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Abstract

Part-of-speech (POS) tagging for morphologically rich languages such as Arabic is
a challenging problem because of their enormous tag sets. One reason for this is that
in the tagging scheme for such languages, a complete POS tag is formed by combin-
ing tags from multiple tag sets defined for each morphosyntactic category. Previous
approaches in Arabic POS tagging modeled each morphosyntactic tagging task indi-
vidually, without utilizing shared information between the tasks. In this work, we
propose an approach that utilizes this information by jointly modeling multiple mor-
phosyntactic tagging tasks with a multi-task learning framework. We also propose a
method of incorporating tag dictionary information into our neural models by com-
bining word representations with representations of the sets of possible tags. Our
experiments showed that the joint model with tag dictionary information results in
a state-of-the-art accuracy with 91.38% on the Penn Arabic Treebank data set.
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Chapter 1

Introduction

Part-of-speech (POS) tagging is a fundamental task in natural language processing.
The granularity of the POS tag set that reflects language-specific information varies
from language to language. In morphologically simple languages such as English, the
size of the tag set is typically less than a hundred. On the other hand, in morphologi-
cally rich languages such as Arabic, the number of theoretically possible tags can be up
to 333,000 [13]. One reason for this is that in the tagging scheme for such languages, a
complete POS tag is formed by combining tags from multiple tag sets defined for each
morphosyntactic category. For example, a complete POS tag for the word _«> Hb!
‘love’ can be defined as the combination of a noun from the coarse POS category, a
nominative (n) from the case category, “not applicable” (na) from the mood category,
and so on. The aforementioned word _ Hb ‘love’ has 23 different combinations of
individual morphosyntactic tags depending on the context (Table 1.1). The enormous
number of resulting tags causes fine-grained POS tagging for Arabic to be challenging.

In order to perform this task, it is beneficial to utilize information from other mor-
phosyntactic categories when predicting a label for one category. For example, if a
word is a noun, it should take one of three tags from the case category: nominative
(n), accusative (a), or genitive (g), while it should take “not applicable” (na) from the
mood category since mood is not defined for nominals. However, most of the previ-
ous approaches in Arabic did not utilize this information, applying one model for each
task [13, 26, 28]. To make use of this information, we propose an approach that jointly
models multiple morphosyntactic prediction tasks using a multi-task learning scheme.
Specifically, we adopt parameter sharing in our bi-directional LSTM model in the hope

'We use the Buckwalter transliteration scheme [4] to represent Arabic characters.



word pos gen num cas mod asp per vox stt prc3 prc2 prcl prcO encO

I = vertb m s na i p 3 a mna O 0 0 0 0
2 s noun m S u na na na na i 0 0 0 0 0
3 &> noun m S u na na na na ¢ 0 0 0 0 0
4 > noun m S u na na na na d 0 0 0 0 0
5 &> noun m S n na na na na ¢ 0 0 0 0 0
6 _> noun m S n na na na na d 0 0 0 0 0
7 <> noun m S a na na na na ¢ 0 0 0 0 0
8 = noun m S a na na na na d 0 0 0 0 0
9 > mnoun m s g na na na na ¢ 0 0 0 0 0
10 > noun m s g na na na mna d 0 0 0 0 0
11 _> noun m S n na na na na i 0 0 0 0 0
12 _> noun m s g na na na na i 0 0 0 0 0
13 _> noun m S u na na na na i 0 0 0 0 0
14 _> mnoun m S u na na na na ¢ 0 0 0 0 0
15 .= noun m S u na na na na d 0 0 0 0 0
16 _> noun m S n na na na na c 0 0 0 0 0
17 > noun m S n na na na na d 0 0 0 0 0
18 _> noun m S a na na na na c 0 0 0 0 0
19 .= noun m S a na na na na d 0 0 0 0 0
20 > noun m s g na na na na ¢ 0 0 0 0 0
2 > noun m s g na na na na d 0 0 0 0 0
22 > noun m S n na na na na i 0 0 0 0 0
23 > noun m s g na na na na i 0 0 0 0 0

Table 1.1: Possible combinations of individual morphosyntactic tags for the word
Hb. The morphosyntactic categories shown in the table are: coarse POS (pos), gender
(gen), number (num), case (cas), mood (mod), aspect (asp), person (per), voice (vox),
state (stt), four proclitics (prc0, prcl, prc2, prc3), and one enclitic (enc).

that the shared parameters will store information beneficial to multiple tasks. To further
boost the performance, we propose a method of incorporating tag dictionary informa-
tion into our neural models by combining word representations with representations of
the sets of possible tags.

Our experiments showed that the joint model with tag dictionary information yields
the best accuracy on the Penn Arabic Treebank data set with 91.38%.



Chapter 2

Background

2.1 Arabic Language

In this section, we describe the Arabic language and the challenges it poses in the
context of natural language processing (NLP) tasks. More detailed information on this
topic can be found in Habash [12].

Modern Standard Arabic and Dialects

The Arabic language is classified as one of the Semitic languages in the Afro-Asiatic
language family, spoken in an area from West Africa to the Arabian Gulf [9] (Figure
2.11). It has multiple variants within the language where one particular variant, Modern
Standard Arabic (MSA, _sadll &y )1 AlErbyp AIfSHY), has a special status as the
standard variety. MSA is primarily used in the media and education, whereas the other
variants, dialects, are used in the daily communication. The Arabic dialects are often
classified regionally as Maghreb (North Africa), Nile Basin (Egypt/Sudan), Levant,
Gulf, and Yemen [3] as shown in the Figure 2.1. They substantially differ from MSA in
terms of various linguistics aspects, including phonology, morphology, lexical choice,
and syntax [12].

In this thesis, we focus on MSA, the standard variant of the Arabic language. In the
following sections, we refer to MSA as Arabic unless specified otherwise.

I'This figure was created using https://mapchart.net/.



