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Adaptive Traffic Control Algorithm Based on
Back-Pressure and Q-Learning∗

Arnan Maipradit

Abstract

Nowadays traffic congestion has increasingly been a significant problem, which
results in longer travel time and aggravates air pollution. Available work showed
that back-pressure based traffic control algorithms can effectively reduce traffic
congestion. However, those work control traffic based on either inaccurate traffic
information or local traffic information, which causes inefficient traffic scheduling.
In this paper, we propose an adaptive traffic control algorithm based on back-
pressure and Q-learning, which can efficiently reduce congestion. Our algorithm
controls traffic based on accurate real-time traffic information and global traf-
fic information learned by Q-learning. As verified by simulation, our algorithm
significantly decreases average vehicle traveling time from 17% to 37% when com-
pared with state-of-the-art algorithm under tested scenarios.
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1 Introduction

1.1 Background
Currently most traffic light control systems use fixed time cycle scheduling that
lead to congestion and thus increasing vehicle travel time [1]. Because this kind of
algorithm does not consider real-time or real-situation traffic information. Con-
gestion can be reduced by smartly controlling traffic signals [2]. With the de-
velopment of technology of intelligent transportation system (ITS) and Internet
of Things (IoT), researchers have adopted such technology to improve the ef-
ficiency of transportation. Intelligent transportation system (ITS) is a traffic
management system that uses intelligent algorithm to reduce vehicle travel time,
improve traffic safety.
The intelligent traffic control systems currently implemented in urban road

network are SCOOT [3], [4] and SCATS [5]. Theses systems use adaptive traffic
signals that consider real-time traffic information [6], more effective than fixed
cycle signal control. But these adaptive traffic signals still cannot provide perfor-
mance guarantee [11]. Genetic Algorithm [7], Fuzzy Logic Control [8,9] are also
considered as the solution to smartly controlling traffic signals. However, these
algorithms [7-9] are centralized that do not suit with a large urban road network
which requires decentralized algorithms.
Recently, decentralized traffic control algorithms based on back-pressure have

been proposed [10-14]. Back-pressure based traffic signal control algorithm was
showed to be superior to signal control of fixed time cycles in [11,19]. These
back-pressure based traffic control algorithms do not consider adaptive control
of vehicle routes, e.g., shortest path algorithm easily results in traffic congestion
especially during rush hours. Some research considered jointly controlling traffic
signals and vehicle routing [16,18]. But these work focused on giving individual
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vehicles adaptive route guidance only. Coordination between different vehicles
will further reduce traffic congestion.
Some work also proposed back-pressure based algorithms to coordinate differ-

ent vehicles [15,21]. In road network vehicles need time to travel from one road to
another road which depends on vehicle speed and road length. Directly applying
back-pressure algorithm to control traffic as in [15] is not appropriate. Based
on this observation, [21] proposed an adaptive traffic control algorithm which
adapts back-pressure algorithm by considering vehicle traveling time on a road.
Specifically, they control traffic signal and vehicle routes based on real-time traffic
information, like vehicle speed and vehicle position. As a result, their algorithm
significantly reduces traffic congestion.

However, their work controls traffic lights and vehicle routes based on local
traffic information only, i.e., every control agent considers information of vehicles
only around its own junction. Therefore, their algorithm is short-sighted, since
they do not use global traffic information. For more efficient traffic control, global
traffic information and coordination between different junction agents are needed.

1.2 Back-Pressure and Q-Learning
Back-Pressure routing is an algorithm originally for routing packets based on
queue length differentials (also called pressure gradients) in wireless communi-
cation networks. Back-Pressure routing usually refers to a data network, but in
this work, we apply Back-Pressure routing to a road network which the pressure
of the road network is a number of vehicles on the road network.
There are multiple algorithms available for Reinforcement Learning. Q-learning

algorithm is the most widely used in Reinforcement Learning methods. Q-
Learning is a basic form of Reinforcement Learning which uses Q-values to im-
prove the behavior of the learning agent. First, an agent chooses an action at
a given state based on a Q-value, which is a weighted reward based on the ex-
pected highest reward after getting Q-value it will store in Q-table The values in
the Q-table are updated each time an agent selects an action. This Q-value will
be iterratively computed by TD-Update or Temporal Difference rule as follows:
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Q(S,A)←− Q(S,A) + α(R + γQ(S̄, Ā)−Q(S,A)) (1.1)

where current state of the agent is S and A is the current action picked ac-
cording to the policy, S̄ and Ā are next stage of the agent and next action picked
using current Q-value estimation, R is the current reward that related to current
action.

