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Deep Reinforcement Learning
with Smooth Policy Update
for Robotic Cloth Manipulation*

Yoshihisa Tsurumine

Abstract

Deep Reinforcement Learning (DRL), which can learn complex policies with
high-dimensional observations as inputs, e.g., images, has been successfully ap-
plied to various tasks. Thus it may be suitable to use them for robots to learn
and perform daily activities like washing and folding clothes, cooking, and clean-
ing. However, there are only a few studies that have applied DRL to real robot
environments. In this thesis, our objective is to apply DRL to cloth manipula-
tion tasks that are part of daily human tasks. To this end, we consider two main
difficulties as follows. (1) generating a massive number of samples in a real robot
system is arduous because of the high sampling cost, and (2) learning environ-
ments require a reward function to evaluate the tasks; however, designing rewards
for cloth with flexible shapes is challenging.

The approach for the first difficulty is to apply sample efficient DRL to real
robotic cloth manipulation tasks. Previous value function-based DRL stabilizes
the value function’s approximation with Deep Neural Networks (DNN) by learn-
ing from many samples. In this thesis, we employ a smooth policy update to
enable stable learning from a small number of samples. We propose two sample
efficient DRL algorithms: Deep P-Network (DPN) and Dueling Deep P-Network
(Dueling DPN). Proposed methods are value function-based DRL with smooth
policy update and employ the Kullback-Leibler divergence to limit the over pol-
icy update. Dueling DPN has a DNN structure suitable for approximating value

functions and improves sample efficiency in tasks with large action spaces.

*Doctor’s Thesis, Department of Information Science, Graduate School of Information Science
and Technology, Nara Institute of Science and Technology, December 15, 2020.



The approach for the second difficulty is to learn a cloth manipulation pol-
icy without explicit reward function design. This thesis explores an approach of
Generative Adversarial Imitation Learning (GAIL) for robotic cloth manipulation
tasks, which allows an agent to learn near-optimal behaviors from expert demon-
stration and self explorations without explicit reward function design. However,
the performance in real robot environments may be insufficient because it is
difficult for humans to collect appropriate expert samples using a robot’s state-
action space. In this thesis, we focus on target state labels that can be adequately
presented by humans. GAIL with target state labels improves the performance
of learning policies by estimating higher target state rewards. We propose P-
Generative Adversarial Imitation Learning with Bi-Discriminator (PGAIL-BiD),
which learns a policy with two discriminators in reward function and target state.
PGAIL-BiD employs DPN to policy updates to enable stable learning from com-
plex reward functions associated with the two discriminators.

Proposed methods are first investigated by a robot-arm reaching task in the
simulation and compared to previous performance and sample efficiency methods.
In a real robot experiment, we applied the proposed methods in two real robotic
cloth manipulation tasks: 1) flipping a handkerchief and 2) folding clothes. In
the handkerchief flipping task, proposed methods are compared with conventional
methods using a human-designed reward function. We investigate the task success

rate and learned feature extraction in the folding clothes task.
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Deep Reinforcement Learning, Generative Adversarial Imitation Learning, Robotic
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1. Introduction

1.1. Background

With the capability of learning optimal policies by interacting with an unknown
environment, Reinforcement Learning (RL) [1] has been applied to a broad range
of platforms in robot control, such as an autonomous helicopter/vehicle |2, 3],
a robot dog [4], and humanoid robots [5-7]. Most of the RL algorithms in the
above studies require either 1) direct access to state variables or 2) well-designed
hand-engineered features extracted from sensory inputs. However, they become
difficult in general when considering more complex and practical tasks/situations.
For example, in household robots, such as humans’ daily activities as washing and
folding clothes, cooking and cleaning are desirable to be learned and performed
by RL, but it is not easy to achieve either 1) or 2) (e.g., [8]).

The recent advance of Deep Neural Networks (DNN) [9] enables automatic ex-
traction of high-level features to outperform traditional hand-engineered features
extracted from high-dimensional observations as input like raw images [10-12]
and audio signals [13,14]. Deep Reinforcement Learning (DRL), e.g., Deep Q-
Network (DQN) [15] and Trust Region Policy Optimization (TRPO) [16], have
been proposed by exploiting such DNN capabilities for automatic feature ex-
traction in RL. By automatically abstracting good high-level features from raw
images, DQN can learn a complex policy with human-level performances on vari-
ous Atari video games. Therefore, DRL may be suitable to apply them for robots
to learn and perform daily activities like washing and folding clothes, cooking,
and cleaning since such tasks are difficult for non-DRL methods that often re-
quire either 1) direct access to state variables or 2) well-designed hand-engineered

features extracted from sensory inputs.
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Figure 1.1. Overview of proposed sample efficient DRL.

1.2. Motivation

Even though real-world environments and simulation environments are signifi-
cantly different, applying DRL to a real robotic task is still challenging. This
thesis focuses on two problems in a real-world environment: (1) sample efficiency
of a real robot, (2) design a reward function for each task that evaluates the
selected action. In problem (1), a real robot collects samples by actual robot
actions. Thus collecting a huge sample is not feasible. Previous DRL requires a
huge sample to be collected using simulation, then applying DRL to a real-world
task is difficult. Problem (2) is occurred due to differences in the methods of ob-
taining the state variables. DRL learns image input policies that do not require
state space design, e.g., the object’s position and shape. On the other hand,
although the state space of the reward function requires design for each task,
the reward function design is easier in simulation because the state variables can
be obtained directly. However, in a real-world environment, we need to design
a task-specific feature extractor to obtain the target state variable. Designing
a complex reward function for each task is costly, and the performance of the
learning policy depends strongly on the reward function.

In sample efficiency in real robot tasks, previous studies have employed a large
sample collection approach. For example, multiple robots sample data in parallel
to improve efficiency [17,18]. This approach can be applied to various methods
but requires the preparation, management, and execution of multiple robots [19-

21]. Other approaches have employed simulations to learn policies that can be
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Figure 1.2. Conventional and proposed reward function design.

applied to real-world environments [19-21]. This simulation approach allows for
the collection of huge samples but can only apply to simulatable tasks.

As a solution to reward function design, we focus on a Generative Adversar-
ial Imitation Learning framework (GAIL) [22], which allows an agent to learn
near-optimal behaviors from expert demonstration and self explorations without
explicit reward function design. When applying GAIL to a real robot task, hu-
mans use the robot’s action space to collect demonstrations. However, collecting
perfect expert samples is difficult due to the difference in humans and robots’
state-action spaces. Therefore, imperfect expert samples reduce the performance
of the learning policy. The utilization of the target state labels prevents the per-
formance decline, but adversarial learning is unstable due to complex learning of

the reward function. This thesis proposes sample-efficient DRL and GAIL with



target state label, based on value function-based RL with smooth policy updates
that asymptotic convergence nature to the optimal policy.

This thesis’s motivation is to reduce the cost of applying DRL to a real robot
task by solving the above two problems as shown in Fig. 1.1 and Fig. 1.2. The
solution to both problems is DRL with smooth policy updates. Fig. 1.1 shows
that sample efficiency can be improved from a small number of samples with
smooth policy updates. The conventional reward function design needs to be
designed by a human for each task, as shown in Fig. 1.2a. The proposed method
uses incomplete demonstrations and target state labels as shown in Fig. 1.2b to
prevent performance decline without designing a task-dependent reward function.
We use smooth policy updating to stabilize learning from complex reward values
with expert samples and target state labels. We propose sample-efficient DRL
and GAIL with target state labels based on value function-based RL with smooth
policy updates that can learn globally optimal policies. We show experimentally

that the proposed method improves sample efficiency and training stability.

1.3. Contribution

We first present Deep P-Network (DPN) and Dueling Deep P-Network (Dueling
DPN) as novel deep reinforcement learning based on Dynamic Policy Program-
ming (DPP) [23]. It automatically abstracts the raw images’ features by ex-
ploiting the nature of smooth policy update by introducing the Kullback-Leibler
divergence between current and new policies as a regularization term into the
reward function for better sample efficiency. An extension of DPN with a partic-
ularly suitable network structure of DNN, Dueling DPN, is proposed for better
generalization capability inspired by the dueling network structure for DQN [24].
Next, we propose P-Generative Adversarial Imitation Learning with Bi-Discriminator
(PGAIL-BiD), a GAIL framework with an expert discriminator and a target dis-
criminator. PGAIL-BiD estimates high rewards for target states with the target
discriminator and improves learning policies’ reaching performance when learning
from imperfect expert samples. The reward function with two discriminators in
training destabilizes adversarial learning. Therefore, PGAIL-BiD employs a mod-
ified value-function based DRL, Entropy maximizing Deep P-Network (EDPN),



that can consider both the smoothness and causal entropy in policy update.

To investigate the performance of learned policies and learned reward functions
in several conditions, proposed methods are applied to a n DOF simulated ma-
nipulator reaching task. In a real-world experiment, proposed methods learned
a clothing manipulation task, which is a daily task and challenging to design
a reward function. In these tasks, dual-arm humanoid robot NEXTAGE exe-
cutes manipulation actions, and camera images observe cloth states. We apply
proposed methods to two real robot cloth manipulation tasks: (1) handkerchief
flipping and (2) clothes folding. The handkerchief flipping task with a simple re-
ward function design evaluated the performance of learning policies. The clothes
folding task confirmed its effectiveness in a more realistic task.

In the appendix, we also explain Variationally Autoencoded Dynamic Policy
Programming (VAE-DPP), a model-based DRL for discrete state-action space.
VAE-DPP learns a discrete state-action space model with input images from
pre-collected samples. The learned model enables action planning due to learn-
ing DPP policy from a defined reward function. While DPN is model-free and
needs to be retrained from the beginning when the reward function changes,
VAE-DPP allows for retraining without new samples when the reward function
change. When learning multiple policies with different reward functions in the
same environment, the model-free RL, DPN, must be retrained from the begin-
ning. In the same case, VAE-DPP allows the relearning of policies without a new
sample. We applied VAE-DPP to the handkerchief folding task with NEXTAGE
and confirmed its effectiveness.

