf.,Britz

et al. [13]). Note that in fact-based text editing, usually N is very large, implying
that EncDecEditor is less ecient than FactEditor.

¶We use a modied version of SARI where β equals 1.0, available at https://github.com/
tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py

63

4.3.3 Results
Quantitative evaluation

We present the performances of our proposed model FactEditor and the base-
lines on fact-based text editing in Table 4.5. Several conclusions can be drawn
from the results.
First, our proposed model, FactEditor, achieves signicantly better perfor-

mances than the main baseline, EncDecEditor, in terms of almost all measures.
In particular, FactEditor obtains signicant gains in Delete scores on both
WebEdit and RotoEdit.
Second, the fact-based text editing models (FactEditor and EncDecEdi-

tor) signicantly improve upon the other models in terms of uency scores and
achieve similar performances in terms of delity scores.
Third, Table-to-Text has higher delity scores but lower uency scores than

No-Editing. Text-to-Text has almost the same uency scores but lower delity
scores on RotoEdit.
We also examined the relationship between the editing diculty and perfor-

mance. Specically, we partitioned the data into buckets based on the edit dis-
tance between the input and output and then calculate the SARI score for each.
As shown in Table 4.6, the SARI scores are generally stable, indicating that

the overall editing performance does not highly depend on the editing diculty
except for straightforward cases. The Keep score, which indicates whether the
draft text is correctly retained, is stable even when the edit distance increases
in both datasets. Also, the DELETE score, which indicates the capability to
delete inconsistent text with the facts, is stable or increases as the edit distance
increases. This indicates that, especially in the WebEdit dataset, as the edit
distance increases, the number of factually inconsistent parts increases, and the
deletion of such parts is more straightforward.
However, the ADD score, which indicates whether new facts are inserted cor-

rectly, decreased signicantly as the editing distance increased, suggesting that
correctly inserting facts remains an essential issue in fact-based text editing.

64

Model
Fluency Fidelity

Bleu Sari Keep Add Delete EM P% R% F1%

Baselines

No-Editing 66.67 31.51 78.62 3.91 12.02. 0. 84.49 76.34 80.21

Table-to-Text 33.75 43.83 51.44 27.86 52.19 5.78 98.23 83.72 90.40

Text-to-Text 63.61 58.73 82.62 25.77 67.80 6.22 81.93 77.16 79.48

Fact-based text editing

EncDecEditor 71.03 69.59 89.49 43.82 75.48 20.96 98.06 87.56 92.51

FactEditor 75.68 72.20 91.84 47.69 77.07 24.80 96.88 89.74 93.17

(a) WebEdit

Model
Fluency Fidelity

Bleu Sari Keep Add Delete EM P% R% F1%

Baselines

No-Editing 74.95 39.59 95.72 0.05 23.01 0. 92.92 65.02 76.51

Table-to-Text 24.87 23.30 39.12 14.78 16.00 0. 48.01 24.28 32.33

Text-to-Text 78.07 60.25 97.29 13.04 70.43 0.02 63.62 41.08 49.92

Fact-based text editing

EncDecEditor 83.36 71.46 97.69 44.02 72.69 2.49 78.80 52.21 62.81

FactEditor 84.43 74.72 98.41 41.50 84.24 2.65 78.84 52.30 63.39

(b) RotoEdit

Table 4.5: Performance of FactEditor and baselines on two datasets in terms
of uency and delity. EM represents the exact match.

65

Edit Distance [1, 5) [5, 10) [10, 15) [15, ∞)

SARI 77.26 76.10 75.80 76.47
Keep 95.51 93.74 92.76 92.48
Add 56.36 52.94 50.66 50.49

Delete 79.92 81.62 83.99 86.45

Ratio 18.07 43.90 29.61 8.42

(a) WebEdit

Edit Distance [1, 25) [25, 50) [50, 75) [75, ∞)

SARI 78.34 73.79 73.31 73.62
Keep 98.78 98.33 98.16 98.17
Add 50.85 39.01 37.47 38.12

Delete 85.38 84.03 84.31 84.57

Ratio 35.29 37.29 19.39 8.03

(b) RotoEdit

Table 4.6: Relationship between editing diculty and editing performance.

Qualitative evaluation

We also manually evaluate 50 randomly sampled revised texts for WebEdit.
We check whether the revised texts given by FactEditor and EncDecEditor
include all the facts. We categorize the factual errors made by the two models.
Table 4.7 shows the results. We note that FactEditor covers more facts than
EncDecEditor and has less factual errors than EncDecEditor.
FactEditor has a larger number of correct editing cases (CQT) than EncDe-

cEditor for fact-based text editing. In contrast, EncDecEditor often includes
a larger number of unnecessary rephrasings (UPara) than FactEditor.
We considered four types of factual errors: fact repetitions (Rpt), fact omis-

66

Covered facts Factual errors
CQT UPara Rpt Ms USup DRel

EncDecEditor 14 7 16 21 3 12
FactEditor 24 4 9 19 1 3

Table 4.7: Evaluation results on 50 randomly sampled revised texts in WebEdit
in terms of numbers of correct editing (CQT), unnecessary paraphras-
ing (UPara), repetition (Rpt), missing facts (Ms), unsupported facts
(USup) and diering relations (DRel)

sions (Ms), unsupported facts (USup), and relation dierences (DRel). Both
FactEditor and EncDecEditor often fail to insert missing facts (Ms), but
rarely insert unsupported facts (USup). EncDecEditor often generates the
same facts multiple times (RPT) or facts in dierent relations (DRel). In con-
trast, FactEditor seldom makes such errors.
Table 4.8 shows an example of results provided by EncDecEditor and FactE-

ditor. The revised texts of both EncDecEditor and FactEditor appear to
be uent, but that of FactEditor has higher delity than that of EncDecEd-
itor. EncDecEditor cannot eectively eliminate the use of an unsupported
fact (in orange) appearing in the draft text. In contrast, FactEditor can deal
with the problem eectively. In addition, EncDecEditor conducts an unnec-
essary substitution in the draft text (underlined). FactEditor tends to avoid
such unnecessary editing.

Comparison by oracle action creation method

In this study, we assumed the approach of prioritizing Gen actions when there
was ambiguity in the creation of oracle action sequences, and we analyzed the
impact of this approach.
Table 4.9 shows the performance of FactEditor for dierent oracle action

creation methods on the development set of WebEdit dataset. The experimental
results show that editing performance was similar for both methods, but the
overall score is slightly higher when Gen actions are prioritized than when Drop

67

Set of triples

{(Ardmore_Airport, runwayLength, 1411.0),
(Ardmore_Airport, 3rd_runway_SurfaceType, Poaceae),

(Ardmore_Airport, operatingOrganisation,
Civil_Aviation_
Authority_of_
New_Zealand),

(Ardmore_Airport, elevationAboveTheSeaLevel, 34.0),
(Ardmore_Airport, runwayName, 03R/21L)}

Draft text
Ardmore_Airport , ICAO Location Identier UTAA . Ardmore_Airport
3rd runway is made of Poaceae and Ardmore_Airport . 03R/21L is 1411.0 m
long and Ardmore_Airport is 34.0 above sea level .

