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Enumerating and Indexing Constrained Graph
Partitions Using Decision Diagrams∗

Yu Nakahata

Abstract

Graph partitioning is important for several applications such as evacuation
planning, political redistricting, VLSI design, and so on. Many types of graph
partitioning problems are NP-hard, and thus it is difficult to find a good graph
partition efficiently. In addition, it is often the case that there are several ob-
jective functions and we cannot decide the priority between them clearly. Then
it is difficult to define what is the optimal solution. In such a case, it is useful
to enumerate some solutions with moderately good objectives. However, there
are exponentially many graph partitions in a graph, and thus it is difficult to
enumerate such graph partitions efficiently.

In this thesis, we study an approach using a zero-suppressed binary decision
diagram (ZDD), which is a data structure representing a family of sets in a com-
pressed way. Especially, we focus on two types of graph partitioning problems and
propose algorithms to construct ZDDs representing sets of such graph partitions.
First, we deal with the evacuation planning problem, which asks us to partition
a target area, represented by a graph, into several regions so that each region
contains exactly one shelter. The problem has many complex constraints on the
distances between evacuees and the assigned shelters, the capacities of shelters,
and the convexity of components such that the intersections of evacuation routes
less occur. There is an existing method to construct a ZDD representing a set
of graph partitions satisfying the constraints. However, the algorithm is limited
to a grid graph because the definition of convexity of components is specialized
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for grid graphs. To deal with general graphs, we reformulated the definition of
convexity of components as spanning shortest path forests (SSPFs), and propose
an algorithm to construct a ZDD representing a set of SSPFs in a given graph.
Experimental results using real-world map data show that our algorithm can
construct a ZDD for graphs with hundreds of edges in a few minutes.

Second, we deal with balanced graph partitions. When we are given a vertex-
weighted graph, it is important to find a graph partition such that each weight
of its connected component is in a given range for applications such as political
redistricting, VLSI design, parallel processing, and so on. There is an existing
algorithm to construct a ZDD representing the set of balanced graph partitions.
However, the computation is tractable only for graphs with less than a hundred
of vertices because the algorithm tries to construct the ZDD in one step, which
leads to the increase of the memory consumption exponentially. To construct a
ZDD more efficiently, we propose a new algorithm for the problem. The proposed
algorithm divides the construction of the ZDD into several steps and suppresses
the memory consumption. Experimental results show that our algorithm runs up
to tens of times faster than the existing algorithm.

Keywords:

Graph algorithm, Graph partitioning, Decision diagram, Frontier-based search,
Enumeration problem
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1 Introduction

Graph partitioning is important for several applications such as evacuation plan-
ning [1], political redistricting [2], VLSI design [3], and so on. Many types of
graph partitioning problems are NP-hard [4], and thus it is difficult to find a
good graph partition efficiently. Therefore, many heuristics and approximation
algorithms have been proposed [4, 5]. However, such algorithms do not always
yield an optimal solution. In addition, it is often the case that there are several
objective functions and we cannot decide the priority between them clearly. Then
it is difficult to define what is the optimal solution. In such a case, it is useful
to enumerate some solutions with moderately good objectives. However, there
are exponentially many graph partitions in a graph, and thus it is difficult to
enumerate such graph partitions efficiently.

Recently, an approach using a zero-suppressed binary decision diagram (ZDD) [6]
has been proposed. A ZDD is a data structure representing a family of sets in
a compressed way. Using a ZDD, we can represent a set of graph substructures
in a given graph G, including graph partitions, as a family of edge subsets of
G. There are some algorithms to efficiently construct a ZDD representing some
types of graph substructures such as paths [7], cycles [7], forests [8], and so on.
A framework of such algorithms are called frontier-based search [7,9,10]. A ZDD
can sometimes represent a set of graph substructures exponentially smaller than
the explicit list of them, and thus an algorithm based on frontier-based search
can sometimes construct a ZDD exponentially faster than explicitly enumerating
graph substructures. Using a ZDD, we can process many queries for a family
of sets. For example, we can count the number of sets in the family, randomly
sample a set, extract the sets including or excluding a specified element from a
ZDD, extract the set with minimum or maximum weight, and so on. In addition,
when we are given two ZDDs, we can construct a ZDD representing the union, in-
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tersection, or difference of the two families represented by the input ZDDs. These
queries can be answered without decompressing ZDDs. Therefore, constructing
a ZDD representing a set of graph substructures is useful and the approach is
used in many fields such as electrical distribution networks [8], network reliabil-
ity evaluation [11,12], political redistricting [13], and so on.

In this thesis, we focus on two types of graph partitioning problems and pro-
pose algorithms to construct ZDDs representing sets of such graph partitions.
First, we deal with the evacuation planning problem, which asks us to partition a
target area, represented by a graph, into several regions so that each region con-
tains exactly one shelter. Each region must be convex to reduce intersections of
evacuation routes, the distance between each point to a shelter must be bounded
so that inhabitants can quickly evacuate from a disaster, and the number of in-
habitants assigned to each shelter must not exceed the capacity of the shelter.
Since the problem has many objective functions, it is useful to enumerate graph
partitions with good objectives. Takizawa et al. [1] proposed an algorithm using
a ZDD. They first split a target area into square cells. They adopted the con-
vexity proposed by Chen et al. [14] and enumerate graph partitioning satisfying
the convexity, distance, and capacity constraints. However, since they split the
area into square cells, their method is only appropriate for areas with a regular
structure such as Kyoto, a city in Japan. The definition of convexity of Chen et
al. is limited to grid graphs and it is difficult to extend the definition to general
graphs. In order to deal with general graphs, we reformulate the convexity for
general graphs from the definition for grid graphs. We formulate the convexity in
a general graph as a spanning shortest path forest (SSPF). Using SSPFs, we can
reduce intersections of evacuation routes when evacuees go to the assigned shel-
ters in shortest paths. We propose an algorithm to construct a ZDD representing
a set of SSPFs in a given graph based on frontier-based search. We also propose
an algorithm to deal with the distance and capacity constraint. Experimental
results using real-world map data show that our algorithm can construct a ZDD
for graphs with hundreds of edges in a few minutes.

Second, we deal with balanced graph partitions. When we are given a vertex-
weighted graph, it is important to find a graph partition such that each weight
of its connected component is in a given range. There are applications such as
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political redistricting, VLSI design, parallel processing, and so on. There is an
approach based on integer linear programming (ILP) [2]. Their algorithm finds a
graph partition with the smallest disparity, where the disparity is the maximum
ratio of the weights of two connected components in a partition. However, in
practice, there are many other constraints such as geographical, sociological, and
political requirements. It is difficult to write such constraints in ILP and solve it.
Kawahara et al. [13] proposed an algorithm to construct a ZDD representing the
set of graph partitions such that the weights of their connected components are
within a given range. However, the computation is tractable only for graphs with
less than a hundred of vertices. We can design an algorithm for the upper-bound
constraint, that is, weights of connected components are at most a given value,
with a small modification of the algorithm for the shelter-capacity constraint
which we propose in Chapter 4. However, it is difficult to extend the algorithm
to the lower-bound constraint, that is, weights of connected components are at
least a given value. In Chapter 5, we propose an efficient algorithm to construct
a ZDD for the lower-bound constraint to enumerate balanced graph partitions.
Experimental results show that our algorithm runs up to tens of times faster than
the existing algorithm.

The rest of this thesis is organized as follows. Chapter 2 gives related work.
In Chapter 3, we give preliminaries commonly used in the thesis. Chapters 4
and 5 describe the studies on the evacuation planning problem and the balanced
graph partitioning, respectively. Chapter 4 is based on “Enumerating All Span-
ning Shortest Path Forests with Distance and Capacity Constraints” [15], which
is to be appeared in IEICE Transactions on Fundamentals of Electronics. Chap-
ter 5 is based on “Enumerating Graph Partitions Without Too Small Connected
Components Using Zero-suppressed Binary and Ternary Decision Diagrams” [16],
which is a proceedings of the 17th International Symposium on Experimental Al-
gorithms (SEA 2018). We give the conclusion in Chapter 6.
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2 Related work

An approach using a zero-suppressed binary decision diagram (ZDD) [6] is studied
in various fields. Sekine et al. [10] proposed an algorithm that constructs the ZDD
representing all the spanning trees of a given graph. Knuth [7] shows how to create
a ZDD for s-t paths. Kawahara et al. [9] generalized their algorithms, which can
treat various kinds of subgraphs. Inoue et al. [8] presented an algorithm that
constructs a ZDD for rooted spanning forests and utilized it to minimize the loss
of electricity in an electrical distribution network. Kawahara et al. [13] designed
an algorithm to enumerate and index all the partitions of a given graph into the
specified number of components. There are other studies related to reliability
evaluation [11, 12], enumerating puzzle problems [17], solving a variant of the
longest path problem [18] and exact calculation of impact diffusion in Web [19].

Graph partitioning has been studied in various fields such as evacuation plan-
ning [1], political redistricting [2], VLSI design [3], and so on. There are several
models for balanced graph partitions. One model is (k, ν)-balanced graph par-
tition, which is a graph partition such that it has exactly k components and
each component has at most ⌊νn/k⌋ vertices, where, for a real number a, ⌊a⌋ is
the largest integer which is not more than a. Andreev and Rac̈ke [4] show that
the problem is NP-hard and no polynomial time approximation algorithm can
guarantee a finite approximation ratio unless P = NP when ν = 1. They also
show that there exists O(log2 n) approximation algorithm for any constant ν > 1.
There are algorithms based on local search [20,21], tabu search [22,23], and flow
based heuristics [5, 24].
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3 Preliminaries

In this Chapter, we give preliminaries commonly used in the thesis. We explain
a zero-suppressed binary decision diagram (ZDD) and frontier-based search.

3.1 Zero-suppressed binary decision diagram
A zero-suppressed binary decision diagram (ZDD) [6] is a directed acyclic graph
Z = (NZ , AZ) representing a family of sets. Here NZ is the set of nodes and AZ

is the set of arcs.∗ NZ contains two terminal nodes ⊤ and ⊥. The other nodes
than the terminal nodes are called non-terminal nodes. Each non-terminal node
α has the 0-arc, the 1-arc, and the label corresponding to an item in the universe
set. For x ∈ {0, 1}, we call the destination of the x-arc of a non-terminal node
α the x-child of α. We denote the label of α by l(α) and in this paper, assume
that l(α) ∈ Z+ ∪ {∞} for any α ∈ NZ , where Z+ is the set of positive integers.
For convenience, we let l(⊤) = l(⊥) =∞. For each directed arc (α, β) ∈ AZ , the
inequality l(α) < l(β) holds, which ensures that Z is acyclic. There is exactly
one node whose in-degree is zero, called the root node and denoted by rZ . The
number of the non-terminal nodes of Z is called the size of Z and denoted by |Z|.

