
Doctor’s Thesis

Deep Reinforcement Learning
with Smooth Policy Update

for Robotic Cloth Manipulation

Yoshihisa Tsurumine

December 15, 2020

Program of Information Science and Engineering
Graduate School of Science and Technology
Nara Institute of Science and Technology

A Doctor’s Thesis
submitted to Graduate School of Science and Technology,

Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Yoshihisa Tsurumine

Thesis Committee:
Professor Kenji Sugimoto (Supervisor)
Professor Tsukasa Ogasawara (Co-supervisor)
Associate Professor Takamitsu Matsubara (Co-supervisor)

Deep Reinforcement Learning
with Smooth Policy Update

for Robotic Cloth Manipulation∗

Yoshihisa Tsurumine

Abstract

Deep Reinforcement Learning (DRL), which can learn complex policies with
high-dimensional observations as inputs, e.g., images, has been successfully ap-
plied to various tasks. Thus it may be suitable to use them for robots to learn
and perform daily activities like washing and folding clothes, cooking, and clean-
ing. However, there are only a few studies that have applied DRL to real robot
environments. In this thesis, our objective is to apply DRL to cloth manipula-
tion tasks that are part of daily human tasks. To this end, we consider two main
difficulties as follows. (1) generating a massive number of samples in a real robot
system is arduous because of the high sampling cost, and (2) learning environ-
ments require a reward function to evaluate the tasks; however, designing rewards
for cloth with flexible shapes is challenging.
The approach for the first difficulty is to apply sample efficient DRL to real

robotic cloth manipulation tasks. Previous value function-based DRL stabilizes
the value function’s approximation with Deep Neural Networks (DNN) by learn-
ing from many samples. In this thesis, we employ a smooth policy update to
enable stable learning from a small number of samples. We propose two sample
efficient DRL algorithms: Deep P-Network (DPN) and Dueling Deep P-Network
(Dueling DPN). Proposed methods are value function-based DRL with smooth
policy update and employ the Kullback-Leibler divergence to limit the over pol-
icy update. Dueling DPN has a DNN structure suitable for approximating value
functions and improves sample efficiency in tasks with large action spaces.

∗Doctor’s Thesis, Department of Information Science, Graduate School of Information Science
and Technology, Nara Institute of Science and Technology, December 15, 2020.

i

The approach for the second difficulty is to learn a cloth manipulation pol-
icy without explicit reward function design. This thesis explores an approach of
Generative Adversarial Imitation Learning (GAIL) for robotic cloth manipulation
tasks, which allows an agent to learn near-optimal behaviors from expert demon-
stration and self explorations without explicit reward function design. However,
the performance in real robot environments may be insufficient because it is
difficult for humans to collect appropriate expert samples using a robot’s state-
action space. In this thesis, we focus on target state labels that can be adequately
presented by humans. GAIL with target state labels improves the performance
of learning policies by estimating higher target state rewards. We propose P-
Generative Adversarial Imitation Learning with Bi-Discriminator (PGAIL-BiD),
which learns a policy with two discriminators in reward function and target state.
PGAIL-BiD employs DPN to policy updates to enable stable learning from com-
plex reward functions associated with the two discriminators.
Proposed methods are first investigated by a robot-arm reaching task in the

simulation and compared to previous performance and sample efficiency methods.
In a real robot experiment, we applied the proposed methods in two real robotic
cloth manipulation tasks: 1) flipping a handkerchief and 2) folding clothes. In
the handkerchief flipping task, proposed methods are compared with conventional
methods using a human-designed reward function. We investigate the task success
rate and learned feature extraction in the folding clothes task.

Keywords:

Deep Reinforcement Learning, Generative Adversarial Imitation Learning, Robotic
Cloth Manipulation, Robotic Learning, Manipulation Planning

ii

方策を滑らかに更新する深層強化学習による

実ロボット衣類操作の学習∗

鶴峯義久

内容梗概

深層強化学習は高次元情報を入力とする複雑な方策が学習可能な手法であ

る．シミュレーションタスクへの適用では膨大なサンプルから人間と同等以

上のパフォーマンスを獲得しており，実ロボットタスクへの適用により洗濯

や料理，掃除等の日常的な人間の作業を代替することが期待できる．しかし，

深層強化学習を実ロボットタスクに適用した研究は少ない．目標は衣類操作

へのDRLの適用とする．そのために必要な次の2つの問題について検討する．
(1) ロボットは実際の行動を通してデータを取得するためシミュレーション
のように膨大なサンプルを収集できない，(2) 学習には選択した行動を評価
する報酬関数が必要だが，形状が柔軟に変化する衣類の報酬設計は困難であ

る．

初めに，サンプル効率の良い深層強化学習を提案し，実ロボットによる衣

類操作タスクを学習することを目指す．従来の価値関数ベース深層強化学習

は，膨大なサンプルから学習することで深層学習による価値関数の近似を安

定化させている．本研究では方策を滑らかに更新することで少数サンプルか

ら安定した学習を実現する．この解決策は，方策の更新量を制約すること

で方策の過学習を避ける．本研究はサンプル効率の良い深層強化学習であ

るDeep P-Network (DPN)とDueling Deep P-Network (Dueling DPN)を提案す
る．提案手法は方策を滑らかに更新する価値関数ベース深層強化学習であ

り，方策の更新をカルバックライブラー・ダイバージェンスで定量化するこ

とで制約する．Dueling DPNは価値関数の近似に適した深層ネットワーク構
造を持ち，行動空間が大きいタスクにおいてサンプル効率を改善する．

次に，報酬関数と方策の両方を学習することで，報酬関数の設計なしに衣

類操作方策を学習することを目指す．本研究ではエキスパートデモンストレ

∗奈良先端科学技術大学院大学先端科学技術研究科情報科学領域博士論文, 2020年 12月 15日.

iii

ーションから報酬関数と方策を同時に学習する敵対的模倣学習フレームワ

ークに注目する．しかし，人間がロボットの状態行動空間を用いて適切なエ

キスパートサンプルを収集することは困難であり，実ロボットタスクでの

高いパフォーマンスは期待できない．本研究では人間が適切に提示できる

目標状態ラベルを利用し目標状態の報酬を高く見積もることで，学習方策

のパフォーマンスを向上させる．本研究は目標状態を考慮するP-Generative
Adversarial Imitation Learning with Bi-Discriminator (PGAIL-BiD)を提案する．
PGAIL-BiDの方策はエキスパート判別器と目標状態判別器を含む報酬関数か
ら学習する．PGAIL-BiDでは二つの判別機から生成される複雑な報酬値から
安定した学習を実現するために，方策を滑らかに更新するDPNを用いて方策
を更新する．

本研究はシミュレーションのn DOFリーチングタスクに提案手法を適用
し，学習方策のパフォーマンスやサンプル効率を従来手法と比較した．実機

実験においては提案手法を双腕ロボットによるハンカチ裏返しタスクと衣類

折り畳みタスクに適用した．ハンカチ裏返しタスクでは人間が設計した報酬

関数で提案手法と従来手法の性能を比較した．衣類折り畳みタスクではタス

ク成功率や学習方策が獲得した特徴抽出を調べた．

キーワード

深層強化学習，敵対的模倣学習，柔軟物操作，ロボット学習，操作計画

iv

Contents

List of Figures viii

1. Introduction 1
1.1. Background . 1
1.2. Motivation . 2
1.3. Contribution . 4

2. Preliminaries 6
2.1. Reinforcement Learning . 6
2.2. Dynamic Policy Programming . 7
2.3. Deep Q-Network . 9
2.4. Generative Adversarial Imitation Learning 9

3. Sample Efficient Deep Reinforcement Learning with Smooth
Policy Update 12
3.1. Proposed Method . 13

3.1.1. Approximation of Action Preference Function by DNNs . . 15
3.1.2. Dueling Network Architecture for DPN 16
3.1.3. Prior Policy Initialization of DPN/Dueling DPN 18

3.2. Simulation Results . 19
3.2.1. Simulation Setting . 19
3.2.2. Learning Results . 21
3.2.3. Effect of Parameter η in DPN and Dueling DPN 21
3.2.4. Bellman Error in DPN . 24

3.3. Real Robot Experiment . 25
3.3.1. Flipping a Handkerchief 25

Setting . 25

v

Results . 25
3.3.2. Folding a T-shirt . 27

Setting . 27
Results . 27

3.4. Summary of Chapter 3 . 33

4. Generative Adversarial Imitation Learning with Human Demon-
stration and Target State Label 35
4.1. Proposed Method . 36

4.1.1. Structure of PGAIL-BiD 36
4.1.2. Generator Optimization 38
4.1.3. Discriminator Optimization 41
4.1.4. Summary . 41

4.2. Simulation Results . 41
4.2.1. Simulation Setting . 41
4.2.2. Learning from Imperfect Demonstrations 44
4.2.3. Comparison of PGAIL-BiD and PGAIL with Target Dis-

criminator . 46
4.2.4. Visualization of Estimated Reward Function 46

4.3. Real Robot Experiment . 47
4.3.1. Flipping a Handkerchief 49

Setting . 49
Results . 49
Evaluation of Learned Policy’s Robustness 53

4.3.2. Folding Clothes . 53
Setting . 53
Results . 53

4.4. Summary of Chapter 4 . 59

5. Discussions 61
5.1. Related Works . 61

5.1.1. RL with Smooth Policy Update 61
5.1.2. GAIL with Improved Discriminator 61
5.1.3. Imitation Learning . 62

vi

5.2. Open Issues . 62
5.2.1. Design of Action Space . 62
5.2.2. Reduction of Learning Costs in Real Environments 63
5.2.3. Conservative Reinforcement Learning 64
5.2.4. Application to Various Tasks 64

6. Conclusion 65

A. Appendix: Model-Beased Deep Reinforcement Learning with
Latent Discrete State Action Space 67
A.1. Proposed Method . 68

A.1.1. Variationally Autoencoded Hidden Markov Decision Model 68
A.1.2. Action Planing with Dynamic Policy Programming 70

A.2. Real Robot Experiment . 70
A.3. Summary of VAE-DPP . 71

Acknowledgements 73

References 74

Publication List 84

vii

List of Figures

1.1. Overview of proposed sample efficient DRL. 2

3.2. Network architectures of Deep P-Network 14
3.3. Network architecture of Dueling Deep P-Network 14
3.4. Successful behaviors for n (5 and 50) DOF manipulator reaching

tasks. Different colored robots represent manipulator states in
different steps. 19

3.5. Learning curve of n DOF manipulator reaching task 22
3.6. Average learning results of DPN/Dueling DPN with different val-

ues of η in the 5-DOF manipulator reaching task over ten exper-
iments . 23

3.7. Average Bellman error in each iteration 24
3.8. Handkerchief folding trajectory generated from policy learned from

2400 samples . 27
3.9. Learning curve of flipping a handkerchief 28
3.10. T-shirt folding trajectory generated from policy learned from 2400

samples . 31
3.11. Learning curve of t-shirt folding task 32
3.12. Visualization of extracted parts in images for action selection us-

ing Grad-CAM. Heat map shows parts extracted when actions are
selected. 33

4.2. Overview of proposed PGAIL-BiD. 37
4.3. Overview of proposed PGAIL. 38
4.4. The snapshot show demonstrations of n-DOF manipulator reach-

ing task. Demonstrations are sampled from RL policies. RL ex-
ploration policies generate imperfect demonstrations. 44

viii

4.5. Learning curve of 5-DOF manipulator reaching task with imperfect
demonstrations. 45

4.6. Evaluation of Bi-Discriminator Performance in the 5-DOF manip-
ulator reaching task. Compare performance of policies learned
from rewards containing different discriminators. The left bar
is PGAIL with Bi-Discriminator including expert discriminator
DE(s) and target discriminator DT (s) (PGAIL-BiD). The mid-
dle bar is PGAIL with only expert discriminator DE(s) as reward.
The right bar is PGAIL with only target discriminator DT (s) as
reward. 47

4.7. Learned reward functions from demonstration. 48
4.8. Image processing of picking up points. 49
4.9. Learning results of the NEXTAGE humanoid robot on flipping a

handkerchief task. PGAIL-BiD and PGAIL are compared on the
learning curve evaluated by task success rate. Each method learn
the policy 3 times, and each policy is tried for 3 episodes. Thus,
each method is evaluated by task success rate from 9(3) episodes. 51

4.10. The snapshot of the learned policy per step. The blue and purple
dots are picking up and dropping positions respectively for actions
at each step. 52

4.11. Overview of folding action. 56
4.12. The snapshot of the learned policy per step. Blue lines are the

folding the picking up, and green points are grasping points. . . . 58
4.13. Visualization of extracted parts in images for action selection us-

ing Grad-CAM. Heat map shows parts extracted when actions are
selected. 60

A.1. Action planning of cloth folding task. The proposed method gen-
erates a state action sequence from initial state and target state. . 68

A.2. The graphical model of VAE-HMDM 69
A.3. Decoding image from latent variable z of VAE-HMDM 70
A.4. Planning and execution of folding cloth manipulation with VAE-DPP 72

ix

1. Introduction

1.1. Background

With the capability of learning optimal policies by interacting with an unknown
environment, Reinforcement Learning (RL) [1] has been applied to a broad range
of platforms in robot control, such as an autonomous helicopter/vehicle [2, 3],
a robot dog [4], and humanoid robots [5–7]. Most of the RL algorithms in the
above studies require either 1) direct access to state variables or 2) well-designed
hand-engineered features extracted from sensory inputs. However, they become
difficult in general when considering more complex and practical tasks/situations.
For example, in household robots, such as humans’ daily activities as washing and
folding clothes, cooking and cleaning are desirable to be learned and performed
by RL, but it is not easy to achieve either 1) or 2) (e.g., [8]).
The recent advance of Deep Neural Networks (DNN) [9] enables automatic ex-

traction of high-level features to outperform traditional hand-engineered features
extracted from high-dimensional observations as input like raw images [10–12]
and audio signals [13, 14]. Deep Reinforcement Learning (DRL), e.g., Deep Q-
Network (DQN) [15] and Trust Region Policy Optimization (TRPO) [16], have
been proposed by exploiting such DNN capabilities for automatic feature ex-
traction in RL. By automatically abstracting good high-level features from raw
images, DQN can learn a complex policy with human-level performances on vari-
ous Atari video games. Therefore, DRL may be suitable to apply them for robots
to learn and perform daily activities like washing and folding clothes, cooking,
and cleaning since such tasks are difficult for non-DRL methods that often re-
quire either 1) direct access to state variables or 2) well-designed hand-engineered
features extracted from sensory inputs.

1

State space

Action space

State space

Action space

Huge sample Small sample

Change to
update locally

Figure 1.1. Overview of proposed sample efficient DRL.