The remainder of this paper is organized as follows. The preliminaries are
introduced in Chapter 2. DPN /Dueling DPN, PGAIL-BiD and the corresponding
simulation results, analysis and real robot experiments on cloth manipulation
tasks in Chapters 3 and 4. Discussion and conclusion are described in Chapters

5 and 6. Lastly, an appendix gives more details of VAE-DPP.



2. Preliminaries

2.1. Reinforcement Learning

RL [1,25] solves the Markov decision process (MDP) defined by a 5-tuple (S, A, T, R, 7).
S = {s1,59,...,5,} is a finite set of states. A = {ay,as,...,a,,} is a finite set of
actions. T2 is the probability of transitioning from state s to state s’ under
action a. The corresponding reward is defined as r?, with reward function R.
v € (0,1) is the discount parameter. Policy m(a|s) represents the probability of
action a being taken under state s. The value function is defined as the expected

discounted total reward in state s:

> At

t=0

VXS)::EmT

S0 = S], (2.1)

where 7, = Yaca m(als,) Tl re o is the expected reward from state s;.
s'e
The objective of RL is to find optimal policy n* that maximizes the value

function to satisfy the following Bellman equation:

V*(s) = max Y w(als) Ty (rey +7V7(s)),

= (2.2)
s'eS
or a Q function for state-action pairs (s, a):
Q*(s,a) = max Z T (7‘?5/ + 7y Z m(ad'|s)Q* (s, a/)). (2.3)

s'eS a’cA

Value function based RL algorithms, e.g., Q-learning [26], SARSA [27], and
LSPI [28], approximate the value/Q function using the Temporal Difference
(TD) error. For example, the TD update rule in Q-learning follows Q(s;, a;) <

Qse, ar) + alrg,, +ymaxa,,, Q(si41, arp1) — Q(st, ar)], where « is the learning



rate.

2.2. Dynamic Policy Programming

To exploit the nature of smooth policy update, DPP [23,29] considers the Kullback-
Leibler divergence between current policy 7 and baseline policy 7 into the reward
function to minimize the difference between the current and baseline policy while

maximizing the expected reward:

™

Dy, = ) (als)log (als)

Z Hals)’ (2.4)

Thus, the Bellman optimality equation Eq. (2.2) is modified as:

1 m(als)

V*(s) =max » m(a|s [7;‘3 res + V(S —log(_ )]

(5) = max 3 w(als)| 7 )= 208 (=) (25)
s'eS

The effect of the Kullback-Leibler divergence is controlled by inverse temperature

n. Following [29,30], we let n be a positive constant. Optimal value function

VZ(s) for all s € S and Optimal policy 7*(als) for all (s, a) satisfy double-loop

fixed-point iterations as follows:

> #(als)exp |1 3 T (1t + V)| (2.6)

1
Viti(s) = ~log
U acA s'eS
7 (als) exp {n > T (rgs, + WVT—f(s'))}
s'eS

(2.7)
exp (Vi (s))

7_Tt+1 (a|$> —

Action preferences function [1] at the (¢ + 1)-iteration for all state-action pairs
(s,a) is defined following [23] to obtain the optimal policy that maximizes the

above value function:

1
Praa(s,0) = log#(als) + 32 T (vl +1VA() 23)

s'eS



Combining Eq. (2.8) with Egs. (2.6) and (2.7), a simple form is obtained:

Vi(s) = 1 o 5 e (P ) 2.9)

exp (nPt(s, a))
Za’EA €xp (77Pt(37 CL/)) .

7' (als) = (2.10)

The update rule of action preference function Pri1(s,a) = OPF;(s,a) is derived by
plugging Egs. (2.9) and (2.10) into Eq. (2.8):

OPi(s,a) = Pi(s,a) — L, Pi(s) + > T (rsy + 7L, Pi(s)), (2.11)
s'eS
where £, P(s) £ %log S acaexp(nP(s,a)) = Vz(s). The difference between Py, 1(s, a)
and OP(s,a) is used to calculate the error signal to train the action preference
function.

The original DPP is only applicable to problems with a modest number of
discrete states and prior knowledge about the underlying model. Sampling-
based Approximate Dynamic Policy Programming (SADPP) [29] extends it to
model-free learning with large-scale (continuous) states. For N training samples,
[Sny Gn)n=1.n, SADPP approximates P(s,a) by Linear Function Approximation
(LFA): P(s,,a,;0) = ¢(x,)" 0, where ¢(x,) denotes the output vector of the
basis functions and 6 is the corresponding weight vector. The weight vector is
updated by minimizing empirical loss function J(0; P) £ ||®0 — OP|2, where
OP is an N x 1 matrix with elements Oﬁ(s,a;@) following Eq. (2.11), where
L,P(s) is translated into a Boltzmann softmax operator for more analytically
tractable recursion.

Although such an extension to DPP can be applied to toy problems as mountain-
car control [29], its scalability is still limited due to the exponentially growing
size of the basis functions with increasing input dimensionality and correspond-
ing intractability. More scalable function approximators, such as non-parametric
regression, have been employed and successfully applied for real robot control

tasks [31,32]. However, their applications to such very high-dimensional and



redundant state like sensor data and raw image data remain infeasible.

2.3. Deep Q-Network

As a combination of Q-learning and DNN, DQN [15] successfully approximates
the Q function by DNN. Since the direct approximation of a dynamically changing
Q function by DNN is difficult, DQN stabilizes the learning by several tricks, like
target network, error clip, and experience replay. When Q function approximated
by DNN parameter 0 is represented by Q(s, a; 0), a target network is defined as
Q(s,a; 0~). 0~ is updated every C steps following 8~ = 6, and 6 is updated
every step with sample (s;, a;,7s%s, ., 8j4+1) from a global memory that stores all

the generated samples by performing a gradient descent with the TD error:

JO.67)& 3 (Y, +ymaxQ(s;a, a5 07) — Q(s;a5:0))°, (2.12)

a5
. . J .
(S]1QJ7TSij 175]+1)€'D

where D denotes the experience replay buffer. The gradient descent step on 6
needs to be sufficiently small to make the learning slow and reduce the sample
efficiency to avoid excessively changing the target function in the function ap-
proximation with DNN. One serious concern of DQN is that the smoothness in
the policy update is not explicitly considered during learning. Such a lack of
smoothness can drastically deteriorate the learning performance when the new
policy is radically different from the previous one. In the subsequent section, we
give a short summary of Dynamic Policy Programming [23,29], which is a value

function based RL algorithm that employs a smooth policy update.

2.4. Generative Adversarial Imitation Learning

The Generative Adversarial Imitation Learning (GAIL) framework consists of
two parts: a generator to learn the sampling distribution from an expert demon-
stration, and an expert discriminator to distinguish between generated samples
and expert samples. Under the adversarial framework, a sampling distribution
indistinguishable to a demonstration is ideally learned, i.e., the expert discrim-

inator learns a better classification ability while the generator learns to confuse



the expert discriminator.
Given these ideas, the objective of the GAIL is formulated as follows:

max I%;n E.[—log(1 — Dg(s,a))] + E; [ log(Dg(s,a))]. (2.13)
Given the current state s and action a as input, the expert discriminator outputs
the probability that the input belongs to the expert Dg(s,a) € [0,1]. 7 is the
policy learned by the generator, and 7p is the expert policy. Since DNNs ap-
proximate the generator and discriminator, we take a gradient-based numerical
simultaneous optimization approach.

The expert discriminator’s error function is defined as:

]EW[_ log(l - DE(S7 a; ¢))] + IETFE [_ log(DE(S7 a; (b))] (214)

where ¢ is defined as the DNNs parameters that approximate the expert discrim-
inator. The expert discriminator is a simpler function than that of policy thus
the learning progress is faster than the policy. Hence, the parameters ¢ needs to
be updated conservatively to avoid over-fitting.

Given the current discriminator Dg(s, a; ¢), the updated policy 7 of generator
is formulated as:

7*(als) = arg max E.[—log(1 — Dg(s,a;9))]. (2.15)

Using r? = —log(1l — Dg(s,a; ¢)) in the reward function, the RL agent learns a
policy that maximizes the total reward.

Most of the previously proposed GAIL frameworks employ Trust Region Policy
Optimization (TRPO) [16] in the generator, a popular policy search-based RL
approach. TRPO is highly suitable for GAIL due to two key features: 1) the
smooth policy update for learning stability and 2) the diversity of the policy to
sampling in a wide range for training the discriminator. In a benchmark of dis-
crete action spaces [33], value function-based DRL achieved better performance
than Proximal Policy Optimization [34], a variant of TRPO. Due to this reason,
the existing GAIL frameworks may not be suitable for our purpose, i.e., for robotic

cloth manipulation with the discrete action set. Although some value function-
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based DRL has been proposed [35,36], these methods may be inappropriate for
our purpose because they do not have the two properties simultaneously. There-
fore, the proposed GAIL framework employs a modified value-function based deep
RL, Entropy-maximizing Deep P-Network (EDPN), that can consider both the

smoothness and causal entropy in policy update.