Revised text

Ardmore_Airport is operated by Civil_Aviation_Authority_of_
New_Zealand . Ardmore_Airport 3rd runway is made of Poaceae and
Ardmore_Airport name is 03R/21L .
03R/21L is 1411.0 m long and Ardmore_Airport is 34.0 above sea level .

EncDecEditor

Ardmore_Airport , ICAO Location Identier UTAA , is operated by
Civil_Aviation_Authority_of_New_Zealand . Ardmore_Airport 3rd runway
is made of Poaceae and Ardmore_Airport . 03R/21L is 1411.0 m long and
Ardmore_Airport is 34.0 m long .

FactEditor
Ardmore_Airport is operated by Civil_Aviation_Authority_of_New_Zealand .
Ardmore_Airport 3rd runway is made of Poaceae and Ardmore_Airport .
03R/21L is 1411.0 m long and Ardmore_Airport is 34.0 above sea level .

Table 4.8: Example of generated revised texts given by EncDecEditor and
FactEditor on WebEdit. Entities in green appear in both the
set of triples and the draft text. Entities in orange only appear in
the draft text. Entities in blue appear in the revised text but not in
the draft text.

68

Bleu Sari Keep Add Delete EM

Gen rst 77.29 76.25 93.66 52.68 82.42 25.36
Drop rst 76.22 75.12 93.45 49.90 82.02 22.35

Table 4.9: FactEditor performance with dierent oracle action creation meth-
ods on validation dataset of WebEdit.

WebEdit RotoEdit

Table-to-Text 4,083 1,834
Text-to-Text 2,751 581

EncDecEditor 2,487 505
FactEditor 3,295 1,412

Table 4.10: Runtime analysis (# of words/second). Table-to-Text always shows
the fastest performance (Bold-faced). FactEditor shows the sec-
ond fastest runtime performance (Underlined).

actions are prioritized.

Runtime analysis

We conducted a runtime analysis on FactEditor and the baselines in terms
of number of processed words per second, on both WebEdit and RotoEdit.
Table 4.10 presents the results for all methods when the batch size was 128.
Table-to-Text is the fastest, followed by FactEditor. FactEditor is always
faster than EncDecEditor, apparently because it has a lower time complexity,
as explained in Section 4.2.4. The texts in WebEdit are relatively short, and
thus FactEditor and EncDecEditor have similar runtime speeds. In con-
trast, the texts in RotoEdit are relatively long, and thus FactEditor executes
approximately two times faster than EncDecEditor.

69

4.4 Conclusion
In this chapter, we dened a new task referred to as fact-based text editing and
made two contributions to research on the problem. First, we proposed a data
construction method for fact-based text editing and created two datasets. Second,
we proposed a model for fact-based text editing, named FactEditor, which
performs the task by generating a sequence of actions. Experimental results
show that the proposed model FactEditor performs better and faster than the
baselines, including an encoder-decoder model.

70

5 Conclusion

In this dissertation, methods for developing natural language generation systems
were presented. We discussed our methods to tackle data-to-document generations
and fact-based text editing. In this section, we conclude this thesis and discuss
the challenges and suggest future work.
Concretely, in Chapter 3, we developed models that can generate a meaningful

and faithful document from massive data. We found that the tracking module
successfully memorizes the saliency transition during the generation of a game
summary. As a result, our model outperformed the existing models in all eval-
uation measures on the RotoWire-Modified dataset. We also explored the
eects of incorporating writer information into data-to-text models. With writer
information, our model successfully generated the highest quality summaries,
achieving a BLEU score of 20.62 points.
In Chapter 4, we introduced a new text editing task, referred to as Fact-based

Text Editing, in which the goal is to revise a given document to describe facts
in a knowledge base better. First, we proposed a data construction method for
fact-based text editing and created two datasets. Second, we proposed a model
for fact-based text editing, named FactEditor, which performs the task by
generating a sequence of actions. Experimental results show that the proposed
model FactEditor performs better and faster than the baselines, including an
encoder-decoder model.

5.1 Future work
We conclude this dissertation by discussing the remaining challenges in natural
language generation systems.

71

Integrating with Transformer architectures
Although we mainly focus on the recurrent neural network-based NLG models
in this thesis, a new encoder-decoder architecture, referred to as Transformer,
has been proposed, which only uses the attention mechanism and often achieves
better performance than recurrent neural network based-sequence generation
model [113].
However, the model introduced in this thesis includes memory-like architecture

in which the saliency of each entity is updated during the generation process,
but it is not apparent that such a mechanism is incorporated into the Trans-
former model. Furthermore, in recent years, pre-trained language models have
been developed on top of a Transformer such as bidirectional encoder representa-
tions from Transformer (BERT)[23], and the generative pre-trained transformer
(GPT)[94, 95]. Thus, it is crucial to develop a transformer model that can gener-
ate text while retaining long-term history with a memory, such as the architecture
proposed in this thesis.

Interactive Text Editing
In this thesis, we introduced Fact-based Text Editing, which enables a machine
agent to add and delete information from external knowledge. Although our
work can be viewed as a rst step toward editing text based on facts, a more
versatile editing model should be developed in the future. This thesis assumes
the presence of triples as sources of information to achieve text editing, but we
envision the realization of text editing from unstructured text instruction for the
future direction. For example, given a draft text and textual instructions to the
model, the model should retrieve facts from a large corpus of documents and edit
text based on the retrieved facts.

72

Publication List

Journal paper
1. Hayate Iso, Yui Uehara, Tatsuya Ishigaki, Hiroshi Noji, Eiji Aramaki, Ichiro

Kobayashi, Yusuke Miyao, Naoaki Okazaki and Hiroya Takamura, Learning
to Select, Track, and Generate for Data-to-Text, Journal of Natural Lan-
guage Processing, The Association for Natural Language Processing Vol.27
No.3, 2020

2. Hayate Iso, Shoko Wakamiya, Eiji Aramaki, Conditional Density Estima-
tion of Tweet Location: A Feature-Dependent Approach, Stud Health Tech-
nol Inform. 2017;245:408-411. PMID: 29295126.

International conference
1. Hayate Iso, Chao Qiao, Hang Li, Fact-based Text Editing, Proceedings of

the 58th Annual Meeting of the Association for Computational Linguistics
(ACL) (long), 2020.