Z represents the family of sets in the following way. Let PZ be the set of all the
directed paths from rZ to⊤. For a directed path p = (n1, a1, n2, a2, . . . , nk, ak,⊤) ∈
PZ with ni ∈ NZ , ai ∈ AZ and n1 = rZ , we define Sp = {l(ni) | ai ∈ AZ,1, i ∈ [k]},
where AZ,1 is the set of the 1-arcs of Z. We interpret that Z represents the family
{Sp | p ∈ PZ}. In other words, a directed path from rZ to ⊤ corresponds to a set
in the family represented by Z. As an example, we illustrate the ZDD representing
the family {{1, 2}, {1, 3}, {2, 3}} in Fig. 3.1. In the figure, a dashed arc (99K) and

∗To avoid confusion, we use the words “vertex” and “edge” for input graphs and “nodes” and
“arcs” for decision diagrams.
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Figure 3.1: Example of a ZDD

a solid arc (→) are a 0-arc and a 1-arc, respectively. On the ZDD in Fig. 3.1, there
are three directed paths from the root node to ⊤: 1→ 2→ ⊤, 1→ 2 99K 3→ ⊤,
and 1 99K 2→ 3→ ⊤, which correspond to {1, 2}, {1, 3}, and {2, 3}, respectively.
We denote a ZDD representing a family F by ZF .

3.2 Frontier-based search
Frontier-based search [7, 9, 10] is a framework of algorithms that efficiently con-
struct a decision diagram representing the set of subgraphs satisfying given con-
straints of an input graph. We explain the general framework of frontier-based
search. Given a graph G = (V, E), letM be a class of subgraphs we would like to
enumerate (for example, M is the set of all the s-t paths on G). Frontier-based
search constructs the ZDD representing the family M of subgraphs. By fixing
G, a subgraph is identified with the edge set the subgraph has, and thus the
ZDD represents the family of edge sets actually. Non-terminal nodes of ZDDs
constructed by frontier-based search have labels e1, . . . , em. We identify ei with
the integer i. We assume that it is determined in advance which edge in G has
which index i of ei.

We directly construct the ZDD in a breadth-first manner. We first create the
root node of the ZDD, make it have label e1, and then we carry out the following
procedure for i = 1, . . . , m. For each node ni with label ei, we create two nodes,
each of which is either a terminal node or a non-terminal node whose label is ei+1

(if i = m, the candidate is only a terminal node), as the 0-child and the 1-child
of ni.
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Which node the x-arc of a node ni with label ei points at is determined by
a function, called MakeNewNode, of which we design the detail according to
M, i.e., what subgraphs we want to enumerate. Here we describe the generalized
nature that MakeNewNode must possess. The node ni represents the set
of the subgraphs, denoted by G(ni), corresponding to the set of the directed
paths from the root node to ni. Each subgraph in G(ni) contains only edges
in {e1, . . . , ei−1}. Note that G(⊤) is the desired set of subgraphs represented
by the ZDD after the construction finishes. To decide which node the x-arc of
ni points at without traversing the ZDD (under construction), we make each
node ni have the information ni.conf, which is shared by all the subgraphs in
G(ni). The content of ni.conf also depends onM (for example, in the case of s-t
paths, we store degrees and components of the subgraphs in G(ni) into ni.conf).
MakeNewNode creates a new node, say nnew, with label ei+1 and must behave
in the following manner.

1. For all edge sets S ∈ G(nnew), if there is no edge set S ′ ⊆ {ei+1, . . . , em}
such that S ∪ S ′ ∈ M, the function discards nnew and returns ⊥ to avoid
redundant expansion of nodes. (pruning) In other words, if any subgraph
represented by nnew cannot be extended to a solution, we no longer expand
nnew.

2. Otherwise, if i = m, the function returns ⊤, which indicates the subgraphs
represented by nm are in solutions.

3. Otherwise, the function calculates nnew.conf from ni.conf. If there is a node
ni+1 such that whose label is ei+1 and nnew.conf = ni+1.conf, the function
abandons nnew and returns ni+1. (node merging) This is needed to merge
nodes corresponding to the same state and avoid constructing redundant
nodes. If there is no node with the same state, the function returns nnew.

We make the x-arc of ni point at the node returned by MakeNewNode.
As for ni.conf, in the case of several kinds of subgraphs such as paths and

cycles, it is known that we only have to store states relating to the vertices to
which both an edge in {e1, . . . , ei−1} and an edge in {ei, . . . , em} are incident
into each node [7] (in the case of s-t paths, we store degrees and components
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of such vertices into each node). The set of the vertices is called the frontier.
More precisely, the i-th frontier is defined as Fi = (∪i−1

j=1{{u, v} | ej = {u, v}}) ∩
(∪m

k=i{{u, v} | ek = {u, v}}). For convenience, we define F0 = Fm = ∅. States of
vertices in Fi−1 are stored into ni.conf. By limiting the domain of the information
to the frontier, we can reduce memory consumption and share more nodes, which
leads to a more efficient algorithm.

The efficiency of an algorithm based on frontier-based search is often evaluated
by the width of a ZDD constructed by the algorithm. The width WZ of a ZDD
Z is defined as WZ = max{|Ni| | i ∈ [m]}, where Ni denotes the set of nodes
whose labels are ei. Using WZ , the number of nodes in Z can be written as
|Z| = O(mWZ) and the time complexity of the algorithm is O(τ |Z|), where τ

denotes the time complexity of MakeNewNode for one node.
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4 Evacuation planning for
general graphs

4.1 Summary
This chapter studies a variant of the graph partitioning problem, called the evac-
uation planning problem, which asks us to partition a target area, represented
by a graph, into several regions so that each region contains exactly one shelter.
Each region must be convex to reduce intersections of evacuation routes, the dis-
tance between each point to a shelter must be bounded so that inhabitants can
quickly evacuate from a disaster, and the number of inhabitants assigned to each
shelter must not exceed the capacity of the shelter. This chapter formulates the
convexity of connected components as a spanning shortest path forest for general
graphs, and proposes a novel algorithm to tackle this multi-objective optimization
problem. The algorithm not only obtains a single partition but also enumerates
all partitions simultaneously satisfying the above complex constraints, which is
difficult to be treated by existing algorithms, using zero-suppressed binary deci-
sion diagrams (ZDDs) as a compressed expression. The efficiency of the proposed
algorithm is confirmed by the experiments using real-world map data. The results
of the experiments show that the proposed algorithm can obtain hundreds of mil-
lions of partitions satisfying all the constraints for input graphs with a hundred
of edges in a few minutes.

4.2 Introduction
We consider the following variant of the graph partitioning problem, called the
evacuation planning problem: We are given a graph G = (V, E) representing an
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area and a set S ⊆ V of shelters (or evacuation centers). Each vertex has an
integer value representing the population and each shelter has an integer value,
called shelter-capacity, that means the number of evacuees that the shelter can
accommodate. The goal is to find a partition of G such that each connected com-
ponent contains exactly one shelter in S. There are several constraints we must
consider in the problem: the structural, distance and shelter-capacity constraints.
The structural constraint requires that each component is convex to reduce inter-
sections of evacuation routes. The distance constraint is that the distances from
vertices to the assigned shelters should be short. In addition, for fairness, it is
not preferable that evacuees are assigned to a far shelter even though another
shelter exists near them. The shelter-capacity constraint is about the capacities
of shelters: the number of evacuees assigned to each shelter should not exceed
its shelter-capacity. In practice, it is often that the total shelter-capacity of shel-
ters is insufficient to accommodate all inhabitants in an area. Thus, although
we allow a shelter to accommodate evacuees more than its shelter-capacity, we
want to reduce the ratio of the number of evacuees assigned to a shelter to its
shelter-capacity. This multi-objective property makes it difficult to define what
is the best partition. Therefore, it is useful not only to find one partition but
also to enumerate partitions which satisfy the constraints. Once we enumerate
partitions, administrators can evaluate enumerated partitions from various per-
spectives and select one of them.

Takizawa et al. [1] proposed an algorithm for a special case of the problem in the
following way. They first split a target area into square cells and enumerated all
partitions such that each connected component contains exactly one shelter. They
consider the convexity constraint first introduced by Chen et al. [14]. In their
definition, a component containing a shelter s is called convex if the component
can be written as the union of rectangles each of which contains s. However, their
definition of convexity is limited to square cells.

In this chapter, we reformulate the convexity for general graphs from the defini-
tion for grid graphs (the case in Takizawa et al. [1]). We formulate the convexity
of connected components as a spanning shortest path forest, in short, SSPF. An
SSPF has good properties to avoid intersections of evacuation routes.

Our approach is as follows: First, we construct ZDDs representing a set of parti-
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tions satisfying the structural and distance constraints. As we show in Section 4.5,
it seems computationally difficult to directly construct a ZDD representing a set
of partitions simultaneously satisfying all the constraints. Hence we divide the
process of construction of the ZDD into some steps. To construct a ZDD effi-
ciently, we propose algorithms based on frontier-based search [7,9,10], which is a
framework to construct a ZDD representing a set of constrained subgraphs in a
given graph. In particular, we propose a novel algorithm to enumerate all SSPFs
in a given graph with the distance constraint. The efficiency of frontier-based
search is usually evaluated in terms of the width of a ZDD constructed by the
algorithm, which is a rough indication of the computation time and memory us-
age. As for the general graph partitioning problem, the algorithm with the width
of a ZDD O(Bf2f2) is known [13], where Bf is the f -th Bell number and f is
the maximum frontier size, which is a parameter of a frontier-based search-like
algorithm. Our algorithm exploits the property of SSPFs and achieves the width
of a ZDD O(Bf2rf ), where r is the number of shelters. This bound is tighter
than O(Bf2f2) when r is smaller than f .

