
NAIST-IS-MT1551119

Master’s Thesis

Joint Transition-based Dependency Parsing and
Disfluency Detection for Automatic Speech Recognition

Texts

Masashi Yoshikawa

January 31, 2016

Department of Information Processing
Graduate School of Information Science
Nara Institute of Science and Technology

A Master’s Thesis
submitted to Graduate School of Information Science,

Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of

Master of ENGINEERING

Masashi Yoshikawa

Thesis Committee:
Professor Yuji Matsumoto (Supervisor)
Professor Satoshi Nakamura (Co-supervisor)
Associate Professor Masashi Shimbo (Co-supervisor)
Assistant Professor Hiroyuki Shindo (Co-supervisor)
Assistant Professor Hiroshi Noji (Co-supervisor)

Joint Transition-based Dependency Parsing and
Disfluency Detection for Automatic Speech Recognition

Texts∗

Masashi Yoshikawa

Abstract

Joint dependency parsing with disfluency detection is an important task in speech
language processing. Recent methods show high performance for this task, although
most authors make the unrealistic assumption that input texts are transcribed by human
annotators. In real-world applications, the input text is typically the output of an auto-
matic speech recognition (ASR) system, which implies that the text contains not only
disfluency noises but also recognition errors from the ASR system. In this work, we
propose a parsing method that handles both disfluency and ASR errors using an incre-
mental shift-reduce algorithm with several novel features suited to ASR output texts.
Because the gold dependency information is usually annotated only on transcribed
texts, we also introduce an alignment-based method for transferring the gold depen-
dency annotation to the ASR output texts to construct training data for our parser. We
conducted an experiment on the Switchboard corpus and show that our method outper-
forms conventional methods in terms of dependency parsing and disfluency detection.

Keywords:

Dependency Parsing, Disfluency Detection, Automatic Speech Recognition

∗Master’s Thesis, Department of Information Processing, Graduate School of Information Science,
Nara Institute of Science and Technology, NAIST-IS-MT1551119, January 31, 2016.

i

音声認識結果文に対する係り受け構造と言い淀み箇所
の同時推定∗

吉川将司

内容梗概

音声言語処理において,言い淀み検出を行うことは重要である．近年の言い淀
み検出の手法では,係り受け解析と同時に解くものが高い精度を示しているが、そ
れらの研究は,人手で書き起こされたコーパス上で実験を行っており,実際の応用
場面では音声認識プログラムの出力に対して言い淀み検出を行う必要性を考える
と,非現実的な仮定を有している．実際には,音声認識結果には言い淀みに加え音
声認識の誤りが加わるということを考慮しなければならない．本研究では,音声
認識結果に対しても対処することのできる shift-reduce法に基づく係り受け構造,
言い淀み箇所の同時推定手法を提案する．また,本手法を評価するためには,音声
認識結果に対して係り受け,言い淀み箇所の情報が付与されたコーパスが必要で
あるが、そのようなコーパスは存在しない．そのため、音声認識結果と書き起こ
し文のアライメントに基づく音声認識結果を用いたデータ作成手法も提案する．
Switchboardコーパス上での実験において,提案手法は従来手法に対して係り受け,
言い淀み検出の両方で精度を上回った．

キーワード

係り受け解析,言い淀み検出,音声認識

∗奈良先端科学技術大学院大学情報科学研究科情報処理学専攻修士論文, NAIST-IS-MT1551119,
2016年 1月 31日.

iii

v

Contents

1 Introduction 1

2 Related Work 3
2.1 Transition-based Dependency Parsing 3
2.2 Disfluency Detection . 5

2.2.1 Joint Methods with Dependency Parsing 5
2.2.2 Other Methods . 7

3 Data Preparation 9
3.1 Process . 9

3.1.1 ASR-to-NULL . 10
3.1.2 Trans-to-NULL . 10
3.1.3 NOT MATCH . 11

4 Proposed Parsing Method 13
4.1 Honnibal and Johnson, TACL 2014 [11] 13
4.2 Proposed Method . 15
4.3 Features . 17

4.3.1 Features for Disfluencies and ASR errors 17
4.3.2 Features based on Word Confusion Network 20
4.3.3 Backoff Action Feature . 21

4.4 Training . 21

5 Experiments 23
5.1 the Switchboard corpus . 23
5.2 Experimental Settings . 23

5.2.1 ASR Settings . 23
5.2.2 Parsing Settings . 24

5.3 Results and Analysis . 25

6 Conclusion 29

Bibliography 31

vi

vii

List of Figures

1.1 Examples of disfluencies. FL, DM, RP and RPM stand for a filler, a
discourse marker, a repair and a reparandum. 1

2.1 Deductive system for arc-eager transition-based parser. σ indicates a
stack, β a buffer, and A a set of constructed arcs. 4

2.2 Joint dependency parsing and disfluency detection. The task is to con-
struct the dependency tree that is clean of any disfluencies. In the fig-
ure, the set D is the set of detected disfluencies. 6

3.1 Examples of three problematic cases. Above shows the gold transcrip-
tion and its tree, below shows the aligned ASR output and its newly
transferred tree, where the dotted edges are ASR error edges. 10

4.1 Illustrative example of performing Edit action during parsing sentence
“his company went broke I mean went bankrupt”. When performing
Edit action, the first element of the stack is removed. Its root token
and tokens in the right descendants are added to D, while its left child
tokens are pushed back to the stack. 14

4.2 Proposed SimpleEdit action. This action removes disfluent tokens one-
by-one and guarantees that the length of the action sequence is always
two times the length of the input setence. 16

4.3 Deductive system for newly proposed actions. D is a set of removed to-
kens. The SimpleEdit action removes the top element of the stack and
LeftArcError and RightArcError perform in the same way as LeftArc
and RightArc, but are used to classify ASR error tokens. 17

5.1 Overview of Switchboard corpus. The Switchboard corpus contains
speech data and its transcription texts (A). A subset of the corpus is an-
notated with part-of-speech and disfluency information (B). A further
subset is annotated with syntactic information (C). The syntactically
annotated part is divided into three (Jack1, 2, and 3) in data creation
using the jackknife method (details are provided in the text). 24

viii

ix

List of Tables

2.1 Parsing example of sentence “his company went broke”, R stands for
dummy root token. In every time step, parser performs one out of four
actions. 5

4.1 Rich context features based on the work [38]. In each template, .w, and
.p is word form and part-of-speech tag, .d distance between σ0 and β0,
and .vr, .vl the number of left and right children. Details are in § 4.3.1. 18

4.2 Features that capture the nature of disfluencies and ASR errors. dis f l(i)
and ASRerror(i) is the binary functions that return if i’th token has
been classified as disfluent or ASR error. pre f ix match(a,b) is a func-
tion that check how long the prefixes of spans a and b match. brown(·)
returns brown cluster and match(·, ·) is a binary function that checks
the two given arguments are identical. Comb({}) stands for all combi-
nations in the set. Details are in § 4.3.1. 19

4.3 Word Confusion Network Features 21

5.1 Performance of the proposed methods. Disfl refers to the joint parser
with disfluency detection without Left/RightArcError actions. Erro-
rAct introduces these actions. Backoff and WCN, respectively, refer to
the backoff action feature in § 4.3.3and the WCN feature in § 4.3.2.
UAS reports parsing performance on all parts of the sentence (ALL)
and the ASR error part and the non ASR error part of the sentence
(ASR error / other), separately. 26

5.2 Parsing result on different train-test settings. Each Trans and ASR
refers to the gold transcription texts of the Switchboard corpus and the
ASR output version. 27

1

Chapter 1

Introduction

One of characteristics of spontaneous speech that makes it different from written
text, even including informal text, is the presence of disfluencies. Disfluencies are
prevalent in all forms of spontaneous speech, both in casual discussions and formal
arguments.