2. Hayate Iso, Yui Uehara, Tatsuya Ishigaki, Hiroshi Noji, Eiji Aramaki, Ichiro
Kobayashi, Yusuke Miyao, Naoaki Okazaki, Hiroya Takamura Learning
to Select, Track, and Generate for Data-to-Text, Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics (ACL)
(long), 2019.

3. Hayate Iso, Kaoru Ito, Hiroyuki Nagai, Taro Okahisa and Eiji Aramaki,
Parsing Japanese Tweets into Universal Dependencies, Proceedings of Uni-
versal Dependencies Workshop (UDW), 2018.

4. Paolo Casani, Hayate Iso, Shoko Wakamiya, Eiji Aramaki, Wisdom in Ad-
versity: A Twitter Study of the Japanese Tsunami, Advances in Social
Networks Analysis and Mining (ASONAM), 2018.

5. Hayate Iso, Camille Ruiz, Taichi Murayama, Katsuya Taguchi, Ryo Takeuchi,
Hideya Yamamoto, Shoko Wakamiya, Eiji Aramaki, NTCIR13 MedWeb
Task: Multi-label Classication of Tweets using an Ensemble of Neural

73

Networks, Proceedings of NTCIR Conference on Evaluation of Information
Access Technologies, (NTCIR), 2017.

6. Hayate Iso, ShokoWakamiya, Eiji Aramaki, Forecasting word model: Twitter-
based inuenza surveillance and prediction, Proceedings the 26th Interna-
tional Conference on Computational Linguistics: Technical Papers (COL-
ING) (long), 2016.

74

References

[1] Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro
Presta, Kuzman Ganchev, Slav Petrov, and Michael Collins. Globally nor-
malized transition-based neural networks. In Proceedings of the 54th An-
nual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 2442–2452, Berlin, Germany, August 2016. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/P16-1231. URL
https://www.aclweb.org/anthology/P16-1231.

[2] Gabor Angeli, Percy Liang, and Dan Klein. A simple domain-independent
probabilistic approach to generation. In Proceedings of the 2010 Confer-
ence on Empirical Methods in Natural Language Processing, pages 502–512,
Cambridge, MA, October 2010. Association for Computational Linguistics.
URL https://www.aclweb.org/anthology/D10-1049.

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine
translation by jointly learning to align and translate. In Proceedings of the
Third International Conference on Learning Representations, 2015. URL
https://arxiv.org/pdf/1409.0473.pdf.

[4] Miguel Ballesteros, Chris Dyer, Yoav Goldberg, and Noah A. Smith. Greedy
transition-based dependency parsing with stack LSTMs. Computational
Linguistics, 43(2):311–347, June 2017. doi: 10.1162/COLI_a_00285. URL
https://www.aclweb.org/anthology/J17-2002.

[5] Regina Barzilay and Mirella Lapata. Collective content selection for
concept-to-text generation. In Proceedings of the conference on Human Lan-
guage Technology and Empirical Methods in Natural Language Processing,
pages 331–338, 2005. URL http://aclweb.org/anthology/H05-1042.

75

[6] Regina Barzilay and Lillian Lee. Catching the drift: Probabilistic content
models, with applications to generation and summarization. In Proceed-
ings of the Human Language Technology Conference of the North American
Chapter of the Association for Computational Linguistics: HLT-NAACL
2004, pages 113–120, Boston, Massachusetts, USA, May 2 - May 7 2004.
Association for Computational Linguistics. URL https://www.aclweb.
org/anthology/N04-1015.

[7] Regina Barzilay, Noemie Elhadad, and Kathleen R. McKeown. Inferring
strategies for sentence ordering in multidocument news summarization. J.
Artif. Int. Res., 17(1):35–55, August 2002. ISSN 1076-9757.

[8] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A
neural probabilistic language model. Journal of machine learning research,
3(Feb):1137–1155, 2003.

[9] Danushka Bollegala, Naoaki Okazaki, and Mitsuru Ishizuka. A bottom-
up approach to sentence ordering for multi-document summarization. In
Proceedings of the 21st International Conference on Computational Lin-
guistics and 44th Annual Meeting of the Association for Computational
Linguistics, pages 385–392, Sydney, Australia, July 2006. Association for
Computational Linguistics. doi: 10.3115/1220175.1220224. URL https:
//www.aclweb.org/anthology/P06-1049.

[10] Antoine Bosselut, Omer Levy, Ari Holtzman, Corin Ennis, Dieter Fox, and
Yejin Choi. Simulating Action Dynamics with Neural Process Networks. In
Proceedings of the Sixth International Conference on Learning Representa-
tions, 2018. URL https://openreview.net/pdf?id=rJYFzMZC-.

[11] Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och, and Jef-
frey Dean. Large language models in machine translation. In Proceed-
ings of the 2007 Joint Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Language Learning (EMNLP-
CoNLL), pages 858–867, Prague, Czech Republic, June 2007. Associ-
ation for Computational Linguistics. URL https://www.aclweb.org/
anthology/D07-1090.

76

[12] Eric Brill and Robert C. Moore. An improved error model for noisy channel
spelling correction. In Proceedings of the 38th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 286–293, Hong Kong, October
2000. Association for Computational Linguistics. doi: 10.3115/1075218.
1075255. URL https://www.aclweb.org/anthology/P00-1037.

[13] Denny Britz, Melody Guan, and Minh-Thang Luong. Ecient attention us-
ing a xed-size memory representation. In Proceedings of the 2017 Confer-
ence on Empirical Methods in Natural Language Processing, pages 392–400,
Copenhagen, Denmark, September 2017. Association for Computational
Linguistics. doi: 10.18653/v1/D17-1040. URL https://www.aclweb.org/
anthology/D17-1040.

[14] Peter F Brown, Stephen A Della Pietra, Vincent J Della Pietra, and
Robert L Mercer. The mathematics of statistical machine translation: Pa-
rameter estimation. Computational linguistics, 19(2):263–311, 1993.

[15] C. Buck, Kenneth Heaeld, and Bas van Ooyen. N-gram counts and lan-
guage models from the common crawl. In LREC, 2014.

[16] David L Chen and Raymond J Mooney. Learning to sportscast: a test
of grounded language acquisition. In Proceedings of the 25th international
conference on Machine learning, pages 128–135, 2008. URL https://icml.
cc/Conferences/2008/papers/304.pdf.

[17] F. ChenStanley and GoodmanJoshua. An empirical study of smoothing
techniques for language modeling. Computer Speech & Language, 1999.

[18] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bah-
danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning
Phrase Representations using RNN Encoder–Decoder for Statistical Ma-
chine Translation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, pages 1724–1734, 2014. URL
https://www.aclweb.org/anthology/D14-1179.

[19] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio.

77

Empirical evaluation of gated recurrent neural networks on sequence mod-
eling. arXiv preprint arXiv:1412.3555, 2014.