Second, we obtain a ZDD representing a set of partitions satisfying all the con-
straints by operations between ZDDs. Here we propose an algorithm to deal with
the population constraint. Our algorithm first constructs a ZDD representing a
set containing all the minimal patterns violating the population constraint, and
then extract solutions using operations between ZDDs. To construct the ZDD,
we also devise a new algorithm based on frontier-based search. The width of a
ZDD constructed by our algorithm is O(BfP ) where P is the total population
over vertices, while that of the previous method [13] is O(BfP f ).

To evaluate our proposed algorithm, we conduct numerical experiments using
real-world map data. Our algorithm constructs a ZDD representing a set of
solutions of input graphs with a hundred of edges in a few minutes.

This chapter is organized as follows. In Section 4.3, we give some preliminaries
and formulate our problem. We propose our algorithm in Sections 4.4 and 4.5.
Section 4.6 gives experimental results.
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4.3 Preliminaries

4.3.1 Notation

Let an input graph be a vertex and edge weighted graph G = (V, E, popu, w).
Assume that G is simple, connected and undirected. Here, V = {1, 2, . . . , n} is
a vertex set and E ⊆ {{u, v} | u, v ∈ V } is an edge set. The function popu :
V → Z+ is a vertex weight function, where Z+ is a set of positive integers. For
a vertex v, popu(v) indicates the population of v. The function w : E → R+ is
an edge weight function, where R+ is a set of positive real numbers. For an edge
e, w(e) means the length of e. Hereinafter, we sometimes drop popu and w from
(V, E, popu, w) and write G = (V, E) for simplicity. Let S = {1, 2, . . . , r} ⊆ V be
a set of shelters. Note that r = |S| and ∀s ∈ S, ∀v ∈ V \ S, s < v. We are also
given cap : S → Z+. For a shelter s ∈ S, cap(s) denotes the shelter-capacity of s.

We give some additional notation. For U ⊆ V, G[U ] is a vertex induced sub-
graph in G by U and, for E ′ ⊆ E, G[E ′] is an edge induced subgraph in G by E ′.
We regard U ⊆ V and E ′ ⊆ E in the same light as G[U ] and G[E ′], respectively.
For a vertex v and a subgraph E ′ ⊆ E, let CE′(v) be the set of the vertices
adjacent to v, containing v. When there is no ambiguity, we omit E ′ and write
C(v). We denote the shortest distance between vertices u and v in G as dG(u, v).
Let d∗(v) be the shortest distance from v to the nearest shelter in G, that is,
d∗(v) = min{dG(s, v) | s ∈ S}. Bf denotes the f -th Bell number, which is the
number of partition of f items.

4.3.2 Formulation

We introduce the constraints on the structure of components in a partition, dis-
tances from each vertex to a shelter, and the shelter-capacity of shelters.

It is required that each component should be connected and that intersections
of evacuation routes are avoided. We assume that each evacuee on a vertex
evacuates to a shelter along the shortest path from the vertex to the shelter. To
impose the constraint, we represent a partition as a spanning shortest path forest,
in short, SSPF. To define an SSPF, we give the definition of a shortest path tree,
in short, SPT.
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Figure 4.1: Example of a shortest path tree

Figure 4.2: Example of a spanning shortest path forest

Definition 1 (Shortest path tree (SPT)). We say that T = (U, E ′), U ⊆ V, E ′ ⊆
E, is a shortest path tree (an SPT) of G = (V, E) rooted at s ∈ S if T is a
spanning tree of G[U ], s ∈ T and dT (s, u) = dG(s, u) for all u ∈ U .

Figure 4.1 shows an example of an SPT. In the figure, the colored vertex is a
shelter and thick edges compose the tree. The numbers near the edges are edge
weights. Each number in a vertex is the shortest distance from the shelter to
itself. Next, an SSPF is defined as follows.

Definition 2 (Spanning shortest path forest (SSPF)). We say that F = (V, E ′), E ′ ⊆
E, is a spanning shortest path forest (an SSPF) of G = (V, E) if every connected
component in F has exactly one shelter s ∈ S, and is an SPT rooted at s.

Figure 4.2 shows an example of an SSPF. In the figure, colored vertices are
shelters. Suppose that an SSPF F is given. We say that s ∈ S is the assigned
shelter of v if s is the root of the SPT containing v in F . In F , for all vertices v ∈
V , evacuees on v can go to the assigned shelter in the shortest distance without
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passing through edges in other trees. This property leads to less intersections
of evacuation routes. We call the condition that a partition is represented as an
SSPF the structural constraint. In what follows, we identify a partition with an
SSPF.

Next, we discuss the rest of the constraints. We introduce two parameters
D, R ∈ R+. D is an upperbound of the distance from any vertex to the assigned
shelter. That is, for all v ∈ V, dG(v, sv) ≤ D must hold, where sv is the assigned
shelter to v in an SSPF F . In addition to restricting the maximum distance of
evacuation routes, we would like to avoid assigning a vertex to a far shelter even
though there is another shelter close to the vertex. We impose the restriction that
any vertex must not be assigned to a shelter R times farther than the nearest
shelter. That is, for all v ∈ V , dG(v, sv) ≤ R · d∗(v) must hold. We call the
above constraint the distance constraint. In addition, we introduce a parameter
K ∈ R+, which is the maximum acceptable ratio of the number of evacuees
assigned to a shelter to its shelter-capacity, that is,

∀s ∈ S,
∑

v∈CF (s)
popu(v) ≤ K · cap(s), (4.1)

which we call the shelter-capacity constraint. Note that we cannot assign a vertex
to the nearest shelter s′ when the total population on the vertices near s′ is too
much.

As a summary, our problem is defined as follows.

Input

• A vertex and edge weighted graph G = (V, E, popu, w), where

– vertex set V = {1, 2, . . . , n},

– edge set E = {e1, e2, . . . , em},

– vertex weight function (population) popu : V → Z+,

– edge weight function (distance) w : E → R+.

• A set of shelters S = {1, 2, . . . , r} ⊆ V ,

• Capacities of shelters cap : S → Z+,
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• Parameters D, R, K ∈ R+.

Solution

• An SSPF F of G (the structural constraint) satisfying the following con-
straints:

1. The distance constraint:

∀v ∈ V, d(v, sv) ≤ min{D, R · d∗(v)}, (4.2)

where sv is the nearest shelter to v in F .

2. The shelter-capacity constraint:

∀s ∈ S,
∑

v∈CF (s)
popu(v) ≤ K · cap(s). (4.3)

4.4 Structural and distance constraints
Let us describe an overview of our proposed method. Because dealing with all
the constraints at the same time seems computationally difficult as we show in
Section 4.5, we divide the procedure into three steps:

1. Construct ZDD Z1 representing the set of all the SSPFs satisfying the dis-
tance constraint.

2. Construct ZDD Z2 representing a set containing all the minimal trees vio-
lating the shelter-capacity constraint.

3. Obtain ZDD Z3 representing the set of all the SSPFs satisfying all the
constraints by operations between Z1 and Z2.

In the rest of this section, we explain Step 1. First, we explain a basic algorithm
for explanation, and then we show a more memory-efficient algorithm.
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4.4.1 Basic algorithm

Before explaining the algorithm, we examine the properties of SPTs. Consider
an SSPF F . Let T ⊆ F be an SPT rooted at s ∈ S. If an edge e = {u, v} is an
element of T , one of Eqs. (4.4) and (4.5) is satisfied:

dG(s, u) + w(e) = dG(s, v), (4.4)
dG(s, v) + w(e) = dG(s, u). (4.5)

Conversely, if either Eqs. (4.4) or (4.5) holds for s ∈ S, e can be an element of
an SPT rooted at s. Since w(e) > 0 for all e ∈ E, Eqs. (4.4) and (4.5) are never
satisfied simultaneously. In T , we orient e in the direction u → v if Eq. (4.4) is
satisfied, which implies u is a parent in T , and v → u if Eq. (4.5) is satisfied.
Then T can be seen as a directed tree; the in-degree of s in T is zero and those
of others in T are one.

Based on the above discussion, we explain the configuration we use in frontier-
based search for our problem. In what follows, we describe the configuration
stored into a ZDD node, say N , having a label ei = {u, v}. Recall that the
node N corresponds to a set of subgraphs, which we denote G. The values of the
configuration stored into N represent the characteristic of any subgraph in G, and
conversely, by the merge process described in Section 3.2, two nodes are merged
only when the values of the configuration of the two nodes are completely the
same. Thus, we pick up a subgraph, say G′, in G as a representative and associate
G′ with the values of the configuration stored into N .

First, to deal with connected components, for each x ∈ Fi, we introduce and
store a function (or an array) cmp[x] into N in the same way as in Section 3.2.
Recall that the value cmp[x] is maintained so that for y, z ∈ Fi, cmp[y] = cmp[z]
if and only if y and z belong to the same connected component in G′. Here,
we maintain the value cmp[x] as cmp[x] = min{y ∈ Fi | y ∈ C(x)}, noting that
C(x) means the connected component of G′ containing x, including x. Since
∀s ∈ S, ∀x ∈ V \ S, s < x by definition in Section 4.3, we can detect whether
C(x) contains a shelter or not using cmp, that is, if C(x) contains some shelter s,
cmp[x] = s ≤ r = |S|. Otherwise r < cmp[x]. Hereinafter, we regard the value of
cmp[x] in the same light as C(x) in G′.
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Second, we introduce indeg[s][x] for x ∈ Fi and s ∈ S. Consider the connected
component C(x) of G′ such that C(x) ∩ S = ∅. If some of ei, . . . , em are added
to G′ and C(x) is connected to s, C(x) becomes a part of the SPT rooted at s.
Recall that since N has the label ei, G′ has edges only in {e1, . . . , ei−1}. Then,
each edge in C(x) is oriented in the SPT (rooted at s). We maintain the value of
indeg[s][x] so that indeg[s][x] represents the in-degree of x assuming that C(x)
is a part of the SPT rooted at s. That is,

indeg[s][x] =

∣∣∣∣∣∣
e ∈ C(x)

∣∣∣∣∣∣ e = {y, x},
dG(s, y) + w(e) = dG(s, x)


∣∣∣∣∣∣ . (4.6)

Third, when there is an edge e in a connected component C in G′ containing
no shelter such that neither Eqs. (4.4) nor (4.5) holds for e and s ∈ S, s cannot
join C. Therefore, to detect the situation, for each connected component con-
taining no shelter, we store a Boolean value which indicates whether or not each
shelter can join the connected component into N as valid[s][C]. For all s ∈ S

and a connected component C > r, valid[s][C] = true if s can join C, and
valid[s][C] = false if not.