11



3. Sample Efficient Deep
Reinforcement Learning with
Smooth Policy Update

This chapter proposes two sample efficient DRL algorithms: Deep P-Network
(DPN) and Dueling Deep P-Network (Dueling DPN). These algorithms’ core idea
is to combine the nature of smooth policy update in value function-based rein-
forcement learning with the automatic feature extraction from high-dimensional
observations in deep neural networks to enhance the sample efficiency and the
learning stability with fewer samples. The smoothness of policy update is pro-
moted by limiting the relative entropy or the Kullback-Leibler divergence between
the current and new policies in the learning process. Even though several RL al-
gorithms with such smooth policy update have been proposed [37,38], we focus on
Dynamic Policy Programming (DPP) [23] for the following reasons: 1) its asymp-
totic convergence nature to the optimal policy (for discrete state-action cases);
2) a discrete action space that can easily use high-level actions; and 3) success in
high-dimensional robot control tasks with direct access to state variables [32].
DPN and Dueling DPN are first applied to a n DOF simulated manipulator
reaching task to evaluate their learning performances and compare the effect of
different network structures and parameter settings with previous DRL methods.
Then Dueling DPN was applied to real robotic cloth manipulation tasks to control
a dual-arm humanoid robot NEXTAGE (Fig. 3.1a) to learn 1) the flipping of
a handkerchief (Fig. 3.1b) and 2) folding a t-shirt (Fig. 3.1c) with a limited
number of samples. We chose robotic cloth manipulation because it requires
both a complicated and a high-dimensional state definition and a huge number

of training samples to recognize and model the flexible cloth or learn a suitable
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(b) Handkerchief

(a) NEXTAGE: dual arm hu-
manoid robot

(c) T-shirt

Figure 3.1. Real robot setting: Our targets are two robotic cloth manipulation tasks with a
dual-arm humanoid robot NEXTAGE (a) 1) flipping of a handkerchief (b) and 2) folding a
t-shirt (c) with a limited number of samples.

manipulation policy.

3.1. Proposed Method

We present a novel deep reinforcement learning algorithm, Deep P-Network (DPN),
that exploits the advantages of both DRL for high-dimensional state space and
DPP for smooth policy update. Next we consider a more suitable neural net-
work architecture for DPN as inspired by the Dueling DQN [24] that has a
new neural network architecture with two parts to automatically produce sep-
arate estimates of value function V' (s) and advantage function A(s, a) that fulfills
A(s,a) = Q(s,a) — V(s) without any extra supervision. Finally, we present
how we can initialize both DPN and Dueling DPN with demonstration data for

accelerating learning.
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Figure 3.2. Network architectures of Deep P-Network
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Figure 3.3. Network architecture of Dueling Deep P-Network
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3.1.1. Approximation of Action Preference Function by
DNNs

In this subsection, we propose DPN, which approximates the action preferences
function P(s,a;0) in Eq. (2.8) by DNN. Its network structure is defined in Fig.
3.2. Initial input state s is a raw RGB/grayscale image that usually has very high
dimensionality. A Convolutional Neural Network (CNN) abstracts the raw image
to a lower-dimensional high-level feature set. These features are in turn processed
by a Fully Connected Network (FCN) and the final layer has m nodes, where m

is the number of actions in A and the i-th node’s output is approximated value

A

P(s,a;;0).

The training algorithm for DPN is given by Algorithm 1. In DPN, [ is the
number of iterations of DPN, and each iteration has M episodes with M x T
samples. Local memory D is maintained to store the current E iteration samples
for experience feedback. The updating of networks is operated in every episode.
The current parameters as @~ are saved to build target network ]5(3, a;07). The
update is divided into NV sub-problems. In each one, the agent repeatedly collects
mini-batches of samples (s;, a;, T?J’fsj +158j41) from D and calculates teaching signal

y; following Eq. (2.11):
y;(07) = P(s;,a;,07)—L,P(s;; 9_>+T?jsj+l+’7£nﬁ(3j+1§ 07). (3.1)

The network parameters are updated by applying gradient descent algorithms to

minimize the loss function:
J(8,07) 2 (y;(87) — P(s;,a;;0))% (3.2)

The loss of the gradient descent is added to the average loss. When the average
loss is less than a threshold, the current sub-update is terminated and the target
networks are updated after processing N mini-batch by 6~ = 6. In summary,
the following are the main differences between DQN and DPN:

1. Local memory D with the current E iteration samples is applied to store
fewer samples and focuses more on new samples. As the value function is

updated using only the data sampled from the new policy of updating, the
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improvement of the policy is fast.

2. Update 0 every episode with T steps rather than every step. The DPN

updates in the same process as the DPP updating the value function.

3. Parameter @ of DNN is updated with the number of epochs U using memory
D. Switch the target network and update @ N times. By switching the
target network while updating the value function, update the iteration of

the value function without new samples.

3.1.2. Dueling Network Architecture for DPN

In this subsection, Dueling DPN (DDPN) is proposed as a natural extension of
DPN toward a dueling network [24].
Plugging Vz(s) = £, P(s) £ %1og > acaexp(nP(s,a)) into Eq. (2.11), we ob-

tain:

Pisa(s,a) = Pi(s,a) = Vi(s) + 3 T (rie + Vi (s))- (3.3)
s'eS
Combining it with Eq. (2.8), the action preference function can be represented

as:
1 —t t
P,(s,a) = 5log7r (als) + VZ(s), (3.4)

You can directly derive Eq. (3.4) from Egs. (2.9) and (2.10) because the denom-
inator of Eq. (2.10) is given by exp(nVZ(s)). which can be naturally divided into
two parts: value function VZ(s) and advantage function A(s,a) = %log 7' (als).
Fig. 3.3 shows the architecture of the Dueling DPN that consists of two streams of
V(s) and A(s, a) while sharing one convolutional feature abstraction module. One

regularization term is added to Eq. (3.4) to fulfill }° /4 exp (log ﬁt(a|s)) =1

Pi(s,a) = ;logﬂt(ab) + VE(s) — H;H { (Z exp (logﬂt(a|s))) — 1} . (3.5)

a'eA
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Algorithm 1: Deep P-Network

Initialize local memory D and its size F
Initialize network weights 0
Initialize target network weights 6~ = 6

Function UpdatePNetwork(6, 6=, D, N):

Initialize target network update number N

Initialize epoch number U

Initialize number of mini-batches B = E/(minibatch size)

forn=1,2,.... N do

fori=1,2,....,U do

Shuffle local memory D index

for j=1,2,...,B do
Sample minibatch of transition (s;, aj, rs%s,,,, Sj41) in D
Calculate the teaching signal: A
yj = P(sj,05;07) = Ly P(55507) +15]s00 + 7Ly P(8541507)
Get loss and update @ by performing a gradient descent

step on (y; — P(s;,a;;0))>?

| Update target network 6~ = @

nitialize DPP parameters I, M, T
fori=1,2,....1 do
for episode = 1,2, ..., M do
fort=1,2,...,T do
Take action a; with softmax policy based on 7' (as|s;) following
P(s;,a5;0) and Eq. (2.10)
Receive new state s and reward rgf, |
Store transition (s, at, 75, ,, St41) in D

p—

U;datePNetwork(H, 06—, D, N)
if i > (E — 1) then
| Update D to store the current (E — 1) iterations’ samples

17



Algorithm 2: Initialization and learning of DPN policy

Initialize local memory D and its size F
Initialize network weights 0
Initialize target network weights 6= = 0
Load L points initial sample and store in local memory D
Initialize number of initial updates K
UpdatePNetwork(@, 86—, D, K) # Initialization DPN policy
Initialize DPP parameters I, M, T
fori=1,2,...,1 do
for episode =1,2,..., M do
fort=1,2,...,7T do
Take action a; with softmax policy based on 7' (a|s;) following

P(st,at;B) and Eq. (2.10)
Receive new state s;y1 and reward 7’ |

Store transition (s, at, 75, St41) in D

U;datePNetwork(O, 06—, D, N)
if i > (E — 1) then
| Update D to store the current (E — 1) iteration samples

3.1.3. Prior Policy Initialization of DPN/Dueling DPN

Based on previous works [39] [40], DRL can successfully learn tasks with a small
number of samples by initializing its policy from demonstrations. DPN and Du-
eling DPN are expected to fully exploit the successfully initialized policies based
on prior knowledge since they employ a smooth policy update in the DRL frame-
work. Even though the given initial policies may not be perfect, they should be
beneficial for accelerating reinforcement learning.

We show an initialization procedure for both DPN and Dueling DPN using a
small number of demonstration samples (generated by a human operator), sum-
marized in Algorithm 2. By following Algorithm 2, we store these samples in
local memory D and update the P-network before learning the results in the net-
works including prior knowledge. Parameter K controls the effect of the demon-
stration data on learning. The nature of the smooth policy update enables the
DPN/Dueling DPN to smoothly update the resulting policies from the initialized

ones.
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Target position Target position

Initial position Initial position
(a) 5-DOF manipulater (b) 50-DOF manipulater

Figure 3.4. Successful behaviors for n (5 and 50) DOF manipulator reaching tasks. Different
colored robots represent manipulator states in different steps.

3.2. Simulation Results

3.2.1. Simulation Setting

In this section, we investigated the learning performance of DPN and Dueling
DPN in a simulated n DOF manipulator reaching task (n = 5,15,25,50) by
comparing DQN and Dueling DQN. The state is the entire grayscale 84 x 84
px image where the n DOF manipulator is drawn, as shown in Fig. 3.4. The
length of each limb between the adjoining joints is set to % The environment
and the DPN parameter settings are respectively shown in Tables 3.1a and 3.1b.
For the network architecture, the input layer has 84 x 84 x 1 nodes for each pixel
of the state image. The setting of the middle layer and the optimizer follows
previous works [15,24]. The policies of DPN and Dueling DPN are calculated by
Eq. (2.10) while DQN uses a e-greedy policy. All the results are derived in five
repetitions. Our hardware platform is a PC with an Intel Core i7-5960 CPU, a
Nvidia GTX 1080 GPU, and 64 GB memory. The software platform was built
by Tensorflow [41] and Keras [42].
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MDP setting

Description

State

Action

Reward

Initial state

The entirety of a grayscale 84 x 84 px image.

Discrete actions [—0.0875, —0.0175,
0,0.0175,0.0875] (rad) to increment the
joint with the respective angle for each
DOF. We define an action at each time step
as one move per joint to reduce the number
of actions to (N x 5).

