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Abstract

Joint dependency parsing with disfluency detection is an important task in speech
language processing. Recent methods show high performance for this task, although
most authors make the unrealistic assumption that input texts are transcribed by human
annotators. In real-world applications, the input text is typically the output of an auto-
matic speech recognition (ASR) system, which implies that the text contains not only
disfluency noises but also recognition errors from the ASR system. In this work, we
propose a parsing method that handles both disfluency and ASR errors using an incre-
mental shift-reduce algorithm with several novel features suited to ASR output texts.
Because the gold dependency information is usually annotated only on transcribed
texts, we also introduce an alignment-based method for transferring the gold depen-
dency annotation to the ASR output texts to construct training data for our parser. We
conducted an experiment on the Switchboard corpus and show that our method outper-
forms conventional methods in terms of dependency parsing and disfluency detection.
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Chapter 1

Introduction

One of characteristics of spontaneous speech that makes it different from written
text, even including informal text, is the presence of disfluencies. Disfluencies are
prevalent in all forms of spontaneous speech, both in casual discussions and formal
arguments.

According to Shriberg [29] and the other work on disfluency detection, disfluencies
are classified into three categories:

Filler parts of speech that are usually recognized as containing no formal meaning,
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such as “uh”, “um”.

Discourse marker parts of speech that are used to manage the flow and structure of
discourse, such as “I mean”, “You know”.

Reparandum parts of speech that are repeated, discarded or corrected by the follow-
ing phrase (repair). In the Figure 1.1, “to Boston” is a reparandum and corrected
by the subsequent repair phrase “to Denver”.

Disfluency is mainly studied in the psycholinguistic domains, but their treatment
in the Natural Language Processing (NLP) is also important when building an NLP
system that processes human conversations or speech.

Figure 1.1: Examples of disfluencies. FL, DM, RP and RPM stand for a filler, a
discourse marker, a repair and a reparandum.

I want a flight to Boston_uh [ meanto Denver
N — N S ———
RPM  FL DM RP



Disfluency detection, the task of detecting which part of input sentence is disfluent,
helps improve the readability of an utterance, and make it easy for downstream NLP
modules. Especially the work of Cho [4] has shown that removing disfluencies helps
improve speech translation system performance.

Detection of filler and discourse marker is fairly simple; As these types of disfluen-
cies consist of closed set of vocabulary, they can be processed by just pattern matching
on the word form.

However, the task of reparandum detection is quite challenging, as the expressions
involved in reparandum is not limited, and a reparandum can span over several words
(as exemplified in the Figure 1.1 and 2.2).

There are a number of studies that address the problem of detecting disfluencies.
Some of these studies include dependency parsing [11, 26, 27, 33], whereas others
are dedicated systems [8, 12, 13, 20, 25]. Among these studies, Honnibal [11] and
Wu [33] address this problem by adding a new action to transition-based dependency
parsing that removes the disfluent parts of the input sentence from the stack. Using
this approach, they achieved high performance in terms of both dependency parsing
and disfluency detection on the Switchboard corpus.

However, the authors assume that the input texts to parse are transcribed by human
annotators, which, in practice, is unrealistic. In real-world applications, in addition to
disfluencies, the input texts contain ASR errors; these issues might degrade the parsing
performance. As in the following example, proper nouns that are not contained in the
ASR system vocabulary may break up into smaller pieces, yielding a difficult problem
for the parsing unit [3]:

REF: what can we get at Litanfeeth
HYP: what can we get it leaks on feet

In this work, we propose a method for joint dependency parsing and disfluency de-
tection that can robustly parse ASR output texts. Our parser handles both disfluencies
and ASR errors using an incremental shift-reduce algorithm, with novel features that
consider recognition errors of the ASR system.

Furthermore, to evaluate dependency parsing performance on real human utterances,
we create a tree-annotated corpus that contains ASR errors.

We conducted an experiment on the Switchboard corpus and show that our method
outperforms conventional methods in terms of both dependency parsing and disfluency
detection.



Chapter 2

Related Work

2.1 Transition-based Dependency Parsing

Transition-based dependency parsing [15, 23, 34, 37] utilizes a deterministic shift-
reduce process to predict dependency structure for input sentence. Compared to graph-
based dependency parsing, it offers linear time complexity and is amenable to the
situation where the entire NLP system needs to process the speech data (e.g. speech
translation).