1.3 Contributions
In this work, we further improve [21] and propose an adaptive traffic control
algorithm that controls traffic based on accurate real-time traffic information
and global traffic information, where neighboring junction agents exchange traffic
information to learn global traffic information.

1.4 Problem Formulation

1.4.1 Main Question

What is the performance of the algorithm controls traffic based on accurate real-
time traffic information (achieved by using shadow network) and global traffic
information (achieved by using Q-learning)?
we propose an adaptive traffic control algorithm based on back-pressure and

Q-learning, which can efficiently reduce congestion. Our algorithm controls traf-
fic based on accurate real-time traffic information and global traffic information
learned by Q-learning. As verified by simulation, our algorithm significantly de-
creases average vehicle traveling time from 17% to 37% when com-pared with
state-of-the-art algorithm under tested scenarios.

1.4.2 Sub-Question 1

What happens if the road network consists of self-driving vehicles that follow our
algorithm and human-driving vehicles that not follow our algorithm?
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We concern about this issue because in the urban road network, it impossible
that all vehicles in the road network will be a self-driving vehicle. In this work,
we simulate to show the performance of our algorithm for scenarios with both
self-driving vehicles and human-driving vehicles.

1.4.3 Sub-Question 2

How does each agent know the destination of each vehicle and collect vehicle
speed or position?
In this work we assume that all vehicles are self-driving vehicles, that mean

driver has to send a destination to server. To support this idea wireless commu-
nication is important to connect each agent to the server and also image process-
ing[24] to detect and collect a number of the vehicle in each road.
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2 Road Network System

A road system consists of Roads (R) and Junctions (J), where R = {R1, R2, R3, ...Rmax}
denotes roads, J = {J1, J2, J3, ...Jmax} denotes junctions. It is assumed that each
Ri consists of 3 lanes Lij, an example is given in Fig. 2.1. Vehicles of a traffic
flow (f) have the same starting road (o) and destination road (d). We define
F as the set of all flows, O = {o(f), f ∈ F} as the set of all starting roads,
D = {d(f), f ∈ F} as the set of all destinations and λf (t) as the number of vehi-
cles of flow f that enter road network at time slot t.

Figure 2.1: Fig1 An example of a junction with roads of three lanes.
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We define a traffic movement (Ri, Rj) at a junction to be the process of a
vehicle moving from Ri to Rj. We define a traffic phase to include all traffic
movements that can happen simultaneously. Fig. 2.2. shows all possible phases
at a junction. For a junction Ja, we define Ma as the set of all possible movements
and Pa as the set of all possible traffic phases. Traffic signals at junction Ja are
controlled by activating a traffic phase pa

i from Pa.

Figure 2.2: All possible phases at a junction.
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3 Adaptive Traffic Control Based
On Back-Pressure And
Q-Learning

Our algorithm uses real-time traffic information and global traffic information in
road network.
Each junction has a control agent that collects information of vehicle speed and

vehicle position every time slot for traffic control. At each time slot, every control
agent performs the following three tasks sequentially. Task 1 (Learning Global
Congestion Information): It exchanges congestion level information with neigh-
boring agents. Based on exchanged congestion information, the agent updates its
own congestion estimate based on Q-learning. Through this kind of congestion
information exchange and update, all agents will finally obtain global congestion
information which can be used in the following two tasks. Task 2 (Traffic Phase
Selection): The agent selects a traffic phase based on back-pressure algorithm.
Task 3 (Vehicle Routing): After a vehicle passes through the junction and enters
next road under the traffic phase selected in task 2, the agent determines which
lane of that road the vehicle should join. Since each lane determines vehicle
turning direction, i.e., going straight, turning left or turning right, the process of
determining lanes for a vehicle to join forms the routing process of that vehicle.
The following shadow network is constructed to perform three tasks.