Reward function is set as r = —(]Xtarget —

X| + [Yiarget — Y|> where X, Y is the current
position of the manipulator’s end-effector,
and Xiarget = 0.6830, Yiarget = 0 is the tar-
get position.

The first joint is set to position [0,0]. All
angles are initialized to 0 rad at the start of
the simulation.

(a) Parameter setting of n DOF manipulator reaching task.

Parameter Meaning Value

n Parameters controlling the effect of smooth 1
policy update

M Number of episodes for one iteration )

T Number of steps for one episode 30

E Size of memory D to store sample 450

N Number of target network updates in one it- 2
eration
Epoch number of DNN updates 80

L Number of samples for policy initialization 300

Number of P-network updates at policy ini- 20
tialization

(b) Parameter setting of DPN algorithm.

Table 3.1. Settings and learning parameters of n DOF manipulator reaching task
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3.2.2. Learning Results

The learning results with different numbers of DOFs are shown in Fig. 3.5. The
left side shows the results without the initialization procedure with demonstration
samples. Both DPN and Dueling DPN clearly performed as well as expected in
the simulations: they stably improved the performance with only around 2000
samples, but DQN and Dueling DQN could not. By separately learning the action
preferences and value functions, Dueling DPN outperformed DPN. The right side
of Fig. 3.5 shows the result with prior policy initialization (marked by “init",
where the number of demonstration samples is defined as L in Table 3.1b, and
in this task, we used 300 samples generated by a non-optimal policy). Compared
with other algorithms, Dueling DPN supported the value of initialization more
and quickly outperformed the performance of the demonstration samples (purple
dashed line). All these results show the sample efficiency of DPN/Dueling DPN.
They used fewer samples to achieve higher average reward values than the DQN
algorithms under the same DNN setting, and their superiority rose with the DOF

increase.

3.2.3. Effect of Parameter n in DPN and Dueling DPN

We investigated the effect of DPN’s parameter n in a 5-DOF manipulator reaching
task. With an increase of 7, the Kullback—Leibler divergence term in Eq. (2.5)
limits the policy update less. Since the operator £, is the log-sum-exp function,
it is considered a soft-max operator and it converge to the max operator as
1n — oo. Therefore, the choice of 1 determines the smoothness of the operator.
In addition, DPP converges to the optimal policy for any 7, but it changes the
rate of convergence significantly. Both DPN and Dueling DPN were tested in five
repetitions where n = [0.01,0.1,0.5,1.5,3.0,10,20]. Fig. 3.6a shows the results;
in a suitable range, i.e., [0.01,0.3], a larger 7 resulted in faster learning due to
less smoothness in the policy update. On the other hand, an extremely large n
caused divergent learning due to the numerical instabilities using the exponential
function in the action preferences function [32]. Dueling DPN also has better
stability with various 1 than DPN, maybe because its architecture divides the

action preferences function into two parts.
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Figure 3.5. Learning curve of n DOF manipulator reaching task
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DPN in 5-DOF manipulator reaching with different

Total reward
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(a) DPN

Dueling DPN in 5-DOF manipulator reaching with different n

Total reward

Iterations

o—e =001 e—o =05 o o n=3.0 e—e p5p=20.0
—e =01 oo np=15 o-0 n=10.0

(b) Dueling DPN

Figure 3.6. Average learning results of DPN/Dueling DPN with different values of 7 in the
5-DOF manipulator reaching task over ten experiments
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Average Bellman error in 5-DOF manipulator reaching
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Figure 3.7. Average Bellman error in each iteration

3.2.4. Bellman Error in DPN

Next we investigated the effect of smooth policy update in DPN’s function ap-

proximation. We define the Bellman error as:

BE(V'*(s), 1y, Vi(s)) = [V (s) = (rey + 7V (5))- (3.6)

ss’

The Bellman error measures the approximation error of the value function during
learning. State value function V* of DPN can be calculated following Eq. (2.9),
and the calculation in DQN follows V(s) = E, [Qt(s,a)]. Fig. 3.7 shows the

average Bellman error in the first 15 iterations of ten learnings in 5-DOF ma-
nipulation reaching tasks. As a result, we achieved more accurate value function
approximation in DPN and Dueling DPN than in DQN and Dueling DQN due

to limiting the overly large updates that result in stable and efficient learning.
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3.3. Real Robot Experiment

In this section, we applied the Dueling DPN to the NEXTAGE robot, a 15-DOF
humanoid robot with sufficient precision for manufacturing, to learn two robotic
cloth manipulation tasks. Following [43], we focus on learning a policy with high-
level discrete actions, i.e., the grasp and release points on a cloth to solve two

tasks: 1) flipping over a handkerchief and 2) folding a t-shirt.

3.3.1. Flipping a Handkerchief
Setting

The environment and the DPN settings of this task are respectively shown in
Tables 4.4a and 3.2b. The network architecture, the optimizer, and the hard-
ware/software mainly follow the setting in Section 3.2.1, and the input layer is
fixed to 84 x 84 x 3 nodes for the RGB state image. The software is built on the
Robot Operating System (ROS) [44].

Results

The learning results of three experiments are shown in Fig. 3.9. Each experi-
ment took about four hours, including 40 minutes for manually initializing the
handkerchief (=~ 30 seconds per episode) to generate 2400 samples (= 16 itera-
tions). The samples used for the Dueling DPN initialization were generated by
a human operator who selected the actions for several states. Note that these
samples are collected from non-expert demonstrations and they are insufficient
to learn a good policy. The performance of the policy learned from these samples
using supervised learning is shown as "Supervised" in Fig. 3.9. It is better than
the random action but cannot be as good as the proposed methods. From the
results, without prior policy initialization, Dueling DPN converged faster and
achieved higher reward than Dueling DQN. With only 300 demonstration sam-
ples for initialization, Dueling DPN learned better policies by exploring with 2400
additional samples. Both Dueling DPN with/without prior policy initialization
outperformed the corresponding Dueling DQN algorithms. Fig. 3.8 shows one
example of a handkerchief flipping process learned by Dueling DPN, which turned
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MDP setting

Description

State

Action

Reward

Initial state

The input state is a 84 x 84 px RGB image from
NEXTAGE’s integrated camera.

6 x 6 = 36 gripper actions are defined
as picking up the handkerchief from 2 x 3
points over its current area and dropping
it down to 2 x 3 points over the table.

@) (@)

o

Picking up Dropping down

The reward is defined as the ratio of the red
area over the whole image in the current state.

<

The handkerchief is initially placed green side
up by a human.

(a) Parameter setting of flipping handkerchief task

Parameter Meaning Value
n Parameters controlling the effect of smooth pol- 1
icy update
M Number of episodes for one iteration 5
T Number of steps for one episode 30
E Size of memory D to store samples 450
N Number of target network updates in one itera- 2
tion
Epoch number of DNN updates 40
L Number of samples for policy initialization 300

Number of P-network updates at policy initial-
ization

20

(b) Parameter setting of DPN algorithm
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Figure 3.8. Handkerchief folding trajectory generated from policy learned from 2400 samples

about 80% of the handkerchief over in about 15 steps.

3.3.2. Folding a T-shirt

Setting

The next task was to fold a t-shirt. The details of the environment and the
algorithm settings are respectively summarized in Tables 4.4a and 3.2b. The
network architecture, the optimizer, and the hardware/software settings are the
same as in the handkerchief flipping task. It is a more challenging task than
flipping handkerchief due to 1) a larger action space to deal with various clothing
operations, 2) a more complex reward function that shows the stepwise folding
achievement degree as in Algorithm 3, 3) fewer steps in one rollout, 4) fewer

samples (80) generated by a human operator for prior policy initialization.

Results

The averaged learning results based on three experiments are shown in Fig. 3.11.

Dueling DPN successfully learned the task with only 80 demonstration samples for
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Figure 3.9. Learning curve of flipping a handkerchief
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MDP setting

Description

State

Action

Reward

Initial state

The input state is a 84 x 84 px RGB image from
the NEXTAGE’s integrated camera.

10 x 20 = 200 gripper actions are de-
fined as picking up the t-shirt from 10
points over its current area and dropping
it down to 5 Xx 4 points over the table.

Picki'ng up Dropping down
The reward function is designed to trigger an ac-
tion to fold the hem after folding the sleeve. The

processing is shown in Algorithm 3.

Sleeve distance Hem distance
from center from target point

T-shirt is initialized to a state in which it is

spread by a human.

(a) Parameter setting of folding t-shirt task

Parameter Meaning Value

n Parameters controlling the effect of smooth pol- 1
icy update

M Number of episodes for one iteration 5

T Number of steps for one episode 8

E Size of memory D to store samples 120

N Number of target network updates in one itera- 2
tion

U Epoch number of DNN updates 30

L Number of samples for policy initialization 80

K Number of P-network updates at policy initial- 5

ization

(b) Parameter setting of DPN algorithm

Table 3.3. Settings and learning parameters of folding t-shirt task
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Algorithm 3: Reward function of t-shirt folding task

Initialize InitHemR = [0.675,0.8], InitHemL = [0.325,0.8]
Initialize TargetHemR = [0.675,0.208], Target HemL = [0.325,0.208]
Function HemReward (SleevePoint, CenterHem):
Initialize reward = 0
reward = -Sum(|SleevePoint - CenterHem|)
L return reward
Function SleeveReward(HemPoint, InitHem, TargetHem):
Initialize reward = 0
Initalize Distance = |InitHem — TargetHem)|
reward = Sum(Distance — | HemPoint — Target Hem)|)
L return reward
Function ShirtReward():
Initialize reward = 0
Update color marker
Get HemPointR, HemPointL, Sleeve PointR, SleevePointL
if Detect hem marker then
CenterHem = (HemPointR + HemPointL)/2
reward = SleeveReward (SlecvePointR, CenterHem) +
SleeveReward (SleevePointL, CenterHem)

else
L reward =1
if Detect sleeve marker then

reward =
reward + HemReward (HemPointR, InitHemR, TargetHemR) +
HemReward (HemPointL, InitHemL, TargetHemlL)

L return reward
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policy initialization and 112 additional samples generated during reinforcement
learning. The samples for initialization are collected from non-expert demonstra-
tions. The line "Supervised" in Fig. 3.11 shows that the policy learned by these
samples using supervised learning could not lead to a good policy. According to
Fig. 3.11, only Dueling DPN was able to improve its performance based on the
given non-expert demonstration while other methods gradually improved their
performance but never learned sufficient policies for folding the t-shirt. These
results suggest that only our proposed method, Dueling DPN, has the capabil-
ity to learn tasks with a large action space and a complex reward function even
with very limited samples. Fig. 3.10 shows one t-shirt folding procedure learned
by Dueling DPN and DQN with prior policy initialization. Dueling DPN init
successfully folded it by appropriately selecting three actions per step, but the
corresponding Dueling DQN could only achieve the first step.