A transition-based parser consists of a configuration (or state) that is sequentially
manipulated by a set of possible actions. A state is a 3-tuple of (o, 3,A), where ¢ and
B are disjoint sets of word indices, referred to as stack and buffer, respectively, and A
is the set of constructed dependency arcs. Each dependency arc is of the form of i — J,
where i and j are word indices; this notation indicates a dependency relation from a
head i to a child j. The deductive system for the parser is shown in Figure 2.1. There,
we illustrate the stack using the topmost element to the right, and the buffer with the
topmost element to the left, with vertical bar notation (e.g., o|i represents the stack
with a first element i), following the convention in the literature. Figure 2.1 shows a
running example of arc-eager parsing method.

In transition-based parsing, as a sequence of parsing actions maps to a dependency
tree, the problem of finding the most probable dependency tree y for the input sentence
x can be factorized as that of finding the most probable action a in the every parsing
state s:



Action Precondition

Shift (0,i|B,A,D) +- (oli,B,A,D)

Reduce  (oli,,A,D)}F (0,B,A,D) /[ j—i€A] 2.1
LeftArc  (0li,j|B,A,D)+ (0,j|B,AU{j—i},D) -3 [j/—i€A]
RightArc (0li,j|B,A,D)\ (olilj,B,AU{i— j},D)

Figure 2.1: Deductive system for arc-eager transition-based parser. ¢ indicates a stack,
P abuffer, and A a set of constructed arcs.

y = arg max Score(y'|x)
YeY(x)
2n
= arg max Z Score(ails;),
ay,...,ap€Actions j—=1

(2.2)

where Y (x) is a set of possible dependency trees of sentence x. Score(als) is a
scoring function which scores how plausible to take action a in state s and is defined
as:

Score(als) = w, -£(s),
(2.3)

where w, is the weight vector for action a and f(s) is the feature representation for
parsing state s, respectively. In order to construct f(s) one can use template-based
feature [38] or neural network [2].

Arc-eager parser is guaranteed to terminate with 2 transitions when the input sen-
tence consists of n words. In greedy search, a parser takes the one-best action in every
parsing state. As this might lead to subsequent error propagation, one can instead adopt
beam search, in which the parser retains the best N states in every time step.

Some extensions to transition-based parsing [11], and transition-based parsing of
constituency trees [39] involve the action sequence of the length that is not constant
of sentence length n. Especially, in the disfluency detection that is done jointly with
dependency parsing, a parser removes a word token it classifies as disfluent, which

4



Step Action c B A
1 (initial state) [R] | [his company went broke] 0
2 Shift [R his] | [company went broke]
3 LeftArc [R] | [company went broke] AU {company — his}
4 Shift [R company] | [went broke]
5 LeftArc [R] | [went broke] AU{went — company}
6 RightArc [R went] | [broke] AU{R — went}
7 RightArc [R went broke] | [] AU{went — broke}
8 Reduce [R went] | []
9 Reduce [R] | [1

Table 2.1: Parsing example of sentence “his company went broke”, R stands for
dummy root token. In every time step, parser performs one out of four actions.

apparently leads to action sequences with the uneven lengths. In these methods, in
order to prevent the parser from preferring to lengthen the action sequence (which
maximizes the score in Eq. 2.2), it is necessary to take some countermesures, €.g.
normalizing scores by action sequence length[11] or making the parser do dummy
transition when other candidates in beam has not reached the goal state [39].

2.2 Disfluency Detection
2.2.1 Joint Methods with Dependency Parsing

The task of disfluency detection has been tackled from syntactic point of view. The
work of Johnson and Charniak[17] is the first work that addresses this task in terms
of syntactic processing. They show the use of syntactic parser-based language model
instead of bi- or tri-gram language model improves the accuracy of repair detection.
They also show that Tree Adjoining Grammar [18], one of mildly context-sensitive
grammar formalisms, can precisely describe, thus model the fact that the repair is
“rough copy” of the reparandum.

The advantage of solving the problem of disfleuncy detection jointly with depen-
dency parsing is that one can make use of the partially constructed tree to extract
useful features to classify which part of the input sentence is disfluent. Many studies
adopt transition-based parser and propose actions that remove disfluencies from pars-
ing state when the parser cliassifies as such; Those parsers are trained to construct the
dependency tree that is clean of any disfluencies (Figure 2.2).



Input: His company went broke | mean went bankrupt l

went7
I—_L> Shift-reduce |:> f_comga-nyz bankrupts

his1 D = {wents, broke4, I5, meane}

Figure 2.2: Joint dependency parsing and disfluency detection. The task is to construct
the dependency tree that is clean of any disfluencies. In the figure, the set D is the set
of detected disfluencies.