B Maghreb
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7 Levant

7] Gulf

] Yemen

Figure 2.1: A map of regions where Arabic is spoken. The five regions correspond
to the five Arabic dialects following the classification in Bouamor et al. [3]. Modern
Standard Arabic (MSA) is used in all the five regions.

Arabic Orthography

Arabic is written from right to left. There are two types of symbols in the Arabic
script: letters and diacritics. Arabic letters consist of 36 letters, including the basic
28 letters that correspond to Arabic’s 28 consonantal sounds”. Diacritics are special
symbols that are written above or below the letters. For example, the following word
J kataba ‘he wrote’ is a diacritized form of the word _<S kzb. In this example, each
diacritic symbol above the letters corresponds to the vowel sound /a/. While Arabic
letters are always written, diacritics are optional. Typically, diacritics are restricted to
specific genres such as religious texts or children educational texts. In the newswire
genre, only 1.6% of all words have at least one diacritic indicated by their author to
disambiguate the text [12]. The same sequence of letters with different diacritization
can have different meaning in terms of morphological, syntactical, and lexical features.
In the example above, the word g_,\:{ ktb can be diacritized as g,;( kataba ‘he wrote’,

2 2
oS kutiba ‘it was written’, or u;( kutub ‘books’ depending on the context. An Arabic

2The letters are as follows (in alphabetical order):
‘;.)QCJCC.CJ stdjf&ijCid&sd(O oy
Ja/ /o] /] 18] [i) 0/ [x] [d] [8] [x] [2] [s] [§] [s* ] Y[ /€51 /8% 1 /] /5] [€] [a/ [/ ) fm ] [uf fa] [w] ]3]

4



word can be highly ambiguous when they are undiacritized: words have an average of
12.8 different moprphosyntactic and semantic interpretations per word, most of which
are associated with different diacritizations [28].

Arabic Morphology

Arabic NLP is challenging due to its complex morphology. We describe two types
of important phenomena that yield this morphological complexity: cliticization and
inflection [12].

Cliticization is a process by which a complex word is formed by attaching a clitic
to a base word. A clitic i1s a bound morpheme that is syntactically independent but
phonologically or orthographically dependent on the base word (cf. English contrac-
tions such as I’m). Arabic clitics can be divided into proclitics and enclitics depending
on their position to the base word. Proclitics appear before the base word, whereas en-
clitics appear after the base word. Table 2.1 shows an example of a raw space-delimited
word and its clitic-separated counterpart. The word in the example KV\&"M .9 wsyktbhA
‘and he will write it’ consists of two proclitics ( yw ‘and’, o 3 s ‘will’) and one enclitic
(s hA “it”), attached to the base word UIKJ yktb ‘he writes’. A space-delimited Arabic
word can be considerably complex due to multiple clitics attached to the base word.

Arabic Letter Transliteration

space-delimited word LSy wsyktbhA
clitic-separated word  _ S s w_s_yktb_hA

Table 2.1: An example of a raw space-delimited word and its clitic-separated counter-
part for the word L‘,J.C.wj wsyktbhA ‘and he will write it’. The symbol “_” denotes a
space added after clitic separation.

Inflection is the change in the form of a word to express different grammatical cat-
egories such as person, gender, and number. Arabic verbs inflect for aspect, mood,
voice, and subject (person, gender, and number). Arabic aspects can be perfective,

3 Arabic letters have different shapes depending on their position in a word: initial, medial, final or
stand-alone. The letter for the sound /s/ has the following shapes: —w (initial), —. (medial), U~ (final),

and . (stand-alone).



imperfective, and imperative. Mood has three values: indicative, subjunctive, and jus-
sive. Voice can be passive or active. The verbal subject is specified using person (1st,
2nd, or 3rd), gender (masculine or feminine), and number (single, dual, or plural).
Arabic nominals (i.e., nouns, adjectives, and proper nouns) inflect for gender, number,
state, and case. State has three values: definite, indefinite, and construct. The con-
struct state is used to mark the head noun of a genitive construction. Case has three
values: nominative, accusative, and genitive. Data sparsity due to the large number of
inflected forms for the aforementioned grammatical categories makes NLP tasks for
Arabic challenging.

2.2 Fine-grained Part-of-Speech Tagging

POS tagging takes a sequence of n words x;., as input and outputs a corresponding
sequence of labels y;.,, where x; is the #-th word in a sentence and y; € T is the tag
of x;. In English, a POS tag is typically taken from a single tag set 7. By contrast,
in morphologically rich languages such as Arabic, a complete POS tag is formed by
combining tags from multiple tag sets defined for each morphosyntactic category.

For example, a complete POS tag for the word > Hb ‘love’ can be defined as
the combination of a noun from the coarse POS category, a nominative (n) from the
case category, “not applicable” (na) from the mood category, and so on. Formally,
the fine-grained POS tag y; "e for a word x; is defined as the conjunction of the tags
(yz(l),yz(z), o ,yt(k)) from k tag sets T =T() x T3 x ...TW) where each TV is a tag
set for a morphosyntactic category. Our purpose is then to predict all morphosyntactic
categories for each word — in other words, this can be seen as a multi-class and multi-
label sequential labeling problem.