7



Figure 3.1: An example of a shadow network.

3.1 Shadow Network
An example of shadow network is given in Fig. 3.1, where a virtual shadow vehicle
in shadow network corresponds to an actual vehicle in road network, a shadow
buffer corresponds to the beginning part of one real road (a vehicle just passing
through a junction will enter this part of road) and a shadow queue corresponds
to the end part of one real road (a vehicle running close to next junction will
enter this part of the road).
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Figure 3.2: A vehicle needs time to travel across a road.

In the shadow network, whenever a real vehicle enters the road network, a
shadow vehicle is generated and enters the shadow network. Furthermore, one
more shadow vehicle is generated with probability ε, 0 < ε < 1 and also enters the
shadow network. This operation makes sure that algorithm is stable, i.e., queue
size will not go to infinite [15,17].
When an actual vehicle goes into road network from starting road Ri at t and

wants to go to destination d ∈ D, a shadow vehicle will also go into the shadow
buffer B̄d

i (t) for destination d and road Ri. When that vehicle approaches the
end part of road Ri, the shadow vehicle first leaves shadow buffer B̄d

i (t) and then
enters shadow queue Q̄d

i (t) associated with destination d and road Ri. We say a
vehicle approaches end part of one road if its speed is less than 5 Km/h or it is
within the range of 100 meters to next junction.
Similarly, after an actual vehicle destined for destination d ∈ D leaves road Ri

and goes into adjacent road Rj at t, a shadow vehicle will leave shadow queue
Q̄d

i (t) of road Ri and goes into shadow buffer B̄d
j (t) of Rj. Movement of virtual

shadow vehicles in the shadow network can be seen as control information ex-
change, based on which a agent performs its three tasks (details are given in the
following section).

9



3.2 Adaptive Traffic Control Algorithm Based
on Back-Pressure and Q-Learning

Our adaptive traffic control algorithm based on back-pressure and Q-Learning
(ARD-BP-Q) is decentralized and agent at each junction runs the following al-
gorithm independently.

3.2.1 Task 1 Learning Global Congestion Information

At each time slot t, an agent performs the following three tasks sequentially. The
agent at a junction is responsible for estimating route congestion level Rd

ij(t) for
all route to destination d from road i and by the way of the neighbor road j.
Each agent maintains a table R to store the value of Rd

ij(t). At the beginning of
each time slot, the agent exchanges information of the number of vehicles Q̄d

j (t)
at upstream roads around that junction and the table R with neighboring agents.
After exchanging those information, the agent updates its route congestion esti-
mate Rd

ij(t) as follows:

Rd
ij(t)→ (1− α)Rd

ij(t− 1) + α[Q̄d
j (t) + γmin

k
Rd

jk(t)] (3.1)

where α and γ are Q-learning parameters, 0 < α, γ <= 1. If Rd
ij > Cmax,

set Rd
ij = Cmax, Cmax is a positive constant. Each agent then calculates a bias

quantity Cd
i (t) as follows:

Cd
i (t) = min

j
Rd

ij(t) (3.2)

Finally, the bias quantity Cd
i (t) will be used in Traffic Phase Selection.

3.2.2 Task 2 Traffic Phase Selection

The agents at each junction compute traffic pressure wd
ij(t) for all destinations

and traffic movement. Traffic pressure in our algorithm ARD-BP-Q (Algorithm
1) is defined as follows:

wd
ij(t) = max{(Q̄d

i (t) + Cd
i (t))− (Q̄d

j (t) + Cd
j (t)), 0} (3.3)
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Then the agent select the destination d∗ij that return maximizes traffic pressure
wd

ij(t) defined as follows:

d∗ij(t) = arg max
d
wd

ij(t) (3.4)

From above equation agents define wd∗
ij(t)

ij (t) as the weight of traffic movement
which corresponds to one d∗ij(t) at time slot t.