We explain how to deal with the structural constraint. Consider the destination
of the 1-arc of N (described above). This means that we add the edge ei = {u, v}
to G′. Without loss of generality, we can assume the cases are of the following:

(a) C(u) = C(v).

(b) C(u) ̸= C(v) and C(u) contains a shelter su and C(v) contains a shelter sv.

(c) C(u) ̸= C(v) and C(u) contains a shelter su and C(v) contains no shelter.

(d) C(u) ̸= C(v) and neither C(u) nor C(v) contains any shelter.

In case (a), if we add ei to G′, we can no longer obtain the solution because a
cycle is generated in G′∪{ei}. Therefore case (a) should be pruned. We also have
to prune case (b) because we will connect different shelters su and sv. In case (c),
if valid[su][C(v)] = false, we should prune the case. In case pruning does not
occur in all the cases above, the rest of the cases are (d) and the following (c’):

(c’) C(u) ̸= C(v), C(u) contains a shelter su, C(v) contains no shelter, and
valid[su][C(v)] = true.
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Since we add ei to G′, the connected components C(u) and C(v) are merged in
G′ ∪ {ei}. Let C(uv) be the generated connected component, that is, C(uv) =
C(u) ∪ C(v).

Consider how to update the configuration of a ZDD node in cases (c’) and (d)
(we call making a node N ′ as the destination of an arc of N and setting the
configuration of N ′ “updating the configuration”). Suppose that we are making
a node N ′ as the destination of the 1-arc of N .

We describe updating valid. In case (c’), valid[su][C(v)] = true is ensured
because pruning by the condition valid[su][C(v)] = false does not occur in
case (c’), so we do not have to do anything. In case (d), for all s ∈ S, we
set valid[s][C(uv)] in N ′ to be true if and only if valid[s][C(u)] = true and
valid[s][C(v)] = true in N . If valid[s][C(uv)] is false for all s ∈ S after
updating, any shelter can no longer join C(uv). Therefore we prune this case.

Next, we describe updating not only valid but also indeg. In case (c’), we
have the following two situations.

(c’1) Equation (4.4) is satisfied for ei and su.

(c’2) Otherwise.

Case (c’1) means that if ei will be included in the SPT rooted at su in the future,
the orientation of ei in tree must be u → v. Hence, if case (c’1) holds, adding
ei to G′ increases the in-degree of v in the SPT (under construction) rooted at
su. Therefore, in case (c’1), if indeg[su][v] = 1 holds, we cannot add ei to G′.
Therefore we prune this case. Otherwise (indeg[su][v] = 0) we substitute 1 for
indeg[su][v] and go on the procedure. In case (c’2), we cannot add ei to G′ and
prune this case. In case (d), for each s, the following three cases are considered:

(d1) Equation (4.4) is satisfied for ei and s.

(d2) Equation (4.5) is satisfied for ei and s.

(d3) Neither Eqs. (4.4) nor (4.5) is satisfied for ei and s.

Similarly to the above discussion, in case (d1), if indeg[s][v] = 1 in N , we cannot
add ei to G′. Therefore, in such cases, we substitute false for valid[s][C(v)]
in N ′, otherwise 1 for indeg[s][v] in N ′. Case (d2) is almost the same as case
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(d1). In case (d3), we substitute false for valid[s][C(uv)] in N ′. The difference
between (c’) and (d) is that now we do not perform pruning immediately but
updating valid. Similarly to the discussion in case (c’), if valid[s][C(uv)] is
false in N ′ for all s ∈ S, we prune the case.

We can deal with the distance constraint by initializing valid[s][{v}] for all
s ∈ S when a vertex v appears on a frontier. Let valid[s][{v}] ← true if
d(s, v) ≤ min{D, R · d∗(v)}, otherwise valid[s][{v}]← false.

4.4.2 More memory-efficient algorithm

In Subsection 4.4.1, we store indeg into ZDD nodes because we want to know
in-degrees of vertices on a frontier in the SPT (under construction) rooted at
each s ∈ S. Here, for reducing the memory consumption, we propose not to
store indeg; we can know in-degrees of vertices in the SPTs from other stored
values. In the algorithm of Subsection 4.4.1, a connected component C can be
a part of the SPT rooted at s ∈ S if valid[s][C] = true. In other words,
when valid[s][C] = true, we can see C as a part of a directed tree rooted at s.
Moreover, the directions of the edges in C in the tree can be determined according
to Eqs. (4.4) and (4.5): u → v holds if dG(s, u) < dG(s, v). Thus, we have the
only one vertex v such that indeg[s][v] = 0 in the directed tree of C, which is
nearest to s in C. Other vertices u in C have indeg[s][u] = 1. We can find v by
comparing dG(s, u) among vertices u in C. Note that dG(s, u) does not change
throughout the construction of the ZDD, and thus we can replace individual
indeg in all ZDD nodes by common dG(s, u), which can be managed globally.
Using this idea, we can realize the same algorithm as Subsection 4.4.1 without
storing indeg into ZDD nodes. This reduces memory consumption. Pseudocode
is presented in Algorithms 1–5.

Let us consider the width of a ZDD constructed by our algorithm. As configu-
rations, we store cmp and valid in each ZDD node. There are Bf different states
for cmp among ZDD nodes with the same label, and 2rf for valid (Recall that r

is the number of shelters). Thus, we obtain the following lemma.

Lemma 1. The width of a ZDD constructed by Algorithms 1–5 is O(Bf2rf ).

In the algorithm in Subsection 4.4.1, we store an array cmp and matrices valid
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and indeg into each ZDD node. cmp has f elements and valid and indeg have
rf elements respectively, and thus we store (2r + 1)f values into each ZDD node
in the algorithm in Subsection 4.4.1. By contrast, in the algorithm proposed in
this subsection, we store only (r + 1)f values into each ZDD node because we do
not store indeg.

4.5 Shelter-Capacity constraint
In this section, we propose how to deal with the shelter-capacity constraint ef-
ficiently. Kawahara et al. [13] have been proposed an algorithm for the shelter-
capacity constraint. Their approach is to store the total population of each con-
nected component into ZDD nodes as an additional configuration. Let A be an
algorithm to construct a ZDD for a set of constraints C, where C is a set of
constraints without the shelter-capacity constraint. Then, their approach makes
the algorithm B to construct a ZDD for C and the shelter-capacity constraint.
However, when the width of a ZDD constructed by A is O(g(f)), that of B is
O(g(f)P f ), where P is the total population over vertices. This can desperately
increase the number of ZDD nodes, which is likely to limit the sizes of solvable
instances.

Based on the above observation, we devise a new method to deal with the
shelter-capacity constraint. Our idea is that we construct a ZDD representing a
set containing all the forbidden minimal patterns. In particular, we construct a
ZDD Z2 with the following properties:

1. ∀G′ ∈ Z2, G′ is a tree containing exactly one shelter s,

2. ∀G′ ∈ Z2, the total population over vertices in G′ exceeds cap(s),

3. Z2 contains all the minimal trees violating the shelter-capacity constraint.

Once we construct such Z2, we can obtain a ZDD Z3 representing all the solutions
satisfying all the constraints using operations between Z1 and Z2, obtained in
Section 4.4, as we describe later in this section.

We propose an algorithm to construct Z2 based on frontier-based search. For
simplicity, we first consider the case K = 1. We now store two configurations
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into each ZDD node: cmp and sm_popu. The configuration cmp is almost the
same as described in Subsection 4.4.1. However, here we use the new value −1.
cmp[v] = −1 indicates v has not been adopted yet. We say v is adopted if at least
one edge incident to v is adopted. sm_popu is the total populations of adopted
vertices. Using these configurations, frontier-based search can be performed as
follows: Consider the situation we make a new ZDD node N ′ as a descendant of
1-arc of a ZDD node N with the label ei = {u, v}. Similarly to Subsection 4.4.1,
we pick up a subgraph G′ as a representative of a set of subgraphs represented
by N . If cmp[x] = −1 holds for x ∈ ei in N , x is adopted. Therefore we set
cmp[x]← x in N ′, to initialize x as an isolated vertex∗. Because x is adopted, the
total population of adopted vertices is updated as sm_popu← sm_popu+popu(x)
in N ′. After calculating sm_popu in N ′, if the current value of sm_popu in N ′

is never that of a minimal tree, we can prune such a case. To detect this, we
calculate two grobal variables in advance: cap_max = max{cap(v) | v ∈ S}
and popu_max = max{popu(v) | v ∈ V }. If sm_popu > cap_max + popu_max
holds in N ′, the solution can never be the minimal tree violating the shelter-
capacity constraint. Such a case can be pruned. We should prune the case
cmp[u] = cmp[v] ̸= −1 holds in N ′ because adding ei to G′ in this case yields
a cycle. If all the above pruning did not occur, then we merge two connected
components C(u) and C(v) and update cmp.

Next, we consider the situation we make a new ZDD node as a descendant of
x-arc (x ∈ {0, 1}) of a ZDD node N with the label ei = {u, v}. First, if there
exists only one connected component C in the frontier, C contains a shelter s,
and sm_popu > cap(s) in N ′, then C satisfies 1 and 2. So we should make 1 as a
new node. Second, if there exists a connected component C leaving the frontier in
N ′, C leaves the frontier before violating the population constraint, and therefore
we should make 0. In the case i = m, which indicates G′ has no edges, we should
also make 0.

In order to extend the algorithm to cases such that K > 1, we only have to set
cap(s) ← K · cap(s) for all s ∈ S before running the algorithm. Pseudocode is
presented in Algorithm 6.

∗Since we adopt ei, x is actually not an isolated vertex (at least it is connected with the other
vertex in ei). However, we update cmp later (in lines 11–14 in Algorithm 6), and thus we can
simply set cmp[x]← x here without loss of correctness.
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Let us consider the width of a ZDD constructed by Algorithm 6. Algorithm
6 stores cmp and sm_popu into ZDD nodes as configurations. There are O(Bf )
different states for cmp among ZDD nodes with the same label and O(P ) for
sm_popu†. Therefore we obtain the following lemma.