Several examples of high-level features learned by Dueling DPN are visualized
by Grad-CAM [45] in Fig. 3.12. These heat maps where the red/blue colors
indicate high/low attention of the agent indicate that our proposed method suc-

cessfully learned useful and meaningful features. The t-shirt’s sleeves drew the
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Figure 3.11. Learning curve of t-shirt folding task

32



Picking up Dropping Select and
point down point execute action

_ 1

Visualization of extracted parts to select actions

Figure 3.12. Visualization of extracted parts in images for action selection using Grad-CAM.
Heat map shows parts extracted when actions are selected.

agent’s attention following the order of operations in the first two steps. Then

the hem’s corner was concerned more to finish the folding task.

3.4. Summary of Chapter 3

The contribution of this chapter is twofold. We proposed two new deep reinforce-
ment learning algorithms, Deep P-Network (DPN) and Dueling Deep P-Network
(DDPN). The core idea shared by them is to combine the nature of smooth
policy update in value function based reinforcement learning (Dynamic Policy
Programming) with the capability of automatic feature extraction in deep neu-
ral networks to enhance the sample efficiency and the learning stability process
fewer samples. We compared them with previous DRL methods in a simulated
n DOF manipulator reaching task to investigate our proposed methods’ perfor-
mance. Furthermore, we applied them to two robotic cloth manipulation tasks
with a dual-arm robot, NEXTAGE: 1) flipping of a handkerchief and 2) folding
a t-shirt with a limited number of samples. We confirmed in all the experiments

that our method achieved more sample efficiency and stabilized learning than the
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previous methods.
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4. Generative Adversarial
Imitation Learning with

Human Demonstration and
Target State Label

In the previous chapter, the reward function design such as folding a t-shirt has be-
come complex because evaluating the flexible clothes state is difficult. Therefore,
this chapter focuses on a Generative Adversarial Imitation Learning framework
(GAIL), which allows an agent to learn near-optimal behaviors from demonstra-
tions and self explorations without explicit reward function design.

When applying GAIL to a real robot task, humans use the robot’s action
spaces to collect demonstrations. In this case, it is not easy to collect suitable
demonstrations because human’s and robot’s state action spaces are different.
For example, when the robot’s action space in a folding task is a folding line, the
human selects a folding line and collects a demonstration while watching the mon-
itor. Whether the state transitions as expected by humans can only be known
after the robot acts. Thus, it is difficult for a beginner to collect a complete
demonstration. On the other hand, a human can present the target state of the
task. In this chapter, we propose the P-Generative Adversarial Imitation Learn-
ing with Bi-Discriminator (PGAIL-BiD), which includes two discriminators: an
expert discriminator and a target discriminator. The proposed method encour-
ages reaching the target state via the target discriminator and learns the better
performing policy even when demonstrations is imperfect.

PGAIL-BIiD is first applied to a n DOF simulated manipulator reaching task to

evaluate their learning performances and compare the effect of different demon-
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(b) Handkerchief

(c) Shirt

(a) NEXTAGE: dual arm humanoid
robot

(d) Trousers

Figure 4.1. Real robot setting: Our targets are two robotic cloth manipulation tasks with a
dual-arm humanoid robot NEXTAGE (a) 1) flipping of a handkerchief (b) and 2) folding shirt
(c) and trousers (d).

strations and parameter settings with previous GAIL methods. Then PGAIL-BiD
is applied to real robotic cloth manipulation tasks to control a dual-arm humanoid
robot NEXTAGE (Fig. 4.1a) to learn 1) the flipping of a handkerchief (Fig. 4.1b)
and 2) folding a shirt and trousers (Fig. 4.1c, Fig. 4.1d)

4.1. Proposed Method

4.1.1. Structure of PGAIL-BiD

As shown in Fig. 4.2, PGAIL-BiD consists of following three components:
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Figure 4.2. Overview of proposed PGAIL-BiD.

e Expert discriminator Dg(s) distinguishing between demonstration states

and generated states.

e Target discriminator Dr(s) distinguishing between target states and gener-

ated states.

e Generator 7(a|s) learns policies to achieve the target state while imitating

the demonstration.

Compared to the previously proposed GAIL frameworks in Fig. 4.3. The target
sample and the target discriminator are increased, and the reward consists of an
expert discriminator and a target discriminator. Since the target sample Dr is
a state selected from within demonstrations Dg, the relation is Dy C Dg. Two
discriminators learn a better classification ability while the generator learns to
confuse two discriminators. Since the input of the target discriminator is state

only, the expert discriminator’s input is also state only.
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Figure 4.3. Overview of proposed PGAIL.

The objective of the PGAIL-BiD is formulated as follows:

max minmin  E|—log(1 — Dg(s)) — log(1 — Dr(s))] (1)
+ Erp[—10g(Dp(s))] + Eap [ log(Dr(s))].

Given the state s as input, two discriminator outputs the probability Dg(s) €
[0,1], Dr(s) € [0,1]. = is the policy learned by the generator, 7 is the demon-
stration policy. dr(s) is stationary distribution of observe target state. Since the
generator and two discriminator are approximated by DNNs, we take a gradient-
based numerical simultaneous optimization approach same as GAIL. More details

of the optimization are given in subsequent sections.

4.1.2. Generator Optimization

Given expert discriminator Dg(s) and target discriminator Dr(s), the updated
policy 7 of generator is formulated as:

" = arg 7fnaxlﬁl,r[— log(1 — Dg(s)) —log(1 — Dr(s))]. (4.2)
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The reward function of RL is formulated as follows:

ro = {~log(1 - Dg(s)} + {~log(1 — Dr(s))} (4.3)

The reward is calculated from the transition state s’ and two discriminators. In
order to stably learn the policy from the reward changing by the learning of the
discriminator, it is necessary to update the policy smoothly while maintaining the
diversity of the policy. PGAIL-BiD learns the policy of generator by EDPN by
following DPN with an important modification so that it has such two properties
as smooth update and diversity in the policy. To this end, the reward function is

designed by

T’EDPN:TS/—;KL(W||7T)+O'H(7T) (44)
where
KL(7||7) =3 (als)log :EZB (4.5)
acA
and

H(rw)=> —mn(als)log(r(als)). (4.6)
acA

The second term is promoting smooth policy update, and the amount of update
is quantified by the Kullback-Leibler divergence KL(7 || 7) between the current
policy m and the baseline policy . The third term is promoting the diversity of
actions in policy, and calculate the entropy H(w). n and o are coefficients that
control their balance. By learning the policy that maximizes this total reward,
the policy is smoothly updated while maximizing the entropy of the policy. Value
function-based reinforcement learning with these two constraints has been robust

to the approximation error of value function [46].

Following [29], the update rule of EDPN’s action preferences function is derived
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as:

1

Pina(s:0) = 75 (Ps,0) = Va(s) + % TS, (re +Vi(s)) (4.7)
where
_ exp(7, Fi(s, a))
7i(als) = Lo B0 (48)
Za’GA exp(1+m7 t(87 a ))
and

1+on

V_t(s) =

™

log > exp(

acA

n
g UnPt(s, a)). (4.9)

T2, is the probability of transitioning from state s to state s’ under action a.
v € (0,1) is the discount parameter.

When learning a policy for image-based inputs, the action preferences func-
tion is approximated by DNNs. @ is defined as the DNNs’ parameters that ap-
proximate the action preferences function and calculates teaching signal y(67)
following Eq. (4.7):

-\ — 1 D .0 Ot e — a a Srt 1. n—
y<0 )— 1+0n<Pt(87a79 )_Vfr<879 ))+§Tss’ (Ts—l—nyﬁ(s,Q )) (410)

The current parameters as 6~ are saved to build a target network. Then, the
gradient of the following error function J(6,67) is computed and then used to

update the parameter # using the stochastic gradient descent:
J(0,67) £ (y(07) — P(s,a;0))*. (4.11)

Note that if ¢ = 0, the EDPN becomes equivalent to DPN, thus, EDPN is a
generalized version of DPN to be suitable for GAIL.
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4.1.3. Discriminator Optimization

Two discriminator’s error function is defined as:

Je(¢) = Er[—log(1 — Dg(s; )] + Ery [~ log(De(s; ¢))] (4.12)

Jr(w) = Ex[—log(1 — Dr(s;w))] + Eqy [~ log(Dr(s;w))] (4.13)

where ¢, w is defined as the DNNs parameters that approximate the discriminator.
To update the parameter ¢,w using the stochastic gradient descent, since the
discriminator can be a simpler function than that of policy, the learning progress
would be faster than the policy. Thus, the parameters ¢,w needs to be updated
conservatively to avoid over-fitting.

4.1.4. Summary

The pseudocode of training PGAIL-BiD is shown in Algorithm 4. After policy
initialization, the training of PGAIL-BiD has four steps in one iteration, and

executes them a fixed number of times.