Rasooli and Tetreault [26] is the first study that proposes to add new actions to
transition-based dependency parser in order to handle disfluencies. In every parsing
state, their method first classfies whether there is a disfluency and needs to remove it
from the state, or perform the standard arc-eager action to construct dependency tree.
When the former is chosen, the parser removes the detected disfluency deterministi-
cally. In the latter case, the second classifier decides which one to perform among
standard Shift, Reduce, LeftArc and RightArc actions. In their following work, they
extended the original architecture by adding four more classfiers [27]. By adopting the
cascaded architecture, their method showed the reduced memory usage and speed up
gain.

Honnibal and Johnson [11] is the work on which this thesis is mainly based. They
propose “Edit” action, which removes the first element of the stack and its right de-
scendants, while pushing all the left descendants back to the stack. By using this
action, their method needs not to guess early that the input contains disfluency, unlike
Rasooli and Tetreault [26]’s method. They also propose the template-based features
that capture the “rough copy’-ness of reparandum. We give the details of their method
in Section 4.1.

Wu [33] shows that inverting the input sentence to the transition-based parser im-
proves the performance of both dependency parsing and disfluency detection perfor-
mance. However their method has the disadvantage that the inversion requires a com-



plete sentence as input, thus does not match such a situation that the output from the
ASR system needs to be processed incrementally to reduce the latency of the whole
system (e.g. SMT).

2.2.2 Other Methods

The other studies tackle this problem as sequence labeling problem [8, 12, 13, 20,
25, 32, 35].

Ferguson et al. [8] proposes that the semi-Markov Conditional Random Field [28]
is suitable to this task, as many examples of disfluencies such as repair are not made
up of single word token, rather they span over several words (thus form chunks). They
also propose the use of prosodic features, i.e. the features that are extracted from raw
wave form. These can be used as cues for pauses and hesitation and proven to be useful
for disfluency detection [30].

There are several studies that apply the neural network methods to this task [13, 32,
35]. At the time of writing, the system proposed by Zayats et al. [35] achieves the state-
of-the-art performance in the disfluency detection by using Bi-directional LSTM [16].

There are also studies of disfluency detection in the context of automatic speech
recognition [20, 21]. While the most studies introduced above evaluate their method
on the Switchboard corpus [9], a corpus annotated by human annotators, these studies
seek for a method that detects disfluencies on ASR output texts and share the same
objective as ours. The novelty of our work is that our aim is to extend the joint method
of disfluency detection with dependency parsing so that it can be applicable to the
output of ASR system.






Chapter 3

Data Preparation

To evaluate dependency parsing and disfluency detection performance on real speech
texts, we need a corpus of ASR output texts with these annotations. However, to our
knowledge, there is no corpus of this sort available at the time of writing. In the
following, in order to overcome this situation, we propose to create a tree-annotated
corpus of ASR output texts.

3.1 Process

Given a corpus that consists of speech data, transcription text and its syntactic an-
notation (e.g., the Switchboard corpus), we first apply the ASR system to the speech
data. Next, we perform alignment between the ASR output texts and the transcription.
Then, we transfer the gold syntactic annotation to the ASR output texts based on this
alignment (Figure 3.1).

The alignment is performed by minimizing the edit distance between the two sen-
tences. We include “NULL” tokens in this alignment to allow for some tokens not
having an aligned conterpart (“N” tokens in the Figure 3.1).

In the constructed trees, there are three problematic cases based on how an ASR
output text and its transcription are aligned with each other: (1) a word in the ASR
output text aligns with a NULL token in the transcription (ASR-to-NULL), (2) a word
in the gold transcription aligns with a NULL in the ASR output (Trans-to-NULL), and
(3) two words align, but do not match exactly in terms of characters (NOT MATCH).
To create a consistent dependency tree that spans the entire sentence, we must address
each of these cases.



ROOT
(ﬂ

2 A

they may ﬂlp ﬂop When they get to be uh N N older

(b)

ROOT

Trans-to-NULL:
Transcription
token aligns to
NULL in ASR
output text.

what age are your children
| | | | |

jﬂop When they get to be uh older

v ierror \/ i error

ROOT ROOT

ASR-to-NULL:
ASR output
token aligns to
NULL in gold
transcription.

Aligned tokens
does not match
on character.

Figure 3.1: Examples of three problematic cases. Above shows the gold transcription
and its tree, below shows the aligned ASR output and its newly transferred tree, where
the dotted edges are ASR error edges.

3.1.1 ASR-to-NULL

In the case of ASR-to-NULL, a token from the ASR system has no corresponding
token in the gold transcription. In this case, we automatically annotate a dependency
relation with an “error” label such that the token’s head becomes the previous word
token.