Finally, the agent selects and activates the phase pa∗(t) ∈ Pa that releases the
most traffic pressure defined as follows:

pa∗(t) = arg max
pa

l
∈Pa

Σ(Ri,Rj)∈pa
l
w

d∗
ij(t)

ij (t)sij(t) (3.5)

where sij is the number of vehicles that can move from road Ri to road Rj at
time slot t

3.2.3 Task 3 Vehicle Routing

Vehicle will follow the routing probabilities P d
ij(t) based on σ̂d

ij(t) defined as fol-
lows:

P d
ij(t) =

σ̂d
ij(t)

Σk : (Rj ,Rk)∈Maσ̂
d
ik(t) (3.6)

where σ̂d
ij(t) is the estimated value of expected number of shadow vehicles of

destination d that moves from shadow queue Q̄d
i (t) to shadow buffer B̄d

j (t) which
corresponds to road Ri and Rj. σ̂d

ij(t) is updated by the agent of junction Ja for
all destination d ∈ D and traffic movement (Ri, Rj) ∈Ma as follows :

σ̂d
ij(t) = (1− β)σ̂d

ij(t− 1) + βσd
ij(t) (3.7)

where 0 < β < 1. After vehicle enters road Ri at time slot t it will join lane
Lij with routing probability P d

ij(t).
Since our goal is to reduce vehicle traveling time, a heuristic is that we should

let vehicles with longer traveling time pass through a junction first. Thus, we
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also propose the following Adaptive Traffic Control Algorithm Based on Back-
Pressure and Q-Learning with Vehicle traveling time (ARD-BP-QV Algorithm
2), which is the same with Algorithm 1 except that traffic pressure is defined as
follows:

wd
ij(t) = max{(V̄ d

i (t) + Cd
i (t))− (V̄ d

j (t) + Cd
j (t)), 0} (3.8)

where V̄ d
i (t) is the normalized value of the sum of traveling time of vehicles in

shadow queue Q̄d
i (t), the normalized value is within range from 50-100. We need

to normalize vehicle traveling time to make it comparable to the quantity of bias
Cd

i (t) and Cd
j (t).
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4 Simulation Setup and Results

In this section, we compare the performance of our algorithm with other algo-
rithms in an open-source simulator SUMO (Simulation of Urban MObility) [20].

� Traffic signal control with fixed-cycles (FC)

� Back-pressure and shortest path based traffic control algorithm (SP-BP)
[11]

� Back-pressure based adaptive traffic signal control and vehicle routing with-
out real-time control information update (AR-BP) [15].

� Back-pressure based adaptive traffic signal control and vehicle routing with
real-time control information update (ARD-BP)[21].

� Adaptive Traffic Control Algorithm Based on Back-Pressure and Q-Learning
(ARD-BP-Q).

� Adaptive Traffic Control Algorithm Based on Back-Pressure and Q-Learning
with Vehicle traveling time (ARD-BP-QV).

4.1 Configuration
We implement road network that mimic from a real Stockholm road network
which, given by OpenStreetMap that can export topology of road network [22,23].The
road network consists of three and four way junctions as shown in Fig. 4.1. All
roads have different lengths (400-1600 meters) and speed limits (60-140 km/h).
Roads in this network are bi-directional. There are 6 origin and destination pairs
{(o1, d1), (o2, d2), (o3, d3), ...., (o6, d6)}. All vehicles arrive at starting roads with
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the same rates (360-2520 vehicles/hour). Duration of a slot is configured to be
15 seconds. Shadow vehicle generating probability ε is configured to be 0.02
and vehicle routing parameter β is configured to be 0.02 (routing parameter β is
explained in [21]).
We define vehicle traveling time to be the time it takes a vehicle to travel from