[20] Elizabeth Clark, Yangfeng Ji, and Noah A Smith. Neural Text Genera-
tion in Stories Using Entity Representations as Context. In Proceedings
of the 16th Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pages 2250–
2260, 2018. URL http://aclweb.org/anthology/N18-1204.

[21] James Cross and Liang Huang. Incremental parsing with minimal features
using bi-directional LSTM. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Papers),
pages 32–37, Berlin, Germany, August 2016. Association for Computational
Linguistics. doi: 10.18653/v1/P16-2006. URL https://www.aclweb.org/
anthology/P16-2006.

[22] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le, and Rus-
lan Salakhutdinov. Transformer-XL: Attentive language models beyond a
xed-length context. In Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 2978–2988, Florence, Italy,
July 2019. Association for Computational Linguistics. doi: 10.18653/v1/
P19-1285. URL https://www.aclweb.org/anthology/P19-1285.

[23] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: Pre-training of deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), pages 4171–4186,
Minneapolis, Minnesota, June 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/N19-1423. URL https://www.aclweb.org/
anthology/N19-1423.

[24] Bhuwan Dhingra, Manaal Faruqui, Ankur Parikh, Ming-Wei Chang, Dipan-
jan Das, and William Cohen. Handling divergent reference texts when eval-
uating table-to-text generation. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, pages 4884–4895, 2019.

78

[25] William B. Dolan and Chris Brockett. Automatically constructing a corpus
of sentential paraphrases. In Proceedings of the Third International Work-
shop on Paraphrasing (IWP2005), 2005. URL https://www.aclweb.org/
anthology/I05-5002.

[26] Yue Dong, Zichao Li, Mehdi Rezagholizadeh, and Jackie Chi Kit Cheung.
EditNTS: An neural programmer-interpreter model for sentence simplica-
tion through explicit editing. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages 3393–3402, Florence,
Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/
v1/P19-1331. URL https://www.aclweb.org/anthology/P19-1331.

[27] Pablo Ariel Duboue and Kathleen R. McKeown. Statistical acquisition
of content selection rules for natural language generation. In Proceedings
of the 2003 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 121–128, 2003. URL https://www.aclweb.org/anthology/
W03-1016.

[28] Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, and Noah A.
Smith. Transition-based dependency parsing with stack long short-term
memory. In Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), pages 334–
343, Beijing, China, July 2015. Association for Computational Linguistics.
doi: 10.3115/v1/P15-1033. URL https://www.aclweb.org/anthology/
P15-1033.

[29] J. Elman. Finding structure in time. Cogn. Sci., 14:179–211, 1990.

[30] Yao Fu, Chuanqi Tan, Bin Bi, Mosha Chen, Yansong Feng, and Alexan-
der M Rush. Latent template induction with gumbel-crfs. In Advances in
Neural Information Processing Systems, 2020.

[31] Yarin Gal and Zoubin Ghahramani. A theoretically grounded application
of dropout in recurrent neural networks. In Advances in Neural Information
Processing Systems, 2016.

79

[32] Claire Gardent and Laura Perez-Beltrachini. A statistical, grammar-based
approach to microplanning. Computational Linguistics, 43(1):1–30, 2017.

[33] Claire Gardent, Anastasia Shimorina, Shashi Narayan, and Laura Perez-
Beltrachini. Creating training corpora for NLG micro-planners. In Pro-
ceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 179–188, Vancouver, Canada,
July 2017. Association for Computational Linguistics. doi: 10.18653/v1/
P17-1017. URL https://www.aclweb.org/anthology/P17-1017.

[34] Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi,
Nelson F. Liu, Matthew Peters, Michael Schmitz, and Luke Zettlemoyer.
AllenNLP: A deep semantic natural language processing platform. In Pro-
ceedings of Workshop for NLP Open Source Software (NLP-OSS), pages
1–6, Melbourne, Australia, July 2018. Association for Computational Lin-
guistics. doi: 10.18653/v1/W18-2501. URL https://www.aclweb.org/
anthology/W18-2501.

[35] Xavier Glorot and Yoshua Bengio. Understanding the diculty of training
deep feedforward neural networks. In Proceedings of the thirteenth inter-
national conference on articial intelligence and statistics, pages 249–256,
2010. URL http://proceedings.mlr.press/v9/glorot10a/glorot10a.
pdf.

[36] E. Grave, Armand Joulin, and Nicolas Usunier. Improving neural language
models with a continuous cache. Proceedings of the International Confer-
ence on Learning Representations, abs/1612.04426, 2017.

[37] Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Dani-
helka, Agnieszka Grabska-Barwińska, Sergio Gómez Colmenarejo, Edward
Grefenstette, Tiago Ramalho, John Agapiou, et al. Hybrid computing us-
ing a neural network with dynamic external memory. Nature, 538(7626):
471, 2016. URL https://www.nature.com/articles/nature20101.pdf.

[38] Klaus Gre, R. Srivastava, J. Koutník, Bastiaan Steunebrink, and
J. Schmidhuber. Lstm: A search space odyssey. IEEE Transactions on
Neural Networks and Learning Systems, 28:2222–2232, 2017.

80

[39] Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK Li. Incorporating Copy-
ing Mechanism in Sequence-to-Sequence Learning. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics, vol-
ume 1, pages 1631–1640, 2016. URL http://www.aclweb.org/anthology/
P16-1154.

[40] Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati, Bowen Zhou, and Yoshua
Bengio. Pointing the Unknown Words. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics, pages 140–149,
2016. URL http://aclweb.org/anthology/P16-1014.

[41] Kelvin Guu, Tatsunori B Hashimoto, Yonatan Oren, and Percy Liang.
Generating Sentences by Editing Prototypes. Transactions of the As-
sociation for Computational Linguistics, 6:437–450, 2018. URL https:
//www.aclweb.org/anthology/Q18-1031.

[42] Tatsunori B Hashimoto, Kelvin Guu, Yonatan Oren, and Percy S Liang. A
retrieve-and-edit framework for predicting structured outputs. In Advances
in Neural Information Processing Systems, pages 10052–10062, 2018.

[43] Kenneth Heaeld, Ivan Pouzyrevsky, Jonathan H. Clark, and Philipp
Koehn. Scalable modied Kneser-Ney language model estimation. In
Proceedings of the 51st Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), pages 690–696, Soa, Bul-
garia, August 2013. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/P13-2121.

[44] Mikael Hena, Jason Weston, Arthur Szlam, Antoine Bordes, and Yann
LeCun. Tracking the world state with recurrent entity networks. In Pro-
ceedings of the Fifth International Conference on Learning Representations,
2017. URL https://openreview.net/pdf?id=rJTKKKqeg.