In this work, we use the 14 morphosyntactic categories used in [26], a framework
widely used in modern Arabic NLP tools [26, 28, 16]. The 14 categories and their
possible values are shown in Table 2.2.



pos (n =35) noun, noun_num, noun_quant, noun_prop, adj, adj_comp, adj_num,
adv, adv_interrog, adv_rel, pron, pron_dem, pron_exclam,
pron_interrog, pron_rel, verb, verb_pseudo, part, part_dem, part_det,
part_focus, part_fut, part_interrog, part_neg, part_restrict, part_verb,
part_voc, prep, abbrev, punc, conj, conj_sub, interj, digit, latin

gen (n = 3) m (masculine), f (feminine), na (not applicable)

num (n =35) s (singular), d (dual), p (plural), u (undefined), na

cas (n=>5) n (nominative), a (accusative), g (genitive), u, na

mod (n=15) i (indicative), j (jussive), s (subjunctive), u, na

asp (n=4) i (imperfective), p (perfective), ¢ (command), na

per (n =4) 1,2,3,na

vox (n =4) a (active), p (passive), u, na

stt (n=5) i (indefinite), d (definite), c (constructive/poss/idafa), u, na

prc0 (n =10) 0, na, Aa_prondem, AlImA_detneg, IA_neg, mA_neg, mA_part, mA_rel

prcl (n=27) 0, na<i$_interrog, bi_part, bi_prep, bi_prog, Ea_prep, EalaY_prep,
fiy_prep, hA_dem, Ha_fut, ka_prep, la_emph, la_prep, la_rc, libi_prep
laHa_emphfut, laHa_rcfut, li_jus, li_prep, min_prep, sa_fut, ta_prep,
wa_part, wa_prep, wA_voc, yA_voc

prc2 (n=9) 0, na, fa_conj, fa_conn, fa_rc, fa_sub, wa_conj, wa_part, wa_sub

pre3 (n=3) 0, na, >a_ques

enc (n=54) 0, na, 1p_dobj, 1p_poss, 1p_pron, 1s_dobj, 1s_poss, 1s_pron, 2d_dobyj,
2d_poss, 2d_pron, 2p_dobj, 2p_poss, 2p_pron, 2fp_dobj, 2fp_poss,
2fp_pron, 2fs_dobj, 2fs_poss, 2fs_pron, 2mp_dobj, 2mp_poss,
2mp_pron, 2ms_dobj, 2ms_poss, 2ms_pron, 3d_dobj, 3d_poss,
3d_pron, 3p_dobj, 3p_poss, 3p_pron, 3fp_dobj, 3fp_poss, 3fp_pron,
3fs_dobj, 3fs_poss, 3fs_pron, 3mp_dobj, 3mp_poss, 3mp_pron,
3ms_dobj, 3ms_poss, 3ms_pron, Ah_voc, lA_neg, ma_interrog,
mA_interrog, man_interrog, man_rel, ma_rel, mA_rel, ma_sub,
mA_sub

Table 2.2: The 14 morphosyntactic categories and their possible values used in Pasha
et al. [26]. n indicates the size of the tag set.






Chapter 3

Related Work

There have been many studies on POS tagging for Arabic [7, 22, 34, 23, 26, 28, 33].
Diab et al. [7] proposed a segmentation-based approach, in which they tag each clitic-
segmented token using SVMs. Mohamed and Kiibler [22] proposed a word-based
approach which takes space-delimited words as inputs and uses memory-based learn-
ing. Their experiment showed that the word-based approach performed better than the
segmentation-based approach, avoiding segmentation error propagation. Zhang et al.
[34] proposed joint modeling of segmentation, POS tagging, and dependency parsing
using a randomized greedy algorithm. The aforementioned studies were focused on
tagging with reduced POS tag sets whose sizes ranged from 12 to 993. However, we
use one of the most fine-grained POS tag sets, with about 2,000 tags appearing in our
training set.

In the context of fine-grained POS tagging, Mueller et al. [23] presented an approx-
imated higher-order CRF for morphosyntactic tagging across six languages, assuming
gold clitic segmentation. Pasha et al. [26] used an analyze-and-disambiguate approach,
in which they ranked the possible analyses provided by a morphological analyzer for
each space-delimited word. Shahrour et al. [28] extended their model by adjusting the
outputs of Pasha et al.’s tagger by utilizing case-state classifiers that incorporate addi-
tional syntactic information provided by a dependency parser and hand-written rules.

Compared to their approaches, our model is simple but powerful: It does not assume
gold clitic segmentation, since segmentation is also modeled as part of the morphosyn-
tactic categories, nor does it require the additional pipeline process of syntactic parsing.
Nonetheless, it is more accurate than the current state-of-the-art.

In parallel to our efforts, Zalmout and Habash [33] proposed a neural version of
MADAMIRA [26], where they choose the correct morphological analysis from the set



of potential analyses using the outputs from the bi-LSTM classifiers for the morpholog-
ical features and neural language models. They also use representations for potential
POS tags obtained from a morphological dictionary and confirmed performance im-
provement similar to our work. They report that their approach yields slightly higher
accuracy scores for the individual morphological features, but the joint features score
in ours is higher.

With regard to the use of outputs from a morphological analyzer as additional fea-
tures, our work is closely related to Bohnet et al. [2] and Shen et al. [29]. Bohnet et al.
[2] presented a joint approach for morphological and syntactic analysis for morpho-
logically rich languages, integrating additional features that encode whether a tag is in
the dictionary or not. Shen et al. [29] proposed an approach in which they encode a
sequence of possible morphosyntactic tags provided by a morphological analyzer us-
ing bi-directional LSTMs. In contrast, we provide an alternative way of encoding this
information, as well as an analysis on the most influential categories in the encoded
tag embeddings.

10
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Chapter 4

Part-of-Speech Tagging Model

In this section, we first briefly describe bi-directional LSTMs. We then present our
models which use bi-LSTMs for fine-grained Arabic POS tagging. We also propose a
method of incorporating tag dictionary information into our neural models by combin-
ing word representations with representations of the sets of possible tags.

4.1 Bi-directional LSTMs

Recurrent neural networks (RNN) [8] are a class of neural networks that are capable
of handling sequences of any length. An RNN can be seen as a function that reads
the input vector x; at time step ¢ and calculates a hidden state h, using x; and the
previous hidden state h,_;. In classification tasks, the vector h; is then fed into the
output layer and produces a probability distribution over the possible classes. One of
the drawbacks of basic RNNss is their difficulty to train due to the so-called vanishing
gradient problem. Long short term memory (LSTM) networks [15] address this issue
by introducing memory cells and gate units that capture long-term dependencies.