its starting road to its destination. For algorithms AR-BP, ARD-BP, ARD-BP-Q
and ARD-BP-QV, parameter α = 2.5.
During simulations we collect the following data: vehicle speed, number of

vehicles in road network, number of arriving vehicles at destinations and vehicle
traveling time. Vehicle traveling time is the time it takes a vehicle to travel from
its origin to its destination.
For algorithms FC and SP-BP, we run simulation for 12200 seconds. We collect

simulation data of vehicles that enter road network before 7200 seconds only,
because vehicles entering road network after 7200 seconds may not arrive at
destinations.
For algorithms AR-BP , ARD-BP , ARD-BP-Q and ARD-BP-QV, we run

simulation for 18200 seconds. We collect simulation data of vehicles that enter
road network from 6000-13200 seconds only, because these algorithms need time
to learn vehicle routing probabilities and reach a stable routing policy.
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Figure 4.1: Road network structure of Stockholm city that use in SUMO with 6
pairs of origin and destination.

Figure 4.2: Three-way intersection that implemented in SUMO simulation.
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Figure 4.3: Four-way intersection that implemented in SUMO simulation.
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4.2 Simulation Result and Analysis
In Fig. 4.4, our algorithm ARD-BP-QV achieves almost the lowest average trav-
eling time under different vehicle arrival rates. Compared to ARD-BP, our al-
gorithm ARD-BP-QV decreases average vehicle traveling time by 17% to 37%.
Compared to ARD-BP-Q, algorithm ARD-BP-QV decreases average vehicle trav-
eling time by 7% to 18%. This indicates that the heuristic of letting vehicles with
longer traveling time pass through junction first is indeed an effective way to
reduce vehicle traveling time.

Figure 4.4: Average vehicle traveling time under different vehicle arrival rates.

Fig. 4.5 shows simulation results of average number of vehicles in road network.
This figure shows that the number of vehicles in road network under ARD-BP-QV
algorithm is smaller than other algorithms, meaning less traffic congestion.
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Figure 4.5: Average number of vehicles in road network under different vehicle
arrival rates.

Fig. 4.6 shows that more vehicles can arrive at destinations under our algorithm
ARD-BP-QV, meaning that more vehicles under other algorithms get stuck in
road network.

18



Figure 4.6: Number of vehicles arriving at destinations.

We also evaluate the fairness of our algorithm. From Fig. 4.7, we see that
most of vehicles arrive at their destinations within 700 seconds, which is less
than twice the average traveling time (385 seconds). So, our algorithm is fair for
most vehicles.
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Figure 4.7: Histogram of number of vehicles of different travelling time. Vehicle
arrival rate is set to be 1080 vehicles/hour and the average traveling
time is 385 seconds.

We also run simulations to check the impact of parameter α to ARD-BP-QV
performance. As shown in Fig. 4.8. we need to properly set α in our algorithm
to achieve the optimal performance.
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Figure 4.8: Performance under parameter α with rate of 450 vehicles/hour.

Finally, we run simulation to check our algorithm under scenarios with both
self-driving or human driving vehicles, where all human-driving vehicles follow
shortest path route and the percentage of human-driving vehicles ranges from
10% to 60%. The simulation results are summarized in Fig. 4.9.
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Figure 4.9: Vehicle traveling time of ARD-BP-QV under scenarios with both self-
driving or human driving vehicles.
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5 Conclusions

In this paper, we proposed an adaptive traffic control algorithm based on back-
pressure and Q-learning. Our algorithm controls traffic based on accurate real-
time traffic information (achieved by using shadow network) and global traffic
information (achieved by using Q-learning). Our algorithm can greatly decrease
traffic congestion and is superior to other state-of-the-art algorithms.
Our algorithm is suitable for self-driving vehicles because all vehicles need to
completely follow our algorithm. For scenarios with both self-driving vehicles
and human-driving vehicles, simulation results show that vehicle traveling time
increases as percentage of human-driving vehicles increase. How to improve al-
gorithm efficiency under these scenarios will be our future work.
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