1.2. Motivation

Even though real-world environments and simulation environments are signifi-
cantly different, applying DRL to a real robotic task is still challenging. This
thesis focuses on two problems in a real-world environment: (1) sample efficiency
of a real robot, (2) design a reward function for each task that evaluates the
selected action. In problem (1), a real robot collects samples by actual robot
actions. Thus collecting a huge sample is not feasible. Previous DRL requires a
huge sample to be collected using simulation, then applying DRL to a real-world
task is difficult. Problem (2) is occurred due to differences in the methods of ob-
taining the state variables. DRL learns image input policies that do not require
state space design, e.g., the object’s position and shape. On the other hand,
although the state space of the reward function requires design for each task,
the reward function design is easier in simulation because the state variables can
be obtained directly. However, in a real-world environment, we need to design
a task-specific feature extractor to obtain the target state variable. Designing
a complex reward function for each task is costly, and the performance of the
learning policy depends strongly on the reward function.
In sample efficiency in real robot tasks, previous studies have employed a large

sample collection approach. For example, multiple robots sample data in parallel
to improve efficiency [17, 18]. This approach can be applied to various methods
but requires the preparation, management, and execution of multiple robots [19–
21]. Other approaches have employed simulations to learn policies that can be

2

(a) Conventional: examples of human-designed clothing manipulation rewards

(b) Proposed: learning cloth manipulation rewards from demon-
stration

Figure 1.2. Conventional and proposed reward function design.

applied to real-world environments [19–21]. This simulation approach allows for
the collection of huge samples but can only apply to simulatable tasks.
As a solution to reward function design, we focus on a Generative Adversar-

ial Imitation Learning framework (GAIL) [22], which allows an agent to learn
near-optimal behaviors from expert demonstration and self explorations without
explicit reward function design. When applying GAIL to a real robot task, hu-
mans use the robot’s action space to collect demonstrations. However, collecting
perfect expert samples is difficult due to the difference in humans and robots’
state-action spaces. Therefore, imperfect expert samples reduce the performance
of the learning policy. The utilization of the target state labels prevents the per-
formance decline, but adversarial learning is unstable due to complex learning of
the reward function. This thesis proposes sample-efficient DRL and GAIL with

3

target state label, based on value function-based RL with smooth policy updates
that asymptotic convergence nature to the optimal policy.
This thesis’s motivation is to reduce the cost of applying DRL to a real robot

task by solving the above two problems as shown in Fig. 1.1 and Fig. 1.2. The
solution to both problems is DRL with smooth policy updates. Fig. 1.1 shows
that sample efficiency can be improved from a small number of samples with
smooth policy updates. The conventional reward function design needs to be
designed by a human for each task, as shown in Fig. 1.2a. The proposed method
uses incomplete demonstrations and target state labels as shown in Fig. 1.2b to
prevent performance decline without designing a task-dependent reward function.
We use smooth policy updating to stabilize learning from complex reward values
with expert samples and target state labels. We propose sample-efficient DRL
and GAIL with target state labels based on value function-based RL with smooth
policy updates that can learn globally optimal policies. We show experimentally
that the proposed method improves sample efficiency and training stability.

1.3. Contribution

We first present Deep P-Network (DPN) and Dueling Deep P-Network (Dueling
DPN) as novel deep reinforcement learning based on Dynamic Policy Program-
ming (DPP) [23]. It automatically abstracts the raw images’ features by ex-
ploiting the nature of smooth policy update by introducing the Kullback-Leibler
divergence between current and new policies as a regularization term into the
reward function for better sample efficiency. An extension of DPN with a partic-
ularly suitable network structure of DNN, Dueling DPN, is proposed for better
generalization capability inspired by the dueling network structure for DQN [24].
Next, we propose P-Generative Adversarial Imitation Learning with Bi-Discriminator

(PGAIL-BiD), a GAIL framework with an expert discriminator and a target dis-
criminator. PGAIL-BiD estimates high rewards for target states with the target
discriminator and improves learning policies’ reaching performance when learning
from imperfect expert samples. The reward function with two discriminators in
training destabilizes adversarial learning. Therefore, PGAIL-BiD employs a mod-
ified value-function based DRL, Entropy maximizing Deep P-Network (EDPN),

4

that can consider both the smoothness and causal entropy in policy update.
To investigate the performance of learned policies and learned reward functions

in several conditions, proposed methods are applied to a n DOF simulated ma-
nipulator reaching task. In a real-world experiment, proposed methods learned
a clothing manipulation task, which is a daily task and challenging to design
a reward function. In these tasks, dual-arm humanoid robot NEXTAGE exe-
cutes manipulation actions, and camera images observe cloth states. We apply
proposed methods to two real robot cloth manipulation tasks: (1) handkerchief
flipping and (2) clothes folding. The handkerchief flipping task with a simple re-
ward function design evaluated the performance of learning policies. The clothes
folding task confirmed its effectiveness in a more realistic task.
In the appendix, we also explain Variationally Autoencoded Dynamic Policy

Programming (VAE-DPP), a model-based DRL for discrete state-action space.
VAE-DPP learns a discrete state-action space model with input images from
pre-collected samples. The learned model enables action planning due to learn-
ing DPP policy from a defined reward function. While DPN is model-free and
needs to be retrained from the beginning when the reward function changes,
VAE-DPP allows for retraining without new samples when the reward function
change. When learning multiple policies with different reward functions in the
same environment, the model-free RL, DPN, must be retrained from the begin-
ning. In the same case, VAE-DPP allows the relearning of policies without a new
sample. We applied VAE-DPP to the handkerchief folding task with NEXTAGE
and confirmed its effectiveness.
The remainder of this paper is organized as follows. The preliminaries are

introduced in Chapter 2. DPN/Dueling DPN, PGAIL-BiD and the corresponding
simulation results, analysis and real robot experiments on cloth manipulation
tasks in Chapters 3 and 4. Discussion and conclusion are described in Chapters
5 and 6. Lastly, an appendix gives more details of VAE-DPP.

5

2. Preliminaries

2.1. Reinforcement Learning

RL [1,25] solves the Markov decision process (MDP) defined by a 5-tuple (S,A, T ,R, γ).
S = {s1, s2, ..., sn} is a finite set of states. A = {a1, a2, ..., am} is a finite set of
actions. T ass′ is the probability of transitioning from state s to state s′ under
action a. The corresponding reward is defined as rass′ with reward function R.
γ ∈ (0, 1) is the discount parameter. Policy π(a|s) represents the probability of
action a being taken under state s. The value function is defined as the expected
discounted total reward in state s:

V (s) = Eπ,T
[∞∑
t=0

γtrst

∣∣∣∣∣s0 = s

]
, (2.1)

where rst = ∑
a∈A
s′∈S

π(a|st)T asts′rasts′ is the expected reward from state st.
The objective of RL is to find optimal policy π∗ that maximizes the value

function to satisfy the following Bellman equation:

V ∗(s) = max
π

∑
a∈A
s′∈S

π(a|s)T ass′

(
rass′ + γV ∗(s′)

)
, (2.2)

or a Q function for state-action pairs (s, a):

Q∗(s, a) = max
π

∑
s′∈S
T ass′

(
rass′ + γ

∑
a′∈A

π(a′|s′)Q∗(s′, a′)
)
. (2.3)

Value function based RL algorithms, e.g., Q-learning [26], SARSA [27], and
LSPI [28], approximate the value/Q function using the Temporal Difference
(TD) error. For example, the TD update rule in Q-learning follows Q(st, at) ←
Q(st, at) + α[ratstst+1 + γmaxat+1 Q(st+1, at+1)−Q(st, at)], where α is the learning

6

rate.

2.2. Dynamic Policy Programming

To exploit the nature of smooth policy update, DPP [23,29] considers the Kullback-
Leibler divergence between current policy π and baseline policy π̄ into the reward
function to minimize the difference between the current and baseline policy while
maximizing the expected reward:

DKL =
∑
a∈A

π(a|s) log π(a|s)
π̄(a|s) . (2.4)

Thus, the Bellman optimality equation Eq. (2.2) is modified as:

V ∗π̄ (s) = max
π

∑
a∈A
s′∈S

π(a|s)
[
T ass′

(
rass′ + γV ∗π̄ (s′)

)
− 1
η

log
(
π(a|s)
π̄(a|s)

)]
. (2.5)

The effect of the Kullback-Leibler divergence is controlled by inverse temperature
η. Following [29, 30], we let η be a positive constant. Optimal value function
V ∗π̄ (s) for all s ∈ S and Optimal policy π̄∗(a|s) for all (s, a) satisfy double-loop
fixed-point iterations as follows:

V t+1
π̄ (s) = 1

η
log

∑
a∈A

π̄t(a|s) exp
[
η
∑
s′∈S
T ass′

(
rass′ + γV t

π̄(s′)
)]

(2.6)

π̄t+1(a|s) =
π̄t(a|s) exp

[
η
∑
s′∈S
T ass′

(
rass′ + γV t

π̄(s′)
)]

exp
(
ηV t+1

π̄ (s)
) . (2.7)

Action preferences function [1] at the (t+ 1)-iteration for all state-action pairs
(s, a) is defined following [23] to obtain the optimal policy that maximizes the
above value function:

Pt+1(s, a) = 1
η

log π̄t(a|s) +
∑
s′∈S
T ass′

(
rass′ + γV t

π̄(s′)
)
. (2.8)

7

Combining Eq. (2.8) with Eqs. (2.6) and (2.7), a simple form is obtained:

V t
π̄(s) = 1

η
log

∑
a∈A

exp
(
ηPt(s, a)

)
(2.9)

π̄t(a|s) =
exp

(
ηPt(s, a)

)
∑
a′∈A exp

(
ηPt(s, a′)

) . (2.10)

The update rule of action preference function Pt+1(s, a) = OPt(s, a) is derived by
plugging Eqs. (2.9) and (2.10) into Eq. (2.8):

OPt(s, a) = Pt(s, a)− LηPt(s) +
∑
s′∈S
T ass′

(
rass′ + γLηPt(s′)

)
, (2.11)

where LηP(s) , 1
η

log∑a∈A exp(ηP(s, a)) = Vπ̄(s). The difference between Pt+1(s, a)
and OPt(s, a) is used to calculate the error signal to train the action preference
function.
The original DPP is only applicable to problems with a modest number of

discrete states and prior knowledge about the underlying model. Sampling-
based Approximate Dynamic Policy Programming (SADPP) [29] extends it to
model-free learning with large-scale (continuous) states. For N training samples,
[sn, an]n=1:N , SADPP approximates P (s, a) by Linear Function Approximation
(LFA): P̂(sn, an;θ) = φ(xn)Tθ, where φ(xn) denotes the output vector of the
basis functions and θ is the corresponding weight vector. The weight vector is
updated by minimizing empirical loss function J(θ; P̂) , ‖Φθ − OP̂‖2

2, where
OP̂ is an N × 1 matrix with elements OP̂(s, a;θ) following Eq. (2.11), where
LηP(s) is translated into a Boltzmann softmax operator for more analytically
tractable recursion.
Although such an extension to DPP can be applied to toy problems as mountain-

car control [29], its scalability is still limited due to the exponentially growing
size of the basis functions with increasing input dimensionality and correspond-
ing intractability. More scalable function approximators, such as non-parametric
regression, have been employed and successfully applied for real robot control
tasks [31, 32]. However, their applications to such very high-dimensional and

8

redundant state like sensor data and raw image data remain infeasible.

2.3. Deep Q-Network

As a combination of Q-learning and DNN, DQN [15] successfully approximates
the Q function by DNN. Since the direct approximation of a dynamically changing
Q function by DNN is difficult, DQN stabilizes the learning by several tricks, like
target network, error clip, and experience replay. When Q function approximated
by DNN parameter θ is represented by Q̂(s, a;θ), a target network is defined as
Q̂(s, a;θ−). θ− is updated every C steps following θ− = θ, and θ is updated
every step with sample (sj, aj, rajsjsj+1 , sj+1) from a global memory that stores all
the generated samples by performing a gradient descent with the TD error:

J(θ,θ−) ,
∑

(sj ,aj ,r
aj
sjsj+1 ,sj+1)∈D

(rajsjsj+1
+ γmax

a′
Q̂(sj+1, a

′;θ−)− Q̂(sj, aj;θ))2, (2.12)

where D denotes the experience replay buffer. The gradient descent step on θ
needs to be sufficiently small to make the learning slow and reduce the sample
efficiency to avoid excessively changing the target function in the function ap-
proximation with DNN. One serious concern of DQN is that the smoothness in
the policy update is not explicitly considered during learning. Such a lack of
smoothness can drastically deteriorate the learning performance when the new
policy is radically different from the previous one. In the subsequent section, we
give a short summary of Dynamic Policy Programming [23, 29], which is a value
function based RL algorithm that employs a smooth policy update.

2.4. Generative Adversarial Imitation Learning

The Generative Adversarial Imitation Learning (GAIL) framework consists of
two parts: a generator to learn the sampling distribution from an expert demon-
stration, and an expert discriminator to distinguish between generated samples
and expert samples. Under the adversarial framework, a sampling distribution
indistinguishable to a demonstration is ideally learned, i.e., the expert discrim-
inator learns a better classification ability while the generator learns to confuse

9

the expert discriminator.
Given these ideas, the objective of the GAIL is formulated as follows:

max
π

min
DE

Eπ[− log(1−DE(s, a))] + EπE [− log(DE(s, a))]. (2.13)

Given the current state s and action a as input, the expert discriminator outputs
the probability that the input belongs to the expert DE(s, a) ∈ [0, 1]. π is the
policy learned by the generator, and πE is the expert policy. Since DNNs ap-
proximate the generator and discriminator, we take a gradient-based numerical
simultaneous optimization approach.
The expert discriminator’s error function is defined as:

Eπ[− log(1−DE(s, a;φ))] + EπE [− log(DE(s, a;φ))] (2.14)

where φ is defined as the DNNs parameters that approximate the expert discrim-
inator. The expert discriminator is a simpler function than that of policy thus
the learning progress is faster than the policy. Hence, the parameters φ needs to
be updated conservatively to avoid over-fitting.
Given the current discriminator DE(s, a;φ), the updated policy π of generator

is formulated as:

π∗(a|s) = arg max
π

Eπ[− log(1−DE(s, a;φ))]. (2.15)

Using ras = − log(1 −DE(s, a;φ)) in the reward function, the RL agent learns a
policy that maximizes the total reward.
Most of the previously proposed GAIL frameworks employ Trust Region Policy

Optimization (TRPO) [16] in the generator, a popular policy search-based RL
approach. TRPO is highly suitable for GAIL due to two key features: 1) the
smooth policy update for learning stability and 2) the diversity of the policy to
sampling in a wide range for training the discriminator. In a benchmark of dis-
crete action spaces [33], value function-based DRL achieved better performance
than Proximal Policy Optimization [34], a variant of TRPO. Due to this reason,
the existing GAIL frameworks may not be suitable for our purpose, i.e., for robotic
cloth manipulation with the discrete action set. Although some value function-

10

based DRL has been proposed [35, 36], these methods may be inappropriate for
our purpose because they do not have the two properties simultaneously. There-
fore, the proposed GAIL framework employs a modified value-function based deep
RL, Entropy-maximizing Deep P-Network (EDPN), that can consider both the
smoothness and causal entropy in policy update.