Figure 3.1(a) shows an example of this case. In the figure, the words “old” and
“way” have no corresponding words in the gold transcription. Thus, we automatically

annotate the dependency relations between (“old”, “uh) and (“way”, “old”), respec-
tively, with the “error” label.

3.1.2 Trans-to-NULL

Although NULL tokens are introduced to facilitate alignment, as these tokens in the
ASR output are not actual words, we must remove them in the final tree. Without
any treatment, the gold transcription tokens aligned to these tokens are also deleted
along with them. This causes the child tokens in the sentence not to have heads; conse-
quently, these child tokens are not included in the syntactic tree. To avoid this problem,
we instead attach them to the head of the deleted token.

For example, in Figure 3.1(b), the word “are” is missing in the ASR hypothesis.
Then, this token’s children lose their head in the transfer process. Thus, we rescue
these children by attaching them to the head of “are”, which, in this case, is ROOT
token.

10



If the head of the removed token is also of the Trans-to-NULL type, then we look for
an alternative head by climbing the tree in a recursive manner, until reaching ROOT.
We also label the newly created edges in this process as “error”.

3.1.3 NOT MATCH

In cases in which two aligned tokens do not match exactly on the character level, the
mismatch is regarded as an instance of a substitution type of ASR error. Therefore, we
encode this fact in the label of the arc from the token to its head.

In Figure 3.1(a), the words “made” and “slipped” in the ASR hypothesis do not
match the gold transcription tokens, “may” and “flip”, respectively. Therefore, we
automatically re-label the arc from each token to its head as “error”.

11






13

Chapter 4

Proposed Parsing Method

To parse texts that contain ASR errors and disfluencies, we propose the extension of
transition-based dependency parsing method that jointly detects them.

4.1 Honnibal and Johnson, TACL 2014 [11]

As our method is based on that of Honnibal and Johnson [11], we describe their
work in detail.

In joint parsing and disfluency detection, the configuration (or state) introduced in
Section 2.1 is extended with a new set D, that is a set of detected (thus removed)
disfluency tokens, and define parsing state as four-tuple (o,f3,A,D). In the work of
Honnibal and Johnson, they extend the arc-eager parsing method with new Edit action:

Edit : (o|i,B,A,D) F (o|[x1,...,x:], B,A",DU[i, j))
whereA' = A\ {x = yory — x|Vx € [i, ),y € N}.

The runnning example of this action is shown in Figure 4.1. When this action is
performed, the first element of the stack and its right descendants are classified as
disfluent, and removed from the state (added to the set D). All dependency relation to
and from disfluent tokens are also removed, while the tokens in the left descendants
are pushed back to the stack again.

Unlike previous work such as Rasooli and Tetreault [26], their method needs not to
guess early that the input contains disfluency and does not require complicated multi-
classifier architecture, but simply one additional action to standard arc-eager parser.



Stack Buffer
wents [i_mean5 wents

Rt g Edi

comp/anyz] [i_mean5 wents

his: D = (went, broke,]

Figure 4.1: Illustrative example of performing Edit action during parsing sentence ‘“his
company went broke I mean went bankrupt”. When performing Edit action, the first
element of the stack is removed. Its root token and tokens in the right descendants are
added to D, while its left child tokens are pushed back to the stack.
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They also proposed template-based features which capture the nature of disfluencies
(e.g. “rough copy”) that is useful for the parser to predict when to perform the Edit
action. We will introduce them in § 4.3.1.

4.2 Proposed Method

We also propose our own extension of the arc-eager parsing method, that is tailored
to detect both disfluencies and ASR errors.

Firstly, we augment it with three new actions, SimpleEdit action that detect disflu-
encies, and Le ftArcError and RightArcError actions, each of which is introduced to
cope with ASR errors. We give the details of each action below. The deductive system
of newly proposed parsing actions are shown in Figure 4.3.

As with previous work, our SimpleEdit action is also introduced to remove a disflu-
ent token. However in our method, it is used only when the first element of the stack
does not have any children. We give the illustrative image of performing this action
in Figure 4.3. This process is different from that of Edit proposed by Honnibal and
Johnson [11]: theirs accumulates consecutive disfluent tokens on the top of the stack
and removes them all at once, whereas our method removes this kind of tokens one-by-
one. Thus, the parser does not use a dynamic oracle [10], rather, it uses a static oracle
and 1s forced to perform Shift whenever a disfluent token is on the top of the buffer,
and then, performs an SimpleEdit on it. Use of SimpleEdit action guarantees that the
length of the action sequence is always 2n. This property is advantageous because the
parser can use the standard beam search and does not require normalization methods,
such as those used in Honnibal and Johnson [11] or Zhu et al. [39].