According to Shriberg [29] and the other work on disfluency detection, disfluencies
are classified into three categories:

Filler parts of speech that are usually recognized as containing no formal meaning,
such as “uh”, “um”.

Discourse marker parts of speech that are used to manage the flow and structure of
discourse, such as “I mean”, “You know”.

Reparandum parts of speech that are repeated, discarded or corrected by the follow-
ing phrase (repair). In the Figure 1.1, “to Boston” is a reparandum and corrected
by the subsequent repair phrase “to Denver”.

Disfluency is mainly studied in the psycholinguistic domains, but their treatment
in the Natural Language Processing (NLP) is also important when building an NLP
system that processes human conversations or speech.

Figure 1.1: Examples of disfluencies. FL, DM, RP and RPM stand for a filler, a
discourse marker, a repair and a reparandum.

I want a flight to Boston︸ ︷︷ ︸
RPM

uh︸︷︷︸
FL

I mean︸ ︷︷ ︸
DM

to Denver︸ ︷︷ ︸
RP

Disfluency detection, the task of detecting which part of input sentence is disfluent,
helps improve the readability of an utterance, and make it easy for downstream NLP
modules. Especially the work of Cho [4] has shown that removing disfluencies helps
improve speech translation system performance.

Detection of filler and discourse marker is fairly simple; As these types of disfluen-
cies consist of closed set of vocabulary, they can be processed by just pattern matching
on the word form.

However, the task of reparandum detection is quite challenging, as the expressions
involved in reparandum is not limited, and a reparandum can span over several words
(as exemplified in the Figure 1.1 and 2.2).

There are a number of studies that address the problem of detecting disfluencies.
Some of these studies include dependency parsing [11, 26, 27, 33], whereas others
are dedicated systems [8, 12, 13, 20, 25]. Among these studies, Honnibal [11] and
Wu [33] address this problem by adding a new action to transition-based dependency
parsing that removes the disfluent parts of the input sentence from the stack. Using
this approach, they achieved high performance in terms of both dependency parsing
and disfluency detection on the Switchboard corpus.

However, the authors assume that the input texts to parse are transcribed by human
annotators, which, in practice, is unrealistic. In real-world applications, in addition to
disfluencies, the input texts contain ASR errors; these issues might degrade the parsing
performance. As in the following example, proper nouns that are not contained in the
ASR system vocabulary may break up into smaller pieces, yielding a difficult problem
for the parsing unit [3]:

REF: what can we get at Litanfeeth
HYP: what can we get it leaks on feet

In this work, we propose a method for joint dependency parsing and disfluency de-
tection that can robustly parse ASR output texts. Our parser handles both disfluencies
and ASR errors using an incremental shift-reduce algorithm, with novel features that
consider recognition errors of the ASR system.

Furthermore, to evaluate dependency parsing performance on real human utterances,
we create a tree-annotated corpus that contains ASR errors.

We conducted an experiment on the Switchboard corpus and show that our method
outperforms conventional methods in terms of both dependency parsing and disfluency
detection.

2

3

Chapter 2

Related Work

2.1 Transition-based Dependency Parsing
Transition-based dependency parsing [15, 23, 34, 37] utilizes a deterministic shift-

reduce process to predict dependency structure for input sentence. Compared to graph-
based dependency parsing, it offers linear time complexity and is amenable to the
situation where the entire NLP system needs to process the speech data (e.g. speech
translation).

A transition-based parser consists of a configuration (or state) that is sequentially
manipulated by a set of possible actions. A state is a 3-tuple of (σ ,β ,A), where σ and
β are disjoint sets of word indices, referred to as stack and buffer, respectively, and A
is the set of constructed dependency arcs. Each dependency arc is of the form of i → j,
where i and j are word indices; this notation indicates a dependency relation from a
head i to a child j. The deductive system for the parser is shown in Figure 2.1. There,
we illustrate the stack using the topmost element to the right, and the buffer with the
topmost element to the left, with vertical bar notation (e.g., σ |i represents the stack
with a first element i), following the convention in the literature. Figure 2.1 shows a
running example of arc-eager parsing method.

In transition-based parsing, as a sequence of parsing actions maps to a dependency
tree, the problem of finding the most probable dependency tree y for the input sentence
x can be factorized as that of finding the most probable action a in the every parsing
state s:

Action Precondition
Shi f t (σ , i|β ,A,D) ⊢ (σ |i,β ,A,D)

Reduce (σ |i,β ,A,D) ⊢ (σ ,β ,A,D) ∃ j′[j′ → i ∈ A]

Le f tArc (σ |i, j|β ,A,D) ⊢ (σ , j|β ,A∪{ j → i},D) ¬∃ j′[j′ → i ∈ A]

RightArc (σ |i, j|β ,A,D) ⊢ (σ |i| j,β ,A∪{i → j},D)

(2.1)

Figure 2.1: Deductive system for arc-eager transition-based parser. σ indicates a stack,
β a buffer, and A a set of constructed arcs.

y = arg max
y′∈Y(x)

Score(y′|x)

= arg max
a1,...,an∈Actions

2n

∑
i=1

Score(ai|si),

(2.2)

where Y (x) is a set of possible dependency trees of sentence x. Score(a|s) is a
scoring function which scores how plausible to take action a in state s and is defined
as:

Score(a|s) = wa · f(s),
(2.3)

where wa is the weight vector for action a and f(s) is the feature representation for
parsing state s, respectively. In order to construct f(s) one can use template-based
feature [38] or neural network [2].

Arc-eager parser is guaranteed to terminate with 2n transitions when the input sen-
tence consists of n words. In greedy search, a parser takes the one-best action in every
parsing state. As this might lead to subsequent error propagation, one can instead adopt
beam search, in which the parser retains the best N states in every time step.