Lemma 2. The width of a ZDD constructed by Algorithm 6 is O(BfP ).

Now we have ZDDs Z1 and Z2. We can obtain a ZDD Z3 representing the set
of all the solutions satisfying all the constraints by

Z3 = Z1 ↘ Z2 = {α ∈ Z1 | ∀β ∈ Z2, α ̸⊇ β}. (4.7)

This operation is known as nonsupset [7]. The operation can be realized by using
restrict operation. Z1.Restrict(Z2) is defined as

Z1.Restrict(Z2) = {α ∈ Z1 | ∃β ∈ Z2, α ⊇ β}. (4.8)

From Eqs. (4.7) and (4.8), we obtain the following equation:

Z3 = Z1 \ Z1.Restrict(Z2). (4.9)

Both setminus and restrict operations are supported in ordinary ZDD libraries,
so we can utilize them.

As for Eq. (4.8), the smaller number of nodes of Z2 leads to faster calculation.
However, as we show in Section 4.6, the number of nodes of Z2 is sometimes
considerably larger than that of Z1. Thus we give a more efficient procedure. The
key point is that some tree in Z2 may not be an SPT or, even so, it may not satisfy
the distance constraint. If we eliminate such trees from Z2 in advance, the number
of nodes of Z2 may become smaller. Although we can realize this by modifying
Algorithm 6, it makes the time complexity of the algorithm worse. Therefore we
use an operation between ZDDs instead. Here we use permit operation defined
as

A.Permit(B) = {α ∈ A | ∃β ∈ B, α ⊆ β}. (4.10)
†In practice, if P is big, we can round the values of population. Then the complexity O(P )
changes to O(P ′), where P ′ is the total population of rounded values.
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Permit operation is similar to restrict operation. The difference between them is
“⊇” and “⊆”. Using permit operation, our procedure is written as follows:

Z3 = Z1 \ Z1.Restrict(Z ′
2), (4.11)

where

Z ′
2 = Z2.Permit(Z1). (4.12)

4.6 Experimental results
We conducted numerical experiments to confirm the efficiency of our proposed
algorithm in terms of time and memory. We used a machine with an Intel Xeon
Processor E7-8870 (2.4GHz) CPU and a 2 TB memory (Oracle Linux 6.7) for
the experiments. All code was implemented in C++ (g++4.4.7 with the -O3
optimization). We used the TdZdd library [25] to implement algorithms based
on frontier-based search. To perform operations between ZDDs, we adopted the
SAPPOROBDD library.

4.6.1 Dataset

We applied our algorithm to real-world map data. A target area is Higashishiga,
Kita Ward, Nagoya City in Japan. We first obtained map data of the target area
from openstreetmap.org‡, and then created graphs representing road networks
within specified ranges of latitude and longitude. The number of vertices is 165
and that of edges is 212 in this graph. We set w(e) ← ⌈xe⌉ for all edges e,
where xe is the original length (meter) of e in the map and, for a real number a,
⌈a⌉ is the smallest integer which is not less than a. The locations of shelters are
obtained from the official web site of Nagoya City§. We assumed that each shelter
s is located on the intersection closest to s in the road network. The map data
and the locations of shelters are shown in Fig. 4.3. We assumed that popu(v) = 1

‡https://www.openstreetmap.org
§http://www.city.nagoya.jp/bosaikikikanri/cmsfiles/contents/0000090/90892/
ura_03kita.pdf (in Japanese)

24



Figure 4.3: The map data of the target area ( c⃝ OpenStreetMap contributors)

for all v ∈ V and set the capacities of shelters proportional to the real capacities
so that their summation equals to the number of vertices in the graph, as shown
in Tab. 4.1.

4.6.2 Preprocessing

To enable us to deal with larger networks, we preprocessed graphs and reduced
the numbers of vertices and edges. We conducted three types of preprocessing.
First, edges which is never contained in a shortest path from any shelter to any
vertex can be deleted because such edges can never be contained in any SPT.
Therefore, for e = {u, v} ∈ E, if ∀s ∈ S, |d(s, u) − d(s, v)| ̸= w(e), we delete e.
Second, because of the distance constraint, there may be some vertex v′ such that
v′ can only be assigned to the shelter closest to v′. We can contract such v′ to
the shelter closest to v′ before running the proposed algorithm. Third, a vertex
v whose degree is one must be in the same connected component as a vertex u

which is adjacent to v. Therefore we can contract v to u. We repeat this until
the graph does not have a vertex whose degree is one.
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4.6.3 Results

We show the results in Tab. 4.2. D, R and K are the parameters described in
Subsection 4.3.2, and n and m are the number of vertices and edges in the graph
after preprocessing. Groups of columns Z1, Z2 and Z3 show experimental results
about constructing ZDDs described in Sects. 4.4 and 4.5. Columns “# node”
indicate the numbers of ZDD nodes after reduction and “Time” is the time to
construct ZDDs including the time to reduce ZDDs (in seconds). The last column
“# solution” shows the number of partitions satisfying all the constraints for each
parameter.

For all the graphs, our algorithm succeeded in constructing the final ZDD Z3

within a few minutes. The time to construct Z1 is always shorter than that to Z2.
This is because less merging of nodes occur in the construction of Z2, where we
maintain the total population of adopted vertices. The time to construct Z3 from
Z1 and Z2 is lower than that to construct Z1 and Z2. For each graph, although
the number of obtained solutions is over 108, the number of nodes in Z3 is a
few thousands. This shows that our approach, constructing ZDDs, successfully
enumerated partitions as a compressed representation. Using the constructed
ZDD and operations between ZDDs, we can deal with more constraints and find
good solutions.
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Algorithm 1: MakeNewNode1(N, i, take)
1 Let ei = {u, v}.
2 Copy N to N ′.
3 if take = 1 then
4 if cmp[u] = cmp[v] then
5 return 0 // A cycle is generated.

6 else if cmp[u] ≤ r and cmp[v] ≤ r then
7 return 0 // connect shelters

8 else if cmp[u] ≤ r and r < cmp[v] and valid[cmp[u]][cmp[v]] = false
then

9 return 0
10 else if cmp[v] ≤ r and r < cmp[u] and valid[cmp[v]][cmp[u]] = false

then
11 return 0
12 if UpdateState(N ′, i) returns false then
13 return 0

14 if ei is the last edge adjacent to C and C does not contain any shelter
then

15 return 0 // A connected component without any shelter is
generated.

16 for x ∈ ei such that x /∈ Fi and cmp[x] > r do
17 for s ∈ S do
18 if IsNearestInCmp(N ′, x, s) returns true then

// a vertex with in-degree zero leaves the frontier
before it connects to any shelter.

19 valid[s][cmp[x]]← false

20 if valid[s][cmp[x]] returns false for all s ∈ S then
21 return 0 // cmp[x] can no longer be connected to any

shelter.

22 if i = m then
23 return 1 // All the constraints are satisfied.

24 return N ′
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Algorithm 2: UpdateState(N ′, i)
// update information of node N ′ when we adopt ei

1 if CheckIndeg(N ′, i) returns false then
2 return false

3 if UpdateValid(N ′, i) returns false then
4 return false

// update cmp
5 Cmin = min{cmp[u], cmp[v]}
6 Cmax = max{cmp[u], cmp[v]}
7 for x ∈ Fi−1 ∪ ei such that cmp[x] = Cmax do
8 cmp[x]← cmin

9 return true
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Algorithm 3: CheckIndeg(N ′, i)
// check if we can adopt ei in N ′ with respect to the

constraint of in-degrees
1 if cmp[u] > r and cmp[v] ≤ r then
2 swap u and v.
3 if cmp[u] ≤ r and cmp[v] > r then

// cmp[u] contains a shelter and cmp[v] contains no shelter.
4 s← cmp[u]
5 if d(s, u) + w(ei) ̸= d(s, v) then
6 return false

7 else if IsNearestInCmp(N ′, v, s) returns false then
8 return false // the in-degree of v is not zero.

9 else
// Neither cmp[u] nor cmp[v] contains any shelter.

10 for s ∈ S do
11 if d(s, v) + w(ei) = d(s, u) then
12 swap v and u.
13 if d(s, u) + w(ei) = d(s, v) then
14 if IsNearestInCmp(N ′, v, s) returns false then
15 valid[s][cmp[v]]← false

16 else
17 valid[s][cmp[u]]← false
18 valid[s][cmp[v]]← false

19 return true
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Algorithm 4: UpdateValid(N ′, i)
// update valid of the new connected component when we adopt

ei

1 Cmin ← min{cmp[u], cmp[v]}
2 Cmax ← max{cmp[u], cmp[v]}
3 if Cmin > r then

// merges connected components containing shelters
4 for s ∈ S do
5 valid[s][Cmin]← valid[s][Cmin] and valid[s][Cmax]
6 if valid[s][Cmin] = false for all s ∈ S then
7 return false // Cmin can no longer be connected to any

shelter

8 return true

Algorithm 5: IsNearestInCmp(N ′, x, s)
// check if x is the nearest vertex in cmp[x] to s

1 for y ̸= x such that cmp[y] = cmp[x] do
2 if d(s, y) ≤ d(s, x) then
3 return false

4 return true
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Algorithm 6: MakeNewNode2(N, i, take)
1 Let ei = {u, v}.
2 Copy N to N ′.
3 if take = 1 then
4 for x ∈ ei such that cmp[x] = −1 do
5 cmp[x]← x
6 sm_popu← sm_popu + popu(x)
7 if sm_popu > cap_max + popu_max then
8 return 0
9 if cmp[u] = cmp[v] ̸= −1 then

10 return 0
// update cmp

11 Cmin = min{cmp[u], cmp[v]}
12 Cmax = max{cmp[u], cmp[v]}
13 for x ∈ Fi−1 ∪ ei such that cmp[x] = cmax do
14 cmp[x]← cmin

15 if C is the only connected component on the frontier and C contains a
shelter s and sm_popu > cap(s) then

16 return 1
17 if there exists a connected component leaves the frontier or i = m then
18 return 0
19 return N ′

Table 4.1: Capacities of shelters
shelter shelter-capacity

s1 37
s2 71
s3 51
s4 4
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5 Balanced graph partition

5.1 Summary
Partitioning a graph into balanced components is important for several appli-
cations. For multi-objective problems, it is useful not only to find one solution
but also to enumerate all the solutions with good values of objectives. However,
there are a vast number of graph partitions in a graph, and thus it is difficult
to enumerate desired graph partitions efficiently. In this chapter, an algorithm
to enumerate all the graph partitions such that all the weights of the connected
components are at least a specified value is proposed. To deal with a large search
space, we use zero-suppressed binary decision diagrams (ZDDs) to represent sets
of graph partitions and we design a new algorithm based on frontier-based search,
which is a framework to directly construct a ZDD. Our algorithm utilizes not only
ZDDs but also ternary decision diagrams (TDDs) and realizes an operation which
seems difficult to be designed only by ZDDs. Experimental results show that the
proposed algorithm runs up to tens of times faster than an existing state-of-the-
art algorithm.