[45] Karl Moritz Hermann and Phil Blunsom. The role of syntax in vector
space models of compositional semantics. In Proceedings of the 51st An-
nual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 894–904, Soa, Bulgaria, August 2013. Association for

81

Computational Linguistics. URL https://www.aclweb.org/anthology/
P13-1088.

[46] Luong Hoang, Sam Wiseman, and Alexander Rush. Entity Tracking Im-
proves Cloze-style Reading Comprehension. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pages
1049–1055, 2018. URL http://www.aclweb.org/anthology/D18-1130.

[47] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Com-
putation, 9:1735–1780, 1997.

[48] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The
curious case of neural text degeneration. In International Conference on
Learning Representations, 2020.

[49] Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, and
Eric P. Xing. Toward Controlled Generation of Text. In Doina Precup
and Yee Whye Teh, editors, Proceedings of the 34th International Confer-
ence on Machine Learning, volume 70 of Proceedings of Machine Learning
Research, pages 1587–1596, International Convention Centre, Sydney, Aus-
tralia, 06–11 Aug 2017. PMLR. URL http://proceedings.mlr.press/
v70/hu17e.html.

[50] Kentaro Inui, Atsushi Fujita, Tetsuro Takahashi, Ryu Iida, and Tomoya
Iwakura. Text simplication for reading assistance: A project note. In
Proceedings of the Second International Workshop on Paraphrasing, pages
9–16, Sapporo, Japan, July 2003. Association for Computational Linguis-
tics. doi: 10.3115/1118984.1118986. URL https://www.aclweb.org/
anthology/W03-1602.

[51] Hayate Iso, Yui Uehara, Tatsuya Ishigaki, Hiroshi Noji, Eiji Aramaki,
Ichiro Kobayashi, Yusuke Miyao, Naoaki Okazaki, and Hiroya Takamura.
Learning to select, track, and generate for data-to-text. In Proceed-
ings of the Annual Meeting of the Association for Computational Lin-
guistics (ACL), pages 2102–2113, Florence, Italy, August 2019. URL
https://www.aclweb.org/anthology/P19-1202.

82

[52] Hayate Iso, Chao Qiao, and Hang Li. Fact-based Text Editing. In Proceed-
ings of the Annual Meeting of the Association for Computational Linguistics
(ACL), pages 171–182, Online, July 2020. URL https://www.aclweb.org/
anthology/2020.acl-main.17.

[53] Yangfeng Ji, Chenhao Tan, Sebastian Martschat, Yejin Choi, and Noah A
Smith. Dynamic Entity Representations in Neural Language Models.
In Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, pages 1830–1839, 2017. URL http://aclweb.org/
anthology/D17-1195.

[54] Nal Kalchbrenner and Phil Blunsom. Recurrent continuous translation
models. In Proceedings of the 2013 Conference on Empirical Methods
in Natural Language Processing, pages 1700–1709, Seattle, Washington,
USA, October 2013. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/D13-1176.

[55] Chloé Kiddon, Luke Zettlemoyer, and Yejin Choi. Globally coherent text
generation with neural checklist models. In Proceedings of the 2016 Confer-
ence on Empirical Methods in Natural Language Processing, pages 329–339,
2016. URL http://aclweb.org/anthology/D16-1032.

[56] Eliyahu Kiperwasser and Yoav Goldberg. Simple and accurate depen-
dency parsing using bidirectional LSTM feature representations. Trans-
actions of the Association for Computational Linguistics, 4:313–327, 2016.
doi: 10.1162/tacl_a_00101. URL https://www.aclweb.org/anthology/
Q16-1023.

[57] Reinhard Kneser and H. Ney. Improved backing-o for m-gram language
modeling. 1995 International Conference on Acoustics, Speech, and Signal
Processing, 1:181–184 vol.1, 1995.

[58] Kevin Knight and Ishwar Chander. Automated Postediting of Documents.
In Proceedings of the AAAI Conference on Articial Intelligence., vol-
ume 94, pages 779–784, 1994. URL https://www.aaai.org/Papers/AAAI/
1994/AAAI94-119.pdf.

83

[59] R. Koncel-Kedziorski, Hannaneh Hajishirzi, and Ali Farhadi. Multi-
resolution language grounding with weak supervision. In Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 386–396, Doha, Qatar, October 2014. Associ-
ation for Computational Linguistics. doi: 10.3115/v1/D14-1043. URL
https://www.aclweb.org/anthology/D14-1043.

[60] Ioannis Konstas and Mirella Lapata. Inducing document plans for concept-
to-text generation. In Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, pages 1503–1514, Seattle, Wash-
ington, USA, October 2013. Association for Computational Linguistics.
URL https://www.aclweb.org/anthology/D13-1157.

[61] Ioannis Konstas and Mirella Lapata. A global model for concept-to-text
generation. Journal of Articial Intelligence Research, 48:305–346, 2013.

[62] Wojciech Kryscinski, Nitish Shirish Keskar, Bryan McCann, Caiming
Xiong, and Richard Socher. Neural text summarization: A critical eval-
uation. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pages 540–551, 2019.

[63] Wojciech Kryscinski, Bryan McCann, Caiming Xiong, and Richard Socher.
Evaluating the factual consistency of abstractive text summarization. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 9332–9346, 2020.

[64] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya
Kawakami, and Chris Dyer. Neural architectures for named entity recogni-
tion. In Proceedings of the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language
Technologies, pages 260–270, San Diego, California, June 2016. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/N16-1030. URL
https://www.aclweb.org/anthology/N16-1030.

[65] Mirella Lapata. Probabilistic text structuring: Experiments with sentence

84

ordering. In Proceedings of the 41st Annual Meeting of the Association for
Computational Linguistics, pages 545–552, 2003.

[66] Rémi Lebret, David Grangier, and Michael Auli. Neural Text Genera-
tion from Structured Data with Application to the Biography Domain. In
Proceedings of the 2016 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1203–1213, 2016. URL http://www.aclweb.org/
anthology/D16-1128.

[67] Zichao Li, Xin Jiang, Lifeng Shang, and Hang Li. Paraphrase Generation
with Deep Reinforcement Learning. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pages 3865–3878,
Brussels, Belgium, October-November 2018. Association for Computational
Linguistics. doi: 10.18653/v1/D18-1421. URL https://www.aclweb.org/
anthology/D18-1421.

[68] Percy Liang, Michael I Jordan, and Dan Klein. Learning semantic corre-
spondences with less supervision. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th International Joint Con-
ference on Natural Language Processing of the AFNLP, pages 91–99, 2009.
URL http://aclweb.org/anthology/P09-1011.

[69] Tianyu Liu, Kexiang Wang, Lei Sha, Baobao Chang, and Zhifang Sui.
Table-to-text Generation by Structure-aware Seq2seq Learning. In Pro-
ceedings of the Thirty-Second AAAI Conference on Articial Intelli-
gence, 2018. URL https://www.aaai.org/ocs/index.php/AAAI/AAAI18/
paper/viewFile/16599/16019.