Some extensions to transition-based parsing [11], and transition-based parsing of
constituency trees [39] involve the action sequence of the length that is not constant
of sentence length n. Especially, in the disfluency detection that is done jointly with
dependency parsing, a parser removes a word token it classifies as disfluent, which

4

Step Action σ β A
1 (initial state) [R] [his company went broke] /0
2 Shift [R his] [company went broke]
3 LeftArc [R] [company went broke] A∪{company → his}
4 Shift [R company] [went broke]
5 LeftArc [R] [went broke] A∪{went → company}
6 RightArc [R went] [broke] A∪{R → went}
7 RightArc [R went broke] [] A∪{went → broke}
8 Reduce [R went] []
9 Reduce [R] []

Table 2.1: Parsing example of sentence “his company went broke”, R stands for
dummy root token. In every time step, parser performs one out of four actions.

apparently leads to action sequences with the uneven lengths. In these methods, in
order to prevent the parser from preferring to lengthen the action sequence (which
maximizes the score in Eq. 2.2), it is necessary to take some countermesures, e.g.
normalizing scores by action sequence length[11] or making the parser do dummy
transition when other candidates in beam has not reached the goal state [39].

2.2 Disfluency Detection

2.2.1 Joint Methods with Dependency Parsing

The task of disfluency detection has been tackled from syntactic point of view. The
work of Johnson and Charniak[17] is the first work that addresses this task in terms
of syntactic processing. They show the use of syntactic parser-based language model
instead of bi- or tri-gram language model improves the accuracy of repair detection.
They also show that Tree Adjoining Grammar [18], one of mildly context-sensitive
grammar formalisms, can precisely describe, thus model the fact that the repair is
“rough copy” of the reparandum.

The advantage of solving the problem of disfleuncy detection jointly with depen-
dency parsing is that one can make use of the partially constructed tree to extract
useful features to classify which part of the input sentence is disfluent. Many studies
adopt transition-based parser and propose actions that remove disfluencies from pars-
ing state when the parser cliassifies as such; Those parsers are trained to construct the
dependency tree that is clean of any disfluencies (Figure 2.2).

5

went7
company2 bankrupt8

his1 D = {went3, broke4, I5, mean6}

Input: His company went broke I mean went bankrupt

Shift-reduce

Figure 2.2: Joint dependency parsing and disfluency detection. The task is to construct
the dependency tree that is clean of any disfluencies. In the figure, the set D is the set
of detected disfluencies.

Rasooli and Tetreault [26] is the first study that proposes to add new actions to
transition-based dependency parser in order to handle disfluencies. In every parsing
state, their method first classfies whether there is a disfluency and needs to remove it
from the state, or perform the standard arc-eager action to construct dependency tree.
When the former is chosen, the parser removes the detected disfluency deterministi-
cally. In the latter case, the second classifier decides which one to perform among
standard Shift, Reduce, LeftArc and RightArc actions. In their following work, they
extended the original architecture by adding four more classfiers [27]. By adopting the
cascaded architecture, their method showed the reduced memory usage and speed up
gain.

Honnibal and Johnson [11] is the work on which this thesis is mainly based. They
propose “Edit” action, which removes the first element of the stack and its right de-
scendants, while pushing all the left descendants back to the stack. By using this
action, their method needs not to guess early that the input contains disfluency, unlike
Rasooli and Tetreault [26]’s method. They also propose the template-based features
that capture the “rough copy”-ness of reparandum. We give the details of their method
in Section 4.1.

Wu [33] shows that inverting the input sentence to the transition-based parser im-
proves the performance of both dependency parsing and disfluency detection perfor-
mance. However their method has the disadvantage that the inversion requires a com-

6

plete sentence as input, thus does not match such a situation that the output from the
ASR system needs to be processed incrementally to reduce the latency of the whole
system (e.g. SMT).

2.2.2 Other Methods

The other studies tackle this problem as sequence labeling problem [8, 12, 13, 20,
25, 32, 35].

Ferguson et al. [8] proposes that the semi-Markov Conditional Random Field [28]
is suitable to this task, as many examples of disfluencies such as repair are not made
up of single word token, rather they span over several words (thus form chunks). They
also propose the use of prosodic features, i.e. the features that are extracted from raw
wave form. These can be used as cues for pauses and hesitation and proven to be useful
for disfluency detection [30].

There are several studies that apply the neural network methods to this task [13, 32,
35]. At the time of writing, the system proposed by Zayats et al. [35] achieves the state-
of-the-art performance in the disfluency detection by using Bi-directional LSTM [16].

There are also studies of disfluency detection in the context of automatic speech
recognition [20, 21]. While the most studies introduced above evaluate their method
on the Switchboard corpus [9], a corpus annotated by human annotators, these studies
seek for a method that detects disfluencies on ASR output texts and share the same
objective as ours. The novelty of our work is that our aim is to extend the joint method
of disfluency detection with dependency parsing so that it can be applicable to the
output of ASR system.

7

9

Chapter 3

Data Preparation

To evaluate dependency parsing and disfluency detection performance on real speech
texts, we need a corpus of ASR output texts with these annotations. However, to our
knowledge, there is no corpus of this sort available at the time of writing. In the
following, in order to overcome this situation, we propose to create a tree-annotated
corpus of ASR output texts.

3.1 Process
Given a corpus that consists of speech data, transcription text and its syntactic an-

notation (e.g., the Switchboard corpus), we first apply the ASR system to the speech
data. Next, we perform alignment between the ASR output texts and the transcription.
Then, we transfer the gold syntactic annotation to the ASR output texts based on this
alignment (Figure 3.1).

The alignment is performed by minimizing the edit distance between the two sen-
tences. We include “NULL” tokens in this alignment to allow for some tokens not
having an aligned conterpart (“N” tokens in the Figure 3.1).

In the constructed trees, there are three problematic cases based on how an ASR
output text and its transcription are aligned with each other: (1) a word in the ASR
output text aligns with a NULL token in the transcription (ASR-to-NULL), (2) a word
in the gold transcription aligns with a NULL in the ASR output (Trans-to-NULL), and
(3) two words align, but do not match exactly in terms of characters (NOT MATCH).
To create a consistent dependency tree that spans the entire sentence, we must address
each of these cases.

they may flip flop when they get to be uh N N older

they made slipped flop when they get to be uh old way older

ROOT

Trans:

error error
error

ASR:

ROOT

error

ASR-to-NULL:
ASR output
token aligns to
NULL in gold
transcription.

NOT MATCH:
Aligned tokens
does not match
on character.

what age are your children

what age N your children

error error

ROOTROOT

ROOT
Trans-to-NULL:
Transcription
token aligns to
NULL in ASR
output text.

(a) (b)

Figure 3.1: Examples of three problematic cases. Above shows the gold transcription
and its tree, below shows the aligned ASR output and its newly transferred tree, where
the dotted edges are ASR error edges.