5.2 Introduction
Partitioning a graph is a fundamental problem in computer science and has sev-
eral important applications such as evacuation planning, political redistricting,
VLSI design, and so on. In some applications among them, it is often required
to balance the weights of connected components in a partition. For example, the
task of the evacuation planning is to design which evacuation shelter inhabitants
escape to. This problem is formulated as a graph partitioning problem, and it is
important to obtain a graph partition consisting of balanced connected compo-
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nents (each of which contains a shelter and satisfies some conditions). Another
example is political redistricting, the purpose of which is to divide a region (such
as a prefecture) into several balanced political districts for fairness.

For balanced graph partitioning, Kawahara et al. [13] proposed an algorithm
to construct a ZDD representing the set of balanced graph partitions by frontier-
based search [7, 9, 10], which is a framework to directly construct a ZDD, and
applied it to political redistricting. However, their method stores the weights of
connected components, represented as integers, into the ZDD, which generates a
not compressed ZDD. As a result, the computation is tractable only for graphs
only with less than 100 vertices. Nakahata et al. [15] proposed an algorithm to
construct the ZDD representing the set of partitions such that all the weights of
connected components are bounded by a given upper threshold (and applied it
to evacuation planning). Their approach enumerates connected components with
weight more than the upper threshold as a ZDD, say forbidden components, and
constructs a ZDD representing partitions not containing any forbidden component
as a subgraph by set operations, which are performed by so-called apply-like
methods [26]. However, it seems difficult to directly use their method to obtain
balanced partitions by letting connected components with weight less than a
lower threshold be forbidden components because partitions not containing any
forbidden component as a connected component (i.e., one of parts in a partition
coincides a forbidden component) cannot be obtained by apply-like methods.

In this chapter, for a ZDD ZA and an integer L, we propose a novel algorithm
to construct the ZDD representing the set of graph partitions such that the par-
titions are represented by ZA and all the weights of the connected components
in the partitions are at least L. The input ZDD ZA can be the sets of spanning
forests used for evacuation planning (e.g., [15]), rooted spanning forests used for
power distribution networks (e.g., [8]), and simply connected components repre-
senting regions (e.g., [13]), all of which satisfy complex conditions according to
problems. We generically call these structures “partitions.” Roughly speaking,
our algorithm excludes partitions containing any forbidden component as a con-
nected component from ZA. We first construct the ZDD, say ZS , representing
the set of forbidden components, each of which has weight less than L. Then, for
a component in ZS , we consider the cutset that separates the input graph into
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the component and the rest. We represent the set of pairs of every component
in ZS and its cutset as a ternary decision diagram (TDD) [27], say TS± . We
propose a method to construct the TDD TS± from ZS by frontier-based search.
By using the TDD TS± , we show how to obtain partitions each of which belongs
to ZA, contains all the edges in a component of a pair in TS± and contains no
edge in the cutset of the pair. Finally, we exclude such partitions from ZA and
obtain the desired partitions. By numerical experiments, we show that the pro-
posed algorithm runs up to tens of times faster than an existing state-of-the-art
algorithm.

This chapter is organized as follows. In Section 5.3, we give preliminaries. We
describe an overview of our algorithm in Subsection 5.4.1, and the detail in the
rest of Section 5.4. Section 5.5 gives experimental results.

5.3 Preliminaries

5.3.1 Notation

Let Z+ be the set of positive integers. For k ∈ Z+, we define [k] = {1, 2, . . . , k}.
In this chapter, we deal with a vertex-weighted undirected graph G = (V, E, p),
Assume that G is simple and connected. where V = [n] is the vertex set and
E = {e1, e2, . . . , em} ⊆ {{u, v} | u, v ∈ V } is the edge set. The functions p : V →
Z+ and w : E → R+ give the weights of the vertices and those of the edges,
respectively. We often drop p from (V, E, p) when there is no ambiguity. For an
edge set E ′ ⊆ E, we call the subgraph (V, E ′) a graph partition. We often identify
the edge set E ′ with the partition (V, E ′) by fixing the graph G. For edge sets
E ′, E ′′ with E ′′ ⊆ E ′ ⊆ E and a vertex set V ′′ ⊆ V , we say that (V ′′, E ′′) is
included in the partition (V, E ′) as a subgraph. The subgraph (V ′′, E ′′) is called
a connected component in the partition (V, E ′) if V ′′ = dom(E ′′) holds, there is
no edge in E ′ \E ′′ incident with a vertex in V ′′, and for any two distinct vertices
u, v ∈ V ′′, there is a u-v path on (V ′′, E ′′), where dom(E ′′) is the set of vertices
which are endpoints of at least one edge in E ′′. In this case, we say that (V ′′, E ′′)
is included in the partition (V, E ′) as a connected component. We denote the
neighborhood of a vertex v in a partition E ′ ⊆ E by N(E ′, v) = {u | {u, v} ∈ E ′}.
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Figure 5.1: Example of a TDD

For i ∈ [m], E≤i denotes the set of edges whose indices are at most i. We define
E<i, E≥i and E>i in the same way.

For a set U , let U+ = {+e | e ∈ U}, U− = {−e | e ∈ U} and U± = U+ ∪ U−.
A signed set is a subset of U± such that, for all e ∈ U , the set contains at most
one of +e and −e. For example, when U = [3], both {+1,−2} and {−3} are
signed sets but {+1,−1, +3} is not. A signed family is a family of signed sets.
In particular, when U = E, we sometimes call a signed set a signed subgraph and
call a signed family a set of signed subgraphs. For a signed set S±, we define
abs(S±) = {e | (+e ∈ S±) ∨ (−e ∈ S±)}.

5.3.2 Ternary decision diagram

A ternary decision diagram (TDD) [27] is a directed acyclic graph T = (NT , AT )
representing a signed family. A TDD shares many concepts with a ZDD, and
thus we use the same notation as a ZDD for a TDD. The difference between a
ZDD and a TDD is that, while a node of the former has two arcs, that of the
latter has three, which are called the ZERO-arc, the POS-arc, and the NEG-arc.

T represents the signed family in the following way. For a directed path
p = (n1, a1, n2, a2, . . . , nk, ak,⊤) ∈ PT with ni ∈ NZ , ai ∈ AT and n1 = rT , we de-
fine S±

p = {+l(ni) | ai ∈ AT,+, i ∈ [k]} ∪ {−l(ni) | ai ∈ AT,−, i ∈ [k]}, where AT,+

and AT,− are the set of the POS-arcs of T and the set of the NEG-arcs of T , re-
spectively. We interpret that T represents the signed family {S±

p | p ∈ PT}. We il-
lustrate the TDD representing the signed family {{+1,−2}, {+1,−3}, {−2, +3}}
in Fig. 5.1 for example. In the figure, a dashed arc (99K), a solid single arc
(→), and a solid double arc (⇒) are a ZERO-arc, a POS-arc, and a NEG-arc,

36



respectively. In the figure, ⊥ and the arcs pointing at it are omitted for simplic-
ity. The TDD in the figure has three directed paths from the root node to ⊤:
1 → 2 ⇒ ⊤, 1 → 2 99K 3 ⇒ ⊤, and 1 99K 2 ⇒ 3 → ⊤, which correspond to
{+1,−2}, {+1,−3}, and {−2, +3}, respectively.

5.4 Algorithms

5.4.1 Overview of the proposed algorithms

In this section, for a ZDD ZA and L ∈ Z+, we propose a novel algorithm to con-
struct the ZDD representing the set of graph partitions such that the partitions
are represented by ZA and each connected component in the partitions has weight
at least L. In general, there are two techniques to obtain ZDDs having desired
conditions. One is frontier-based search, described in the previous section. The
method proposed by Kawahara et al. [13] directly stores the weight of each com-
ponent into ZDD nodes (as conf) and prunes a node when it is determined that
the weight of a component is less than L. However, for two nodes, if the weight of
a single component on the one node differs from that on the other node, the two
nodes cannot be merged. Consequently, node merging rarely occurs in Kawahara
et al.’s method and thus the size of the resulting ZDD is too large to construct it
if the input graph has more than a hundred of vertices.

The other technique is the usage of the recursive structure of a ZDD. Methods
based on the recursive structure are called apply-like methods [26]. For each node
α of a ZDD, the nodes and arcs reachable from α compose another ZDD, whose
root is α. For a ZDD Z and x ∈ {0, 1}, let cx(Z) be the ZDD composed by
the nodes and arcs reachable from the x-child of the root. For (one or more)
ZDDs F (and G), an apply-like method constructs a target ZDD by recursively
calling itself against c0(F ) and c1(F ) (and c0(G) and c1(G)). For example, the
ZDD representing F ∩G can be computed from c0(F )∩ c0(G) and c1(F )∩ c1(G).
Apply-like methods support various set operations [7, 26].

Nakahata et al. [15] developed an algorithm to upperbound the weights of
connected components in each partition, i.e., to construct the ZDD represent-
ing the set A of partitions included in a given ZDD and the weights of all the
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components in the partitions are at most H ∈ Z+. Their algorithm first con-
structs the ZDD ZS representing the set of forbidden components (described in
the introduction) with weight more than H by frontier-based search. Then, the
algorithm constructs the ZDD representing {A ∈ A | ∃S ∈ S, A ⊇ S}, written as
ZA.restrict(ZS), which means the set of all the partitions each of which includes
a component in S as a subgraph, in a way of apply-like methods. Finally, we
extract subgraphs not in ZA.restrict(ZS) from ZA by the set difference operation
ZA \ (ZA.restrict(ZS)) [6], which is also an apply-like method.