11

3. Sample Efficient Deep
Reinforcement Learning with
Smooth Policy Update

This chapter proposes two sample efficient DRL algorithms: Deep P-Network
(DPN) and Dueling Deep P-Network (Dueling DPN). These algorithms’ core idea
is to combine the nature of smooth policy update in value function-based rein-
forcement learning with the automatic feature extraction from high-dimensional
observations in deep neural networks to enhance the sample efficiency and the
learning stability with fewer samples. The smoothness of policy update is pro-
moted by limiting the relative entropy or the Kullback-Leibler divergence between
the current and new policies in the learning process. Even though several RL al-
gorithms with such smooth policy update have been proposed [37,38], we focus on
Dynamic Policy Programming (DPP) [23] for the following reasons: 1) its asymp-
totic convergence nature to the optimal policy (for discrete state-action cases);
2) a discrete action space that can easily use high-level actions; and 3) success in
high-dimensional robot control tasks with direct access to state variables [32].
DPN and Dueling DPN are first applied to a n DOF simulated manipulator

reaching task to evaluate their learning performances and compare the effect of
different network structures and parameter settings with previous DRL methods.
Then Dueling DPN was applied to real robotic cloth manipulation tasks to control
a dual-arm humanoid robot NEXTAGE (Fig. 3.1a) to learn 1) the flipping of
a handkerchief (Fig. 3.1b) and 2) folding a t-shirt (Fig. 3.1c) with a limited
number of samples. We chose robotic cloth manipulation because it requires
both a complicated and a high-dimensional state definition and a huge number
of training samples to recognize and model the flexible cloth or learn a suitable

12

(a) NEXTAGE: dual arm hu-
manoid robot

(b) Handkerchief

(c) T-shirt

Figure 3.1. Real robot setting: Our targets are two robotic cloth manipulation tasks with a
dual-arm humanoid robot NEXTAGE (a) 1) flipping of a handkerchief (b) and 2) folding a
t-shirt (c) with a limited number of samples.

manipulation policy.

3.1. Proposed Method

We present a novel deep reinforcement learning algorithm, Deep P-Network (DPN),
that exploits the advantages of both DRL for high-dimensional state space and
DPP for smooth policy update. Next we consider a more suitable neural net-
work architecture for DPN as inspired by the Dueling DQN [24] that has a
new neural network architecture with two parts to automatically produce sep-
arate estimates of value function V (s) and advantage function A(s, a) that fulfills
A(s, a) = Q(s, a) − V (s) without any extra supervision. Finally, we present
how we can initialize both DPN and Dueling DPN with demonstration data for
accelerating learning.

13

Figure 3.2. Network architectures of Deep P-Network

Figure 3.3. Network architecture of Dueling Deep P-Network

14

3.1.1. Approximation of Action Preference Function by
DNNs

In this subsection, we propose DPN, which approximates the action preferences
function P (s, a;θ) in Eq. (2.8) by DNN. Its network structure is defined in Fig.
3.2. Initial input state s is a raw RGB/grayscale image that usually has very high
dimensionality. A Convolutional Neural Network (CNN) abstracts the raw image
to a lower-dimensional high-level feature set. These features are in turn processed
by a Fully Connected Network (FCN) and the final layer has m nodes, where m
is the number of actions in A and the i-th node’s output is approximated value
P̂ (s, ai;θ).
The training algorithm for DPN is given by Algorithm 1. In DPN, I is the

number of iterations of DPN, and each iteration has M episodes with M × T

samples. Local memory D is maintained to store the current E iteration samples
for experience feedback. The updating of networks is operated in every episode.
The current parameters as θ− are saved to build target network P̂ (s, a;θ−). The
update is divided into N sub-problems. In each one, the agent repeatedly collects
mini-batches of samples (sj, aj, rajsjsj+1 , sj+1) from D and calculates teaching signal
yj following Eq. (2.11):

yj(θ−) = P̂ (sj, aj;θ−)−LηP̂ (sj;θ−)+rajsjsj+1
+γLηP̂ (sj+1;θ−). (3.1)

The network parameters are updated by applying gradient descent algorithms to
minimize the loss function:

J(θ,θ−) , (yj(θ−)− P̂ (sj, aj;θ))2. (3.2)

The loss of the gradient descent is added to the average loss. When the average
loss is less than a threshold, the current sub-update is terminated and the target
networks are updated after processing N mini-batch by θ− = θ. In summary,
the following are the main differences between DQN and DPN:

1. Local memory D with the current E iteration samples is applied to store
fewer samples and focuses more on new samples. As the value function is
updated using only the data sampled from the new policy of updating, the

15

improvement of the policy is fast.

2. Update θ every episode with T steps rather than every step. The DPN
updates in the same process as the DPP updating the value function.

3. Parameter θ of DNN is updated with the number of epochs U using memory
D. Switch the target network and update θ N times. By switching the
target network while updating the value function, update the iteration of
the value function without new samples.

3.1.2. Dueling Network Architecture for DPN

In this subsection, Dueling DPN (DDPN) is proposed as a natural extension of
DPN toward a dueling network [24].
Plugging Vπ̄(s) = LηP(s) , 1

η
log∑a∈A exp(ηP(s, a)) into Eq. (2.11), we ob-

tain:

Pt+1(s, a) = Pt(s, a)− V t
π̄(s) +

∑
s′∈S
T ass′

(
rass′ + γV t

π̄(s)
)
. (3.3)

Combining it with Eq. (2.8), the action preference function can be represented
as:

Pt(s, a) = 1
η

log π̄t(a|s) + V t
π̄(s), (3.4)

You can directly derive Eq. (3.4) from Eqs. (2.9) and (2.10) because the denom-
inator of Eq. (2.10) is given by exp(ηV t

π̄(s)). which can be naturally divided into
two parts: value function V t

π̄(s) and advantage function A(s, a) , 1
η

log π̄t(a|s).
Fig. 3.3 shows the architecture of the Dueling DPN that consists of two streams of
V (s) and A(s, a) while sharing one convolutional feature abstraction module. One
regularization term is added to Eq. (3.4) to fulfill ∑a′∈A exp

(
log π̄t(a|s)

)
= 1:

Pt(s, a) = 1
η

log π̄t(a|s) + V t
π̄(s)− 1

‖A‖

∑
a′∈A

exp (log π̄t(a|s))
− 1

 . (3.5)

16

Algorithm 1: Deep P-Network
Initialize local memory D and its size E
Initialize network weights θ
Initialize target network weights θ− = θ
Function UpdatePNetwork(θ, θ−, D, N):

Initialize target network update number N
Initialize epoch number U
Initialize number of mini-batches B = E/(minibatch size)
for n = 1, 2, ..., N do

for i = 1, 2, ..., U do
Shuffle local memory D index
for j = 1, 2, ..., B do

Sample minibatch of transition (sj, aj, rajsjsj+1 , sj+1) in D
Calculate the teaching signal:
yj = P̂ (sj, aj;θ−)− LηP̂ (sj;θ−) + r

aj
sjsj+1 + γLηP̂ (sj+1;θ−)

Get loss and update θ by performing a gradient descent
step on (yj − P̂ (sj, aj;θ))2

Update target network θ− = θ

Initialize DPP parameters I,M, T
for i = 1, 2, ..., I do

for episode = 1, 2, ...,M do
for t = 1, 2, ..., T do

Take action at with softmax policy based on π̄t(at|st) following
P̂ (st, at;θ) and Eq. (2.10)
Receive new state st+1 and reward ratstst+1

Store transition (st, at, ratstst+1 , st+1) in D

UpdatePNetwork(θ, θ−, D, N)
if i > (E − 1) then

Update D to store the current (E − 1) iterations’ samples

17

Algorithm 2: Initialization and learning of DPN policy
Initialize local memory D and its size E
Initialize network weights θ
Initialize target network weights θ− = θ
Load L points initial sample and store in local memory D
Initialize number of initial updates K
UpdatePNetwork(θ, θ−, D, K) # Initialization DPN policy
Initialize DPP parameters I,M, T
for i = 1, 2, ..., I do

for episode = 1, 2, ...,M do
for t = 1, 2, ..., T do

Take action at with softmax policy based on π̄t(at|st) following
P̂ (st, at;θ) and Eq. (2.10)
Receive new state st+1 and reward ratstst+1

Store transition (st, at, ratstst+1 , st+1) in D

UpdatePNetwork(θ, θ−, D, N)
if i > (E − 1) then

Update D to store the current (E − 1) iteration samples

3.1.3. Prior Policy Initialization of DPN/Dueling DPN

Based on previous works [39] [40], DRL can successfully learn tasks with a small
number of samples by initializing its policy from demonstrations. DPN and Du-
eling DPN are expected to fully exploit the successfully initialized policies based
on prior knowledge since they employ a smooth policy update in the DRL frame-
work. Even though the given initial policies may not be perfect, they should be
beneficial for accelerating reinforcement learning.
We show an initialization procedure for both DPN and Dueling DPN using a

small number of demonstration samples (generated by a human operator), sum-
marized in Algorithm 2. By following Algorithm 2, we store these samples in
local memory D and update the P-network before learning the results in the net-
works including prior knowledge. Parameter K controls the effect of the demon-
stration data on learning. The nature of the smooth policy update enables the
DPN/Dueling DPN to smoothly update the resulting policies from the initialized
ones.

18

Initial position

Target position

(a) 5-DOF manipulater
Initial position

Target position

(b) 50-DOF manipulater

Figure 3.4. Successful behaviors for n (5 and 50) DOF manipulator reaching tasks. Different
colored robots represent manipulator states in different steps.

3.2. Simulation Results

3.2.1. Simulation Setting

In this section, we investigated the learning performance of DPN and Dueling
DPN in a simulated n DOF manipulator reaching task (n = 5, 15, 25, 50) by
comparing DQN and Dueling DQN. The state is the entire grayscale 84 × 84
px image where the n DOF manipulator is drawn, as shown in Fig. 3.4. The
length of each limb between the adjoining joints is set to 1

n
. The environment

and the DPN parameter settings are respectively shown in Tables 3.1a and 3.1b.
For the network architecture, the input layer has 84× 84× 1 nodes for each pixel
of the state image. The setting of the middle layer and the optimizer follows
previous works [15,24]. The policies of DPN and Dueling DPN are calculated by
Eq. (2.10) while DQN uses a ε-greedy policy. All the results are derived in five
repetitions. Our hardware platform is a PC with an Intel Core i7-5960 CPU, a
Nvidia GTX 1080 GPU, and 64 GB memory. The software platform was built
by Tensorflow [41] and Keras [42].

19

MDP setting Description

State The entirety of a grayscale 84×84 px image.

Action Discrete actions [−0.0875,−0.0175,
0, 0.0175, 0.0875] (rad) to increment the
joint with the respective angle for each
DOF. We define an action at each time step
as one move per joint to reduce the number
of actions to (N × 5).

Reward Reward function is set as r = −
(
|Xtarget −

X|+ |Ytarget− Y |
)
where X, Y is the current

position of the manipulator’s end-effector,
and Xtarget = 0.6830, Ytarget = 0 is the tar-
get position.

Initial state The first joint is set to position [0, 0]. All
angles are initialized to 0 rad at the start of
the simulation.

(a) Parameter setting of n DOF manipulator reaching task.

Parameter Meaning Value

η Parameters controlling the effect of smooth
policy update

1

M Number of episodes for one iteration 5

T Number of steps for one episode 30

E Size of memory D to store sample 450

N Number of target network updates in one it-
eration

2

U Epoch number of DNN updates 80

L Number of samples for policy initialization 300

K Number of P-network updates at policy ini-
tialization

20

(b) Parameter setting of DPN algorithm.

Table 3.1. Settings and learning parameters of n DOF manipulator reaching task

20

3.2.2. Learning Results

The learning results with different numbers of DOFs are shown in Fig. 3.5. The
left side shows the results without the initialization procedure with demonstration
samples. Both DPN and Dueling DPN clearly performed as well as expected in
the simulations: they stably improved the performance with only around 2000
samples, but DQN and Dueling DQN could not. By separately learning the action
preferences and value functions, Dueling DPN outperformed DPN. The right side
of Fig. 3.5 shows the result with prior policy initialization (marked by “init",
where the number of demonstration samples is defined as L in Table 3.1b, and
in this task, we used 300 samples generated by a non-optimal policy). Compared
with other algorithms, Dueling DPN supported the value of initialization more
and quickly outperformed the performance of the demonstration samples (purple
dashed line). All these results show the sample efficiency of DPN/Dueling DPN.
They used fewer samples to achieve higher average reward values than the DQN
algorithms under the same DNN setting, and their superiority rose with the DOF
increase.

3.2.3. Effect of Parameter η in DPN and Dueling DPN

We investigated the effect of DPN’s parameter η in a 5-DOF manipulator reaching
task. With an increase of η, the Kullback–Leibler divergence term in Eq. (2.5)
limits the policy update less. Since the operator Lη is the log-sum-exp function,
it is considered a soft-max operator and it converge to the max operator as
η → ∞. Therefore, the choice of η determines the smoothness of the operator.
In addition, DPP converges to the optimal policy for any η, but it changes the
rate of convergence significantly. Both DPN and Dueling DPN were tested in five
repetitions where η = [0.01, 0.1, 0.5, 1.5, 3.0, 10, 20]. Fig. 3.6a shows the results;
in a suitable range, i.e., [0.01, 0.3], a larger η resulted in faster learning due to
less smoothness in the policy update. On the other hand, an extremely large η
caused divergent learning due to the numerical instabilities using the exponential
function in the action preferences function [32]. Dueling DPN also has better
stability with various η than DPN, maybe because its architecture divides the
action preferences function into two parts.