[70] Hans Peter Luhn. The automatic creation of literature abstracts. IBM
Journal of research and development, 2(2):159–165, 1958.

[71] Thang Luong, Hieu Pham, and Christopher D Manning. Eective Ap-
proaches to Attention-based Neural Machine Translation. In Proceedings of
the 2015 Conference on Empirical Methods in Natural Language Process-
ing, pages 1412–1421, 2015. URL http://www.aclweb.org/anthology/
D15-1166.

85

[72] Thang Luong, Ilya Sutskever, Quoc Le, Oriol Vinyals, and Wojciech
Zaremba. Addressing the rare word problem in neural machine translation.
In Proceedings of the 53rd Annual Meeting of the Association for Com-
putational Linguistics and the 7th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers), pages 11–19, Beijing,
China, July 2015. Association for Computational Linguistics. doi: 10.3115/
v1/P15-1002. URL https://www.aclweb.org/anthology/P15-1002.

[73] Daniel Marcu. From local to global coherence: a bottom-up approach
to text planning. In Proceedings of the fourteenth national conference on
articial intelligence and ninth conference on Innovative applications of
articial intelligence, pages 629–635, 1997.

[74] Susan W McRoy, Songsak Channarukul, and Syed S Ali. An augmented
template-based approach to text realization. Natural Language Engineering,
9(4):381, 2003.

[75] Hongyuan Mei, Mohit Bansal, and Matthew R Walter. What to talk about
and how? Selective Generation using LSTMs with Coarse-to-Fine Align-
ment. In Proceedings of the 15th Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Tech-
nologies, pages 720–730, 2016. URL http://www.aclweb.org/anthology/
N16-1086.

[76] Gábor Melis, Chris Dyer, and P. Blunsom. On the state of the art of evalua-
tion in neural language models. Proceedings of the International Conference
on Learning Representations, abs/1707.05589, 2018.

[77] Stephen Merity, N. Keskar, and R. Socher. Regularizing and optimiz-
ing lstm language models. Proceedings of the International Conference on
Learning Representations, abs/1708.02182, 2018.

[78] Tomas Mikolov, M. Karaát, L. Burget, J. Černocký, and S. Khudanpur.
Recurrent neural network based language model. In INTERSPEECH, 2010.

[79] Amit Moryossef, Yoav Goldberg, and Ido Dagan. Step-by-step: Separating
planning from realization in neural data-to-text generation. In Proceed-

86

ings of the 2019 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 2267–2277, Minneapolis, Minnesota,
June 2019. Association for Computational Linguistics. doi: 10.18653/v1/
N19-1236. URL https://www.aclweb.org/anthology/N19-1236.

[80] Soichiro Murakami, Akihiko Watanabe, Akira Miyazawa, Keiichi Goshima,
Toshihiko Yanase, Hiroya Takamura, and Yusuke Miyao. Learning to gener-
ate market comments from stock prices. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics, pages 1374–1384,
2017. URL http://aclweb.org/anthology/P17-1126.

[81] Vinod Nair and Georey E Hinton. Rectied linear units improve restricted
boltzmann machines. In Proceedings of the 27th International Conference
on International Conference on Machine Learning, pages 807–814, 2010.

[82] Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed
Ammar, Antonios Anastasopoulos, Miguel Ballesteros, David Chiang,
Daniel Clothiaux, Trevor Cohn, et al. Dynet: The dynamic neural net-
work toolkit. arXiv preprint arXiv:1701.03980, 2017.

[83] Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian Hadiwinoto, Ray-
mond Hendy Susanto, and Christopher Bryant. The CoNLL-2014 Shared
Task on Grammatical Error Correction. In Proceedings of the Eighteenth
Conference on Computational Natural Language Learning: Shared Task,
pages 1–14, Baltimore, Maryland, June 2014. Association for Computa-
tional Linguistics. doi: 10.3115/v1/W14-1701. URL https://www.aclweb.
org/anthology/W14-1701.

[84] Feng Nie, Jinpeng Wang, Jin-Ge Yao, Rong Pan, and Chin-Yew Lin.
Operation-guided Neural Networks for High Fidelity Data-To-Text Gen-
eration. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 3879–3889, 2018. URL http:
//aclweb.org/anthology/D18-1422.

[85] Jekaterina Novikova, Ondřej Dušek, and Verena Rieser. The E2E dataset:

87

New challenges for end-to-end generation. In Proceedings of the 18th An-
nual SIGdial Meeting on Discourse and Dialogue, pages 201–206, Saar-
brücken, Germany, August 2017. Association for Computational Linguis-
tics. doi: 10.18653/v1/W17-5525. URL https://www.aclweb.org/
anthology/W17-5525.

[86] Naoaki Okazaki, Yutaka Matsuo, and Mitsuru Ishizuka. Improving chrono-
logical sentence ordering by precedence relation. In COLING 2004: Pro-
ceedings of the 20th International Conference on Computational Linguistics,
pages 750–756, 2004.

[87] Chris Olah and Shan Carter. Attention and augmented recurrent neural
networks. Distill, 2016. doi: 10.23915/distill.00001. URL http://distill.
pub/2016/augmented-rnns.

[88] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a
method for automatic evaluation of machine translation. In Proceedings of
the 40th annual meeting on association for computational linguistics, pages
311–318, 2002. URL http://www.aclweb.org/anthology/P02-1040.

[89] Karl Pearson. On lines and planes of closest t to systems of points in space.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal
of Science, 2(11):559–572, 1901.

[90] Hao Peng, Ankur Parikh, Manaal Faruqui, Bhuwan Dhingra, and Dipanjan
Das. Text generation with exemplar-based adaptive decoding. In Proceed-
ings of the 2019 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 2555–2565, Minneapolis, Minnesota,
June 2019. Association for Computational Linguistics. doi: 10.18653/v1/
N19-1263. URL https://www.aclweb.org/anthology/N19-1263.

[91] Ratish Puduppully, Li Dong, and Mirella Lapata. Data-to-Text Genera-
tion with Content Selection and Planning. In Proceedings of the Thirty-
Third AAAI Conference on Articial Intelligence, 2019. URL https:
//www.aaai.org/Papers/AAAI/2019/AAAI-PuduppullyR.754.pdf.

88

[92] Ratish Puduppully, Li Dong, and Mirella Lapata. Data-to-text Genera-
tion with Entity Modeling. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages 2023–2035. Associa-
tion for Computational Linguistics, 2019. URL https://www.aclweb.org/
anthology/P19-1195.