A bi-directional LSTM network [10] is an extension of an LSTM network that allows
modeling of past and future dependencies in arbitrary-length input sequences. The
output vector h, of a bi-LSTM is calculated by concatenating the output vector of the
forward directional LSTM that reads the sequence from beginning to end with the
output vector of the backward directional LSTM that reads the sequence in the reverse
direction.



cas cas cas

Output Label N Y2 Y3

i I T T

MLpeas MLpeas MLpeas

Multi-layer Perceptron

J\

Bi-directional LSTM

Word Representation

Input Word X1 X2 X3

Figure 4.1: Our baseline model for the category “cas”. We have one model for each
category, resulting in 14 models in total. ) is the concatenation operator.

4.2 Independent Model

For our baseline method, we use a model that independently predicts each mor-
phosyntactic category using bi-LSTMs. Our baseline is similar to the basic model in
Plank et al. [27]. Figure 4.1 illustrates an overview of our baseline model. Given
a sequence of n words xi.,, we encode each word x; into a vector representation
r; = [W;;¢], which is the concatenation of the word embedding w; and the character-
level embedding ¢;. The character-level embedding is computed by concatenating hid-
den states of the character-level forward LSTM and those of the backward LSTM as
depicted in Figure 4.2.

The vector representation r; is then fed into the bi-LSTM model, giving the forward
hidden state F), and the backward hidden state %,. Both hidden states are concatenated
into single vector v; = [ﬁ,; %,] and fed into the multi-layer perceptron (MLP). Finally,
we obtain the output label y, by performing a softmax over the tag set vocabulary. We

12



train models separately for each morphosyntactic category, resulting in 14 models in
total.

Character-level
Word Representation

Bi-directional LSTMs

-

Character Representation {

Figure 4.2: How to create character-level embeddings. <w> and </w> indicates the

<w> H b </w>

<= Hb 'love'

beginning and the end of a word.

4.3 Joint Model

Our baseline model does not share any information between morphosyntactic pre-
diction tasks, as it is trained separately. However, it is beneficial to utilize information
from other morphosyntactic categories when predicting a label for one category. In or-
der to do this, we adopt a multi-task learning approach [5, 32, 31, 1, 21]. Specifically,
we use parameter sharing in the hidden layers of the bi-LSTM model so that we can
generate a unified model that can carry information beneficial to each task.

Figure 4.3 shows an overview of our joint model. The output vectors of the bi-
LSTMs are fed into multiple MLPs, each performing a corresponding morphosyntactic
prediction task. Our model trains to minimize the cross-entropy loss averaged across
all the tasks. Let /7€ be the predicted fine-grained POS tag, y/*¢ be the gold fine-
grained POS tag. The loss function for each input word is defined as follows:

1

L(y/\fine yfine) — |M| Z L()//\rmym)

meM

b
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where M = {pos, cas, gen, ...} is the set of morphosyntactic prediction tasks. L(¥,,,ym)
is the cross-entropy loss for the category m, where J,, is the the predicted morphosyn-
tactic tag for the category m, and y,, is the gold morphosyntactic tag for the category

m.
08 cas gen 08 cas gen 08 cas gen
Output Label " N M ¥ Y2 b ¥ Y3 3
@ Mchas @ @ MLPcaS @ @ MchaS @
Multi-layer Perceptron
viQO0O0 v.QOO0Q0 QOO0
& & &
777777777777777777777 77777777777777777777 777777777
Bi-directional LSTM - 7 7 =
LSTMforward / " / ” / ,’
QOO0 rnQCO0Q0 QOO0
0 0 0
Word Representation
wi QO w, 0O w; 0O
a Q@O o QO o QO
Input Word X1 X2 X3

Figure 4.3: Multi-task bi-directional LSTM model for fine-grained Arabic POS tag-
ging.

4.4 Encoding Tag Dictionary Information

One of our contributions is to incorporate tag dictionary information into our neural
models by combining word representations with representations of the sets of possible
tags. Unlike previous approaches that use tag dictionary information provided by a
morphological analyzer as a hard constraint [13, 26, 28], we use it as a soft constraint,
as well as an additional feature for our model.
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Sum tag embeddings
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Map each tag to a vector J E
via lookup tables

E

cas gen

S

/

I S I

Generate sets of possible tags
for each morphosyntactic category

Morphosyntactic Tag Dictionary

!

Input word <= Hb 'love’

Figure 4.4: Example of how tag dictionary information is encoded. ) is the concate-
nation operator and € is the summation operator.

The drawback of using a morphological analyzer in a pipeline fashion is that the
model cannot find the correct tag in the disambiguation step if the analyzer does not
return any tag candidates. Habash et al. [14] report in their error analysis that 31.3%
of their tagging errors were due to this problem. To cope with this issue, we propose a
method of encoding tag dictionary information into our neural models instead of using
a morphological analyzer in a pipeline fashion. As such, the output of our tagger is not
restricted by the output candidates that are generated by the analyzer, and our method
can be applied to POS tagging with an arbitrary tag set.