21

0 10 20 30 40 50 6060

50

40

30

20

10

0

To
ta

l r
ew

ar
d

5-DOF without initialization

Dueling DPN
DPN

Dueling DQN
DQN

0 10 20 30 40 50 60

5-DOF with initialization

Dueling DPN Init
DPN Init
Dueling DQN Init

DQN Init
Init Sample

0 10 20 30 40 50 6060

50

40

30

20

10

0

To
ta

l r
ew

ar
d

15-DOF without initialization

0 10 20 30 40 50 60

15-DOF with initialization

0 10 20 30 40 50 6060

50

40

30

20

10

0

To
ta

l r
ew

ar
d

25-DOF without initialization

0 10 20 30 40 50 60

25-DOF with initialization

0 10 20 30 40 50 60 70
Number of samples

60

50

40

30

20

10

0

To
ta

l r
ew

ar
d

50-DOF without initialization

0 10 20 30 40 50 60 70
Number of samples

50-DOF with initialization

Figure 3.5. Learning curve of n DOF manipulator reaching task

22

2 4 6 8 10 12 14
Iterations

50

40

30

20

10

To
ta

l r
ew

ar
d

DPN in 5-DOF manipulator reaching with different η

η = 0.01
η = 0.1

η = 0.5
η = 1.5

η = 3.0
η = 10.0

η = 20.0

(a) DPN

2 4 6 8 10 12 14
Iterations

50

40

30

20

10

To
ta

l r
ew

ar
d

Dueling DPN in 5-DOF manipulator reaching with different η

η = 0.01
η = 0.1

η = 0.5
η = 1.5

η = 3.0
η = 10.0

η = 20.0

(b) Dueling DPN

Figure 3.6. Average learning results of DPN/Dueling DPN with different values of η in the
5-DOF manipulator reaching task over ten experiments

23

2 4 6 8 10 12 14
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Av
er

ag
e

Be
llm

an
 e

rr
or

Average Bellman error in 5-DOF manipulator reaching

Dueling DPN
DPN
Dueling DQN
DQN

Figure 3.7. Average Bellman error in each iteration

3.2.4. Bellman Error in DPN

Next we investigated the effect of smooth policy update in DPN’s function ap-
proximation. We define the Bellman error as:

BE(V̂ t+1(s), rass′ , V̂ t(s)) = ‖V̂ t+1(s)− (rass′ + γV̂ t(s))‖. (3.6)

The Bellman error measures the approximation error of the value function during
learning. State value function V̂ t of DPN can be calculated following Eq. (2.9),

and the calculation in DQN follows V̂ t(s) = Eπ
[
Qt(s, a)

]
. Fig. 3.7 shows the

average Bellman error in the first 15 iterations of ten learnings in 5-DOF ma-
nipulation reaching tasks. As a result, we achieved more accurate value function
approximation in DPN and Dueling DPN than in DQN and Dueling DQN due
to limiting the overly large updates that result in stable and efficient learning.

24

3.3. Real Robot Experiment

In this section, we applied the Dueling DPN to the NEXTAGE robot, a 15-DOF
humanoid robot with sufficient precision for manufacturing, to learn two robotic
cloth manipulation tasks. Following [43], we focus on learning a policy with high-
level discrete actions, i.e., the grasp and release points on a cloth to solve two
tasks: 1) flipping over a handkerchief and 2) folding a t-shirt.

3.3.1. Flipping a Handkerchief

Setting

The environment and the DPN settings of this task are respectively shown in
Tables 4.4a and 3.2b. The network architecture, the optimizer, and the hard-
ware/software mainly follow the setting in Section 3.2.1, and the input layer is
fixed to 84× 84× 3 nodes for the RGB state image. The software is built on the
Robot Operating System (ROS) [44].

Results

The learning results of three experiments are shown in Fig. 3.9. Each experi-
ment took about four hours, including 40 minutes for manually initializing the
handkerchief (≈ 30 seconds per episode) to generate 2400 samples (= 16 itera-
tions). The samples used for the Dueling DPN initialization were generated by
a human operator who selected the actions for several states. Note that these
samples are collected from non-expert demonstrations and they are insufficient
to learn a good policy. The performance of the policy learned from these samples
using supervised learning is shown as "Supervised" in Fig. 3.9. It is better than
the random action but cannot be as good as the proposed methods. From the
results, without prior policy initialization, Dueling DPN converged faster and
achieved higher reward than Dueling DQN. With only 300 demonstration sam-
ples for initialization, Dueling DPN learned better policies by exploring with 2400
additional samples. Both Dueling DPN with/without prior policy initialization
outperformed the corresponding Dueling DQN algorithms. Fig. 3.8 shows one
example of a handkerchief flipping process learned by Dueling DPN, which turned

25

MDP setting Description

State The input state is a 84×84 px RGB image from
NEXTAGE’s integrated camera.

Action 6 × 6 = 36 gripper actions are defined
as picking up the handkerchief from 2 × 3
points over its current area and dropping
it down to 2 × 3 points over the table.

Picking up Dropping down

Reward The reward is defined as the ratio of the red
area over the whole image in the current state.

Initial state The handkerchief is initially placed green side
up by a human.

(a) Parameter setting of flipping handkerchief task

Parameter Meaning Value

η Parameters controlling the effect of smooth pol-
icy update

1

M Number of episodes for one iteration 5

T Number of steps for one episode 30

E Size of memory D to store samples 450

N Number of target network updates in one itera-
tion

2

U Epoch number of DNN updates 40

L Number of samples for policy initialization 300

K Number of P-network updates at policy initial-
ization

20

(b) Parameter setting of DPN algorithm

Table 3.2. Settings and learning parameters of flipping handkerchief task

26

Random

Dueling
DPN Init

Dueling
DQN Init

Time steps

10 steps 20 steps 30 steps0 steps

Figure 3.8. Handkerchief folding trajectory generated from policy learned from 2400 samples

about 80% of the handkerchief over in about 15 steps.

3.3.2. Folding a T-shirt

Setting

The next task was to fold a t-shirt. The details of the environment and the
algorithm settings are respectively summarized in Tables 4.4a and 3.2b. The
network architecture, the optimizer, and the hardware/software settings are the
same as in the handkerchief flipping task. It is a more challenging task than
flipping handkerchief due to 1) a larger action space to deal with various clothing
operations, 2) a more complex reward function that shows the stepwise folding
achievement degree as in Algorithm 3, 3) fewer steps in one rollout, 4) fewer
samples (80) generated by a human operator for prior policy initialization.

Results

The averaged learning results based on three experiments are shown in Fig. 3.11.
Dueling DPN successfully learned the task with only 80 demonstration samples for

27

0 300 600 900 1200 1500 1800 2100 2400
Number of samples

0

5

10

15

20

25

30

To
ta

l r
ew

ar
d

wi
th

 e
xp

on
en

tia
l s

m
oo

th
in

g

Flipping handkerchief

Dueling DPN Init
Dueling DPN
Dueling DQN Init

Dueling DQN
Supervised
Random

Figure 3.9. Learning curve of flipping a handkerchief

28

MDP setting Description
State The input state is a 84× 84 px RGB image from

the NEXTAGE’s integrated camera.
Action 10 × 20 = 200 gripper actions are de-

fined as picking up the t-shirt from 10
points over its current area and dropping
it down to 5 × 4 points over the table.

Dropping downPicking up

Reward The reward function is designed to trigger an ac-
tion to fold the hem after folding the sleeve. The
processing is shown in Algorithm 3.

Sleeve distance
from center

Target Target

Hem distance
from target point

Initial state T-shirt is initialized to a state in which it is
spread by a human.

(a) Parameter setting of folding t-shirt task

Parameter Meaning Value
η Parameters controlling the effect of smooth pol-

icy update
1

M Number of episodes for one iteration 5
T Number of steps for one episode 8
E Size of memory D to store samples 120
N Number of target network updates in one itera-

tion
2

U Epoch number of DNN updates 30
L Number of samples for policy initialization 80
K Number of P-network updates at policy initial-

ization
5

(b) Parameter setting of DPN algorithm

Table 3.3. Settings and learning parameters of folding t-shirt task

29

Algorithm 3: Reward function of t-shirt folding task
Initialize InitHemR = [0.675, 0.8], InitHemL = [0.325, 0.8]
Initialize TargetHemR = [0.675, 0.208], TargetHemL = [0.325, 0.208]
Function HemReward(SleevePoint, CenterHem):

Initialize reward = 0
reward = -Sum(|S leevePoint - CenterHem|)
return reward

Function SleeveReward(HemPoint, InitHem, TargetHem):
Initialize reward = 0
Initalize Distance = |InitHem− TargetHem|
reward = Sum(Distance− |HemPoint− TargetHem|)
return reward

Function ShirtReward():
Initialize reward = 0
Update color marker
Get HemPointR, HemPointL, SleevePointR, SleevePointL
if Detect hem marker then

CenterHem = (HemPointR + HemPointL)/2
reward = SleeveReward(SleevePointR, CenterHem) +
SleeveReward(SleevePointL, CenterHem)

else
reward = 1

if Detect sleeve marker then
reward =
reward + HemReward(HemPointR, InitHemR, TargetHemR) +
HemReward(HemPointL, InitHemL, TargetHemL)

return reward

30

Random

Dueling
DPN Init

Dueling
DQN Init

Time steps

1 steps 2 steps 3 steps0 steps

Figure 3.10. T-shirt folding trajectory generated from policy learned from 2400 samples

policy initialization and 112 additional samples generated during reinforcement
learning. The samples for initialization are collected from non-expert demonstra-
tions. The line "Supervised" in Fig. 3.11 shows that the policy learned by these
samples using supervised learning could not lead to a good policy. According to
Fig. 3.11, only Dueling DPN was able to improve its performance based on the
given non-expert demonstration while other methods gradually improved their
performance but never learned sufficient policies for folding the t-shirt. These
results suggest that only our proposed method, Dueling DPN, has the capabil-
ity to learn tasks with a large action space and a complex reward function even
with very limited samples. Fig. 3.10 shows one t-shirt folding procedure learned
by Dueling DPN and DQN with prior policy initialization. Dueling DPN init
successfully folded it by appropriately selecting three actions per step, but the
corresponding Dueling DQN could only achieve the first step.
Several examples of high-level features learned by Dueling DPN are visualized

by Grad-CAM [45] in Fig. 3.12. These heat maps where the red/blue colors
indicate high/low attention of the agent indicate that our proposed method suc-
cessfully learned useful and meaningful features. The t-shirt’s sleeves drew the

31

0 16 32 48 64 80 96 112
Number of samples

4

2

0

2

4

6

8

10

12

To
ta

l r
ew

ar
d

wi
th

 e
xp

on
en

tia
l s

m
oo

th
in

g

T-shirt folding

Dueling DPN Init
Dueling DPN
Dueling DQN Init

Supervised
Random

Figure 3.11. Learning curve of t-shirt folding task

32

Select and
execute action

Picking up
point

Dropping
down point

Visualization of extracted parts to select actions

Figure 3.12. Visualization of extracted parts in images for action selection using Grad-CAM.
Heat map shows parts extracted when actions are selected.

agent’s attention following the order of operations in the first two steps. Then
the hem’s corner was concerned more to finish the folding task.

3.4. Summary of Chapter 3

The contribution of this chapter is twofold. We proposed two new deep reinforce-
ment learning algorithms, Deep P-Network (DPN) and Dueling Deep P-Network
(DDPN). The core idea shared by them is to combine the nature of smooth
policy update in value function based reinforcement learning (Dynamic Policy
Programming) with the capability of automatic feature extraction in deep neu-
ral networks to enhance the sample efficiency and the learning stability process
fewer samples. We compared them with previous DRL methods in a simulated
n DOF manipulator reaching task to investigate our proposed methods’ perfor-
mance. Furthermore, we applied them to two robotic cloth manipulation tasks
with a dual-arm robot, NEXTAGE: 1) flipping of a handkerchief and 2) folding
a t-shirt with a limited number of samples. We confirmed in all the experiments
that our method achieved more sample efficiency and stabilized learning than the

33

previous methods.

34

4. Generative Adversarial
Imitation Learning with
Human Demonstration and
Target State Label

In the previous chapter, the reward function design such as folding a t-shirt has be-
come complex because evaluating the flexible clothes state is difficult. Therefore,
this chapter focuses on a Generative Adversarial Imitation Learning framework
(GAIL), which allows an agent to learn near-optimal behaviors from demonstra-
tions and self explorations without explicit reward function design.
When applying GAIL to a real robot task, humans use the robot’s action

spaces to collect demonstrations. In this case, it is not easy to collect suitable
demonstrations because human’s and robot’s state action spaces are different.
For example, when the robot’s action space in a folding task is a folding line, the
human selects a folding line and collects a demonstration while watching the mon-
itor. Whether the state transitions as expected by humans can only be known
after the robot acts. Thus, it is difficult for a beginner to collect a complete
demonstration. On the other hand, a human can present the target state of the
task. In this chapter, we propose the P-Generative Adversarial Imitation Learn-
ing with Bi-Discriminator (PGAIL-BiD), which includes two discriminators: an
expert discriminator and a target discriminator. The proposed method encour-
ages reaching the target state via the target discriminator and learns the better
performing policy even when demonstrations is imperfect.
PGAIL-BiD is first applied to a n DOF simulated manipulator reaching task to

evaluate their learning performances and compare the effect of different demon-

35

(a) NEXTAGE: dual arm humanoid
robot

(b) Handkerchief

(c) Shirt

(d) Trousers

Figure 4.1. Real robot setting: Our targets are two robotic cloth manipulation tasks with a
dual-arm humanoid robot NEXTAGE (a) 1) flipping of a handkerchief (b) and 2) folding shirt
(c) and trousers (d).

strations and parameter settings with previous GAIL methods. Then PGAIL-BiD
is applied to real robotic cloth manipulation tasks to control a dual-arm humanoid
robot NEXTAGE (Fig. 4.1a) to learn 1) the flipping of a handkerchief (Fig. 4.1b)
and 2) folding a shirt and trousers (Fig. 4.1c, Fig. 4.1d)

4.1. Proposed Method

4.1.1. Structure of PGAIL-BiD

As shown in Fig. 4.2, PGAIL-BiD consists of following three components:

36

Figure 4.2. Overview of proposed PGAIL-BiD.

• Expert discriminator DE(s) distinguishing between demonstration states
and generated states.

• Target discriminator DT (s) distinguishing between target states and gener-
ated states.

• Generator π(a|s) learns policies to achieve the target state while imitating
the demonstration.

Compared to the previously proposed GAIL frameworks in Fig. 4.3. The target
sample and the target discriminator are increased, and the reward consists of an
expert discriminator and a target discriminator. Since the target sample DT is
a state selected from within demonstrations DE, the relation is DT ⊂ DE. Two
discriminators learn a better classification ability while the generator learns to
confuse two discriminators. Since the input of the target discriminator is state
only, the expert discriminator’s input is also state only.

37

Figure 4.3. Overview of proposed PGAIL.

The objective of the PGAIL-BiD is formulated as follows:

max
π

min
DE

min
DT

Eπ[− log(1−DE(s))− log(1−DT (s))]

+ EπE [− log(DE(s))] + EdT [− log(DT (s))].
(4.1)

Given the state s as input, two discriminator outputs the probability DE(s) ∈
[0, 1], DT (s) ∈ [0, 1]. π is the policy learned by the generator, πE is the demon-
stration policy. dT (s) is stationary distribution of observe target state. Since the
generator and two discriminator are approximated by DNNs, we take a gradient-
based numerical simultaneous optimization approach same as GAIL. More details
of the optimization are given in subsequent sections.