LeftArcError and RightArcError are introduced to cope with ASR errors. They per-
form in the same way as LeftArc and RightArc, except that we train the parser to
perform these actions only on ASR error tokens, whereas the original LeftArc and
RightArc are reserved for non ASR error tokens; LeftArcError is expected to be per-
formed when the first element of the stack is an ASR error token, whereas RightArcEr-
ror should be used when the first element of the buffer is an ASR error. By having
two different kinds of Arc actions for the two types of tokens (ASR error token or non
ASR error token), one can keep the weights W, ra,c and Wgignsare 1n the parsing model
separate from Wy, rarcError a0d WRigniarcError» that are used to process noisy ASR error
tokens, and is expected to bring improved performance.

15



Stack Buffer
company? wents] [broke4 I_means

e .
hisi QEO'"

comBanyz] [broke4 I_means

D = {went,}

QShift

company? broke4] [i_mean5 wents

¥

hié; [ i
comBanyz] [i_means wents

D = {went, broke,

his1

his1

Figure 4.2: Proposed SimpleEdit action. This action removes disfluent tokens one-
by-one and guarantees that the length of the action sequence is always two times the
length of the input setence.
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Action Precondition

SimpleEdit (oli,B,A,D)+ (o,B8,A",DU{i}) -3 [i—j €A]
A" =A\{j — i} if such j'exists otherwise A" = A
LeftArcError (oli,j|B,A,D)F (o, j|B,AU{j—i},D) —3j[j —i€A]

RightArcError (oli,j|B,A,D)\ (olilj,B,AU{i— j},D)

Figure 4.3: Deductive system for newly proposed actions. D is a set of removed to-
kens. The SimpleEdit action removes the top element of the stack and LeftArcError
and RightArcError perform in the same way as LeftArc and RightArc, but are used to
classify ASR error tokens.

4.3 Features

We describe template-based features used in our parsing model that capture the na-
ture of both disfluencies and ASR errors. In the following, we use notation (-) for one
feature template example, and use o to indicate feature concatenation. i.w and i.p each
stands for i’th token’s word form and part-of-speech tag (e.g. (i.woi.p) stands for the
feature concatenation of i’th word form and part-of-speech tag.). o;, B; are used to
indicate the token index of i’th top element of the stack (the i’th rightmost element)
and the buffer (the i’ th leftmost element). Other subscripts used with ¢ and 3 are:
ih, i/, ir (1’th token’s head, left child, and right child), 142, /2, ir2 (i’th token’s head’s
head, 2nd left child, and 2nd right child), and ire, ile ri’th token’s leftmost descendant
and rightmost descendant).

4.3.1 Features for Disfluencies and ASR errors

Firstly in order to capture rich context features, we use features proposed by Zhang
and Nivre [38], which we show in Table 4.1. They show higher order features and
unigram features that inspect deep under the trees (Unigram, Bigram and Trigram in
the Table) and features inspired by graph-based parsing (Distance and Valency) are
useful for transition-based parsing. In Distance and Valency type features, d stands for
the distance between oy token and f token (that is, By - 0p). v, and v; stands for the
number of left and right child tokens.

We also include features that capture the nature of disfluencies proposed in Hon-
nibal [11], which are summarized in Table 4.3. We modify some of these features
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Type Token Template
Vp € {00, Bo, B1, B2} (p-w),(p-p),(P-wp)
Oon, Oo1, o, Bor,
Unigram Vp € 4 Con2, G012, G0r2, Poi2s (p-w),{p.p)
O0re; O0le> ﬁOle
Vp € {60re, Oote; Boie } (p-w,p-p)
EP-WP o q-W1>D><a (pwpo q-;V%
. pWOqu y proqp y
Bigram (p.q) = (00 o) (p-pog.wp),(pwogq.w),
T T (p-pog.p)
(o, B1); (Oore; Po),
Y(p,q) € {(60’ Bore) } (p-p,q-p)
(Bo, B1,B2), (00, Bo,B1),
(S0n, 005 Po), (00,01, Po),
Trigram V(p,q,r) € { (60,00, Bo), (00, Bo,Bur); (P-p,q-p;r.p)
(60, 601, 6012) 5 (60, G0, C0r2),
(60, Oon, Son2), (Bo, Bot; Porz)
Distance Vp € {00, Po} (pw,d),(p.p,d)
(P.9) = (00,Po) {(p-w,q-w,d),{p.p,q.p,d)
Valency p = 0p (p-wvy), (p.pvy)
Vp € {00, fo} (pwvi), (p-pv1)