Figure 4.4 illustrates how to encode tag dictionary information for the word _> Hb
‘love.” First, the input word is given to a tag dictionary that generates sets of possible
tags for each morphosyntactic category. The outputs from the dictionary are then fed
into the corresponding lookup tables, giving vector representations for possible tags.
For each category, we sum over the outputs from the lookup table and then concatenate
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all the summed vectors into a single vector.
Formally, the encoded vector representation d; for the input word x; is computed by
concatenating all the sub-vectors defined for each morphosyntactic category m:

d; = [d,(pos);... ;d,(cas);... ;dt(ge")]
The sub-vector d,(m) is computed with the following equation:

d" =y wmelm
dep™

where D,(m) is the set of possible tags for the category m given the word x;. wm ¢

RM*K is the embedding matrix for the category m, where M is the size of tag set and

K is the dimension of the vector space of embedding. egm) is a one-hot vector repre-
senting the tag d for the category m. Finally, the resulting vector d; is concatenated
with the word embedding w; and the character-level embedding ¢;, forming the input
word representation r; = [w;;¢;;d;| for our model. Figure 4.5 illustrates the overall

architecture of our proposed model.
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Figure 4.5: An overview of our proposed model with tag dictionary embeddings.
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Chapter 5

Experiments

In this section, we present our experimental setup and results. We report tagging
accuracy on two data sets: the Penn Arabic Treebank (PATB) data set and the Arabic
Universal Dependencies Treebank (UD Arabic) data set. We also report the effects of
tag dictionary information in both data sets.

5.1 Experimental Setup

Implementation Details

We implement all bi-LSTM models using the DyNet library [24]. We use the same
hyperparameters throughout the independent and joint models, i.e., Adam with cross
entropy loss, mini-batch size of a single sentence, 100 dimensions for word embed-
dings, 50 for character-level embeddings, 10 for each morphosyntactic dictionary em-
bedding, 500 hidden states for each direction of bi-LSTMs, 100 hidden units for an
MLP, random initialization for the embeddings, and no dropout regularization. We do
not use external resources for the word embeddings in order to emulate the data avail-
ability of earlier work as much as possible. The number of epochs is optimized based
on evaluation over the development set, to a maximum of 10 epochs. We use AL-
MOR [11], which is part of the MADAMIRA distribution [26], alongside the SAMA
database [20] to create the tag dictionary.



Data Sets

The PATB Data Set

In order to compare our models with the current state-of-the-art tagger, we use the
Penn Arabic Treebank (PATB, parts 1, 2 and 3) [17, 18, 19] with the same partitioning
as Diab et al. [6]. The statistics of the data set are shown in Table 5.1. The data
sets are pre-processed as in Pasha et al. [26] to correct annotation inconsistencies and
to obtain the morphosyntactic feature representation for each word. All the Arabic
characters are transliterated according to the Buckwalter transliteration scheme [4] and
each numerical digit is substituted with 0.

Train Dev Test

# Sentences 15,789 1,986 1,963
# Words 502,991 63,136 63,168
# Tags 2,028 1,034 1,069

Table 5.1: Number of sentences, space-delimited words, and fine-grained POS tags in
the Penn Arabic Treebank data set.

The UD Arabic Data Set

In order to evaluate the performance of our models on different data in a different
tagging scheme, we use the Arabic portion of Universal Dependencies Version 1.4 [25]
with the provided gold tokenization. We assume gold tokenization for the sake of
simplicity. The statistics of the data set are shown in Table 5.2.

Train Dev Test

# Sentences 6,174 786 704
# Tokens 225,853 28,263 28,268
# Tags 327 214 213

Table 5.2: Number of sentences, tokens, and fine-grained POS tags in the UD Arabic
data set.

For the fine-grained POS tag set, we use the universal POS tags and 16 of the mor-
phological features defined in the UD Arabic data set. The annotations in the UD
Arabic data set are automatically converted from the Prague Arabic Dependency Tree-
bank [30]. Table 5.3 shows the lists of possible values for each morphosyntactic cat-
egory. The annotations in UD Arabic are different from those in PATB with regard
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to the choice of categories and their granularity, although there are some overlaps in

categories such as gender and person. For pre-processing, each numerical digit is sub-

stituted with O.

POS (n=17)

ADJ, ADP, ADV, AUX, CONIJ, DET, INTEJ, NOUN, NUM,
PART, PRON, PROPN, PUNCT, SCONJ, SYM, VERB, X

Gender (n = 3)

Fem, Masc, EMPTY

Number (n =4)

Dual, Plur, Sing, EMPTY

Case (n=4)

Acc, Gen, Nom, EMPTY

Mood (n =5)

Imp, Ind, Jus, Sub, EMPTY

Aspect (n = 3)

Imp, Perf, EMPTY

Person (n =4)

1,2,3, EMPTY

Voice (n = 3) Act, Pass, EMPTY

Definite (n = 5) Com, Cons, Def, Ind, EMPTY
Abbr (n =2) Yes, EMPTY

AdpType (n=2)  Prep, EMPTY

Foreign (n = 2) Yes, EMPTY

Negative (n =2)

Negative, EMPTY

NumForm (n = 3)

Digit, Word, EMPTY

NumValue (n = 4)

1,2,3, EMPTY

PronType (n =4)

Dem, Prs, Rel, EMPTY

VerbForm (n = 2)

Fin, EMPTY

Table 5.3: The 17 morphosyntactic categories in the UD scheme (i.e., the universal

POS tags and 16 morphological features) and their possible values. n indicates the size

of the tag set.

Evaluation

Tagging Accuracy on the PATB data set

We report tagging accuracy over the 14 morphosyntactic categories and their combi-

nation, i.e., the fine-grained POS tag (All). For comparison, we use CamelParser [28],
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the current state-of-the-art tagger. CamelParser is an improved version of the previ-
ous state-of-the-art tagger MADAMIRA [26], which ranks the possible analyses pro-
vided by a morphological analyzer using SVMs. CamelParser adjusts the outputs of
MADAMIRA by utilizing case-state classifiers that incorporate additional syntactic
information provided by a dependency parser and hand-written rules. The tag set used
in CamelParser is compatible with the 14 morphosyntactic categories we use.

Tagging Accuracy on the UD Arabic data set

For the UD Arabic data set, we report tagging accuracy over the 17 morphosyntac-
tic categories (i.e., the universal POS tags and 16 morphological features) and their
combination (All). We use independent models with and without tag dictionary in-
formation and joint models with and without tag dictionary information for this data
set.