In our case, lowerbounding the weights of components, it is difficult to compute
desired partitions by the above approach because a partition including a forbidden
component (i.e., weight less than L) as a subgraph can be a feasible solution.
We want to obtain a partition including a forbidden component as a connected
component. Although we can perform various set operations by designing apply-
like methods, it seems difficult to obtain such partitions by direct set operations.

Our idea in this section is to employ the family of signed sets to represent the
set of pairs of every forbidden component and its cutset. We use the following
observation.

Observation 1. Let A be a graph partition of G = (V, E) and S ⊆ E be an edge
set such that (dom(S), S) is connected. The partition A contains (dom(S), S) as
a connected component if and only if both of the following hold.

1. A contains all the edges in S.

2. A does not contain any edge e in E \ S such that e has at least one vertex
in dom(S).

Based on Observation 1, we associate a signed subgraph S± with a connected
subgraph (dom(S), S):

S± = S+ ∪ S−, (5.1)
S+ = {+e | e ∈ S}, (5.2)
S− = {−e | (e = {u, v} ∈ E \ S) ∧ ({u, v} ∩ dom(S) ̸= ∅)}. (5.3)

S± is a signed subgraph such that abs(S+) and abs(S−) are sets of edges sat-
isfying Conditions 1 and 2 in Observation 1, respectively. Note that abs(S−) is
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Figure 5.2: Graph partition and its connected component

Figure 5.3: Signed subgraph with minimal cutset

a cutset of G, that is, removing the edges in abs(S−) separates G into the con-
nected component (dom(abs(S+)), abs(S+)) and the rest. In addition, abs(S−)
is minimal among such cutsets. In this sense, we say that S± is a signed subgraph
with minimal cutset for S.

Hereinafter, we call edges in abs(S+) positive edges, abs(S−) negative edges and
the other edges zero edges. Figure 5.2 shows an example of a graph partition A

and its connected component S. In the figures, bold lines are edges contained
in the partition or the subgraph. Values in vertices are its weights. A contains
S as a connected component. The weight of S is 1 + 2 + 3 + 4 = 10, and thus,
when L > 10, A does not satisfy the lower bound constraint. Figure 5.3 shows
S± associated with S in Fig. 5.2. In the figure, thin single lines, bold single lines,
and doubled lines are zero edges, positive edges, and negative edges, respectively.
The partition A in Fig. 5.2 indeed contains all the edges in abs(S+) and does not
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contain any edges in abs(S−). For a graph partition E ′ ⊆ E, when the weights of
all the connected components of E ′ is at least L, we say that E ′ satisfies the lower
bound constraint. To extract partitions not satisfying the lower bound constraint
from an input ZDD, we compute the set of partitions each of which has all the
edges in abs(S+) and no edge in abs(S−) for some S ∈ S.

The overview of the proposed method is as follows. In the following, let A
be the set of graph partitions represented by the input ZDD and B be the set
of graph partitions each of which belongs to A and satisfies the lower bound
constraint.

1. We construct the ZDD ZS representing the set S of forbidden components,
where S is the set of the connected components of G whose weights are less
than L.

2. Using ZS , we construct the TDD TS± , where S± is a set of signed subgraphs
with minimal cutset corresponding to S by a way of frontier-based search.

3. Using TS± , we construct the ZDD ZS↑ , where S↑ is the set of partitions each
of which contains at least one forbidden component in S as a connected
component.

4. We obtain the ZDD ZB by the set difference operation ZA \ ZS↑ [6].

In the rest of this section, we describe each step from 1 to 3.

5.4.2 Constructing ZS

We describe how to construct ZS , which represents the set S of forbidden sub-
graphs whose weights are less than L. In this subsection, we consider only for-
bidden components with at least one edge. Note that a component with only
one vertex cannot be distinguished by sets of edges because all such subgraphs
are represented by the empty edge set. We show how to deal with components
having only one vertex in Subsection 5.4.4.

We can construct ZS using frontier-based search.We design an algorithm in
a similar way to the algorithm 6, which deal with the upper-bound constraint.
To construct ZS , in the frontier-based search, it suffices to ensure that every
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enumerated subgraph has only one connected component and its weight is less
than L. The former can be dealt by storing the connectivity of the vertices in
the frontier as comp. The latter can be checked by managing the total weight of
vertices such that at least one edge is incident to as weight.

Let us analyze the width of ZS . For nodes with the same label, there are
O(Bf ) different states for comp [13], where, for k ∈ Z+, Bk is the k-th Bell
number and f = max{|Fi| | i ∈ [m]}. As for weight, when weight exceeds L,
we can immediately conclude that the subgraphs whose weights are less than L

are generated no more. If we prune such cases, there are O(L) different states
for weight. As a result, we can obtain the following lemma on the width of ZS .

Lemma 3. The width of ZS is O(BfL), where f = max{|Fi| | i ∈ [m]}.

5.4.3 Constructing TS±

In this subsection, we propose an algorithm to construct TS± . First, we show
how to construct the TDD representing the set of all the signed subgraphs with
minimal cutset, including a disconnected one. Next, we describe the method to
construct TS± using ZS .

Let S± = S+ ∪ S− be a signed subgraph. Our algorithm uses the following
observation on signed subgraphs with minimal cutset.

Observation 2. A signed subgraph S± is a signed subgraph with minimal cutset
if and only if the following two conditions hold:

1. For all v ∈ V , at most one of a zero edge or a positive edge is incident to
v.

2. For all the negative edges {u, v}, a positive edge is incident to at least one
of u and v.

Conditions 1 and 2 in Observation 2 ensure that abs(S−) is a cutset such that
removing it leaves the connected component whose edge set is abs(S+) and the
minimality of abs(S−). This shows the correctness of the observation. We design
an algorithm based on frontier-based search to construct a TDD representing the
set of all the signed subgraphs satisfying Conditions 1 and 2 in Observation 2.
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First, we consider Condition 1. To ensure Condition 1, we store an array
colors : V → 2{0,+,−} into each TDD node. For all v ∈ Fi−1, we manage
ni.colors[v] so that it is equal to the set of types of edges incident to v. For
example, if a zero edge and a positive edge are incident to v and no negative
edges are, colors[v] must be {0, +}. We can prune the case such that Condition
1 is violated using colors, which ensures Condition 1.

Next, we consider Condition 2. Let {u, v} be a negative edge. When u and
v leave the frontier at the same time, we check if Condition 2 is satisfied from
colors[u] and colors[v] and, if not, we prune the case. When one of u or v leaves
the frontier (without loss of generality, we assume the vertex is u), if no positive
edges are incident to u, at least one positive edge must be incident to v later.
To deal with this situation, we store an array reserved : V → {0, 1} into each
TDD node. For all v ∈ Fi−1, we manage reserved[v] so that reserved[v] = 1
if and only if at least one positive edge must be incident to v later. We can
prune the cases such that v ∈ V is leaving the frontier and both reserved[v] = 1
and + /∈ colors[v] hold, which violate Condition 2. We show MakeNewNode
function and its subroutine Reserve in Algorithms 7 and 8, respectively.

We give the following lemma on the width of a ZDD constructed by Algo-
rithms 7 and 8.

Lemma 4. The width WT of a TDD constructed by Algorithms 7 and 8 is WT =
O(6f ).

Proof. We analyze the number of different non-terminal nodes which are returned
by MakeNewNode function and have the label ei. To this end, we analyze
the number of a pair (colors[w], reserved[w]) for each w ∈ Fi−1. Because of
Lines 4–5 in MakeNewNode, + and 0 are never in colors[w] together. In
addition, colors[w] is never empty because, when MakeNewNode returns a
non-terminal node, there are at least one processed edge incident to w and its type
has been added into colors[w] in Line 16. Therefore, there are at most five differ-
ent states for colors[w]: {0}, {−}, {+}, {0,−}, and {−, +}. As for reserved[w],
it may be 1 only when colors[w] = {−} because of Lines 3–4 in Reserve. Thus,
there are at most six different states for (colors[w], reserved[w]). There are at
most f vertices in the frontier, and therefore WT = O(6f ).
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Next, we show how to construct TS± using ZS . We can achieve this goal using
subsetting technique [25] with Algorithms 7 and 8. Subsetting technique is a
framework to construct a decision diagram corresponding to another decision
diagram. We ensure that, for all S± = S+ ∪ S− ∈ S±, there exists S ∈ S such
that abs(S+) = S in the construction of TS± using subsetting technique. For this
purpose, we store another configuration ref, which is a node of ZS , into each
TDD node. We manage nT .ref in a node nT of TS± , so that, for any path pT

from rT to nT ,

(a) there exists a path pZ from rZ to nT .ref in ZS such that SpZ
= abs(S+

pT
),

and

(b) the label of nT .ref is equal to that of nT .

To achieve this, we insert the following procedure between Lines 2 and 3 of
Algorithm 7. We update n′

i.ref by either of two children of n′
i.ref to ensure

(b). Let the new value of n′
i.ref be α. If s = 1, to ensure (a), α must be the

1-child of n′
i.ref because s = 1 implies that we add ei as a positive edge into

all the signed sets represented by n′
i. Otherwise (when s ∈ {0, 2}), α must be

the 0-child because s ∈ {0, 2} implies that we do not add ei as a positive edge
into any signed set represented by n′

i. If α = ⊥, we return ⊥ because we cannot
ensure (a) anymore. Otherwise, we go on to Line 3 of Algorithm 7. Storing ref
into each TDD node makes the width of the output TDD larger. The numbers
of ref in TDD nodes with the same labels are bounded by the width of ZS , so
the width of TS± is bounded by O(WZ6f ), where WZ is the width of ZS .

5.4.4 Constructing ZS↑

In this subsection, we show how to construct ZS↑ and how to deal with forbidden
components consisting only of one vertex whose weight is less than L, which was
left as a problem in Subsection 5.4.2. From Observation 1 and Eqs. (5.1)–(5.3),
S↑ can be written as

S↑ = {E ′ ⊆ E | ∃S± ∈ S±, (∀+ e ∈ S±, e ∈ E ′) ∧ (∀ − e ∈ S±, e /∈ E ′)}. (5.4)

Using TS± , we can construct ZS by the algorithm of Suzuki et al. [28].
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Finally, we show how to deal with a graph partition containing a single vertex
v such that p(v) < L as a connected component, i.e., a partition has an isolated
vertex with small weight. Let Fv be the set of graph partitions containing ({v}, ∅)
as a connected component. A graph partition E ′ ⊆ E belongs to Fv if and only
if E ′ does not contain any edge incident to v. Using this, we can construct the
ZDD Zv representing Fv in O(m) time. For each v ∈ V such that p(v) < L, we
construct Zv and update ZS↑ ← ZS↑ ∪ Zv. In this way, we can deal with all the
graph partitions containing a connected component whose weight is less than L.