Table 4.1: Rich context features based on the work [38]. In each template, .w, and .p

is word form and part-of-speech tag, .d distance between oy and fy, and .v,, .v; the

number of left and right children. Details are in § 4.3.1.
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Type Token Template
: (disfl(p—1)),
E‘é‘i;e}fbor p=ho (disfl(p—1)odisfl(p—2))
- disfi(p+ 1)),
p = (disfl(p+1)odisfl(p+2))
B (ASRerror(p—1)),
grsl;‘oRr p="h (ASRerror(p — 1) o ASRerror(p —2))
Neighbor
_ (ASRerror(p+1)),
p =% (ASRerror(p+ 1) o ASRerror(p+2))
(607B07ﬁ1aﬁ2)5
(00, 1,2, ), (pre fix-march([p,q). [rs]).
Rough | v(p.qurs) € § (BB (prefixmatch([p.d], 1)) o dis (B~ 1)
Copy (GO’ LE3HPS ) (prefix_match([p,q|,[r,s]) odisfl(Bo+1))
1, Bos Bos B1),
(o1, Bo, B1,B3)
00, Oo1; O0r, 0012,
00125 O0les OOre BOa
Brown Vp € Bor. Bors. Bore. B (brown(p.w))
ﬁ27 ﬁ3
(p,q) = (Bo,00) (brown(p.w) o brown(q.w))
00, Oo1, Ool,
01> 0012, Po,
Match Y(p,q) € Comb | < Bor, Bozs Boie, (match(p.w,q.w)),(match(p.p,q.p))
Bi, B2, Bs,
ﬁ4> ﬁS

Table 4.2: Features that capture the nature of disfluencies and ASR errors. disfI(i)
and ASRerror(i) is the binary functions that return if i’th token has been classified

as disfluent or ASR error. prefix_match(a,b) is a function that check how long the

prefixes of spans a and b match. brown(-) returns brown cluster and match(-,

) is a

binary function that checks the two given arguments are identical. Comb({}) stands

for all combinations in the set. Details are in § 4.3.1.
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because of the different timing of our parser to perform the SimpleEdit action from
that of the original Edit action. Besides, we extend some features to take cues of ASR
errors.

Edited Neighbor features check if the previous word of fy and the next word of
op have been classified as disfluent. These features are motivated from the fact that
once a disfluency occurs in a speech, the subsequent words or phrases also have higher
possibility to be disfluent, as can be seen in the examples of the Figure 1.1 and 2.2.
Based on the observation that ASR errors too, have the similar tendency, we add new
features to check if the tokens in question have been classified as ASR error by our
parser (ASR Error Neighbor).

Rough Copy features use prefix_match function to see how long the prefixes of the
given spans match on word form and part-of-speech tag. These features consider the
occurance of the pairs of reparandum and repair, as these types of phrases resemble in
their beginning in the most cases (repair is “rough copy” of reparandum.).

Brown features use Brown clustering algorithm [1], which is well-known source of
semi-supervised features. The clustering algorithm is run over a large size of unlabeled
data to give a mapping of word type to their classes. We use the pre-computed version
distributed by Liang [19].!

Match features examine which pair from all combinations of tokens in parsing con-
text (all o; and B; tokens) match on word form or part-of-speech tag. This also gives
the parser cues for disfluencies.

4.3.2 Features based on Word Confusion Network

To better capture which parts of the texts are likely to be ASR errors, we use ad-
ditional features extracted from a word confusion network (WCN) generated by ASR
models. WCN is a compact representation of recognition results in which compet-
ing word hypotheses and their posterior probabilities are represented as arcs in time-
ordered sets (slots). Marin [22] reports his observation that WCN slots with more arcs
tend to correspond to erroneous region. Following Marin we use WCN-based fea-
tures such as the mean and standard deviation of the slot arc posteriors and the highest
posterior in the slot (Table 4.3).

"http://www.metaoptimize.com/projects/wordreps
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Type Token Template

WCN Features | Vp € { 00, Bo, Bi, B2, B3, Ba } mean(p.w), std(p.w), highpos(p.w)

Table 4.3: Word Confusion Network Features

4.3.3 Backoff Action Feature

With the newly proposed LeftArcError and RightArcError actions, we fear that the
relatively low frequency of “error” tokens may cause the weights for these actions to
be updated too infrequently to be accurately generalized.