4.1.2. Generator Optimization

Given expert discriminator DE(s) and target discriminator DT (s), the updated
policy π of generator is formulated as:

π∗ = arg max
π

Eπ[− log(1−DE(s))− log(1−DT (s))]. (4.2)

38

The reward function of RL is formulated as follows:

rs′ = {− log(1−DE(s′))}+ {− log(1−DT (s′))} (4.3)

The reward is calculated from the transition state s′ and two discriminators. In
order to stably learn the policy from the reward changing by the learning of the
discriminator, it is necessary to update the policy smoothly while maintaining the
diversity of the policy. PGAIL-BiD learns the policy of generator by EDPN by
following DPN with an important modification so that it has such two properties
as smooth update and diversity in the policy. To this end, the reward function is
designed by

rEDPN = rs′ − 1
η

KL(π ‖ π̄) + σH(π) (4.4)

where

KL(π ‖ π̄) =
∑
a∈A

π(a|s) log π(a|s)
π̄(a|s) (4.5)

and

H(π) =
∑
a∈A
−π(a|s) log (π(a|s)) . (4.6)

The second term is promoting smooth policy update, and the amount of update
is quantified by the Kullback-Leibler divergence KL(π ‖ π̄) between the current
policy π and the baseline policy π̄. The third term is promoting the diversity of
actions in policy, and calculate the entropy H(π). η and σ are coefficients that
control their balance. By learning the policy that maximizes this total reward,
the policy is smoothly updated while maximizing the entropy of the policy. Value
function-based reinforcement learning with these two constraints has been robust
to the approximation error of value function [46].
Following [29], the update rule of EDPN’s action preferences function is derived

39

as:

Pt+1(s, a) = 1
1 + ση

(Pt(s, a)− V t
π̄(s)) +

∑
s∈S

T ass′

(
rs′ + γV t

π̄(s′)
)

(4.7)

where

π̄t(a|s) =
exp(η

1+σηPt(s, a))∑
a′∈A exp(η

1+σηPt(s, a′))
(4.8)

and

V t
π̄(s) = 1 + ση

η
log

∑
a∈A

exp(η

1 + ση
Pt(s, a)). (4.9)

T ass′ is the probability of transitioning from state s to state s′ under action a.
γ ∈ (0, 1) is the discount parameter.
When learning a policy for image-based inputs, the action preferences func-

tion is approximated by DNNs. θ is defined as the DNNs’ parameters that ap-
proximate the action preferences function and calculates teaching signal y(θ−)
following Eq. (4.7):

y(θ−) = 1
1 + ση

(P̂t(s, a; θ−)− V̂ t
π̄(s; θ−)) +

∑
s∈S

T ass′

(
ras + γV̂ t

π̄(s′; θ−)
)
. (4.10)

The current parameters as θ− are saved to build a target network. Then, the
gradient of the following error function J(θ, θ−) is computed and then used to
update the parameter θ using the stochastic gradient descent:

J(θ, θ−) , (y(θ−)− P̂ (s, a; θ))2. (4.11)

Note that if σ = 0, the EDPN becomes equivalent to DPN, thus, EDPN is a
generalized version of DPN to be suitable for GAIL.

40

4.1.3. Discriminator Optimization

Two discriminator’s error function is defined as:

JE(φ) = Eπ[− log(1−DE(s;φ))] + EπE [− log(DE(s;φ))] (4.12)

JT (ω) = Eπ[− log(1−DT (s;ω))] + EdT [− log(DT (s;ω))] (4.13)

where φ, ω is defined as the DNNs parameters that approximate the discriminator.
To update the parameter φ, ω using the stochastic gradient descent, since the
discriminator can be a simpler function than that of policy, the learning progress
would be faster than the policy. Thus, the parameters φ, ω needs to be updated
conservatively to avoid over-fitting.

4.1.4. Summary

The pseudocode of training PGAIL-BiD is shown in Algorithm 4. After policy
initialization, the training of PGAIL-BiD has four steps in one iteration, and
executes them a fixed number of times.

1. generate new samples following current policy π based on the current action
preferences function

2. update the discriminator via updating φ, ω to minimize Eq. (4.12) and Eq.
(4.13)

3. calculate the reward of DG following the updated two discriminator DE, DT

4. update the generator using EDPN

4.2. Simulation Results

4.2.1. Simulation Setting

In this section, the PGAIL-BiD is first evaluated in a n-DOF manipulator reach-
ing task (n = 2, 5) in simulation. The state is the color image 84 × 84 × 3 px

41

Algorithm 4: PGAIL-BiD
Initialize local memory DG its size N
Load demonstrations DE
Load target samples DT
Initialize value network weights θ, target network weights θ− = θ
Initialize discriminator network weights φ, ω
Initialize PGAIL-BiD iteration number I
Initialize generator parameters M,T
Initialize discriminator network iteration number J
Initialize value network iteration number K
for i = 1, 2, ..., I do

for episode = 1, 2, ...,M do
for t = 1, 2, ..., T do

Execute policy πi represented by P i(s, a; θ), generate samples
DG

for j = 1, 2, ..., J do
Update the parameters φ, ω of discriminator Di

E(s;φ), Di
T (s;ω) to

minimize Eq. (4.12, 4.13) based on DE,DT and DG
Calculate the reward of generated samples DG according to
Di
E(s;φ), Di

T (s;ω) following Eq. (4.3)
for k = 1, 2, ..., K do

Update the parameters θ of P i(s, a; θ) using DG and θ−, following
Eq. (4.11)

Update target network θ− = θ

image where the n DOF manipulator is drawn, as shown in Fig. 4.4. The length
of each limb between the adjoining joints is set to 1

n
. The environment and

the PGAIL-BiD parameter settings are respectively shown in Tables 4.1a and
4.1b. In this simulation, we investigated three things: 1) learning from imperfect
demonstrations, 2) comparing PGAIL-BiD and PGAIL with target discriminator
only, and 3) visualization of estimated reward functions. Through these investiga-
tions, we show that PGAIL-BiD learns better performing policies from imperfect
demonstrations.

42

MDP setting Description
State The entirety of a 84 × 84 px color image.

The number of state dimensions is 84 × 84 ×
3 (21, 168)

Action Discrete actions [−0.0875,−0.0175,
0, 0.0175, 0.0875] (rad) to increment the joint
with the respective angle for each DOF. We
define an action at each time step as one move
per joint to reduce the number of actions to
(N × 5).

Reward for evalu-
ation

Reward function is set as r′s = −
(
|Xtarget−X|+

|Ytarget − Y |
)
where X, Y is the current position

of the manipulator’s end-effector, and Xtarget =
0.6830, Ytarget = 0 is the target position.

Initial state The first joint is set to position [0, 0]. All an-
gles are initialized to 0 rad at the start of the
simulation.

Demonstrations Demonstrations (9 samples) are sampled from an
RL policy that maximizes the reward for evalua-
tion. Demonstrations (20 steps × 5 trajectory =
100 samples) are generated from exploring poli-
cies during the learning process. The target sam-
ples are selected from demonstrations, with the
distance between the manipulator’s end-effector
and the target position less than 0.1.

(a) Parameter setting of n DOF manipulator reaching task.

Parameter Meaning Value
η Parameters controlling the effect of smooth pol-

icy update
1

σ Parameters controlling the effect of causal en-
tropy

0.05

M Number of episodes for one iteration 10
T Number of steps for one episode 20
N Size of memory DG to store sample 2000
J Iteration number of discriminator updates 10
K Iteration number of value network updates 20

(b) Parameter setting of PGAIL-BiD algorithm.

Table 4.1. Settings and learning parameters of n DOF manipulator reaching task

43

Figure 4.4. The snapshot show demonstrations of n-DOF manipulator reaching task. Demon-
strations are sampled from RL policies. RL exploration policies generate imperfect demonstra-
tions.

4.2.2. Learning from Imperfect Demonstrations

We first investigate the learning policy performances from imperfect demonstra-
tions. To get different demonstrations of performance, we collected imperfect
demonstrations from RL exploration policies with [5, 7, 9, 11] updates. To verify
the effect of smooth policy update and entropy-maximizing, we compared EDPN
and naive DQN. After this, GAIL with DQN is called "QGAIL."
The learning results with different demonstrations are shown in Fig. 4.5

where the Y axis is the performance defined as a scaled total baseline reward
r′s = −

(
|Xtarget − X| + |Ytarget − Y |

)
. The demonstration policy’s performance

44

0 5 10 15 20

0.0

0.5

1.0

1.5

Pe
rf

o
rm

a
n
ce

 (
sc

a
le

d
)

Demo policy with 5 Updates

0 5 10 15 20

0.0

0.5

1.0

Demo policy with 7 Updates

0 5 10 15 20
Iterations

0.0

0.5

1.0

Pe
rf

o
rm

a
n
ce

 (
sc

a
le

d
)

Demo policy with 9 Updates

0 5 10 15 20
Iterations

0.00

0.25

0.50

0.75

1.00

Demo policy with 11 Updates

PGAIL-BiD
PGAIL

QGAIL-BiD
QGAIL

BC
Demonstration

Random

Figure 4.5. Learning curve of 5-DOF manipulator reaching task with imperfect demonstrations.

is scaled to 1 while one of the random policies is scaled to 0. The learning
curves are the average of five trials. Without the Bi-Discriminator, PGAIL and
QGAIL converged to the performance of demonstration. The learning curves of
QGAIL-BiD are unstable, and performance is similar to demonstrations. The
proposed method, PGAIL-BiD approaches the same or more than the perfor-
mance of demonstration.

45

4.2.3. Comparison of PGAIL-BiD and PGAIL with
Target Discriminator

To verify the effect of Bi-Discriminator, we compared PGAIL-BiD, PGAIL and
PGAIL with Target Discriminator. The environment setting was the same as in
the previous section, and demonstrations were collected from the updated 5th
RL policy.
The learning results with different discriminator are shown in Fig. 4.6. PGAIL

with DE(s) learned policies that outperformed experts at four iterations, but
performance declined after six iterations. This result indicates that the policy
generates many target states, and thus the reward of the target state is reduced.
PGAIL with DT (s) outperforms the experts but converges to the local minimum.
PGAIL-BiD outperforms the experts after four iterations and keeps high perfor-
mance after that.

4.2.4. Visualization of Estimated Reward Function

In this subsection, to compare reward function represented by discriminator, we
visualize reward function in 2-DOF manipulator reaching task. Since the state
of the 2-DOF manipulator is in the two dimension of the joint angle, the reward
function is drawn as shown in Fig. 4.7a. The learned reward functions from
imperfect demonstrations are visualized in Fig. 4.7b. From the baseline reward
function, it is clear that the optimal joint angles for reaching task are 50◦ and 90◦.
PGAIL-BiD learned an accurate reward function that offers value near [50◦, 90◦] in
all iterations. PGAIL learned a reward function with high near [50◦, 90◦] after five
iterations. QGAIL-BiD learned a reward function with high near [50◦, 90◦] after
three iterations but reward function after five iteration is highest near [75◦, 90◦].
These results indicate that EDPN learns policies stably from Bi-Discriminator.
All the simulation experiment results suggest that the proposed framework,

PGAIL-BiD, can learn a better reward function from imperfect demonstration
with stable learning thanks to the support of both the smooth policy update and
causal entropy of policy in EDPN.

46

PGAIL-BiD
with DE(s) and DT(s)

PGAIL with DE(s) PGAIL with DT(s)
0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

Pe
rf

o
rm

a
n
ce

 (
sc

a
le

d
)

Demonstration

5-DOF manipulatior reaching task

Figure 4.6. Evaluation of Bi-Discriminator Performance in the 5-DOF manipulator reaching
task. Compare performance of policies learned from rewards containing different discriminators.
The left bar is PGAIL with Bi-Discriminator including expert discriminator DE(s) and target
discriminator DT (s) (PGAIL-BiD). The middle bar is PGAIL with only expert discriminator
DE(s) as reward. The right bar is PGAIL with only target discriminator DT (s) as reward.

4.3. Real Robot Experiment

In this section, we applied PGAIL with EDPN to the NEXTAGE (www.nextage.
kawada.jp/en/), a 15-DOF humanoid robot with sufficient precision for complex
manufacturing tasks, to learn a policy that flips a handkerchief and folds clothes
from demonstrations. We focus on learning a policy with high-level discrete
actions, i.e., grasp-release points and folding lines on a cloth to solve two tasks:
1) flipping over a handkerchief and 2) folding clothes.

47

(www.nextage.kawada.jp/en/)
(www.nextage.kawada.jp/en/)

90 60 30 0 30 60 90
Second joint angle [deg]

90

60

30

0

30

60

90

Fi
rs
t
jo
in
t
a
n
g
le
[d
e
g
]

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25States for reaching target

(a) The baseline reward function value of 2 DOF
manipulator reaching.

80

60

40

20

0

20

40

60

80

80 60 40 20 0 20 40 60 80

80

60

40

20

0

20

40

60

80

80 60 40 20 0 20 40 60 80

Iteration 1 Iteration 3

PGAIL-BiD

PGAIL

QGAIL-BiD

Method Iteration 5

80

60

40

20

0

20

40

60

80

80 60 40 20 0 20 40 60 80

(b) The reward function values of 2 DOF manipulator reaching learned by different
methods.

Figure 4.7. Learned reward functions from demonstration.

48

(a) Recognize cloth and en-
close in a square.

(b) Divide each side at equal
intervals.

(c) Scan to the edge of cloth.

Figure 4.8. Image processing of picking up points.

4.3.1. Flipping a Handkerchief

Setting

In this flipping a handkerchief task, we evaluate the learned policy’s performance
in a real-world environment with an easy design of the reward function. This
handkerchief has different colors on the back and front, and the target state is
the red color spreading on up. The environment and the PGAIL-BiD settings of
this task are respectively shown in Tables 4.4a and 4.2b. 10 × 6 = 60 gripper
actions are defined as picking up the handkerchief from 10 points over its current
area and dropping it down to 2× 3 points over the table (Fig. 4.8).