1. generate new samples following current policy 7 based on the current action

preferences function

2. update the discriminator via updating ¢, w to minimize Eq. (4.12) and Eq.
(4.13)

3. calculate the reward of D¢ following the updated two discriminator Dg, Dy

4. update the generator using EDPN

4.2. Simulation Results

4.2.1. Simulation Setting

In this section, the PGAIL-BID is first evaluated in a n-DOF manipulator reach-
ing task (n = 2,5) in simulation. The state is the color image 84 x 84 x 3 px
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Algorithm 4: PGAIL-BiD
Initialize local memory Dg its size N
Load demonstrations Dg
Load target samples Dy
Initialize value network weights 6, target network weights 6= = 6
Initialize discriminator network weights ¢, w
Initialize PGAIL-BiD iteration number [
Initialize generator parameters M, T
Initialize discriminator network iteration number J
Initialize value network iteration number K
fori=1,2,....1 do
for episode =1,2,..., M do
fort=1,2,...,T do
L Execute policy 7; represented by P'(s,a; ), generate samples
D¢

for j=1,2,...,J do
Update the parameters ¢, w of discriminator D% (s; ¢), Di(s;w) to
| minimize Eq. (4.12, 4.13) based on Dg, Dr and Dg
Calculate the reward of generated samples D¢ according to
Diy(s; ¢), Dy (s;w) following Eq. (4.3)
for k=1,2,..., K do
Update the parameters 6 of Pi(s,a;6) using D¢ and -, following
L Eq. (4.11)
| Update target network = =6

image where the n DOF manipulator is drawn, as shown in Fig. 4.4. The length
of each limb between the adjoining joints is set to % The environment and
the PGAIL-BiD parameter settings are respectively shown in Tables 4.1a and
4.1b. In this simulation, we investigated three things: 1) learning from imperfect
demonstrations, 2) comparing PGAIL-BiD and PGAIL with target discriminator
only, and 3) visualization of estimated reward functions. Through these investiga-
tions, we show that PGAIL-BiD learns better performing policies from imperfect

demonstrations.
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MDP setting Description

State The entirety of a 84 x 84 px color image.
The number of state dimensions is 84 x 84 X
3 (21,168)

Action Discrete actions [—0.0875, —0.0175,

0,0.0175,0.0875] (rad) to increment the joint
with the respective angle for each DOF. We
define an action at each time step as one move
per joint to reduce the number of actions to

(N x 5).
Reward for evalu- Reward function is set as 1, = — (| Xiarget — X | +
ation |Yiarget — Y|) where X,V is the current position

of the manipulator’s end-effector, and Xiarger =
0.6830, Yiarget = 0 is the target position.

Initial state The first joint is set to position [0,0]. All an-
gles are initialized to 0 rad at the start of the
simulation.

Demonstrations Demonstrations (9 samples) are sampled from an

RL policy that maximizes the reward for evalua-
tion. Demonstrations (20 steps X 5 trajectory =
100 samples) are generated from exploring poli-
cies during the learning process. The target sam-
ples are selected from demonstrations, with the
distance between the manipulator’s end-effector
and the target position less than 0.1.

(a) Parameter setting of n DOF manipulator reaching task.

Parameter Meaning Value
n Parameters controlling the effect of smooth pol- 1
icy update
o Parameters controlling the effect of causal en- 0.05
tropy
M Number of episodes for one iteration 10
T Number of steps for one episode 20
N Size of memory D¢ to store sample 2000
J Iteration number of discriminator updates 10
K Iteration number of value network updates 20

(b) Parameter setting of PGAIL-BiD algorithm.

Table 4.1. Settings and learning parameters of n DOF manipulator reaching task
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2-DOF Demonstrations
0 steps 2 steps 4 steps 8 steps

TN = Vv

5-DOF Demonstrations
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DOF Imperfect Demonstrations
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1

Time steps

Figure 4.4. The snapshot show demonstrations of n-DOF manipulator reaching task. Demon-
strations are sampled from RL policies. RL exploration policies generate imperfect demonstra-
tions.

4.2.2. Learning from Imperfect Demonstrations

We first investigate the learning policy performances from imperfect demonstra-
tions. To get different demonstrations of performance, we collected imperfect
demonstrations from RL exploration policies with [5,7,9, 11] updates. To verify
the effect of smooth policy update and entropy-maximizing, we compared EDPN
and naive DQN. After this, GAIL with DQN is called "QGAIL."

The learning results with different demonstrations are shown in Fig. 4.5
where the Y axis is the performance defined as a scaled total baseline reward

S

r = —(| Xtarget — X| + |Yiarget — Y|) The demonstration policy’s performance
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Figure 4.5. Learning curve of 5-DOF manipulator reaching task with imperfect demonstrations.

is scaled to 1 while one of the random policies is scaled to 0. The learning
curves are the average of five trials. Without the Bi-Discriminator, PGAIL and
QGAIL converged to the performance of demonstration. The learning curves of
QGAIL-BiD are unstable, and performance is similar to demonstrations. The
proposed method, PGAIL-BiD approaches the same or more than the perfor-

mance of demonstration.
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4.2.3. Comparison of PGAIL-BiD and PGAIL with

Target Discriminator

To verify the effect of Bi-Discriminator, we compared PGAIL-BiD, PGAIL and
PGAIL with Target Discriminator. The environment setting was the same as in
the previous section, and demonstrations were collected from the updated 5th
RL policy.

The learning results with different discriminator are shown in Fig. 4.6. PGAIL
with Dpg(s) learned policies that outperformed experts at four iterations, but
performance declined after six iterations. This result indicates that the policy
generates many target states, and thus the reward of the target state is reduced.
PGAIL with Dy(s) outperforms the experts but converges to the local minimum.
PGAIL-BiD outperforms the experts after four iterations and keeps high perfor-

mance after that.

4.2.4. Visualization of Estimated Reward Function

In this subsection, to compare reward function represented by discriminator, we
visualize reward function in 2-DOF manipulator reaching task. Since the state
of the 2-DOF manipulator is in the two dimension of the joint angle, the reward
function is drawn as shown in Fig. 4.7a. The learned reward functions from
imperfect demonstrations are visualized in Fig. 4.7b. From the baseline reward
function, it is clear that the optimal joint angles for reaching task are 50° and 90°.
PGAIL-BiD learned an accurate reward function that offers value near [50°, 90°] in
all iterations. PGAIL learned a reward function with high near [50°, 90°] after five
iterations. QGAIL-BiD learned a reward function with high near [50°,90°] after
three iterations but reward function after five iteration is highest near [75°,90°].
These results indicate that EDPN learns policies stably from Bi-Discriminator.

All the simulation experiment results suggest that the proposed framework,
PGAIL-BiD, can learn a better reward function from imperfect demonstration
with stable learning thanks to the support of both the smooth policy update and
causal entropy of policy in EDPN.
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5-DOF manipulatior reaching task
1.25

1.20 A

1.15

1.10 A
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Performance (scaled)

1.00 A

0.95 A

PGAIL-BiD PGAIL with Dg(s) PGAIL with D+(s)
with Dg(s) and D#(s)

Figure 4.6. Evaluation of Bi-Discriminator Performance in the 5-DOF manipulator reaching
task. Compare performance of policies learned from rewards containing different discriminators.
The left bar is PGAIL with Bi-Discriminator including expert discriminator Dg(s) and target
discriminator Dr(s) (PGAIL-BiD). The middle bar is PGAIL with only expert discriminator
Dg(s) as reward. The right bar is PGAIL with only target discriminator Dy (s) as reward.

4.3. Real Robot Experiment

In this section, we applied PGAIL with EDPN to the NEXTAGE (www.nextage.
kawada. jp/en/), a 15-DOF humanoid robot with sufficient precision for complex
manufacturing tasks, to learn a policy that flips a handkerchief and folds clothes
from demonstrations. We focus on learning a policy with high-level discrete
actions, i.e., grasp-release points and folding lines on a cloth to solve two tasks:

1) flipping over a handkerchief and 2) folding clothes.
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(b) The reward function values of 2 DOF manipulator reaching learned by different
methods.

Figure 4.7. Learned reward functions from demonstration.
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(a) Recognize cloth and en- (b) Divide each side at equal (c) Scan to the edge of cloth.
close in a square. intervals.

Figure 4.8. Image processing of picking up points.

4.3.1. Flipping a Handkerchief
Setting

In this flipping a handkerchief task, we evaluate the learned policy’s performance
in a real-world environment with an easy design of the reward function. This
handkerchief has different colors on the back and front, and the target state is
the red color spreading on up. The environment and the PGAIL-BiD settings of
this task are respectively shown in Tables 4.4a and 4.2b. 10 x 6 = 60 gripper
actions are defined as picking up the handkerchief from 10 points over its current

area and dropping it down to 2 x 3 points over the table (Fig. 4.8).

Results

The learning results of PGAIL-BiD and PGAIL over three experiments are shown
in Fig. 4.9 where the Y axis is the success rate. During the test, the handkerchief
is initialized to a green spreading on up and we test three trials per one policy (3
experiments x 3 trials = 9 evaluations). The successful manipulation is defined
as the red area finally becomes more than 80%. Each experiment took about eight
hours, including 47 minutes for automatically initializing the handkerchief (=~ 20
seconds per episode) to generate 4200 samples (= 14 iterations). After exploring
with 3900 samples, PGAIL-BiD learned to reach around 80%. On the other hand,
PGAIL learned to reach around 30% with the same number of samples.

As compared to the control policies learned by PGAIL-BiD and PGAIL, and

random policies shown in Fig. 4.10, the proposed method generated the trajectory
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MDP setting

Description

State

Action

Reward

Initial state

Demonstrations

The input state is a 84 x 84 px RGB image from
NEXTAGE’s integrated camera.