5.2 Results
The PATB Data Set

Table 5.4 illustrates our experimental results on the PATB data set. The best per-
forming model was the joint model with tag dictionary embeddings (+Dict), achieving
an accuracy of 91.38% on the strictest metric “All” (i.e., the fine-grained POS tag) with
an absolute improvement of 2.11% over CamelParser, the current state-of-the-art tag-
ger. This model outperforms CamelParser in every morphosyntactic category. Among
these categories, the most notable improvement is the case category (cas) with an ab-
solute improvement of 2.08% over the current state-of-the-art system. Leaving out the
dictionary embeddings (+Dict) reduces the performance by 1.89% absolute, but still
outperforms CamelParser without using any additional resources such as a morpholog-
ical analyzer or a dependency parser, indicating the effectiveness of joint modeling of
morphosyntactic categories. On the other hand, the independent model gives an accu-
racy of 87.74%, which is 1.53% absolute worse than CamelParser. However, adding
dictionary embeddings (+Dict) enhances the performance with an absolute improve-
ment of 2.43% and yields the second-best accuracy, showing the impact of the addi-
tional dictionary feature. Using McNemar’s test, the improvements in accuracy are all
statistically significant at the 0.001 level except the joint model without the dictionary
embeddings, although it is significant at the 0.1 level.
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pos gen num cas mod  asp per

CamelParser 96.78 99.41 9943 92.68 99.13 99.27 99.23
Independent 9631 99.05 99.26 93.17 99.07 99.08 99.10

+Dict 97.07 99.33 99.51 9470 9931 99.34 99.35
Joint 96.24 99.27 99.16 9348 99.18 99.19 99.20
+Dict 97.21 99.50 99.59 94.76 99.41 99.44 9947

VOX stt prcO  prcl  prc2  prc3 enc All

CamelParser 99.08 97.54 99.67 99.63 99.59 99.90 99.61 | 89.27
Independent 98.80 97.23 99.62 99.64 99.73 99.97 99.44 | 87.74

+Dict 99.18 98.11 9948 99.78 99.78 99.97 99.68 | 90.17
Joint 9891 97.70 99.66 99.64 99.68 99.97 99.58 | 89.49
+Dict 99.25 98.24 99.71 99.81 99.73 99.96 99.71 | 91.38

Table 5.4: Tagging accuracies on the PATB data set. All is the percentage where all
categories were correct (i.e., the fine-grained POS tag). +Dict indicates the use of the
tag dictionary embeddings. Best results are in boldface.

The UD Arabic Data Set

Table 5.5 illustrates our experimental results on the UD Arabic data set. The inde-
pendent model gives an accuracy of 86.34% on the metric “All” (i.e., the fine-grained
POS tag). Adding the tag dictionary embeddings (+Dict) improves the accuracy with
an absolute improvement of 2.72%. Unlike the PATB data set, the joint model out-
performed both independent models regardless of the use of the tag dictionary em-
beddings. The best performing model was the joint model with the tag dictionary
embeddings (+Dict), achieving an accuracy of 91.68%. We can observe that the over-
all results show similar tendencies to the results on the PATB data set in spite of the
different annotation schemes.
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POS Gender Number Case Mood Aspect

Independent  95.15 97.28 96.38 93.76 99.56 99.35
+Dict 96.08 98.06 97.23 94.86 99.68 99.51
Joint 95.92 97.96 96.69 94.60 99.67 99.50
+Dict 96.64 98.32 97.47 95.43 99.69 99.58

Person Voice Definite Abbr AdpType Foreign

Independent  99.37 99.14 96.40 99.88 99.75 99.16
+Dict 99.47 99.16 97.09 100.00 99.84 99.58
Joint 99.45 99.21 96.67 99.99 99.85 99.47
+Dict 99.59 99.32 97.35 99.99 99.86 99.66

Negative NumForm NumValue PronType VerbForm All

Independent  99.99 99.88 99.80 99.76 99.69 86.45
+Dict 99.99 99.90 99.80 99.79 99.73 89.17
Joint 99.99 99.90 99.98 99.81 99.78 90.36
+Dict 99.99 99.89 99.98 99.84 99.84 91.68

Table 5.5: Tagging accuracies on the UD Arabic data set. All is the percentage where
all categories were correct (i.e., the fine-grained POS tag). +Dict indicates the use of
the tag dictionary embeddings.

5.3 Analysis

Case Analysis

In Figure 5.1, we show an example of improvement by joint learning of morphosyn-
tactic features. The example sentence is extracted from the development set in the
PATB data set. We show the result of independent model on the top, and that of the
joint model on the bottom. In the word }3 gt/ “killing’, both state and case categories
are incorrectly tagged as na (not applicable) in the independent model. Given that a
noun word cannot have the label na, this can be attributed to the inability of the model
to have access to the information from other categories such as core POS. The joint
model, on the other hand, correctly predicts both categories, presumably because of
the model’s capability of utilizing the shared information among multiple morphosyn-
tactic tagging tasks.
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{ Baseline: Independent }

Sentence warrt qtl zwijth sEyA AlY AlzwAj bh

Gloss 'and she decided' killing' his wife' ‘pursuit' ‘on' 'marriage’ ‘with him'

POS Cpos:verb) Cpos:noun) Cpos:noun) Cpos:noun) Cpos:prep) Cpos:noun) Cpos:prep) (pos:punc)
Case ( cas:na )x( cas:na ) ( cas:g ) ( cas:a ) ( cas:na ) ( cas:g ) ( cas:na ) ( cas:na )
State ( stt:na )x( stt:na ) ( stt:c ) ( sttii ) ( stt:na ) ( stt:d ) ( stt:na ) ( stt:na )

Proposed: Joint

Sentence warrt qtl zwijth sEyA AlY AlzwA| bh

Gloss ‘and she decided' ‘killing' ‘his wife' ‘pursuit' ‘on' ‘marriage’ ‘with him'

POS (pos:verb) (pos:noun) (pos:noun) (pos:noun) (pos:prep) (pos:noun) (pos:prep) (pos:punc)
Case cas:a ( cas:g ) ( cas:a ) ( cas:na ) ( cas:g ) ( cas:na ) ( cas:na )
State stt:c ( stt:c ) ( sttii ) ( stt:na ) ( stt:d ) ( stt:na ) ( stt:na )

Figure 5.1: Tagging results on an example sentence extracted from the development
set in the PATB data set. .« Cb Bl &~ oo &> 95 JB &, B9 warrt gtl zwjth sEyA
AlzwAj bh. ‘And she decided to kill his wife to marry him.’