Results

The learning results of PGAIL-BiD and PGAIL over three experiments are shown
in Fig. 4.9 where the Y axis is the success rate. During the test, the handkerchief
is initialized to a green spreading on up and we test three trials per one policy (3
experiments × 3 trials = 9 evaluations). The successful manipulation is defined
as the red area finally becomes more than 80%. Each experiment took about eight
hours, including 47 minutes for automatically initializing the handkerchief (≈ 20
seconds per episode) to generate 4200 samples (= 14 iterations). After exploring
with 3900 samples, PGAIL-BiD learned to reach around 80%. On the other hand,
PGAIL learned to reach around 30% with the same number of samples.
As compared to the control policies learned by PGAIL-BiD and PGAIL, and

random policies shown in Fig. 4.10, the proposed method generated the trajectory

49

MDP setting Description
State The input state is a 84× 84 px RGB image from

NEXTAGE’s integrated camera.
Action 10 × 6 = 60 gripper actions are defined as

picking up the handkerchief from 10 points
over its current area and dropping it down
to 2 × 3 points over the table (Fig. 4.8).

Picking up Dropping down

Reward The reward is defined as the ratio of the red
area over the whole image in the current state.

Initial state The robot executes three random actions and ini-
tializes the handkerchief.

Demonstrations The sample is collected from humans for trajec-
tory of 5 episodes (100 samples). The target state
is set as the final state of the episode.

(a) Parameter setting of flipping handkerchief task

Parameter Meaning Value
η Parameters controlling the effect of smooth pol-

icy update
1

σ Parameters controlling the effect of causal en-
tropy

0.05

M Number of episodes for one iteration 10
T Number of steps for one episode 30
N Size of memory DG to store sample 3000
J Iteration number of discriminator updates 5
K Iteration number of value network updates 10

(b) Parameter setting of PGAIL-BiD algorithm.

Table 4.2. Settings and learning parameters of flipping handkerchief task

50

1500 2100 2700 3300 3900
Number of sample

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc

e
ss

fu
lly

 r
a
te

 w
it
h
 e

xp
o
n
e
n
ti
a
l s

m
o
o
th

in
g

Flipping Handkerchief

PGAIL-BiD
PGAIL

Figure 4.9. Learning results of the NEXTAGE humanoid robot on flipping a handkerchief task.
PGAIL-BiD and PGAIL are compared on the learning curve evaluated by task success rate.
Each method learn the policy 3 times, and each policy is tried for 3 episodes. Thus, each
method is evaluated by task success rate from 9(3) episodes.

51

Figure 4.10. The snapshot of the learned policy per step. The blue and purple dots are picking
up and dropping positions respectively for actions at each step.

52

of successfully flipping the handkerchief. PGAIL keeps the green state and could
not flip the handkerchief. This reason is that demonstrations contain a state
similar to the initial state.

Evaluation of Learned Policy’s Robustness

The robustness of the policies learned by PGAIL-BiD is evaluated with different
initial states shown in Table 4.3. For each initial state, we test the policy with
five trials. The successful manipulation is defined as the red area finally becomes
more than 80%. According to the result in Table 4.3, behavior cloning could
not select the appropriate action when the observed initial states do not exist in
demonstrations. PGAIL-BiD shows a better generalization ability to maximize
the red area in various initial states. This result indicates that PGAIL-BiD can
smoothly explore the flipping task following demonstrations. Rather than copying
demonstrations, it is able to learn a robust policy for states out of demonstrations.

4.3.2. Folding Clothes

Setting

To verify that the proposed method could learn different clothes manipulation in
the same environment setting, we applied the proposed method to folding clothes
tasks for shirts and trousers. The environment and the PGAIL-BiD settings of
this task are respectively shown in Tables 4.4b and 4.4. The folding action is
executed as shown in Fig. 4.11. The folding direction, grasping points, and the
folding path are automatically calculated according to the current clothes shape
and the selected fold line.

Results

Since this folding task is challenging to design a reward function, we evaluate the
learned policies through learned trajectories, task success rates, and CNN trained
feature extraction of the policies. PGAIL-BiD learned folding policies from a 390
sample of shirts collected in about 5 hours and 220 samples of trousers collected
in about 3 hours.

53

Initial state PGAIL-BiD PGAIL Behavior Cloning

Random

4/5 3/5 2/5

4/5 1/5 4/5

3/5 2/5 2/5

Table 4.3. Evaluation of success rate in flipping handkerchief task. Each method is evaluated
with 5 trials in each initial state.

54

MDP setting Description

State The input state is a 84 × 84 px RGB image
from realsense camera.

Action All fold line are defined according to the cur-
rent clothes shape (3 + 3 = 6 line). The fold
direction is fixed to fold towards the center.

Initial state Shirt or trousers is initialized to a state in
which it is spread by a human.

Demonstrations The sample is collected from humans for tra-
jectory of 5 episodes (shirt: 5 episodes ×3
steps = 15 samples, trousers: 5 episodes ×2
steps = 10). The target state is set as the
final state of the episode.

(a) Parameter setting of flipping handkerchief task

Parameter Meaning Value

η Parameters controlling the effect of smooth
policy update

0.7

σ Parameters controlling the effect of causal
entropy

0.03

M Number of episodes for one iteration 10

T Number of steps for one episode 3 (shirt) or 2 (trousers)

N Size of memory DG to store sample 800

J Iteration number of discriminator updates 10

K Iteration number of value network updates 20

(b) Parameter setting of PGAIL-BiD algorithm.

Table 4.4. Settings and learning parameters of folding Clothes task

55

Figure 4.11. Overview of folding action.

56

Initial state PGAIL-BiD Behavior Cloning

4/5 1/5

4/5 0/5

5/5 3/5

4/5 2/5

Table 4.5. Evaluation of success rate in folding clothes task. Each method is evaluated with 5
trials in each initial state. Success is defined as achieving the target state.

Fig. 4.12 shows the trajectories generated from the policies learned for two
clothes folding tasks. PGAIL-BiD learning policies have a high success rate for
both shirts and trousers, while the BC learning policies have a low success rate
due to imperfect demonstrations. Table 4.5 shows the results of evaluating the
success rate for each initial state. PGAIL-BiD policies have a higher success rate
at different initial states, indicating that these policies are more robust than the
BC policies.
Grad-CAM [45] visualizes several examples of high-level features learned by

PGAIL-BiD in Fig. 4.13. These heat maps where the red/blue colors indicate

57

(a) Shirt folding trajectory.

(b) Trousers folding trajectory.

Figure 4.12. The snapshot of the learned policy per step. Blue lines are the folding the picking
up, and green points are grasping points.

58

high/low attention of the agent indicate that our proposed method successfully
learned useful and meaningful features. PGAIL-BiD and BC policies are com-
pared with each other. PGAIL-BiD policies extract the details such as spreading
areas and edges of clothes, while BC policies extract the areas other than clothes.
This result indicates that PGAIL-BiD policies are robust to position, wrinkles,
and some creases.

4.4. Summary of Chapter 4

There are two contributions in this chapter. The algorithmic aspect is PGAIL-
BiD’s proposal, a new adversarial imitation learning framework with two discrimi-
nators; PGAIL-BiD learns imitation policies from rewards with a high estimate of
the target state. Thus, the influence of imperfect sample in demonstrations is re-
duced, and PGAIL-BiD policies achieve better than demonstration performance.
EDPN contains a constraint that maximizes the policy’s entropy with smooth pol-
icy updates, thus encouraging search while reducing policy over-learning. This
approach’s application contribution is that it learns the clothing manipulation
policy without any specific reward function design. The proposed method was
applied to a real environment consisting of a dual-armed robot NEXTAGE and
learned better performance cloth manipulation policies.

59

Figure 4.13. Visualization of extracted parts in images for action selection using Grad-CAM.
Heat map shows parts extracted when actions are selected.

60

5. Discussions

5.1. Related Works

5.1.1. RL with Smooth Policy Update

To improve the sample efficiency and learning stability with fewer samples in RL,
smooth policy update is exploited to limit the information that is lost during
learning [47]. The main idea is to introduce the Kullback-Leibler divergence
to limit the differences between the current and new policies into the reward
function. The related approaches include both value function-based, e.g., [23],
and policy search, e.g., relative entropy policy search [37] and guided policy search
[48]. In the robot control domain, the smooth policy update was applied to learn
hierarchical policies [49] and achieve sample efficiency and learning stability with
kernel trick in robot hand control with a 32-dimensional state space [32]. The
current combination of smooth policy update and DRL [50] focuses on learning
end-to-end motor policies represented by linear Gaussian controllers in continuous
action space. On the other hand, combining the value function based DRL with
smooth policy update has not been intensively studied.

5.1.2. GAIL with Improved Discriminator

In order to focus on a specific problem, many previous studies improve the dis-
criminator of GAIL. Methods focusing on reaching tasks adjust a reward for
target states. For example, [51] first learned a reward function from the target
state collected from a human and then learned a policy using the learned re-
ward. In the end, the policy is improved by an evaluated performance from a
human. [52] represented reinforcement learning and imitation learning integrally
with probabilistic graphical models and learns a policy from imitation rewards

61

and task-dependent achievement rewards. [53] accelerated the convergence of poli-
cies by updating the target state in the expert sample according to the learning
progress.

5.1.3. Imitation Learning

Imitation learning is divided into two categories, Behavior Cloning (BC) and In-
verse Reinforcement Learning (IRL) [54]. BC learns policies by directly regressing
expert data [55]. Other prior BC studies learn robust policies by collecting data
that add noise to expert policies [56, 57]. IRL has been challenging to apply to
large scale tasks [58, 59], but GAIL based on IRL has been successfully applied
to large scale tasks by updating policy and reward function like a GAN frame-
work [60,61]. BC and GAIL differ in robustness and learning costs. BC has fewer
interactions with the environment and lower learning costs. GAIL has a high
learning cost because it explores a large area from a massive number of interac-
tions. When compared in the aspect of robustness, GAIL is more robust than
BC.
The proposed method of the GAIL framework with two discriminators esti-

mates higher target state rewards than expert rewards. It is possible to learn
more policies than expert policies. In the handkerchief flipping task, PGAIL-BiD
policy can generate a different trajectory than the experts. The proposed method
learns other strategy policies than the experts, and the BC learns policies to keep
the expert trajectory.

5.2. Open Issues

5.2.1. Design of Action Space

In this research, the cloth manipulation environment employs high-level discrete
action space as a folding line. This action space facilitates learning complex tasks
from a small number of samples, but discrete action spaces need to be designed for
each task. On the other hand, low-level continuous action space can be applied
to various environments without action space design. In continuous policy with
value-based RL, previous studies have approximated continuous policies from the

62

value function. [62] updated a value function that maximizes the causal entropy
of a policy and learned continuous policy by implementing with Actor-Critic. [63]
extends softmax policy to continuous policy with Deep RBF networks.
One future work is to design compact and efficient action space for more com-

plicated deformable object manipulation tasks. In our current work, the action
space was set by all the combinations of picking and dropping points allocated on
the plane in a grid manner which is not compact or sufficient for more complex
tasks. Several previous works could be applied to improve the actions’ dexterity
like defining meaningful predefined patterns [64], and exploiting synergies [65].
Furthermore, cooperating motion trajectories between two or more robot arms
should be considered as actions for challenging tasks like wrapping clothes in [66].
It is also interesting to design an action space to efficiently manipulate the clothes
like human beings based on several related works: [67] detected the wrinkle con-
dition and operate a robot to extend necessary wrinkle for better folding per-
formance; [68] gripped the cloth edge to reduce the wrinkles caused during op-
eration; [69] directly folded the hem and sleeve of clothes based on a clothing
model.

5.2.2. Reduction of Learning Costs in Real Environments

In our robot experiments, initialization required the most time and labor: re-
turning a cloth to its initial state in every iteration. The automation of the
initialization enable to increase the number of sample, DRL learns complex pol-
icy from a large number of samples. Recent work suggests a potentially helpful
approach to alleviate this issue by simultaneously learning a rest policy as a
usual policy [70, 71]. Extending our methods by combining them with previous
work [70,71] is also interesting future work.
Previous studies with simulation have learned clothing manipulation policies

with DRL [20,72] and reduce learning costs in real environments. However, DRL
with cloth simulation has only been successful with simple shape clothes manipu-
lation. It is challenging to simulate complex shapes at high speed due to wrinkles,
friction, and the like. Recent clothing simulation research [73, 74] employs deep
learning to simulate clothing to accelerate the computation of complex shapes.
There is a possibility of learning real clothes manipulation policy using sim-to-real

63

technology [19–21] to close the gap between the simulation and the real world.

5.2.3. Conservative Reinforcement Learning

If DRL of real robot policies is unstable, sample efficiency is reduced due to
unnecessary exploration. Thus DRL is necessary to stabilize the learning of poli-
cies. Previous research [75, 76] uses an analytical approach to prevent unstable
learning. Although Conservative Policy Iteration [75] is challenging to apply to
complex simulation tasks, [77] applied it to DRL and learned policies that were
more stable and performed better than conventional methods in some atari game
tasks.

5.2.4. Application to Various Tasks

This research applied DRL to the clothing manipulation task folding and hand-
kerchief flipping. Although the tasks in this experiment could be performed by
roughly moving the arms without any equipment, dexterity and equipment are
essential for everyday tasks such as washing, cleaning, and cooking. In order to
achieve hand dexterity, a robotic hand with a high degree of finger freedom and
tactile sensors and control of the hand is needed. For example, when cutting food
in cooking, it is necessary to hold the food in different shapes with one hand while
grasping the knife and adjusting the force applied to the food. In the tidying up
task, the robot needs to grasp objects of various shapes and sizes. Previous stud-
ies exist that achieve dexterous hand finger movements [32,78] and dexterous arm
movements [79, 80], but few studies have implemented complex tasks with dex-
terous finger and arm movements. The author believes that human-level robots
will be realized with the proper utilization of these robotics and machine learning
technologies.

64

6. Conclusion

First, we presented two sample efficient DRL algorithms: DPN and Dueling DPN.
The contribution of DPN/Dueling DPN chapter is twofold. We proposed two
new deep reinforcement learning algorithms, Deep P-Network (DPN) and Duel-
ing Deep P-Network (DDPN). The core idea shared by them is to combine the
nature of smooth policy update in value function-based reinforcement learning
(Dynamic Policy Programming) with the capability of automatic feature extrac-
tion in deep neural networks to enhance the sample efficiency and the learning
stability process with fewer samples. To investigate our proposed methods’ per-
formance, we compared them with previous DRL methods in a simulated n DOF
manipulator reaching task. Furthermore, we applied them to two robotic cloth
manipulation tasks with a dual-arm robot, NEXTAGE: 1) flipping of a handker-
chief and 2) folding a t-shirt with a limited number of samples. We confirmed in
all the experiments that our method achieved more sample efficiency and stabi-
lized learning than the previous methods.
Second, we proposed PGAIL-BiD that is a GAIL framework with two discrim-

inators. When applying GAIL to real robot tasks, collecting complete expert
samples from a human is difficult. PGAIL-BiD estimates high rewards for tar-
get states with the target discriminator and improves learning policies’ reaching
performance when learning from incomplete expert samples. To stabilize adver-
sarial learning with two discriminators, PGAIL-BiD employs EDPN to consider
both smooth and causal entropy in policy updates. PGAIL-BiD was applied
to n DOF simulated manipulator reaching task and learned policies better than
expert samples. In real robot experiments, PGAIL-BiD learned two cloth ma-
nipulation tasks: 1) flipping of a handkerchief and 2) folding two types of clothes
from incomplete expert samples.
In summary, this thesis proposes two methods that reduce the cost of applying

65

DRL to a real robot task. By proposing sample-efficient DRL with smooth policy
update, we relaxed the learning cost on real robots. We applied it to cloth manip-
ulation, which is difficult to design in state space. We present PGAIL-BiD, GAIL
framework with two discriminators. PGAIL-BiD learn cloth manipulation pol-
icy without task-specific reward function design from incomplete expert samples
collected by a human.