[93] Guanghui Qin, Jin-Ge Yao, Xuening Wang, Jinpeng Wang, and Chin-Yew
Lin. Learning latent semantic annotations for grounding natural language
to structured data. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 3761–3771, 2018.

[94] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Im-
proving language understanding by generative pre-training. OpenAI blog,
2018.

[95] Alec Radford, Jerey Wu, Rewon Child, David Luan, Dario Amodei, and
Ilya Sutskever. Language models are unsupervised multitask learners. Ope-
nAI blog, 1(8):9, 2019.

[96] Clément Rebuel, Laure Soulier, Georey Scoutheeten, and Patrick Galli-
nari. A hierarchical model for data-to-text generation. In European Con-
ference on Information Retrieval, pages 65–80. Springer, 2020.

[97] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of
adam and beyond. In Proceedings of the Sixth International Conference on
Learning Representations, 2018. URL https://openreview.net/pdf?id=
ryQu7f-RZ.

[98] Ehud Reiter, Chris Mellish, and John Levine. Automatic generation of
technical documentation. Applied Articial Intelligence an International
Journal, 9(3):259–287, 1995.

[99] R. Rosenfeld. Two decades of statistical language modeling: where do we
go from here? Proceedings of the IEEE, 88:1270–1278, 2000.

[100] Abigail See, Peter J Liu, and Christopher D Manning. Get to the point:
Summarization with pointer-generator networks. In Proceedings of the 55th

89

Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 1073–1083, 2017.

[101] C. Shannon. A mathematical theory of communication. Bell Syst. Tech.
J., 27:379–423, 1948.

[102] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with rel-
ative position representations. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Papers), pages 464–468,
New Orleans, Louisiana, June 2018. Association for Computational Lin-
guistics. doi: 10.18653/v1/N18-2074. URL https://www.aclweb.org/
anthology/N18-2074.

[103] Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi Jaakkola. Style Trans-
fer from Non-Parallel Text by Cross-Alignment. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems 30, pages 6830–6841.
Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/
7259-style-transfer-from-non-parallel-text-by-cross-alignment.
pdf.

[104] Xiaoyu Shen, Ernie Chang, Hui Su, Cheng Niu, and Dietrich Klakow. Neu-
ral data-to-text generation via jointly learning the segmentation and cor-
respondence. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 7155–7165, Online, July 2020. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.641.
URL https://www.aclweb.org/anthology/2020.acl-main.641.

[105] Michel Simard, Cyril Goutte, and Pierre Isabelle. Statistical phrase-based
post-editing. In Human Language Technologies 2007: The Conference of the
North American Chapter of the Association for Computational Linguistics;
Proceedings of the Main Conference, pages 508–515, Rochester, New York,
April 2007. Association for Computational Linguistics. URL https://www.
aclweb.org/anthology/N07-1064.

90

[106] Richard Socher, Eric Huang, Jerey Pennin, Christopher D Manning, and
Andrew Ng. Dynamic pooling and unfolding recursive autoencoders for
paraphrase detection. Advances in neural information processing systems,
24:801–809, 2011.

[107] Nitish Srivastava, Georey E. Hinton, A. Krizhevsky, Ilya Sutskever, and
R. Salakhutdinov. Dropout: a simple way to prevent neural networks from
overtting. J. Mach. Learn. Res., 15:1929–1958, 2014.

[108] Andreas Stolcke. Srilm-an extensible language modeling toolkit. In Seventh
international conference on spoken language processing, 2002.

[109] Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end
memory networks. In Advances in neural information processing sys-
tems, pages 2440–2448, 2015. URL https://papers.nips.cc/paper/
5846-end-to-end-memory-networks.pdf.

[110] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learn-
ing with neural networks. In Advances in neural information processing
systems, pages 3104–3112, 2014. URL http://papers.nips.cc/paper/
5346-sequence-to-sequence-learning-with-neural-networks.pdf.

[111] Kumiko Tanaka-Ishii, Kôiti Hasida, and Itsuki Noda. Reactive content se-
lection in the generation of real-time soccer commentary. In Proceedings
of the 36th Annual Meeting of the Association for Computational Linguis-
tics and 17th International Conference on Computational Linguistics, pages
1282–1288, 1998. URL http://aclweb.org/anthology/P98-2209.

[112] Zhaopeng Tu, Yang Liu, Zhengdong Lu, Xiaohua Liu, and Hang Li. Context
gates for neural machine translation. Transactions of the Association for
Computational Linguistics, 5:87–99, 2017. URL http://www.aclweb.org/
anthology/Q17-1007.

[113] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. At-
tention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio,

91

H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems 30, pages 5998–6008.
Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/
7181-attention-is-all-you-need.pdf.

[114] Hongmin Wang. Revisiting challenges in data-to-text generation with
fact grounding. In Proceedings of the 12th International Conference on
Natural Language Generation, pages 311–322, Tokyo, Japan, October–
November 2019. Association for Computational Linguistics. doi: 10.18653/
v1/W19-8639. URL https://www.aclweb.org/anthology/W19-8639.

[115] Zhenyi Wang, Xiaoyang Wang, Bang An, Dong Yu, and Changyou Chen.
Towards faithful neural table-to-text generation with content-matching con-
straints. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1072–1086, Online, July 2020. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.101.
URL https://www.aclweb.org/anthology/2020.acl-main.101.

[116] Taro Watanabe and Eiichiro Sumita. Transition-based neural constituent
parsing. In Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), pages 1169–
1179, Beijing, China, July 2015. Association for Computational Linguistics.
doi: 10.3115/v1/P15-1113. URL https://www.aclweb.org/anthology/
P15-1113.

[117] David Weiss, Chris Alberti, Michael Collins, and Slav Petrov. Structured
training for neural network transition-based parsing. In Proceedings of
the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 323–333, Beijing, China, July 2015. As-
sociation for Computational Linguistics. doi: 10.3115/v1/P15-1032. URL
https://www.aclweb.org/anthology/P15-1032.

[118] Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho,

92

and Jason Weston. Neural text generation with unlikelihood training. In
International Conference on Learning Representations, 2020.

[119] Tsung-Hsien Wen, Milica Gašić, Dongho Kim, Nikola Mrkšić, Pei-Hao Su,
David Vandyke, and Steve Young. Stochastic language generation in dia-
logue using recurrent neural networks with convolutional sentence rerank-
ing. In Proceedings of the 16th Annual Meeting of the Special Interest
Group on Discourse and Dialogue, pages 275–284, Prague, Czech Republic,
September 2015. Association for Computational Linguistics. doi: 10.18653/
v1/W15-4639. URL https://www.aclweb.org/anthology/W15-4639.

[120] Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Pei-Hao Su, David
Vandyke, and Steve Young. Semantically conditioned LSTM-based nat-
ural language generation for spoken dialogue systems. In Proceedings
of the 2015 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 1711–1721, Lisbon, Portugal, September 2015. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/D15-1199. URL
https://www.aclweb.org/anthology/D15-1199.