Most Influential Categories

For both data sets, we conduct additional experiments to investigate which mor-
phosyntactic category in the tag dictionary embeddings contributes most to the perfor-
mance. Specifically, instead of using all morphosyntactic categories to create the tag
dictionary embeddings, we use only one at a time. In other words, we skip the last
step of concatenating all the sub-vectors defined for each morphosyntactic category,
and use only one of the sub-vectors for the tag dictionary embeddings.

The PATB Data Set

Which morphosyntactic category in the tag dictionary embeddings contributes most
to the performance? Table 5.6 compares the performance of the different models, each
of which uses a single morphosyntactic category in its tag dictionary embeddings. The
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pos gen num cas mod asp per
+pos  +0.96 +0.25 +0.27 +1.00 +0.25 +0.21 +0.23
+gen +035 +0.10 +0.18 +0.34 +0.12 +0.12 +0.09
+num +0.36 +0.10 +0.43 +0.45 +0.06 +0.07 +0.08
+cas  +0.51 +0.13 +0.25 +0.82 +0.25 +0.22 +0.23
+mod +0.38 +0.10 +0.14 +0.77 +0.23 +0.23 +0.21
+asp +047 +0.12 +0.22 +0.48 +0.22 +0.22 +0.24
+per +0.26 +0.16 +0.18 +0.72 +0.24 +0.28 +0.29
+vox +0.27 +0.13 +0.15 +0.65 +0.21 +0.21 +0.19
+stt +0.60 +0.12 +0.20 +0.87 +0.23 +0.23 +0.22
+prc0  +0.31 +0.10 +0.16 +0.56 +0.06 +0.08 +0.08
+prcl  +0.40 +0.09 +0.21 +0.50 +0.06 -0.02 +0.06
+prc2  +0.23 +0.04 +0.16 +0.23 0.00 -0.01 +0.04
+prc3  +0.14 +0.05 +0.16 +0.33 +0.07 +0.04 +0.04
+enc  +0.26 +0.02 +0.12 +0.53 +0.09 +0.07 +0.07
+all +0.97 +0.23 +043 +1.28 +0.23 +0.25 +0.27

VOX stt prcO  prcl  prc2  prc3 enc All
+pos  +0.38 +0.46 +0.04 +0.09 +0.09 0.00 +0.08 | +1.48
+gen +0.21 +0.19 0.00 -0.06 0.00 -0.01 +0.02 | +0.33
+num +0.17 +0.13 +0.03 -0.02 +0.02 -0.01 +0.01 | +0.63
+cas +0.32 +041 -0.01 +0.08 +0.04 0.00 +0.06 | +0.99
+mod +0.31 +039 -0.01 +0.04 +0.05 -0.01 +0.06 | +0.82
+asp  +0.33 +0.33 +0.02 +0.06 +0.03 0.00 +0.03 | +0.68
+per +0.36 +0.32 +0.01 +0.08 +0.06 0.00 +0.07 | +0.78
+vox +031 +0.29 +0.01 -0.07 -0.01 -0.01 +0.04 | +0.60
+stt +0.35 +047 +0.03 +0.07 +0.05 -0.01 +0.05 | +0.99
+prc0  +0.16 +0.16 +0.06 +0.06 +0.05 0.00 0.00 | +0.56
+prcl  +0.14 +0.11 +0.02 +0.15 +0.02 0.00 0.00 | +0.69
+prc2  +0.12 +0.05 +0.04 -0.09 +0.10 -0.01 -0.02 | +0.35
+prc3  +0.15 +0.09 +0.01 -0.05 +0.05 -0.01 +0.01 | +0.28
+enc  +0.21 +0.22 +0.02 0.00 +0.04 -0.01 +0.12 | +0.63
+all +0.34 +0.54 +0.05 +0.17 +0.05 -0.01 +0.13 | +1.89

Table 5.6: Performance comparison of the different joint models, each of which uses
a single morphosyntactic category in its tag dictionary embeddings, on the PATB data
set. +m 1in the leftmost column indicates the use of the category m to form the tag dic-
tionary embeddings. +all indicates the use of all categories to form the tag dictionary
embeddings. Boldfaced numbers represent the largest improvement in the category to
predict (minimum of 0.05% absolute).
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category that contributes most in the tag dictionary embeddings is the coarse POS cat-
egory (+pos) with an absolute improvement of 1.48% on the metric “All”. It is worth
mentioning that case and state categories are tied for the second most contributing cat-
egory, which supports CamelParser’s idea that improving the prediction of case and
state categories will provide further performance gains.

Looking at the effects on each category to predict, the embeddings for coarse POS
(+pos) give the best improvement in 5 categories: coarse POS (pos), gender (gen),
case (cas), mood (mod), and voice (vox). We can see that the information carried by
the coarse POS category plays a central role for predicting other morphosyntactic cat-
egories, especially for the case category. On the other hand, in 8 categories, the best
improvement was achieved when the category used for the tag dictionary embeddings
was the same as the category to predict. The 8 categories were: coarse POS (pos),
number (num), person (per), state (stt), three of the proclitics (prc0, prcl, prc2), and
enclitic (enc). This result suggests that the tag dictionary embeddings of a given cat-
egory behave as a soft constraint when predicting the same category, which makes
intuitive sense.