10 x 6 = 60 gripper actions are defined as
picking up the handkerchief from 10 points
over its current area and dropping it down
to 2 x 3 points over the table (Fig. 4.8).

@) (@)

o

Picking up Dropping down

The reward is defined as the ratio of the red
area over the whole image in the current state.

<

The robot executes three random actions and ini-
tializes the handkerchief.

The sample is collected from humans for trajec-
tory of 5 episodes (100 samples). The target state
is set as the final state of the episode.

(a) Parameter setting of flipping handkerchief task

Parameter Meaning Value
n Parameters controlling the effect of smooth pol- 1
icy update
o Parameters controlling the effect of causal en- 0.05
tropy
M Number of episodes for one iteration 10
T Number of steps for one episode 30
N Size of memory D¢ to store sample 3000
J Iteration number of discriminator updates )
K Iteration number of value network updates 10

(b) Parameter setting of PGAIL-BiD algorithm.

Table 4.2. Settings and learning parameters of flipping handkerchief task
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Flipping Handkerchief

— PGAIL-BiD 1
— PGAIL

1.0

Successfully rate with exponential smoothing

1500 2100 2700 3300 3900
Number of sample

Figure 4.9. Learning results of the NEXTAGE humanoid robot on flipping a handkerchief task.
PGAIL-BiD and PGAIL are compared on the learning curve evaluated by task success rate.
FEach method learn the policy 3 times, and each policy is tried for 3 episodes. Thus, each
method is evaluated by task success rate from 9(3) episodes.
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PGAIL-BiD

Figure 4.10. The snapshot of the learned policy per step. The blue and purple dots are picking
up and dropping positions respectively for actions at each step.
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of successfully flipping the handkerchief. PGAIL keeps the green state and could
not flip the handkerchief. This reason is that demonstrations contain a state

similar to the initial state.

Evaluation of Learned Policy’s Robustness

The robustness of the policies learned by PGAIL-BiD is evaluated with different
initial states shown in Table 4.3. For each initial state, we test the policy with
five trials. The successful manipulation is defined as the red area finally becomes
more than 80%. According to the result in Table 4.3, behavior cloning could
not select the appropriate action when the observed initial states do not exist in
demonstrations. PGAIL-BiD shows a better generalization ability to maximize
the red area in various initial states. This result indicates that PGAIL-BiD can
smoothly explore the flipping task following demonstrations. Rather than copying

demonstrations, it is able to learn a robust policy for states out of demonstrations.

4.3.2. Folding Clothes

Setting

To verify that the proposed method could learn different clothes manipulation in
the same environment setting, we applied the proposed method to folding clothes
tasks for shirts and trousers. The environment and the PGAIL-BiD settings of
this task are respectively shown in Tables 4.4b and 4.4. The folding action is
executed as shown in Fig. 4.11. The folding direction, grasping points, and the
folding path are automatically calculated according to the current clothes shape
and the selected fold line.

Results

Since this folding task is challenging to design a reward function, we evaluate the
learned policies through learned trajectories, task success rates, and CNN trained
feature extraction of the policies. PGAIL-BiD learned folding policies from a 390
sample of shirts collected in about 5 hours and 220 samples of trousers collected

in about 3 hours.
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Initial state PGAIL-BiD PGAIL Behavior Cloning

4/5  3/5  2/5

Random

1/5  1/5 4/5

3/5  2/5 2/5

Table 4.3. Evaluation of success rate in flipping handkerchief task. Each method is evaluated
with 5 trials in each initial state.
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MDP setting

Description

State

Action

Initial state

Demonstrations

The input state is a 84 x 84 px RGB image
from realsense camera.

All fold line are defined according to the cur-
rent clothes shape (3 + 3 = 6 line). The fold
direction is fixed to fold towards the center.

Shirt or trousers is initialized to a state in
which it is spread by a human.

The sample is collected from humans for tra-
jectory of 5 episodes (shirt: 5 episodes x3
steps = 15 samples, trousers: 5 episodes X2
steps = 10). The target state is set as the
final state of the episode.

(a) Parameter setting of flipping handkerchief task

Parameter Meaning Value
n Parameters controlling the effect of smooth 0.7
policy update
o Parameters controlling the effect of causal 0.03
entropy
M Number of episodes for one iteration 10
T Number of steps for one episode 3 (shirt) or 2 (trousers)
N Size of memory D¢ to store sample 800
J [teration number of discriminator updates 10
K [teration number of value network updates 20

(b) Parameter setting of PGAIL-BIiD algorithm.

Table 4.4. Settings and learning parameters of folding Clothes task
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Determine folding line and direction
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Input image Object detection  Find all folding lines Select line
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of folding line gravity of 2 regions vector of the clothes

Generate folding trajectory .

Fold in a triangular
trajectory

Initial state Release

Figure 4.11. Overview of folding action.
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Initial state PGAIL-BiD Behavior Cloning

4/5 1/5

4/5 0/5

5/5 3/5

4/5 2/5

Table 4.5. Evaluation of success rate in folding clothes task. Each method is evaluated with 5
trials in each initial state. Success is defined as achieving the target state.

Fig. 4.12 shows the trajectories generated from the policies learned for two
clothes folding tasks. PGAIL-BiD learning policies have a high success rate for
both shirts and trousers, while the BC learning policies have a low success rate
due to imperfect demonstrations. Table 4.5 shows the results of evaluating the
success rate for each initial state. PGAIL-BiD policies have a higher success rate
at different initial states, indicating that these policies are more robust than the
BC policies.

Grad-CAM [45] visualizes several examples of high-level features learned by
PGAIL-BiD in Fig. 4.13. These heat maps where the red/blue colors indicate
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Figure 4.12. The snapshot of the learned policy per step. Blue lines are the folding the picking
up, and green points are grasping points.
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high/low attention of the agent indicate that our proposed method successfully
learned useful and meaningful features. PGAIL-BiD and BC policies are com-
pared with each other. PGAIL-BiD policies extract the details such as spreading
areas and edges of clothes, while BC policies extract the areas other than clothes.
This result indicates that PGAIL-BiD policies are robust to position, wrinkles,

and some creases.

4.4. Summary of Chapter 4

There are two contributions in this chapter. The algorithmic aspect is PGAIL-
BiD’s proposal, a new adversarial imitation learning framework with two discrimi-
nators; PGAIL-BiD learns imitation policies from rewards with a high estimate of
the target state. Thus, the influence of imperfect sample in demonstrations is re-
duced, and PGAIL-BiD policies achieve better than demonstration performance.
EDPN contains a constraint that maximizes the policy’s entropy with smooth pol-
icy updates, thus encouraging search while reducing policy over-learning. This
approach’s application contribution is that it learns the clothing manipulation
policy without any specific reward function design. The proposed method was
applied to a real environment consisting of a dual-armed robot NEXTAGE and

learned better performance cloth manipulation policies.
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5. Discussions

5.1. Related Works

5.1.1. RL with Smooth Policy Update

To improve the sample efficiency and learning stability with fewer samples in RL,
smooth policy update is exploited to limit the information that is lost during
learning [47]. The main idea is to introduce the Kullback-Leibler divergence
to limit the differences between the current and new policies into the reward
function. The related approaches include both value function-based, e.g., [23],
and policy search, e.g., relative entropy policy search [37] and guided policy search
48]. In the robot control domain, the smooth policy update was applied to learn
hierarchical policies [49] and achieve sample efficiency and learning stability with
kernel trick in robot hand control with a 32-dimensional state space [32]. The
current combination of smooth policy update and DRL [50] focuses on learning
end-to-end motor policies represented by linear Gaussian controllers in continuous
action space. On the other hand, combining the value function based DRL with

smooth policy update has not been intensively studied.

5.1.2. GAIL with Improved Discriminator

In order to focus on a specific problem, many previous studies improve the dis-
criminator of GAIL. Methods focusing on reaching tasks adjust a reward for
target states. For example, [51] first learned a reward function from the target
state collected from a human and then learned a policy using the learned re-
ward. In the end, the policy is improved by an evaluated performance from a
human. [52] represented reinforcement learning and imitation learning integrally

with probabilistic graphical models and learns a policy from imitation rewards
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and task-dependent achievement rewards. [53] accelerated the convergence of poli-
cies by updating the target state in the expert sample according to the learning

progress.

5.1.3. Imitation Learning

Imitation learning is divided into two categories, Behavior Cloning (BC) and In-
verse Reinforcement Learning (IRL) [54]. BC learns policies by directly regressing
expert data [55]. Other prior BC studies learn robust policies by collecting data
that add noise to expert policies [56,57]. IRL has been challenging to apply to
large scale tasks [58,59], but GAIL based on IRL has been successfully applied
to large scale tasks by updating policy and reward function like a GAN frame-
work [60,61]. BC and GAIL differ in robustness and learning costs. BC has fewer
interactions with the environment and lower learning costs. GAIL has a high
learning cost because it explores a large area from a massive number of interac-
tions. When compared in the aspect of robustness, GAIL is more robust than
BC.

The proposed method of the GAIL framework with two discriminators esti-
mates higher target state rewards than expert rewards. It is possible to learn
more policies than expert policies. In the handkerchief flipping task, PGAIL-BiD
policy can generate a different trajectory than the experts. The proposed method
learns other strategy policies than the experts, and the BC learns policies to keep

the expert trajectory.

5.2. Open Issues

5.2.1. Design of Action Space

In this research, the cloth manipulation environment employs high-level discrete
action space as a folding line. This action space facilitates learning complex tasks
from a small number of samples, but discrete action spaces need to be designed for
each task. On the other hand, low-level continuous action space can be applied
to various environments without action space design. In continuous policy with

value-based RL, previous studies have approximated continuous policies from the
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value function. [62] updated a value function that maximizes the causal entropy
of a policy and learned continuous policy by implementing with Actor-Critic. [63]
extends softmax policy to continuous policy with Deep RBF networks.