3.1.1 ASR-to-NULL

In the case of ASR-to-NULL, a token from the ASR system has no corresponding
token in the gold transcription. In this case, we automatically annotate a dependency
relation with an “error” label such that the token’s head becomes the previous word
token.

Figure 3.1(a) shows an example of this case. In the figure, the words “old” and
“way” have no corresponding words in the gold transcription. Thus, we automatically
annotate the dependency relations between (“old”, “uh”) and (“way”, “old”), respec-
tively, with the “error” label.

3.1.2 Trans-to-NULL

Although NULL tokens are introduced to facilitate alignment, as these tokens in the
ASR output are not actual words, we must remove them in the final tree. Without
any treatment, the gold transcription tokens aligned to these tokens are also deleted
along with them. This causes the child tokens in the sentence not to have heads; conse-
quently, these child tokens are not included in the syntactic tree. To avoid this problem,
we instead attach them to the head of the deleted token.

For example, in Figure 3.1(b), the word “are” is missing in the ASR hypothesis.
Then, this token’s children lose their head in the transfer process. Thus, we rescue
these children by attaching them to the head of “are”, which, in this case, is ROOT
token.

10

If the head of the removed token is also of the Trans-to-NULL type, then we look for
an alternative head by climbing the tree in a recursive manner, until reaching ROOT.
We also label the newly created edges in this process as “error”.

3.1.3 NOT MATCH

In cases in which two aligned tokens do not match exactly on the character level, the
mismatch is regarded as an instance of a substitution type of ASR error. Therefore, we
encode this fact in the label of the arc from the token to its head.

In Figure 3.1(a), the words “made” and “slipped” in the ASR hypothesis do not
match the gold transcription tokens, “may” and “flip”, respectively. Therefore, we
automatically re-label the arc from each token to its head as “error”.

11

13

Chapter 4

Proposed Parsing Method

To parse texts that contain ASR errors and disfluencies, we propose the extension of
transition-based dependency parsing method that jointly detects them.

4.1 Honnibal and Johnson, TACL 2014 [11]
As our method is based on that of Honnibal and Johnson [11], we describe their

work in detail.
In joint parsing and disfluency detection, the configuration (or state) introduced in

Section 2.1 is extended with a new set D, that is a set of detected (thus removed)
disfluency tokens, and define parsing state as four-tuple (σ ,β ,A,D). In the work of
Honnibal and Johnson, they extend the arc-eager parsing method with new Edit action:

Edit : (σ |i,β ,A,D) ⊢ (σ |[x1, . . . ,xn],β ,A′,D∪ [i, j))

whereA′ = A\{x → y or y → x|∀x ∈ [i, j),y ∈ N}.

The runnning example of this action is shown in Figure 4.1. When this action is
performed, the first element of the stack and its right descendants are classified as
disfluent, and removed from the state (added to the set D). All dependency relation to
and from disfluent tokens are also removed, while the tokens in the left descendants
are pushed back to the stack again.

Unlike previous work such as Rasooli and Tetreault [26], their method needs not to
guess early that the input contains disfluency and does not require complicated multi-
classifier architecture, but simply one additional action to standard arc-eager parser.

his1

 went3

company2 broke4

his1

 company2

Edit

D = {went3,broke4}

 i_mean5 went6

 i_mean5 went6

push

Stack Buffer

Figure 4.1: Illustrative example of performing Edit action during parsing sentence “his
company went broke I mean went bankrupt”. When performing Edit action, the first
element of the stack is removed. Its root token and tokens in the right descendants are
added to D, while its left child tokens are pushed back to the stack.

14

They also proposed template-based features which capture the nature of disfluencies
(e.g. “rough copy”) that is useful for the parser to predict when to perform the Edit
action. We will introduce them in § 4.3.1.

4.2 Proposed Method
We also propose our own extension of the arc-eager parsing method, that is tailored

to detect both disfluencies and ASR errors.
Firstly, we augment it with three new actions, SimpleEdit action that detect disflu-

encies, and Le f tArcError and RightArcError actions, each of which is introduced to
cope with ASR errors. We give the details of each action below. The deductive system
of newly proposed parsing actions are shown in Figure 4.3.

As with previous work, our SimpleEdit action is also introduced to remove a disflu-
ent token. However in our method, it is used only when the first element of the stack
does not have any children. We give the illustrative image of performing this action
in Figure 4.3. This process is different from that of Edit proposed by Honnibal and
Johnson [11]: theirs accumulates consecutive disfluent tokens on the top of the stack
and removes them all at once, whereas our method removes this kind of tokens one-by-
one. Thus, the parser does not use a dynamic oracle [10], rather, it uses a static oracle
and is forced to perform Shift whenever a disfluent token is on the top of the buffer,
and then, performs an SimpleEdit on it. Use of SimpleEdit action guarantees that the
length of the action sequence is always 2n. This property is advantageous because the
parser can use the standard beam search and does not require normalization methods,
such as those used in Honnibal and Johnson [11] or Zhu et al. [39].

LeftArcError and RightArcError are introduced to cope with ASR errors. They per-
form in the same way as LeftArc and RightArc, except that we train the parser to
perform these actions only on ASR error tokens, whereas the original LeftArc and
RightArc are reserved for non ASR error tokens; LeftArcError is expected to be per-
formed when the first element of the stack is an ASR error token, whereas RightArcEr-
ror should be used when the first element of the buffer is an ASR error. By having
two different kinds of Arc actions for the two types of tokens (ASR error token or non
ASR error token), one can keep the weights wLe f tArc and wRightArc in the parsing model
separate from wLe f tArcError and wRightArcError, that are used to process noisy ASR error
tokens, and is expected to bring improved performance.

15

his1

 company2 went3 broke4 i_mean5

Stack Buffer

his1

 company2 broke4 i_mean5

D = {went3}

Edit

his1

 company2 broke4 i_mean5 went6

his1

 company2

D = {went2,broke3}

Edit

Shift

 i_mean5 went6

Figure 4.2: Proposed SimpleEdit action. This action removes disfluent tokens one-
by-one and guarantees that the length of the action sequence is always two times the
length of the input setence.

16

Action Precondition
SimpleEdit (σ |i,β ,A,D) ⊢ (σ ,β ,A′,D∪{i}) ¬∃ j′[i → j′ ∈ A]

A′ = A\{ j′ → i} if such j′exists otherwise A′ = A
Le f tArcError (σ |i, j|β ,A,D) ⊢ (σ , j|β ,A∪{ j → i},D) ¬∃ j′[j′ → i ∈ A]

RightArcError (σ |i, j|β ,A,D) ⊢ (σ |i| j,β ,A∪{i → j},D)

Figure 4.3: Deductive system for newly proposed actions. D is a set of removed to-
kens. The SimpleEdit action removes the top element of the stack and LeftArcError
and RightArcError perform in the same way as LeftArc and RightArc, but are used to
classify ASR error tokens.