We resort to using the “backoff action feature” to avoid this situation. This means
that, for each action a € {LeftArc,LeftArcError}, the score of performing it in a state
s 1s calculated as follow:

SCORE (a,s) = wg-f(s) +wy -£(s) 4.1)

where d' = LeftArcBackoff, w, is the weight vector for the action a and f(-) is the
feature representation, respectively. LeftArcBackoff is not actual action performed by
our parser, rather it is used to provide the common feature representation which both
LeftArc and LeftArcError can “back off” to. RightArc and RightArcError actions also
calculate their scores as in Eq.(4.1), with @’ = RightArcBackoff. The scores for all the
other actions are calculated in the normal way: SCORE (a,s) = w-f(a,s).

4.4 Training

We train the parsing model using averaged structured perceptron [5]. By using struc-
tured perceptron, we train the model to predict the correct sequence of actions, rather
than a correct action at some state. In order to make the model learn efficiently despite
relatively many feature templates, We use max violation criterion update [14]. In max
violation, we update the the model parameters with the only subsequence of the pre-
dicted actions, that involves “violation”, that is defined as the sequence of actions with
higher model score than that of the correct one. In [14], they show that this update
strategy helps learn better model and reduce the learning time.
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Chapter 5

Experiments

5.1 the Switchboard corpus

Our experiments were performed using the Switchboard corpus [9] following previ-
ous work in the literature. As shown in Figure 5.1, this corpus consists of speech data
and its transcription texts (A), and contains 2438 two-sided conversations. The subset
of the corpus is annotated with part-of-speech tags and disfluency information using
the notation of Shriberg [29], which contains 1126 conversations (B). A further subset
of this part is annotated with syntactic information, constituting 650 conversations (C).
Following the practice in the literature, We converted the annotated phrase structure
trees in the corpus to dependency trees using the Stanford converter [7].

5.2 Experimental Settings
5.2.1 ASR Settings

To obtain the ASR output texts of the corpus, we used the off-the-shelf NeuralNet
recipe (p-norm Network [36]) presented by Kaldi project [24], with the additional use
of the Fisher corpus [6] for language modeling.

We used the jackknife method to obtain the ASR output texts throughout the syn-
tactically annotated part of the corpus. Following Figure 5.1, in the adopted jackknife
method, we first split the syntactically annotated part (C) into three (Jackl, 2, and 3).
Second, we chose two of them (Jackl and Jack2, for example), and using these and
the part of the corpus that has no syntactic annotation (A \ C in set theory notation),



Switchboard Corpus(4)
Used to train ASR model

POS & Disfluency annotated(B) )
Used to train POS tagger
Syntactic information annotated(C)

Jackl ©  Jack2 | Jack3

Figure 5.1: Overview of Switchboard corpus. The Switchboard corpus contains speech
data and its transcription texts (A). A subset of the corpus is annotated with part-of-
speech and disfluency information (B). A further subset is annotated with syntactic
information (C). The syntactically annotated part is divided into three (Jackl, 2, and
3) in data creation using the jackknife method (details are provided in the text).

we train a NeuralNet ASR model. Finally, we decode over the remaining syntactically
annotated part (in this case, Jack3). We repeated this process three times, until we
obtained the ASR output texts for the entire syntactically annotated part of the corpus.
With this strategy, the amount of training data lost for each of the ASR models due
to the jackknife method is guaranteed to be less than 10% of the whole Switchboard
corpus with only three iterations of the train-decode processes. The average word error
rate of the three resulting models were 13.9% on the Switchboard part of the HUBS
evaluation dataset !.

From these ASR output texts, we created the tree-annotated corpus by applying the
data creation method introduced in Chapter 3. Out of all 857,493 word tokens, there
are 32,606 ASR-to-NULL, 34,952 Trans-to-NULL, and 93,138 NOT MATCH cases,
meaning 15.6% of all word tokens had “error” labeled arcs.

5.2.2 Parsing Settings

We assigned part-of-speech tags (POS tags) to the corpus created in § 5.2.1 using
the Stanford POS tagger [31] trained on a part of the corpus that is annotated with POS
information but not syntactic information (B \ C, which contains 56,001 sentences.).
The performance of the tagger is evaluated on the syntactically annotated part (C); the
tagger has an accuracy score of 95.0%.

Uhttps://catalog.ldc.upenn.edu/LDC2002S09
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We adopt the same train/dev/test split as in Honnibal [11], although the data size
reduces slightly in the process of the data creation. We report the unlabeled attachment
score (UAS), which indicates how many heads of fluent tokens are correctly predicted.
The “error” edge label is used to distinguish the ASR error parts from non error parts
of sentences and to report the UAS scores separately on each type of tokens.