The UD Arabic Data Set

Table 5.7 compares the performance of the different models, each of which uses a
single morphosyntactic category in its tag dictionary embeddings, on the UD Arabic
data set. As in the results on the PATB data set, the coarse POS category (+pos) is the
category that contributes the most in the tag dictionary embeddings, giving an absolute
improvement of 0.92% on the metric “All”. It also gives the best improvement in 8
categories: POS, Aspect, Case, Definite, Foreign, Gender, Number, Person, and Voice.
This result confirmed that the possible tag information from the POS category is more
effective than information from the other categories.

On the other hand, unlike in the PATB data set, we do not observe a relationship be-
tween the category used for the tag dictionary embeddings and the category to predict,
presumably because of the difference in the annotation schemes.
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POS  Gender Number Case Mood Aspect Person Voice Definite

+pos  +0.55 +0.30 +0.49 +0.58 +0.04 +0.07 +0.14 +0.15 +0.56
+gen  -0.20 +0.01 -0.07 +0.05 +0.06 +0.09 +0.09 +0.13 -0.01
+num  +0.12  +0.06 +0.44 +0.32 +0.04 +0.01 +0.13 +0.04 +0.25
+cas  +0.19 +0.01 +0.33 +0.33 +0.02 +0.02 +0.08 +0.04 +0.37
+mod  +0.15 -0.09 +0.24 +0.26 +0.02 +0.07 +0.13 +0.14 +0.19
+asp  +0.19 0.00 +0.23 +0.33 -0.02 +0.06 +0.11 +0.09 +0.29
+per 4020  +0.03 +0.26 +0.38 +0.01 +0.07 +0.12 +0.07 +0.28
+vox  +0.08  +0.01 +0.17 +0.13 -0.01 +0.05 +0.09 +0.14 +0.21
+stt +0.08 -0.06 +0.25 +0.48 -0.04 +0.04 +0.08 +0.07 +0.41
+prc0  -0.03 -0.06 +0.27 +0.10 +0.04 +0.02 +0.08 -0.02 +0.31
+prcl  -0.01 -0.01 +0.18 +0.20 +0.03 +0.02 +0.06 +0.07 +0.14
+prc2  -0.17 -0.12 +0.21 +0.15 +0.03 0.00 +0.01 -0.03 +0.22
+pre3  +0.07 -0.14 +0.29 +0.21 -0.02 +0.02 +0.08 +0.06 +0.25
+enc  -0.01 -0.22 +0.40 +0.10 -0.02 -0.04 -0.03 -0.05 +0.28
+all  +0.72  +0.36 +0.78 +0.83 +0.02 +0.08 +0.14 +0.11 +0.68

Abbr AdpType Foreign Negative NumForm NumValue PronType VerbForm All

+pos  +0.01 -0.01 +0.16 0.00 +0.01 -0.02 +0.03 +0.03 +0.92
+gen  +0.01 0.00 +0.03 0.00 0.00 0.00 +0.01 +0.04 +0.08
+num  0.00 -0.02 +0.06 0.00 +0.02 0.00 +0.01 +0.03 +0.34
+cas  +0.01 0.00 +0.08 0.00 +0.02 0.00 0.00 +0.03 +0.30
+mod  0.00 -0.04 +0.03 0.00 0.00 -0.01 +0.01 +0.04 +0.33
+asp  +0.01 -0.01 +0.07 0.00 -0.01 0.00 +0.01 +0.02 +0.48
+per  0.00 -0.01 +0.16 0.00 +0.02 0.00 0.00 +0.02 +0.50
+vox  +0.01 -0.03 +0.09 0.00 -0.01 0.00 +0.01 +0.01 +0.06
+stt +0.01 -0.03 +0.06 0.00 -0.01 -0.01 +0.01 +0.01 +0.28
+prc0  +0.01 -0.01 +0.09 0.00 0.00 -0.01 +0.01 +0.03 +0.13
+prel  +0.01 -0.01 +0.12 +0.01 -0.03 -0.01 +0.01 0.00 +0.30
+pre2  +0.01 -0.02 +0.11 0.00 -0.02 -0.01 0.00 0.00 -0.02
+pre3 +0.01 -0.03 -0.02 0.00 0.00 -0.03 0.00 -0.02 -0.01
+enc  +0.01 -0.04 +0.03 -0.01 0.00 0.00 0.00 +0.01 -0.02
+all 0.00 +0.01 +0.19 0.00 -0.01 0.00 +0.03 +0.06 +1.32

Table 5.7: Performance comparison of the different joint models, each of which uses
a single morphosyntactic category in its tag dictionary embeddings, on the UD Arabic
data set. +m in the leftmost column indicates the use of the category m to form the
tag dictionary embeddings. +all indicates the use of all categories to form the tag
dictionary embeddings. Boldfaced numbers represent the largest improvement in the
category to predict (minimum of 0.05% absolute).
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Chapter 6

Conclusions

We presented an approach for fine-grained Arabic POS tagging that jointly models
each morphosyntactic tagging task using a multi-task learning framework. We also
proposed a method of incorporating tag dictionary information into our neural models
by combining word representations with representations of the sets of possible tags.
The joint model with tag dictionary information results in the best accuracy of 91.38%
with an absolute improvement of 2.11% over the current state-of-the-art tagger. In ad-
dition, our experiments showed that the proposed method of encoding tag dictionary
information improves the tagging accuracy even on a data set with different annota-
tions.

One potential future direction to explore is domain adaptation to Arabic dialects,
since our approach is easily applicable as it does not require construction of a mor-
phological analyzer for each dialect. Another direction is to make use of publicly
available dictionaries such as Wiktionary! to construct a tag dictionary. In addition, it
can be worth investigating the most effective task combination in multi-task learning
as in the recent studies [31, 1, 21].

'https://en.wiktionary.org/
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