4.3 Features
We describe template-based features used in our parsing model that capture the na-

ture of both disfluencies and ASR errors. In the following, we use notation ⟨·⟩ for one
feature template example, and use ◦ to indicate feature concatenation. i.w and i.p each
stands for i’th token’s word form and part-of-speech tag (e.g. ⟨i.w◦ i.p⟩ stands for the
feature concatenation of i’th word form and part-of-speech tag.). σi, βi are used to
indicate the token index of i’th top element of the stack (the i’th rightmost element)
and the buffer (the i’ th leftmost element). Other subscripts used with σ and β are:
ih, il, ir (i’th token’s head, left child, and right child), ih2, il2, ir2 (i’th token’s head’s
head, 2nd left child, and 2nd right child), and ire, ile ri’th token’s leftmost descendant
and rightmost descendant).

4.3.1 Features for Disfluencies and ASR errors

Firstly in order to capture rich context features, we use features proposed by Zhang
and Nivre [38], which we show in Table 4.1. They show higher order features and
unigram features that inspect deep under the trees (Unigram, Bigram and Trigram in
the Table) and features inspired by graph-based parsing (Distance and Valency) are
useful for transition-based parsing. In Distance and Valency type features, d stands for
the distance between σ0 token and β0 token (that is, β0 - σ0). vr and vl stands for the
number of left and right child tokens.

We also include features that capture the nature of disfluencies proposed in Hon-
nibal [11], which are summarized in Table 4.3. We modify some of these features

17

Type Token Template
∀p ∈ {σ0,β0,β1,β2} ⟨p.w⟩,⟨p.p⟩,⟨p.wp⟩

Unigram ∀p ∈

σ0h, σ0l, σ0r,β0l,
σ0h2,σ0l2,σ0r2,β0l2,
σ0re,σ0le, β0le

 ⟨p.w⟩,⟨p.p⟩

∀p ∈ {σ0re,σ0le,β0le} ⟨p.w, p.p⟩

Bigram (p,q) = (σ0,β0)

⟨p.wp◦q.wp⟩,⟨p.wp◦q.w⟩,
⟨p.w◦q.wp⟩,⟨p.wp◦q.p⟩,
⟨p.p◦q.wp⟩,⟨p.w◦q.w⟩,
⟨p.p◦q.p⟩

∀(p,q) ∈
{

(β0,β1),(σ0re,β0),
(σ0,β0le)

}
⟨p.p,q.p⟩

Trigram ∀(p,q,r) ∈

(β0,β1,β2), (σ0,β0,β1),
(σ0h,σ0,β0), (σ0,σ0l,β0),
(σ0,σ0r,β0), (σ0,β0,β0l),
(σ0,σ0l,σ0l2),(σ0,σ0r,σ0r2),
(σ0,σ0h,σ0h2),(β0,β0l,β0l2)

 ⟨p.p,q.p,r.p⟩

Distance ∀p ∈ {σ0,β0} ⟨p.w,d⟩,⟨p.p,d⟩
(p,q) = (σ0,β0) ⟨p.w,q.w,d⟩,⟨p.p,q.p,d⟩

Valency p = σ0 ⟨p.wvr⟩,⟨p.pvr⟩
∀p ∈ {σ0,β0} ⟨p.wvl⟩,⟨p.pvl⟩

Table 4.1: Rich context features based on the work [38]. In each template, .w, and .p
is word form and part-of-speech tag, .d distance between σ0 and β0, and .vr, .vl the
number of left and right children. Details are in § 4.3.1.

18

Type Token Template

Edited
Neighbor

p = β0
⟨dis f l(p−1)⟩,
⟨dis f l(p−1)◦dis f l(p−2)⟩

p = σ0
⟨dis f l(p+1)⟩,
⟨dis f l(p+1)◦dis f l(p+2)⟩

ASR
Error
Neighbor

p = β0
⟨ASRerror(p−1)⟩,
⟨ASRerror(p−1)◦ASRerror(p−2)⟩

p = σ0
⟨ASRerror(p+1)⟩,
⟨ASRerror(p+1)◦ASRerror(p+2)⟩

Rough
Copy

∀(p,q,r,s) ∈

(σ0,β0,β1,β2),
(σ0,β1,β2,β4),
(σ0,β0,β2,β3),
(σ0,β1,β3,β5),
(σ1,β0,β0,β1),
(σ1,β0,β1,β3)

⟨pre f ix match([p,q], [r,s])⟩,
⟨pre f ix match([p,q], [r,s])◦dis f l(β0 −1)⟩,
⟨pre f ix match([p,q], [r,s])◦dis f l(β0 +1)⟩

Brown ∀p ∈

σ0, σ0l,σ0r,σ0l2,
σ0r2,σ0le,σ0re,β0,
β0l, β0l2, β0le,β1,
β2, β3

 ⟨brown(p.w)⟩

(p,q) = (β0,σ0) ⟨brown(p.w)◦brown(q.w)⟩

Match ∀(p,q) ∈Comb

σ0, σ0l, σ0l,
σ0le,σ0l2,β0,
β0l,β0l2,β0le,
β1, β2, β3,
β4, β5

 ⟨match(p.w,q.w)⟩,⟨match(p.p,q.p)⟩

Table 4.2: Features that capture the nature of disfluencies and ASR errors. dis f l(i)
and ASRerror(i) is the binary functions that return if i’th token has been classified
as disfluent or ASR error. pre f ix match(a,b) is a function that check how long the
prefixes of spans a and b match. brown(·) returns brown cluster and match(·, ·) is a
binary function that checks the two given arguments are identical. Comb({}) stands
for all combinations in the set. Details are in § 4.3.1.

19

because of the different timing of our parser to perform the SimpleEdit action from
that of the original Edit action. Besides, we extend some features to take cues of ASR
errors.

Edited Neighbor features check if the previous word of β0 and the next word of
σ0 have been classified as disfluent. These features are motivated from the fact that
once a disfluency occurs in a speech, the subsequent words or phrases also have higher
possibility to be disfluent, as can be seen in the examples of the Figure 1.1 and 2.2.
Based on the observation that ASR errors too, have the similar tendency, we add new
features to check if the tokens in question have been classified as ASR error by our
parser (ASR Error Neighbor).

Rough Copy features use pre f ix match function to see how long the prefixes of the
given spans match on word form and part-of-speech tag. These features consider the
occurance of the pairs of reparandum and repair, as these types of phrases resemble in
their beginning in the most cases (repair is “rough copy” of reparandum.).

Brown features use Brown clustering algorithm [1], which is well-known source of
semi-supervised features. The clustering algorithm is run over a large size of unlabeled
data to give a mapping of word type to their classes. We use the pre-computed version
distributed by Liang [19].1

Match features examine which pair from all combinations of tokens in parsing con-
text (all σi and βi tokens) match on word form or part-of-speech tag. This also gives
the parser cues for disfluencies.