One future work is to design compact and efficient action space for more com-
plicated deformable object manipulation tasks. In our current work, the action
space was set by all the combinations of picking and dropping points allocated on
the plane in a grid manner which is not compact or sufficient for more complex
tasks. Several previous works could be applied to improve the actions’ dexterity
like defining meaningful predefined patterns [64], and exploiting synergies [65].
Furthermore, cooperating motion trajectories between two or more robot arms
should be considered as actions for challenging tasks like wrapping clothes in [66].
It is also interesting to design an action space to efficiently manipulate the clothes
like human beings based on several related works: [67] detected the wrinkle con-
dition and operate a robot to extend necessary wrinkle for better folding per-
formance; [68] gripped the cloth edge to reduce the wrinkles caused during op-
eration; [69] directly folded the hem and sleeve of clothes based on a clothing

model.

5.2.2. Reduction of Learning Costs in Real Environments

In our robot experiments, initialization required the most time and labor: re-
turning a cloth to its initial state in every iteration. The automation of the
initialization enable to increase the number of sample, DRL learns complex pol-
icy from a large number of samples. Recent work suggests a potentially helpful
approach to alleviate this issue by simultaneously learning a rest policy as a
usual policy [70,71]. Extending our methods by combining them with previous
work [70,71] is also interesting future work.

Previous studies with simulation have learned clothing manipulation policies
with DRL [20,72] and reduce learning costs in real environments. However, DRL
with cloth simulation has only been successful with simple shape clothes manipu-
lation. It is challenging to simulate complex shapes at high speed due to wrinkles,
friction, and the like. Recent clothing simulation research [73,74] employs deep
learning to simulate clothing to accelerate the computation of complex shapes.

There is a possibility of learning real clothes manipulation policy using sim-to-real
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technology [19-21] to close the gap between the simulation and the real world.

5.2.3. Conservative Reinforcement Learning

If DRL of real robot policies is unstable, sample efficiency is reduced due to
unnecessary exploration. Thus DRL is necessary to stabilize the learning of poli-
cies. Previous research [75,76] uses an analytical approach to prevent unstable
learning. Although Conservative Policy Iteration [75] is challenging to apply to
complex simulation tasks, [77] applied it to DRL and learned policies that were
more stable and performed better than conventional methods in some atari game
tasks.

5.2.4. Application to Various Tasks

This research applied DRL to the clothing manipulation task folding and hand-
kerchief flipping. Although the tasks in this experiment could be performed by
roughly moving the arms without any equipment, dexterity and equipment are
essential for everyday tasks such as washing, cleaning, and cooking. In order to
achieve hand dexterity, a robotic hand with a high degree of finger freedom and
tactile sensors and control of the hand is needed. For example, when cutting food
in cooking, it is necessary to hold the food in different shapes with one hand while
grasping the knife and adjusting the force applied to the food. In the tidying up
task, the robot needs to grasp objects of various shapes and sizes. Previous stud-
ies exist that achieve dexterous hand finger movements [32,78] and dexterous arm
movements [79,80], but few studies have implemented complex tasks with dex-
terous finger and arm movements. The author believes that human-level robots
will be realized with the proper utilization of these robotics and machine learning

technologies.
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6. Conclusion

First, we presented two sample efficient DRL algorithms: DPN and Dueling DPN.
The contribution of DPN/Dueling DPN chapter is twofold. We proposed two
new deep reinforcement learning algorithms, Deep P-Network (DPN) and Duel-
ing Deep P-Network (DDPN). The core idea shared by them is to combine the
nature of smooth policy update in value function-based reinforcement learning
(Dynamic Policy Programming) with the capability of automatic feature extrac-
tion in deep neural networks to enhance the sample efficiency and the learning
stability process with fewer samples. To investigate our proposed methods’ per-
formance, we compared them with previous DRL methods in a simulated n DOF
manipulator reaching task. Furthermore, we applied them to two robotic cloth
manipulation tasks with a dual-arm robot, NEXTAGE: 1) flipping of a handker-
chief and 2) folding a t-shirt with a limited number of samples. We confirmed in
all the experiments that our method achieved more sample efficiency and stabi-
lized learning than the previous methods.

Second, we proposed PGAIL-BiD that is a GAIL framework with two discrim-
inators. When applying GAIL to real robot tasks, collecting complete expert
samples from a human is difficult. PGAIL-BiD estimates high rewards for tar-
get states with the target discriminator and improves learning policies’ reaching
performance when learning from incomplete expert samples. To stabilize adver-
sarial learning with two discriminators, PGAIL-BiD employs EDPN to consider
both smooth and causal entropy in policy updates. PGAIL-BiD was applied
to n DOF simulated manipulator reaching task and learned policies better than
expert samples. In real robot experiments, PGAIL-BiD learned two cloth ma-
nipulation tasks: 1) flipping of a handkerchief and 2) folding two types of clothes
from incomplete expert samples.

In summary, this thesis proposes two methods that reduce the cost of applying
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DRL to a real robot task. By proposing sample-efficient DRL with smooth policy
update, we relaxed the learning cost on real robots. We applied it to cloth manip-
ulation, which is difficult to design in state space. We present PGAIL-BiD, GAIL
framework with two discriminators. PGAIL-BiD learn cloth manipulation pol-
icy without task-specific reward function design from incomplete expert samples

collected by a human.
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A. Appendix: Model-Beased
Deep Reinforcement Learning
with Latent Discrete State
Action Space

In this chapter, we present Variationally Autoencoded Dynamic Policy Program-
ming (VAE-DPP), a framework for the action plan of cloth folding, as shown in
Fig. A.1. VAE-DPP employs Variationally Autoencoded Hidden Markov Deci-
sion Model (VAE-HMDM) to train the cloth folding model. VAE-HMDM learns
the latent space of the image with Variational Autoencoder (VAE) and learns the
latent space of dynamics with hidden Markov model (HMM) with action space.
Previous research indicates that a discrete set can represent the state-action space
at the cloth folding task [81], and we model the state-action space of latent dy-
namics with a discrete set. The proposed method employed Dynamic Policy
Programming (DPP) [23] to action planning and generated an action sequence.
In a real-world experiment, we applied VAE-DPP to a cloth folding task by a
dual-arm robot. We demonstrated that the proposed method train a cloth folding

model and plan trajectories to different target states.
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Figure A.1. Action planning of cloth folding task. The proposed method generates a state
action sequence from initial state and target state.

A.1. Proposed Method

A.1.1. Variationally Autoencoded Hidden Markov
Decision Model

Fig. A.2 shows a graphical model of VAE-HMDM, which learns the latent vari-
able a of the observation image x and the latent variable z of the dynamics. By
optimizing py(alx) and g,(x|a) simultaneously, latent variable a is learned to
decode the observation image x. In this model, a is assumed to be generated
from the dynamics latent variable z, and the latent variable z’ at the next time
transitions with probability distribution py(z'|z, u) that depends on the previous
latent variable z and action u. Even though image transitions are partially ob-
servable Markov decision process, the transitions of the dynamics latent variable
z are Markov decision processes.

The model learns the parameter ¢ of encoder py(a|x), the parameter ¢ of
decoder g4(x|a) and the parameter of latent dynamics 6. The parameters ¢, ¢, 0

are optimized to maximize the following lower bound.
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Figure A.2. The graphical model of VAE-HMDM
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F 0,0) = E; (ax |log——
(% ’ ) %l )l o8 Q¢(a|x)

pe(a|z)p9(z|u)] ]

po(z]a, u)

+Epy (2]a,u) llog (A1)

{a® 2O} is sampled from the VAE decoder gy4(a|x) and the latent dynamics
pe(z|a, u). Therefore, lower bound can be estimated by the Monte Carlo integral
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Figure A.3. Decoding image from latent variable z of VAE-HMDM

The parameter ¥,¢,0 maximizing the lower bounds are optimized with gradient-

based numerical optimization.

A.1.2. Action Planing with Dynamic Policy Programming

The proposed method plan action on latent space z of VAE-HMDM. A policy
m(u|z) generates sequence of [z, u] reaching target latent variable z. The policy is
learned with Dynamic Policy Programming (DPP) [23]. By decoding the sequence
of generated latent variable z to images, it is able to confirm the planned transition
image sequence. DPP learns a policy 7(u|z) to maximize total reward through

interactions with dynamics p(z'|z, u).

A.2. Real Robot Experiment

We applied VAE-DPP to the NEXTAGE robot, a 15-DOF humanoid robot with
sufficient manufacturing precision, to learn folding cloth tasks. In the experiment,
square cloths with different colors on the reverse side were employed, and the
initial state was set with green on the upper side. The state is defined as 32x32x 3
px RGB images, folding action is defined as up-folding, right-folding and left-
folding. One sequence was two folded actions, and the model was trained from
200 sequences sampled from the random policy. The dimension of the latent
variable z is set to 10. For the reward function, the following equation was

employed to learn the policy and plan the action.

1 (Z - Ztarget)

reward(z) = (A.3)

0 (otherwise)

Fig. A.3 show decoding images from latent variable z of VAE-HMDM. De-
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coding images indicate that latent variable z has acquired a variety of folding
states.

Fig. A.4 show sequences planed with VAE-DPP. The upper left corner numbers
represent the steps, and the image in the upper right corner is a decoding image
of the latent variable z generated during the action plan. The action plan in Fig.
A .4 generates a sequence aimed at two different target latent variables z4yget, and
the results indicate that a suitable action sequence for the target state has been

generated.

A.3. Summary of VAE-DPP

In this chapter, the VAE-DPP is proposed as a framework for a cloth folding
action plan. We confirmed that VAE-DPP could plan the operation of cloth
folding through real experiments.

The future main task is to investigate whether it is possible to plan the folding

action for shirts, trousers, and other clothes.
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Figure A.4. Planning and execution of folding cloth manipulation with VAE-DPP
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