5.5 Experimental results
We conducted computational experiments to evaluate the proposed algorithm
and to compare it with the existing state-of-the-art algorithm of Kawahara et
al [13]. We used a machine with an Intel Xeon Processor E5-2690v2 (3.00 GHz)
CPU and a 64 GB memory (Oracle Linux 6) for the experiments. We have
implemented the algorithms in C++ and compiled them by g++ with the -O3
optimization option. In the implementation, we used the TdZdd library [25] and
the SAPPORO_BDD library.∗ The timeout is set to be an hour.

We used graphs representing some prefectures in Japan for the input graphs.
The vertices represent cities and there is an edge between two cities if and only
if they have the common border. The weight of a vertex represents the number
of residents living in the city represented by the vertex. As for the input ZDD
ZA, we adopted three types of graph partitions: graph partitions such that each
connected component is an induced subgraph [13], which we call induced partition,
forests, and rooted forests. There is a one-to-one correspondence between induced
partitions and partitions of the vertex set. A rooted forest is a forest such that
each tree in the forest has exactly one specified vertex. We chose special vertices
for each graph randomly. A summary of input graphs and input graph partitions
is in Tab. 5.1. In the table, we show graph names and the prefecture represented
by the graph, the number of vertices (n), edges (m) and connected components
(k) in graph partitions. The groups of columns “Induced partition”, “Forest”,

∗Although the SAPPORO_BDD library is not released officially, you can see the code in
https://github.com/takemaru/graphillion/tree/master/src/SAPPOROBDD.
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and “Rooted forest” indicate the types of input graph partitions. Inside each
of them, we show the size (the number of non-terminal nodes) of ZA and the
cardinality of A.

The lower bounds of weights are determined as follows. Let k be the number
of connected components in a graph partition and r be the maximum ratio of the
weights of two connected components in the graph partition. From k and r, we
can derive the necessary condition that the weight of every connected component
must be at least L(k, r) = P/(r(k − 1) + 1), where P = ∑

v∈V p(v) [13]. We used
L(k, r) as the lower bound of weights in the experiment. For each graph, we run
the algorithms in r = 1.1, 1.2, 1.3, 1.4, and 1.5.

We show the experimental results in Tab. 5.2. In the table, we show the graph
name, the value of r and L(k, r), and the execution time of Alg. N, the proposed
algorithm, and Alg. K, the algorithm of Kawahara et al. The size of ZB and the
cardinality of B are also shown. “OOM” means out of memory and “-” means
both algorithms failed to construct the ZDD (due to timeout or out of memory).
We marked the values of the time of the algorithm which finished faster as bold.

First, we analyze the results for induced partitions. For the input graphs from
G1 to G4, both Alg. N and Alg. K succeeded in constructing ZB, except when
r = 1.1 in G4 for Alg. K. In cases where both algorithms succeeded in constructing
ZB, the time for Alg. N to construct the ZDD is 2–32 times shorter than that for
Alg. K. In addition, Alg. N succeeded in constructing the ZDD when r = 1.1 in
G4, where Alg. K failed to construct the ZDD because of out of memory. These
results show the efficiency of our algorithm. In contrast, for G5, although both
algorithms failed to construct the ZDD when r = 1.1, 1.2, 1.3 and 1.4, only Alg. K
succeeded when r = 1.5. In this case, the size of the ZDD constructed by Alg. N
did stay in the limitation of memory while, in our algorithm, the size of ZS↑

exceeded the limitation of memory.
Second, we investigate the results for forests. Both Alg. N and Alg. K succeeded

in constructing ZB for the input graph from G1 to G4. In all those cases, Alg. N
was faster than Alg. K. Comparing the results with those of induced partitions,
we found that the execution time of Alg. K depends on the input partitions more
than Alg. N does. For example, for G1, while the execution time of Alg. N is
almost irrelevant to the types of input ZDDs, that of Alg. K differ up to about
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five times. This is because the efficiency of Alg. K strongly depends on the sizes
of input ZDDs. This makes the sizes of output ZDDs constructed by Alg. K
large, which implies the increase in the execution time of Alg. K. In contrast, the
execution time of Alg. N does not depend on the sizes of input ZDDs in many cases
because Alg. N uses the input ZDD only in the set difference operation, which
is executed in the last of the algorithm (by the existing apply-like method). As
we show later, the bottleneck of Alg. N is the construction of ZS↑ . Therefore, in
many cases, the sizes of input ZDDs do not change the execution time of Alg. N.

Third, we examine the results when the input graph partitions are rooted
forests. There are 13 cases such that Alg. K was faster than Alg. N. In the cases,
the sizes of input ZDDs and output ZDDs are small, that is, thousands, or even
zero. These results show that Alg. K tends to be faster when the sizes of input
ZDDs and output ZDDs are small.

In order to assess the efficiency of our algorithm in each step, we show detailed
experimental results for G3 and G4 when the input graph partitions are induced
partitions in Tab. 5.3. In the table, we show the time to construct decision dia-
grams, the size of decision diagrams, and the cardinality of the family represented
by ZDDs. The cardinality of S± is omitted because it is equal to that of S. The
size and cardinality for ZA \ ZS↑ are also omitted because they are the same as
|ZB| and |B|, which are shown in Tab. 5.2. For both G3 and G4, the time to
construct ZS and TS± are within one or two seconds. The most time-consuming
parts are the construction of ZS↑ in G3 and ZS↑ or ZA \ ZS↑ in G4. The set
difference operation in G4 took a lot of time because the sizes of ZA and ZS↑

are large, that is, more than a hundred. The reason why the construction of ZS↑

takes a lot of time is the increase in the sizes of decision diagrams. While the
size of TS± is only 2–7 times larger than that of ZS , that of ZS↑ is about 10–276
times larger than that of TS± . This also made the execution of the algorithm in
G5 impossible.
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Algorithm 7: MakeNewNode(ni, i, s) for constructing a TDD repre-
senting the set of signed subgraphs with minimal cutset.
// This function returns s(∈ {0, +,−})-child of ni whose label

is ei.
1 Let ei = {u, v}.
2 Copy ni to n′

i.
3 foreach x ∈ {u, v} do

// violates Condition 1 in Observation 2
4 if 0 ∈ n′

i.colors[x] and s = + then return ⊥
5 if + ∈ n′

i.colors[x] and s = 0 then return ⊥
6 if n′

i.colors[x] = {−} and s = 0 then
// Reserve the vertices in the frontier which are

connected to x by the processed edges.
7 n′

i ← Reserve(n′
i, N(E<i, x) ∩ (Fi−1 ∪ Fi))

8 if n′
i = ⊥ then return ⊥

9 if 0 ∈ n′
i.colors[x] and s = − then

10 n′
i ← Reserve(n′

i, ei \ {x})
11 if n′

i = ⊥ then return ⊥
12 if n′

i.reserved[x] = 1 and s = 0 then
13 return ⊥
14 if n′

i.reserved[x] = 1 and s = + then
15 n′

i.reserved[x]← 0 // The reservation is archived.
16 n′

i.colors[x]← n′
i.colors[x] ∪ {s}

17 foreach x ∈ {u, v} do
18 if x /∈ Fi then

// x is leaving the frontier.
19 if n′

i.reserved[x] = 1 and + /∈ n′
i.colors[x] then

// Although x is reserved, no positive edges are
incident to x.

20 return ⊥
21 if n′

i.colors[x] = {−} then
// Reserve the vertices in the frontier which are

connected to x by the processed edges.
22 n′

i ← Reserve(n′
i, N(E≤i, x) ∩ (Fi−1 ∪ Fi))

23 if n′
i = ⊥ then return ⊥

// Delete the information about the vertices leaving the
frontier.

24 n′
i.colors[x]← {}

25 n′
i.reserved[x]← 0

26 if i = m then
27 return ⊤ // All the constraints are satisfied.
28 return n′

i
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Algorithm 8: Reserve(n′, X)
// This function reserves the vertices in X ⊆ V in a TDD node

n′ and returns the node n′′ who has an updated state from
n′.

1 Copy n′ to n′′.
2 for x ∈ X do

// We cannot reserve x if there is a zero edge incident to
x.

3 if 0 ∈ n′′.colors[x] then return ⊥
// Reserve x if there are no positive edges incident to x.

4 if + /∈ n′′.colors[x] then n′′.reserved[x]← 1
5 return n′′
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6 Conclusion

In this thesis, we have proposed algorithms to construct ZDDs representing two
types of graph partitions. First, we have dealt with the evacuation planning
problem. We reformulate the convexity of components as spanning shortest path
forests (SSPFs) to deal with general graphs, and have proposed an algorithm to
construct a ZDD representing a set of SSPFs. We have also proposed algorithms
to deal with the distance and capacity constraints efficiently. As shown in exper-
imental results using real-world map data, the proposed algorithm can construct
a ZDD in a few minutes for input graphs with hundreds of edges. As future work,
it is important to consider new constraints such as reliability of roads.

Second, we have proposed an algorithm for balanced graph partitions. We can
design an algorithm for the upper-bound constraint, that is, weights of connected
components are at most a given value, with a small modification of the algo-
rithm for the shelter-capacity constraint which we have proposed in Chapter 4.
However, it is difficult to extend the algorithm to the lower-bound constraint,
that is, weights of connected components are at least a given value. Therefore,
we proposed an efficient algorithm to construct a ZDD for the lower-bound con-
straint to enumerate balanced graph partitions. Experimental results show that
our algorithm runs tens of times faster than the existing algorithm. Future work
is devising a more memory efficient algorithm that enables us to deal with larger
graphs, that is, graphs with hundreds of vertices. It is also important to seek for
efficient algorithms to deal with other constraints on weights such that the ratio
of the maximum and the minimum of weights is at most a specified value.
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