4.3.2 Features based on Word Confusion Network

To better capture which parts of the texts are likely to be ASR errors, we use ad-
ditional features extracted from a word confusion network (WCN) generated by ASR
models. WCN is a compact representation of recognition results in which compet-
ing word hypotheses and their posterior probabilities are represented as arcs in time-
ordered sets (slots). Marin [22] reports his observation that WCN slots with more arcs
tend to correspond to erroneous region. Following Marin we use WCN-based fea-
tures such as the mean and standard deviation of the slot arc posteriors and the highest
posterior in the slot (Table 4.3).

1http://www.metaoptimize.com/projects/wordreps

20

Type Token Template
WCN Features ∀p ∈ { σ0, β0, β1, β2, β3, β4 } mean(p.w), std(p.w), highpos(p.w)

Table 4.3: Word Confusion Network Features

4.3.3 Backoff Action Feature

With the newly proposed LeftArcError and RightArcError actions, we fear that the
relatively low frequency of “error” tokens may cause the weights for these actions to
be updated too infrequently to be accurately generalized.

We resort to using the “backoff action feature” to avoid this situation. This means
that, for each action a ∈ {Le f tArc,Le f tArcError}, the score of performing it in a state
s is calculated as follow:

SCORE(a,s) = wa · f(s)+wa′ · f(s) (4.1)

where a′ = LeftArcBackoff, wa is the weight vector for the action a and f(·) is the
feature representation, respectively. LeftArcBackoff is not actual action performed by
our parser, rather it is used to provide the common feature representation which both
LeftArc and LeftArcError can “back off” to. RightArc and RightArcError actions also
calculate their scores as in Eq.(4.1), with a′ = RightArcBackoff. The scores for all the
other actions are calculated in the normal way: SCORE(a,s) = w · f(a,s).

4.4 Training
We train the parsing model using averaged structured perceptron [5]. By using struc-

tured perceptron, we train the model to predict the correct sequence of actions, rather
than a correct action at some state. In order to make the model learn efficiently despite
relatively many feature templates, We use max violation criterion update [14]. In max
violation, we update the the model parameters with the only subsequence of the pre-
dicted actions, that involves “violation”, that is defined as the sequence of actions with
higher model score than that of the correct one. In [14], they show that this update
strategy helps learn better model and reduce the learning time.

21

23

Chapter 5

Experiments

5.1 the Switchboard corpus
Our experiments were performed using the Switchboard corpus [9] following previ-

ous work in the literature. As shown in Figure 5.1, this corpus consists of speech data
and its transcription texts (A), and contains 2438 two-sided conversations. The subset
of the corpus is annotated with part-of-speech tags and disfluency information using
the notation of Shriberg [29], which contains 1126 conversations (B). A further subset
of this part is annotated with syntactic information, constituting 650 conversations (C).
Following the practice in the literature, We converted the annotated phrase structure
trees in the corpus to dependency trees using the Stanford converter [7].

5.2 Experimental Settings

5.2.1 ASR Settings

To obtain the ASR output texts of the corpus, we used the off-the-shelf NeuralNet
recipe (p-norm Network [36]) presented by Kaldi project [24], with the additional use
of the Fisher corpus [6] for language modeling.

We used the jackknife method to obtain the ASR output texts throughout the syn-
tactically annotated part of the corpus. Following Figure 5.1, in the adopted jackknife
method, we first split the syntactically annotated part (C) into three (Jack1, 2, and 3).
Second, we chose two of them (Jack1 and Jack2, for example), and using these and
the part of the corpus that has no syntactic annotation (A \C in set theory notation),

 Switchboard Corpus(A)

POS & Disfluency annotated(B)

Syntactic information annotated(C)

Jack1 Jack2 Jack3

Used to train ASR model

Used to train POS tagger

Figure 5.1: Overview of Switchboard corpus. The Switchboard corpus contains speech
data and its transcription texts (A). A subset of the corpus is annotated with part-of-
speech and disfluency information (B). A further subset is annotated with syntactic
information (C). The syntactically annotated part is divided into three (Jack1, 2, and
3) in data creation using the jackknife method (details are provided in the text).

we train a NeuralNet ASR model. Finally, we decode over the remaining syntactically
annotated part (in this case, Jack3). We repeated this process three times, until we
obtained the ASR output texts for the entire syntactically annotated part of the corpus.
With this strategy, the amount of training data lost for each of the ASR models due
to the jackknife method is guaranteed to be less than 10% of the whole Switchboard
corpus with only three iterations of the train-decode processes. The average word error
rate of the three resulting models were 13.9% on the Switchboard part of the HUB5
evaluation dataset 1.

From these ASR output texts, we created the tree-annotated corpus by applying the
data creation method introduced in Chapter 3. Out of all 857,493 word tokens, there
are 32,606 ASR-to-NULL, 34,952 Trans-to-NULL, and 93,138 NOT MATCH cases,
meaning 15.6% of all word tokens had “error” labeled arcs.

5.2.2 Parsing Settings

We assigned part-of-speech tags (POS tags) to the corpus created in § 5.2.1 using
the Stanford POS tagger [31] trained on a part of the corpus that is annotated with POS
information but not syntactic information (B \C, which contains 56,001 sentences.).
The performance of the tagger is evaluated on the syntactically annotated part (C); the
tagger has an accuracy score of 95.0%.

1https://catalog.ldc.upenn.edu/LDC2002S09

24

We adopt the same train/dev/test split as in Honnibal [11], although the data size
reduces slightly in the process of the data creation. We report the unlabeled attachment
score (UAS), which indicates how many heads of fluent tokens are correctly predicted.
The “error” edge label is used to distinguish the ASR error parts from non error parts
of sentences and to report the UAS scores separately on each type of tokens.

Disfluency detection is a simple binary classification task to predict whether each
token is disfluent or not; therefore, we report the precision/recall/F1-score values fol-
lowing the previous studies.

As a baseline, we use a setting in which we train a model of the parser in § 4.2
without Left/RightArcError actions on the train part of the gold Switchboard corpus,
then test its performance on the test part of the ASR output version of the corpus. We
exclude Left/RightArcError actions in this case, as there are no ASR error tokens in the
training data. This setting can be seen as reproducing the typical situation, in which
a parser is trained on ASR-error-free texts, but nevertheless needs to parse the ASR
output texts. In the following section, we refer to this parser configuration as Disfl.

5.3 Results and Analysis
Table 5.1 shows the parser’s performance for different parsing configurations. Based

on the baseline Disfl parser, we report scores with the additional (and additive) use
of Left/RightArcError actions (ErrorAct), the WCN feature (WCN), and the backoff
action feature (Backoff). Using Left/RightArcError actions resulted in 3.6% and 1.2%
improvement in UAS and disfluency detection accuracy, respectively. The backoff
action feature led to further improved UAS, whereas WCN features cause an increase
in disfluency detection accuracy. We observe that a reversion in precision and recall
occurs when using Left/RightArcError actions.