66

A. Appendix: Model-Beased
Deep Reinforcement Learning
with Latent Discrete State
Action Space

In this chapter, we present Variationally Autoencoded Dynamic Policy Program-
ming (VAE-DPP), a framework for the action plan of cloth folding, as shown in
Fig. A.1. VAE-DPP employs Variationally Autoencoded Hidden Markov Deci-
sion Model (VAE-HMDM) to train the cloth folding model. VAE-HMDM learns
the latent space of the image with Variational Autoencoder (VAE) and learns the
latent space of dynamics with hidden Markov model (HMM) with action space.
Previous research indicates that a discrete set can represent the state-action space
at the cloth folding task [81], and we model the state-action space of latent dy-
namics with a discrete set. The proposed method employed Dynamic Policy
Programming (DPP) [23] to action planning and generated an action sequence.
In a real-world experiment, we applied VAE-DPP to a cloth folding task by a

dual-arm robot. We demonstrated that the proposed method train a cloth folding
model and plan trajectories to different target states.

67

? ?
Start Target

Planning sequence

Action Action Action

Left folding Upper folding

Figure A.1. Action planning of cloth folding task. The proposed method generates a state
action sequence from initial state and target state.

A.1. Proposed Method

A.1.1. Variationally Autoencoded Hidden Markov
Decision Model

Fig. A.2 shows a graphical model of VAE-HMDM, which learns the latent vari-
able a of the observation image x and the latent variable z of the dynamics. By
optimizing pψ(a|x) and qφ(x|a) simultaneously, latent variable a is learned to
decode the observation image x. In this model, a is assumed to be generated
from the dynamics latent variable z, and the latent variable z′ at the next time
transitions with probability distribution pθ(z′|z,u) that depends on the previous
latent variable z and action u. Even though image transitions are partially ob-
servable Markov decision process, the transitions of the dynamics latent variable
z are Markov decision processes.
The model learns the parameter ψ of encoder pψ(a|x), the parameter φ of

decoder qφ(x|a) and the parameter of latent dynamics θ. The parameters ψ, φ, θ
are optimized to maximize the following lower bound.

68

Figure A.2. The graphical model of VAE-HMDM

F(ψ, φ, θ) = Eqφ(a|x)

[
log pψ(x|a)

qφ(a|x)

+Epθ(z|a,u)

[
log pθ(a|z)pθ(z|u)

pθ(z|a,u)

]]
(A.1)

{ã(i), z̃(i)}Ii=1 is sampled from the VAE decoder qφ(a|x) and the latent dynamics
pθ(z|a,u). Therefore, lower bound can be estimated by the Monte Carlo integral
as follows:

F̂(ψ, φ, θ) = 1
I

∑
i

{
log pψ(x|ã(i)) + log pθ(ã(i), z̃(i)|u)

− log qφ(ã(i)|x)− log pθ(z̃(i)|ã(i),u)
}

(A.2)

69

Figure A.3. Decoding image from latent variable z of VAE-HMDM

The parameter ψ,φ,θ maximizing the lower bounds are optimized with gradient-
based numerical optimization.

A.1.2. Action Planing with Dynamic Policy Programming

The proposed method plan action on latent space z of VAE-HMDM. A policy
π(u|z) generates sequence of [z, u] reaching target latent variable z. The policy is
learned with Dynamic Policy Programming (DPP) [23]. By decoding the sequence
of generated latent variable z to images, it is able to confirm the planned transition
image sequence. DPP learns a policy π(u|z) to maximize total reward through
interactions with dynamics p(z′|z,u).

A.2. Real Robot Experiment

We applied VAE-DPP to the NEXTAGE robot, a 15-DOF humanoid robot with
sufficient manufacturing precision, to learn folding cloth tasks. In the experiment,
square cloths with different colors on the reverse side were employed, and the
initial state was set with green on the upper side. The state is defined as 32×32×3
px RGB images, folding action is defined as up-folding, right-folding and left-
folding. One sequence was two folded actions, and the model was trained from
200 sequences sampled from the random policy. The dimension of the latent
variable z is set to 10. For the reward function, the following equation was
employed to learn the policy and plan the action.

reward(z) =

1 (z = ztarget)
0 (otherwise)

(A.3)

Fig. A.3 show decoding images from latent variable z of VAE-HMDM. De-

70

coding images indicate that latent variable z has acquired a variety of folding
states.
Fig. A.4 show sequences planed with VAE-DPP. The upper left corner numbers

represent the steps, and the image in the upper right corner is a decoding image
of the latent variable z generated during the action plan. The action plan in Fig.
A.4 generates a sequence aimed at two different target latent variables ztarget, and
the results indicate that a suitable action sequence for the target state has been
generated.

A.3. Summary of VAE-DPP

In this chapter, the VAE-DPP is proposed as a framework for a cloth folding
action plan. We confirmed that VAE-DPP could plan the operation of cloth
folding through real experiments.
The future main task is to investigate whether it is possible to plan the folding

action for shirts, trousers, and other clothes.

71

Target

Left folding Upper folding

Upper foldingRight folding

Target

Target

Upper folding Left folding

Initial state

Initial state

Initial state

0

0

0

1

1

1

2

2

2

Figure A.4. Planning and execution of folding cloth manipulation with VAE-DPP

72

Acknowledgements

In my research days at Nara Institute of Science and Technology (NAIST), I’ve
been blessed with many people, environments, and sometimes good fortune. I
was able to experience a lot of precious experiences, thanks to the support of
many people.
First, I would like to express my appreciation to Associate Professor Takamitsu

Matsubara. He taught me various things such as the knowledge, techniques, and
approaches required for research and gave me advice on my research activities
and career path. I am also profoundly grateful for the opportunity to research a
theme that I hope to explore. I really appreciate Professor Kenji Sugimoto. He
has supported me as my supervisor since I was a master student. I also want
to thank you for your good comments and suggestions. I also thank Professor
Tsukasa Ogasawara to review this thesis. His comments on the practical and
robotic aspects gave me an excellent opportunity to reconfirm my research.
I would like to thank all members of Robot Learning Laboratory and Intelligent

System Control Laboratory. I luckily got a lot of opportunities to discuss and
talk with them. Particular thank you to Associate Professor Yunduan Cui. He
was a good example and a good co-author for me. Finally, I want to thank you
for acknowledging my family and friends for their supports.

73

References

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press Cambridge, 1998.

[2] A. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger, and
E. Liang, “Autonomous inverted helicopter flight via reinforcement learning,”
in International Symposium on Experimental Robotics (ISER), pp. 363–372,
2006.

[3] T. Hester, M. Quinlan, and P. Stone, “RTMBA: A real-time model-based
reinforcement learning architecture for robot control,” in IEEE International
Conference on Robotics and Automation (ICRA), pp. 85–90, 2012.

[4] E. Theodorou, J. Buchli, and S. Schaal, “Reinforcement learning of motor
skills in high dimensions: A path integral approach,” in IEEE International
Conference on Robotics and Automation (ICRA), pp. 2397–2403, 2010.

[5] G. Endo, J. Morimoto, T. Matsubara, J. Nakanishi, and G. Cheng, “Learning
CPG-based biped locomotion with a policy gradient method: Application to
a humanoid robot,” The International Journal of Robotics Research, vol. 27,
no. 2, pp. 213–228, 2008.

[6] S. Bitzer, M. Howard, and S. Vijayakumar, “Using dimensionality reduction
to exploit constraints in reinforcement learning,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 3219–3225, 2010.

[7] H. Durrant-Whyte, N. Roy, and P. Abbeel, “Learning to control a low-cost
manipulator using data-efficient reinforcement learning,” in Robotics: Sci-
ence and Systems (RSS), pp. 57–64, 2012.

74

[8] K. Yamazaki, R. Ueda, S. Nozawa, M. Kojima, K. Okada, K. Matsumoto,
M. Ishikawa, I. Shimoyama, and M. Inaba, “Home-assistant robot for an
aging society,” Proceedings of the IEEE, vol. 100, no. 8, pp. 2429–2441, 2012.

[9] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT Press, 2016.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in Neural Information Pro-
cessing Systems (NIPS), pp. 1097–1105, 2012.

[11] V. Mnih, Machine learning for aerial image labeling. PhD thesis, University
of Toronto, 2013.

[12] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 1–9, June 2015.

[13] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-trained
deep neural networks for large-vocabulary speech recognition,” IEEE Trans-
actions on Audio Speech and Language Processing, vol. 20, no. 1, pp. 30–42,
2012.

[14] A. Graves, A. Mohamed, and G. Hinton, “Speech recognition with deep
recurrent neural networks,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 6645–6649, 2013.

[15] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level
control through deep reinforcement learning,” Nature, vol. 518, no. 7540,
pp. 529–533, 2015.

[16] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust re-
gion policy optimization,” in International Conference on Machine Learning
(ICML), vol. 37, pp. 1889–1897, 2015.

[17] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning
hand-eye coordination for robotic grasping with deep learning and large-scale

75

data collection,” The International Journal of Robotics Research, vol. 37,
no. 4-5, pp. 421–436, 2018.

[18] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang, D. Quillen,
E. Holly, M. Kalakrishnan, V. Vanhoucke, and S. Levine, “Scalable deep
reinforcement learning for vision-based robotic manipulation,” in The Con-
ference on Robot Learning (CoRL), vol. 87, pp. 651–673, 2018.

[19] A. A. Rusu, M. Vecerik, T. Rothörl, N. Heess, R. Pascanu, and R. Hadsell,
“Sim-to-real robot learning from pixels with progressive nets,” in Conference
on Robot Learning (CoRL), pp. 262–270, 2017.

[20] J. Matas, S. James, and A. J. Davison, “Sim-to-real reinforcement learn-
ing for deformable object manipulation,” in Conference on Robot Learning
(CoRL), vol. 87, pp. 734–743, 2018.

[21] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. Ratliff,
and D. Fox, “Closing the sim-to-real loop: Adapting simulation randomiza-
tion with real world experience,” arXiv preprint arXiv:1810.05687, 2018.

[22] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in Advances
in Neural Information Processing Systems (NIPS), pp. 4565–4573, 2016.

[23] M. G. Azar, V. Gómez, and H. J. Kappen, “Dynamic policy programming,”
Journal of Machine Learning Research, vol. 13, no. 1, pp. 3207–3245, 2012.

[24] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and N. De Fre-
itas, “Dueling network architectures for deep reinforcement learning,” in In-
ternational Conference on Machine Learning (ICML), pp. 1995–2003, 2016.

[25] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A
survey,” International Journal of Robotics Research, vol. 32, no. 11, pp. 1238–
1274, 2013.

[26] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4,
pp. 279–292, 1992.

76

[27] R. S. Sutton, “Generalization in reinforcement learning: Successful exam-
ples using sparse coarse coding,” Advances in Neural Information Processing
Systems (NIPS), pp. 1038–1044, 1996.

[28] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,” Journal of
Machine Learning Research, vol. 4, no. 44, pp. 1107–1149, 2003.

[29] M. G. Azar, V. Gómez, and B. Kappen, “Dynamic policy programming
with function approximation,” in International Conference on Artificial In-
telligence and Statistics (AISTATS), pp. 119–127, 2011.

[30] E. Todorov, “Linearly-solvable markov decision problems,” in Advances in
Neural Information Processing Systems (NIPS), pp. 1369–1376, 2006.

[31] Y. Cui, T. Matsubara, and K. Sugimoto, “Pneumatic artificial muscle-driven
robot control using local update reinforcement learning,” Advanced Robotics,
pp. 1–16, 2017.

[32] Y. Cui, T. Matsubara, and K. Sugimoto, “Kernel dynamic policy program-
ming: Applicable reinforcement learning to robot systems with high dimen-
sional states,” Neural networks, vol. 94, pp. 13–23, 2017.

[33] A. Nichol, V. Pfau, C. Hesse, O. Klimov, and J. Schulman, “Gotta
Learn Fast: A New Benchmark for Generalization in RL,” arXiv preprint
arXiv:1804.03720, 2018.

[34] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
Policy Optimization Algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[35] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement learning
with deep energy-based policies,” in International Conference on Machine
Learning (ICML), pp. 1352–1361, 2017.

[36] Y. Tsurumine, Y. Cui, E. Uchibe, and T. Matsubara, “Deep reinforcement
learning with smooth policy update: Application to robotic cloth manipula-
tion,” Robotics and Autonomous Systems, vol. 112, pp. 72–83, 2019.

77

[37] J. Peters, K. Mülling, and Y. Altun, “Relative entropy policy search.,” in
Association of the Advancement of Artificial Intelligence (AAAI), pp. 1607–
1612, 2010.

[38] S. Levine, N. Wagoner, and P. Abbeel, “Learning contact-rich manipula-
tion skills with guided policy search,” in IEEE Conference on Robotics and
Automation (ICRA), 2015.

[39] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot,
A. Sendonaris, G. Dulac-Arnold, I. Osband, J. Agapiou, J. Z. Leibo, and
A. Gruslys, “Learning from demonstrations for real world reinforcement
learning,” Computing Research Repository (CoRR), vol. abs/1704.03732,
2017.

[40] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess,
T. Rothörl, T. Lampe, and M. A. Riedmiller, “Leveraging demonstrations
for deep reinforcement learning on robotics problems with sparse rewards,”
Computing Research Repository (CoRR), abs/1707.08817, 2017.

[41] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

[42] F. Chollet et al., “Keras.” https://github.com/keras-team/keras, 2017.

[43] D. Tanaka, S. Arnold, and K. Yamazaki, “EMD Net: An encode-manipulate-
decode network for cloth manipulation,” IEEE Robotics and Automation
Letters, vol. 3, no. 3, pp. 1771–1778, 2018.

[44] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Y. Ng, “ROS: an open-source robot operating system,” in ICRA
workshop on open source software, p. 5, 2009.

[45] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra,
“Grad-cam: Visual explanations from deep networks via gradient-based lo-
calization,” in IEEE International Conference on Computer Vision (ICCV),
pp. 618–626, 2018.