[121] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory Networks. In
Proceedings of the Third International Conference on Learning Representa-
tions, 2015. URL https://arxiv.org/pdf/1410.3916.pdf.

[122] SamWiseman, Stuart Shieber, and Alexander Rush. Challenges in Data-to-
Document Generation. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 2253–2263, 2017. URL
http://aclweb.org/anthology/D17-1239.

[123] Sam Wiseman, Stuart Shieber, and Alexander Rush. Learning neural tem-
plates for text generation. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing, pages 3174–3187, Brus-
sels, Belgium, October-November 2018. Association for Computational Lin-
guistics. doi: 10.18653/v1/D18-1356. URL https://www.aclweb.org/
anthology/D18-1356.

[124] Sander Wubben, Antal van den Bosch, and Emiel Krahmer. Sentence sim-
plication by monolingual machine translation. In Proceedings of the 50th

93

Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 1015–1024, Jeju Island, Korea, July 2012. Asso-
ciation for Computational Linguistics. URL https://www.aclweb.org/
anthology/P12-1107.

[125] Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze Chen, and Chris Callison-
Burch. Optimizing statistical machine translation for text simplica-
tion. Transactions of the Association for Computational Linguistics, 4:
401–415, 2016. doi: 10.1162/tacl_a_00107. URL https://www.aclweb.
org/anthology/Q16-1029.

[126] Diyi Yang, Aaron Halfaker, R. Kraut, and E. Hovy. Who did what: Editor
role identication in wikipedia. In The International AAAI Conference on
Web and Social Media, 2016.

[127] Diyi Yang, Aaron Halfaker, Robert Kraut, and Eduard Hovy. Edit cat-
egories and editor role identication in Wikipedia. In Proceedings of the
Tenth International Conference on Language Resources and Evaluation
(LREC’16), pages 1295–1299, Portorož, Slovenia, May 2016. European Lan-
guage Resources Association (ELRA). URL https://www.aclweb.org/
anthology/L16-1206.

[128] Diyi Yang, Aaron Halfaker, Robert Kraut, and Eduard Hovy. Identifying
semantic edit intentions from revisions in Wikipedia. In Proceedings of the
2017 Conference on Empirical Methods in Natural Language Processing,
pages 2000–2010, Copenhagen, Denmark, September 2017. Association for
Computational Linguistics. doi: 10.18653/v1/D17-1213. URL https://
www.aclweb.org/anthology/D17-1213.

[129] Zichao Yang, Phil Blunsom, Chris Dyer, and Wang Ling. Reference-Aware
Language Models. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 1850–1859, 2017. URL
https://www.aclweb.org/anthology/D17-1197.

[130] Rong Ye, Wenxian Shi, Hao Zhou, Zhongyu Wei, and Lei Li. Variational
template machine for data-to-text generation. In International Conference
on Learning Representations, 2020.

94

[131] Pengcheng Yin, Graham Neubig, Miltiadis Allamanis, Marc Brockschmidt,
and Alexander L Gaunt. Learning to Represent Edits. In International Con-
ference on Learning Representations, 2019. URL https://openreview.
net/forum?id=BJl6AjC5F7.

[132] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos,
Russ R Salakhutdinov, and Alexander J Smola. Deep sets. In Advances in
neural information processing systems, pages 3391–3401, 2017.

[133] W. Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network
regularization. Proceedings of the Third International Conference on Learn-
ing Representations, 2015. URL https://arxiv.org/abs/1409.2329.

[134] Yue Zhang and Stephen Clark. Joint word segmentation and POS tagging
using a single perceptron. In Proceedings of ACL-08: HLT, pages 888–896,
Columbus, Ohio, June 2008. Association for Computational Linguistics.
URL https://www.aclweb.org/anthology/P08-1101.

[135] Chao Zhao, Marilyn Walker, and Snigdha Chaturvedi. Bridging the struc-
tural gap between encoding and decoding for data-to-text generation. In
Proceedings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics, pages 2481–2491, Online, July 2020. Association for
Computational Linguistics. doi: 10.18653/v1/2020.acl-main.224. URL
https://www.aclweb.org/anthology/2020.acl-main.224.

[136] Sanqiang Zhao, Rui Meng, Daqing He, Andi Saptono, and Bambang Par-
manto. Integrating Transformer and Paraphrase Rules for Sentence Simpli-
cation. In Proceedings of the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 3164–3173, Brussels, Belgium, October-
November 2018. Association for Computational Linguistics. doi: 10.18653/
v1/D18-1355. URL https://www.aclweb.org/anthology/D18-1355.

[137] Wei Zhao, Liang Wang, Kewei Shen, Ruoyu Jia, and Jingming Liu. "Im-
proving Grammatical Error Correction via Pre-Training a Copy-Augmented
Architecture with Unlabeled Data". In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume 1 (Long and

95

Short Papers), pages 156–165, Minneapolis, Minnesota, June 2019. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/N19-1014. URL
https://www.aclweb.org/anthology/N19-1014.

96

	1 Introduction
	1.1 A Brief Review of Text Generation
	1.1.1 Data-to-Text Generations
	1.1.2 Text-to-Text Generations

	1.2 Thesis Outline
	1.2.1 Data-to-Document Generation
	1.2.2 Fact-based Text Editing

	2 Background
	2.1 Neural Sequence Generations
	2.1.1 Autoregressive Language Models
	2.1.2 Encoder-Decoder Models
	2.1.3 Attention Mechanisms
	2.1.4 Copy Mechanisms

	2.2 Memory Networks
	2.3 Transition-based Architectures
	2.4 Evaluating Text Generation Systems
	2.4.1 Evaluation via N-gram Matching
	2.4.2 Evaluation via Information Extraction

	3 Data-to-Document Generations
	3.1 Data
	3.1.1 Data Sources
	3.1.2 Data Creation Procedure

	3.2 Model
	3.2.1 Preliminaries
	3.2.2 Saliency-Aware Text Generation
	3.2.3 Incorporating Writer Information
	3.2.4 Training

	3.3 Experiments
	3.3.1 Settings
	3.3.2 Baseline comparison
	3.3.3 Evaluation Metrics
	3.3.4 Results

	3.4 Conclusion

	4 Fact-based Text Editing
	4.1 Data
	4.1.1 Data Sources
	4.1.2 Data Creation Procedure

	4.2 Model
	4.2.1 Model Architecture
	4.2.2 Neural Network
	4.2.3 Training
	4.2.4 Time Complexity

	4.3 Experiments
	4.3.1 Settings
	4.3.2 Baseline
	4.3.3 Results

	4.4 Conclusion

	5 Conclusion
	5.1 Future work

	Publication List