Table 5.2 reports parsing performance on various train and test data settings. In
Table 5.2, the Train and Test columns represent which data to use in training and
testing; Trans refers to the gold transcription text of the Switchboard corpus, and ASR
indicates the text created through the data creation process in § 5.2.1.

Our parser’s performance on the gold Switchboard corpus ((Train, Test) = (Trans,
Trans)) can be seen as an upper bound of the rest of the parsing experiments. As this
experiment uses the same train/test data settings, the result can be compared to those
of existing studies of joint dependency parsing and disfluency detection [11, 33, 27].
Although our parser does not achieve the state-of-the-art result (92.2% and 85.1% in

25

Model
Dependency (UAS) Disfluency

ALL ASR error / other Prec. Rec. F1
Disfl 72.7 37.8 / 79.2 58.6 62.2 60.3
Disfl + ErrorAct 76.3 40.8 / 82.9 66.0 57.6 61.5
Disfl + ErrorAct + Backoff 76.4 40.6 / 83.0 65.6 57.3 61.1
Disfl + ErrorAct + WCN + Backoff 76.2 41.1 / 82.7 67.9 57.9 62.5

Table 5.1: Performance of the proposed methods. Disfl refers to the joint parser with
disfluency detection without Left/RightArcError actions. ErrorAct introduces these
actions. Backoff and WCN, respectively, refer to the backoff action feature in § 4.3.3
and the WCN feature in § 4.3.2. UAS reports parsing performance on all parts of the
sentence (ALL) and the ASR error part and the non ASR error part of the sentence
(ASR error / other), separately.

UAS and disfluency F1 score in [33]), it still shows a relatively good result with a
simpler parser configuration.

When evaluated on the ASR texts, the parser trained on the ASR output texts showed
degraded performance compared to the parser trained on the gold transcription ((Train,
Test) = (ASR, ASR)). This result is surprising, given that in this setting, both the
train and test data are ASR output texts and share characteristics; therefore, we ex-
pect that there will be some domain adaptation effect. We hypothesized that the drop
in the performance is due to the relatively noisy nature of our corpus, which is created
from the ASR output texts with recognition errors. Having ASR-error-specific actions,
Left/RightArcError mitigates this problem by separately treating the ASR error tokens
and non ASR error tokens. Finally, with backoff action and WCN features, the per-
formance increase was 1.5% and 0.7% for UAS and disfluency detection, respectively,
compared to the baseline. With the newly proposed features, the parser trained on ASR
output texts outperforms the parser trained on the transcription texts.

However, when compared with the case of (Train, Test) = (Trans, Trans), we ob-
serve significant decreases in performance in both dependency parsing and disfluency
detection in the experiments conducted on ASR output texts. This result clearly poses
a new challenge for the disfluency detection community.

26

Train Test Model Dependency (UAS) Disfluency
ALL ASR error / other Prec. Rec. F1

Trans Trans Disfl 89.7 - 90.4 76.8 83.1
Trans ASR Disfl 74.7 36.1 / 82.0 58.5 65.6 61.8
ASR ASR Disfl 72.7 37.8 / 79.2 58.6 62.2 60.3
ASR ASR Disfl + ErrorAct + Backoff 76.4 40.6 / 83.0 65.6 57.3 61.1
ASR ASR Disfl + ErrorAct + WCN + Backoff 76.2 41.1 / 82.7 67.9 57.9 62.5

Table 5.2: Parsing result on different train-test settings. Each Trans and ASR refers to
the gold transcription texts of the Switchboard corpus and the ASR output version.

27

29

Chapter 6

Conclusion

In this work, we have proposed a novel joint transition-based dependency parsing
method with disfluency detection. This method is capable of robustly parsing ASR out-
put texts. With the introduction of new actions, backoff action features, and WCN fea-
tures, the parser shows reasonably good results and outperforms conventional parsers
for ASR output texts. We also introduce an alignment-based data construction method
and propose evaluation of both of parsing and disfluency detection performance for
real speech data. As the experimental performance for ASR texts is significantly lower
than the performance achieved for the gold transcription texts, we have clarified the
need to develop a method of disfluency detection that is robust to recognition errors in
the ASR system. In future work, we will further improve the parsing performance, and
develop a method to correct erroneous parts of sentences.

31

Bibliography

[1] P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. Della Pietra, and J. C. Lai. Class-
Based N-Gram Models of Natural Language. pp. 467–479. Computational Lin-
guistics, 1992.

[2] D. Chen and C. Manning. A Fast and Accurate Dependency Parser using Neural
Networks. In Proceedings of the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pp. 740–750, Doha, Qatar, October 2014.
Association for Computational Linguistics.

[3] H. Cheng, H. Fang, and M. Ostendorf. Open-Domain Name Error Detection us-
ing a Multi-Task RNN. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pp. 737–746. Association for Compu-
tational Linguistics, 2015.

[4] E. Cho, J. Niehues, and A. Waibel. Tight Integration of Speech Disfluency Re-
moval into SMT. In Proceedings of the 14th Conference of the European Chap-
ter of the Association for Computational Linguistics, volume 2: Short Papers
(EACL), pp. 43–47. Association for Computational Linguistics, 2014.

[5] M. Collins. Discriminative Training Methods for Hidden Markov Models: The-
ory and Experiments with Perceptron Algorithms. In Proceedings of the ACL-02
conference on Empirical methods in natural language processing-Volume 10, pp.
1–8. Association for Computational Linguistics, 2002.

[6] C. C. David, D. Miller, and K. Walker. The Fisher Corpus: a Resource for the
Next Generations of Speech-to-Text. In in Proceedings 4th International Confer-
ence on Language Resources and Evaluation, pp. 69–71, 2004.

[7] M.-C. de Marneffe, B. MacCartney, and C. D. Manning. Generating Typed De-
pendency Parses from Phrase Structure Parses. In In Proceedings of the 5th In-
ternational Conference on Language Resources and Evaluation (LREC), 2006.

[8] J. Ferguson, G. Durrett, and D. Klein. Disfluency Detection with a Semi-Markov
Model and Prosodic Features. In Proceedings of the 2015 Conference of the
North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies (NAACL), pp. 257–262. Association for Computa-
tional Linguistics, 2015.

[9] J. J. Godfrey, E. C. Holliman, and J. McDaniel.“switchboard: Telephone speech
corpus for research and development”. In Acoustics, Speech, and Signal Pro-
cessing, 1992. ICASSP-92., 1992 IEEE International Conference on (Volume:1).
Proc. IEEE Int. Conf. Acoust. Speech Sig. Proc, 1992.