78

https://github.com/keras-team/keras

[46] T. Kozuno, E. Uchibe, and K. Doya, “Theoretical analysis of efficiency and
robustness of softmax and gap-increasing operators in reinforcement learn-
ing,” in International Conference on Artificial Intelligence and Statistics
(AISTATS), vol. 89, pp. 2995–3003, 2019.

[47] H. Van Hoof, G. Neumann, and J. Peters, “Non-parametric policy search
with limited information loss,” Journal of Machine Learning Research,
vol. 18, no. 1, pp. 2472–2517, 2017.

[48] S. Levine and V. Koltun, “Guided policy search,” in International Conference
on Machine Learning (ICML), pp. 1–9, 2013.

[49] C. Daniel, G. Neumann, and J. Peters, “Hierarchical relative entropy policy
search,” in International Conference on Artificial Intelligence and Statistics
(AISTATS), pp. 273–281, 2012.

[50] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep
visuomotor policies,” Journal of Machine Learning Research, vol. 17, no. 1,
pp. 1334–1373, 2016.

[51] A. Singh, L. Yang, K. Hartikainen, C. Finn, and S. Levine, “End-to-end
robotic reinforcement learning without reward engineering,” in Robotics: Sci-
ence and Systems, 2020.

[52] A. Kinose and T. Taniguchi, “Integration of imitation learning using gail
and reinforcement learning using task-achievement rewards via probabilistic
graphical model,” Advanced Robotics, 2020.

[53] Y. Ding, C. Florensa, P. Abbeel, and M. Phielipp, “Goal-conditioned im-
itation learning,” in Advances in Neural Information Processing Systems
(NIPS), pp. 15324–15335, 2019.

[54] T. Osa, J. Pajarinen, G. Neumann, J. Bagnell, P. Abbeel, and J. Peters, “An
algorithmic perspective on imitation learning,” Foundations and Trends in
Robotics, vol. 7, pp. 1–179, Mar. 2018.

79

[55] D. Pomerleau, “Alvinn: An autonomous land vehicle in a neural network,” in
Advances in Neural Information Processing Systems (NIPS), pp. 305 –313,
Morgan Kaufmann, December 1989.

[56] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning and
structured prediction to no-regret online learning,” vol. 15 of Proceedings of
Machine Learning Research, pp. 627–635, 2011.

[57] M. Laskey, J. Lee, R. Fox, A. D. Dragan, and K. Goldberg, “DART: noise
injection for robust imitation learning,” in Conference on Robot Learning
(CoRL), vol. 78, pp. 143–156, 2017.

[58] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum en-
tropy inverse reinforcement learning.,” in Association of the Advancement of
Artificial Intelligence (AAAI), pp. 1433–1438, 2008.

[59] A. Boularias, J. Kober, and J. Peters, “Relative entropy inverse reinforce-
ment learning,” in International Conference on Artificial Intelligence and
Statistics (AISTATS), vol. 15, pp. 182–189, 2011.

[60] C. Finn, S. Levine, and P. Abbeel, “Guided cost learning: Deep inverse op-
timal control via policy optimization,” in International Conference on Ma-
chine Learning (ICML), vol. 48, pp. 49–58, 2016.

[61] E. Uchibe, “Deep inverse reinforcement learning by logistic regression,”
in International Conference on Neural Information Processing (ICONIP),
vol. 9947, pp. 23–31, 2016.

[62] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic ac-
tor,” in The International Conference on Machine Learning (ICML), vol. 80,
pp. 1861–1870, 2018.

[63] K. Asadi, R. E. Parr, G. D. Konidaris, and M. L. Littman, “Deep rbf value
functions for continuous control,” arXiv preprint arXiv:2002.01883, 2020.

80

[64] T. Jung and D. Polani, “Kernelizing lspe(λ),” in 2007 IEEE Interna-
tional Symposium on Approximate Dynamic Programming and Reinforce-
ment Learning, pp. 338–345, 2007.

[65] C. Alessandro, I. Delis, F. Nori, S. Panzeri, and B. Berret, “Muscle synergies
in neuroscience and robotics: from input-space to task-space perspectives,”
Frontiers in Computational Neuroscience, vol. 7, p. 43, 2013.

[66] N. Hayashi, T. Suehiro, and S. Kudoh, “Planning method for a wrapping-
with-fabric task using regrasping,” in IEEE International Conference on
Robotics and Automation (ICRA), pp. 1285–1290, 2017.

[67] L. Sun, G. Aragon-Camarasa, S. Rogers, and J. P. Siebert, “Accurate gar-
ment surface analysis using an active stereo robot head with application
to dual-arm flattening,” in IEEE International Conference on Robotics and
Automation (ICRA), pp. 185–192, 2015.

[68] H. Yuba, S. Arnold, and K. Yamazaki, “Unfolding of a rectangular cloth
from unarranged starting shapes by a dual-armed robot with a mechanism
for managing recognition error and uncertainty,” Advanced Robotics, vol. 31,
no. 10, pp. 544–556, 2017.

[69] S. Miller, J. Van-Den-Berg, M. Fritz, T. Darrell, K. Goldberg, and P. Abbeel,
“A geometric approach to robotic laundry folding,” The International Jour-
nal of Robotics Research, vol. 31, no. 2, pp. 249–267, 2012.

[70] B. Eysenbach, S. Gu, J. Ibarz, and S. Levine, “Leave no trace: Learning
to reset for safe and autonomous reinforcement learning,” in International
Conference on Learning Representations (ICLR), 2018.

[71] H. Zhu, J. Yu, A. Gupta, D. Shah, K. Hartikainen, A. Singh, V. Kumar, and
S. Levine, “The ingredients of real world robotic reinforcement learning,” in
International Conference on Learning Representations (ICLR), 2020.

[72] R. Jangir, G. Alenya, and C. Torras, “Dynamic cloth manipulation with
deep reinforcement learning,” arXiv preprint arXiv:1910.14475, 2019.

81

[73] Z. Lähner, D. Cremers, and T. Tung, “Deepwrinkles: Accurate and realistic
clothing modeling,” in European Conference on Computer Vision (ECCV),
vol. 11208, pp. 698–715, 2018.

[74] D. Holden, B. C. Duong, S. Datta, and D. Nowrouzezahrai, “Subspace neu-
ral physics: fast data-driven interactive simulation,” in The Annual ACM
Symposium on Theory of Computing (STOC), pp. 6:1–6:12, 2019.

[75] S. Kakade and J. Langford, “Approximately optimal approximate reinforce-
ment learning,” in International Conference on Machine Learning (ICML),
pp. 267–274, 2002.

[76] L. Zhu and T. Matsubara, “Ensuring monotonic policy improvement in
entropy-regularized value-based reinforcement learning,” arXiv preprint
arXiv:2008.10806, 2020.

[77] N. Vieillard, O. Pietquin, and M. Geist, “Deep conservative policy itera-
tion,” in Association of the Advancement of Artificial Intelligence (AAAI),
pp. 6070–6077, AAAI Press, 2020.

[78] M. Andrychowicz, B. Baker, M. Chociej, R. Józefowicz, B. McGrew, J. W.
Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray, J. Schneider, S. Sidor,
J. Tobin, P. Welinder, L. Weng, and W. Zaremba, “Learning dexterous
in-hand manipulation,” International Journal of Robotics Research (IJRR),
vol. 39, no. 1, 2020.

[79] T. Tamei, T. Matsubara, A. Rai, and T. Shibata, “Reinforcement learning
of clothing assistance with a dual-arm robot,” in IEEE-RAS International
Conference on Humanoid Robots, pp. 733–738, 2011.

[80] T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg, and
P. Abbeel, “Deep imitation learning for complex manipulation tasks from
virtual reality teleoperation,” in IEEE International Conference on Robotics
and Automation (ICRA), pp. 1–8, 2018.

[81] A. Doumanoglou, J. Stria, G. Peleka, I. Mariolis, V. Petrik, A. Kargakos,
L. Wagner, V. Hlaváč, T.-K. Kim, and S. Malassiotis, “Folding clothes au-

82

tonomously: A complete pipeline,” IEEE Transactions on Robotics, vol. 32,
no. 6, pp. 1461–1478, 2016.

83

Publication List

Journal

1. Yoshihisa Tsurumine, Yunduan Cui, Eiji Uchibe, and Takamitsu Matsub-
ara,“Deep reinforcement learning with smooth policy update: Application
to robotic cloth manipulation,” Robotics and Autonomous Systems, vol.
112, pp. 72-83, 2019.

2. Yoshihisa Tsurumine, and Takamitsu Matsubara, “Double Discriminator
P-Generative Adversarial Imitation Learning with Human Demonstration
for Robotic Cloth Manipulation,” Robotics and Autonomous Systems, In
preparation.

International Conference

1. Junki Matsuoka, Yoshihisa Tsurumine, Yuhwan Kwon, Takamitsu Matsub-
ara, Takeshi Shimmura, and Sadao Kawamura, "Learning Food-arrangement
Policies from Raw Images with Generative Adversarial Imitation Learning,"
IEEE International Conference on Ubiquitous Robots (UR), pp. 93-98,
2020.

2. Yuhwan Kwon, Takumi Kaneko, Yoshihisa Tsurumine, Hikaru Sasaki, Kimiko
Motonaka, Seiji Miyoshi, and Takamitsu Matsubara, "Combining Model
Predictive Path Integral with Kalman Variational Auto-Encoder for Robot
Control from Raw Images," IEEE/SICE International Symposium on Sys-
tem Integration (SII), pp. 271-276, 2020.

3. Yoshihisa Tsurumine, Yunduan Cui, Kimitoshi Yamazaki, and Takamitsu
Matsubara, "Generative Adversarial Imitation Learning with Deep P-Network
for Robotic Cloth Manipulation," IEEE-RAS International Conference on
Humanoid Robots (Humanoids), pp.290—296, 2019.

4. Takumi Kaneko, Yoshihisa Tsurumine, James Poon, Yukio Onuki, Yingda
Dai, Kaoru Kawabata, and Takamitsu Matsubara, "Learning Deep Dynam-
ical Models of a Waste Incineration Plant from In-furnace Images and Pro-

84

cess Data," IEEE International Conference on Automation Science and En-
gineering (CASE), pp. 873-878, 2019.

5. Yoshihisa Tsurumine, Yunduan Cui, Eiji Uchibe, and Takamitsu Matsub-
ara, “Deep Dynamic Policy Programming for Robot Control with Raw
Images,” IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 1545-1550, 2017.

Domestic Conference

1. 鶴峯義久, 崔允端, 山崎公俊, 松原崇充, ”変分オートエンコーデッド動
的方策計画による布折り畳み動作の学習”, 日本ロボット学会学術講演
会 (RSJ), 1A2-07, 2019.

2. 鶴峯義久, 崔允端, 山崎公俊, 松原崇充, ”最大エントロピー動的方策計
画による柔軟物操作の模倣学習”, 日本機械学会ロボティクス・メカト
ロニクス講演会 (ROBOMECH), 1P2-A11, 2019.

3. 鶴峯義久, 崔允端, 山崎公俊, 松原崇充, ”変分オートエンコーデッドカ
ルバックライブラー制御による物理制約を考慮したタスク達成に導く

画像系列の合成”, 日本ロボット学会学術講演会 (RSJ), 2E1-03, 2018.

4. 鶴峯義久, 崔允端, 内部英治, 松原崇充, “生画像を入力とするサンプル
効率の良い深層強化学習と双腕ロボットによる布操作への応用”, 日本
ロボット学会学術講演会 (RSJ), 3I3-01, 2017.

5. 鶴峯義久, 崔允端, 松原崇充, 内部英治, 杉本謙二, “動的方策計画に基
づく深層強化学習”, 計測自動制御学会制御部門マルチシンポジウム
(MSCS), PS-16, 2017.

Feature Column

1. 松原崇充, 鶴峯義久, "方策を滑らかに更新する深層強化学習と双腕ロボ
ットによる布操作タスクへの適用", 人工知能学会誌「人工知能」，Vol.
35, No. 1, pp. 47–53, 2020.

85

2. 松原崇充, 鶴峯義久, "動的方策計画法を用いた敵対的模倣学習とその応
用", 日本ロボット学会誌「ロボ學」，Vol. 36, No. 6, pp. 5–8, 2020.

86

	List of Figures
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Contribution

	2 Preliminaries
	2.1 Reinforcement Learning
	2.2 Dynamic Policy Programming
	2.3 Deep Q-Network
	2.4 Generative Adversarial Imitation Learning

	3 Sample Efficient Deep Reinforcement Learning with Smooth Policy Update
	3.1 Proposed Method
	3.1.1 Approximation of Action Preference Function by DNNs
	3.1.2 Dueling Network Architecture for DPN
	3.1.3 Prior Policy Initialization of DPN/Dueling DPN

	3.2 Simulation Results
	3.2.1 Simulation Setting
	3.2.2 Learning Results
	3.2.3 Effect of Parameter
ext
ext in DPN and Dueling DPN
	3.2.4 Bellman Error in DPN

	3.3 Real Robot Experiment
	3.3.1 Flipping a Handkerchief
	Setting
	Results

	3.3.2 Folding a T-shirt
	Setting
	Results

	3.4 Summary of Chapter 3

	4 Generative Adversarial Imitation Learning with Human Demonstration and Target State Label
	4.1 Proposed Method
	4.1.1 Structure of PGAIL-BiD
	4.1.2 Generator Optimization
	4.1.3 Discriminator Optimization
	4.1.4 Summary

	4.2 Simulation Results
	4.2.1 Simulation Setting
	4.2.2 Learning from Imperfect Demonstrations
	4.2.3 Comparison of PGAIL-BiD and PGAIL with Target Discriminator
	4.2.4 Visualization of Estimated Reward Function

	4.3 Real Robot Experiment
	4.3.1 Flipping a Handkerchief
	Setting
	Results
	Evaluation of Learned Policy's Robustness

	4.3.2 Folding Clothes
	Setting
	Results

	4.4 Summary of Chapter 4

	5 Discussions
	5.1 Related Works
	5.1.1 RL with Smooth Policy Update
	5.1.2 GAIL with Improved Discriminator
	5.1.3 Imitation Learning

	5.2 Open Issues
	5.2.1 Design of Action Space
	5.2.2 Reduction of Learning Costs in Real Environments
	5.2.3 Conservative Reinforcement Learning
	5.2.4 Application to Various Tasks

	6 Conclusion
	A Appendix: Model-Beased Deep Reinforcement Learning with Latent Discrete State Action Space
	A.1 Proposed Method
	A.1.1 Variationally Autoencoded Hidden Markov Decision Model
	A.1.2 Action Planing with Dynamic Policy Programming

	A.2 Real Robot Experiment
	A.3 Summary of VAE-DPP

	Acknowledgements
	References
	Publication List