[10] Y. Goldberg and J. Nivre. A Dynamic Oracle for Arc-Eager Dependency Pars-
ing. In In Proceedings of the 24th International Conference on Computational
Linguistics (Coling), pp. 959–976. The COLING 2012 Organizing Committee,
2012.

[11] M. Honnibal and M. Johnson. Joint Incremental Disfluency Detection and De-
pendency Parsing. In Transactions of the Association of Computational Linguis-
tics Volume 2, Issue 1 (TACL), pp. 131–142. Association for Computational Lin-
guistics, 2014.

[12] J. Hough and M. Purver. Strongly Incremental Repair Detection. In Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 78–89. Association for Computational Linguistics, 2014.

[13] J. Hough and D. Schlangen. Recurrent Neural Networks for Incremental Disflu-
ency Detection. Interspeech 2015, 2015.

[14] L. Huang, S. Fayong, and Y. Guo. Structured Perceptron with Inexact Search.
In Proceedings of the 2012 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies. As-
sociation for Computational Linguistics, 2012.

[15] L. Huang and K. Sagae. Dynamic Programming for Linear-Time Incremental
Parsing. In Proceedings of the 48th Annual Meeting of the Association for Com-
putational Linguistics, pp. 1077–1086, Uppsala, Sweden, July 2010. Association
for Computational Linguistics.

32

[16] Z. Huang, W. Xu, and K. Yu. Bidirectional LSTM-CRF Models for Sequence
Tagging. CoRR, abs/1508.01991, 2015.

[17] M. Johnson and E. Charniak. A TAG-based Noisy-Channel Model of Speech Re-
pairs. In Proceedings of the 42nd Meeting of the Association for Computational
Linguistics (ACL’04), Main Volume, pp. 33–39, Barcelona, Spain, July 2004.

[18] A. K. Joshi, L. S. Levy, and M. Takahashi. Tree Adjunct Grammars. Journal of
computer and system sciences, 10(1):136–163, 1975.

[19] P. Liang. In Semi-Supervised Learning for Natural Language. Ph.D. thesis, MIT,
2005.

[20] Y. Liu, E. Shriberg, and A. Stolcke. Automatic disfluency identification in cover-
sational speech using multiple knowledge sources. In In Proceedings of the 8th
Eurospeech Conference, 2003.

[21] Y. Liu, E. Shriberg, A. Stolcke, D. Hillard, M. Ostendorf, and M. Harper. Enrich-
ing Speech Recognition with Automatic Detection of Sentence Boundaries and
Disfluencies. IEEE Transactions on Audio, Speech, and Language Processing,
14(5):1526–1540, Sept 2006.

[22] M. A. Marin. In Effective Use of Cross-Domain Parsing in Automatic Speech
Recognition and Error Detection. Ph.D. thesis. University of Washington, 2015.

[23] J. Nivre, J. Hall, J. Nilsson, G. Eryiǧit, and S. Marinov. Labeled Pseudo-
Projective Dependency Parsing with Support Vector Machines. In Proceedings of
the Tenth Conference on Computational Natural Language Learning (CoNLL-X),
pp. 221–225, New York City, June 2006. Association for Computational Linguis-
tics.

[24] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Hanne-
mann, P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky, G. Stemmer, and K. Vesely.
The Kaldi Speech Recognition Toolkit. In IEEE 2011 Workshop on Automatic
Speech Recognition and Understanding, 2011.

[25] X. Qian and Y. Liu. Disfluency Detection Using Multi-step Stacked Learning.
In Proceedings of the 2013 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies. As-
sociation for Computational Linguistics, 2013.

33

[26] M. S. Rasooli and J. Tetreault. Joint Parsing and Disfluency Detection in Linear
Time. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pp. 124–129, Seattle, Washington, USA, October 2013.
Association for Computational Linguistics.

[27] M. S. Rasooli and J. Tetreault. Non-Monotonic Parsing of Fluent Umm I mean
Disfluent Sentences. In Proceedings of the 14th Conference of the European
Chapter of the Association for Computational Linguistics, volume 2: Short Pa-
pers (EACL), pp. 48–53. Association for Computational Linguistics, 2014.

[28] S. Sarawagi and W. W. Cohen. Semi-Markov Conditional Random Fields for
Information Extraction. In In Proceedings of Advances in Neural Information
Processing Systems, 2004.

[29] E. Shriberg. In Preliminaries to a Theory of Speech Disfluencies. Ph.D. thesis.
University of California, Berkeley, 1994.

[30] E. Shriberg, R. Bates, and A. Stolcke. A prosody-only decision-tree model for
disfluency detection. In In Proceedings of Eurospeech, 1997.

[31] K. Toutanova, D. Klein, C. Manning, and S. Yoram. Feature-Rich Part-of-Speech
Tagging with a Cyclic Dependency Network. In In Proceedings of the 2003 Hu-
man Language Technology Conference of the North American Chapter of the
Association for Computational Linguistics, pp. 173–180. Association for Com-
putational Linguistics, 2003.

[32] S. Wang, W. Che, Y. Liu, and T. Liu. Enhancing Neural Disfluency Detection with
Hand-Crafted Features, pp. 336–347. Springer International Publishing, Cham,
2016.

[33] S. Wu, D. Zhang, M. Zhou, and T. Zhao. Efficient Disfluency Detection with
Transition-based Parsing. In Proceedings of the 53rd Annual Meeting of the Asso-
ciation for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers) (ACL), pp. 495–503.
Association for Computational Linguistics, 2015.

[34] H. Yamada and Y. Matsumoto. Statistical Dependency Analysis With Support
Vector Machines. In In proceedings of 8th International Workshop on Parsing
Technologies, pp. 195–206, 2003.

34

[35] V. Zayats, M. Ostendorf, and H. Hajishirzi. Disfluency Detection using a Bidi-
rectional LSTM. CoRR, abs/1604.03209, 2016.

[36] X. Zhang, J. Trmal, D. Povey, and S. Khudanpur. Improving Deep Neural Net-
work Acoustic Models using Generalized Maxout Networks. In IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014.

[37] Y. Zhang and S. Clark. A Tale of Two Parsers: Investigating and Combining
Graph-based and Transition-based Dependency Parsing. In Proceedings of the
2008 Conference on Empirical Methods in Natural Language Processing, pp.
562–571, Honolulu, Hawaii, October 2008. Association for Computational Lin-
guistics.

[38] Y. Zhang and J. Nivre. Transition-based Dependency Parsing with Rich Non-
local Features. In Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies (ACL), pp. 188–193.
Association for Computational Linguistics, 2011.

[39] M. Zhu, Y. Zhang, W. Chen, M. Zhang, and J. Zhu. Fast and Accurate Shift-
Reduce Constituent Parsing. In In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (ACL), pp. 434–443. Association for
Computational Linguistics, 2013.

35