Disfluency detection is a simple binary classification task to predict whether each
token is disfluent or not; therefore, we report the precision/recall/F1-score values fol-
lowing the previous studies.

As a baseline, we use a setting in which we train a model of the parser in § 4.2
without Left/RightArcError actions on the train part of the gold Switchboard corpus,
then test its performance on the test part of the ASR output version of the corpus. We
exclude Left/RightArcError actions in this case, as there are no ASR error tokens in the
training data. This setting can be seen as reproducing the typical situation, in which
a parser is trained on ASR-error-free texts, but nevertheless needs to parse the ASR
output texts. In the following section, we refer to this parser configuration as Disfi.

5.3 Results and Analysis

Table 5.1 shows the parser’s performance for different parsing configurations. Based
on the baseline Disfl parser, we report scores with the additional (and additive) use
of Left/RightArcError actions (ErrorAct), the WCN feature (WCN), and the backoff
action feature (Backoff). Using Left/RightArcError actions resulted in 3.6% and 1.2%
improvement in UAS and disfluency detection accuracy, respectively. The backoff
action feature led to further improved UAS, whereas WCN features cause an increase
in disfluency detection accuracy. We observe that a reversion in precision and recall
occurs when using Left/RightArcError actions.

Table 5.2 reports parsing performance on various train and test data settings. In
Table 5.2, the Train and Test columns represent which data to use in training and
testing; Trans refers to the gold transcription text of the Switchboard corpus, and ASR
indicates the text created through the data creation process in § 5.2.1.

Our parser’s performance on the gold Switchboard corpus ((Train, Test) = (Trans,
Trans)) can be seen as an upper bound of the rest of the parsing experiments. As this
experiment uses the same train/test data settings, the result can be compared to those
of existing studies of joint dependency parsing and disfluency detection [11, 33, 27].
Although our parser does not achieve the state-of-the-art result (92.2% and 85.1% in
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Model Dependency (UAS) Disfluency
ALL ASR error / other | Prec. Rec. Fl
Disfl 72.7 37.8/79.2 58.6 62.2 60.3
Disfl + ErrorAct 76.3 40.8/82.9 66.0 57.6 61.5
Disfl + ErrorAct + Backoff 76.4 40.6 / 83.0 65.6 57.3 6l1.1
Disfl + ErrorAct + WCN + Backoff || 76.2 41.1/82.7 67.9 579 625

Table 5.1: Performance of the proposed methods. Disfl refers to the joint parser with
disfluency detection without Left/RightArcError actions. ErrorAct introduces these
actions. Backoff and WCN, respectively, refer to the backoff action feature in § 4.3.3
and the WCN feature in § 4.3.2. UAS reports parsing performance on all parts of the
sentence (ALL) and the ASR error part and the non ASR error part of the sentence
(ASR error / other), separately.

UAS and disfluency F1 score in [33]), it still shows a relatively good result with a
simpler parser configuration.

When evaluated on the ASR texts, the parser trained on the ASR output texts showed
degraded performance compared to the parser trained on the gold transcription ((Train,
Test) = (ASR, ASR)). This result is surprising, given that in this setting, both the
train and test data are ASR output texts and share characteristics; therefore, we ex-
pect that there will be some domain adaptation effect. We hypothesized that the drop
in the performance is due to the relatively noisy nature of our corpus, which is created
from the ASR output texts with recognition errors. Having ASR-error-specific actions,
Left/RightArcError mitigates this problem by separately treating the ASR error tokens
and non ASR error tokens. Finally, with backoff action and WCN features, the per-
formance increase was 1.5% and 0.7% for UAS and disfluency detection, respectively,
compared to the baseline. With the newly proposed features, the parser trained on ASR
output texts outperforms the parser trained on the transcription texts.

However, when compared with the case of (Train, Test) = (Trans, Trans), we ob-
serve significant decreases in performance in both dependency parsing and disfluency
detection in the experiments conducted on ASR output texts. This result clearly poses
a new challenge for the disfluency detection community.
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. Dependency (UAS) Disfluency
Train | Test Model ALL ASRerror / ofher | Prec. Rec. FI
Trans | Trans Disfl 89.7 - 904 76.8 83.1
Trans | ASR Disfl 74.7 36.1 / 82.0 585 65.6 61.8
ASR | ASR Disfl 72.7 37.8 /1 79.2 586 622 603
ASR | ASR Disfl + ErrorAct + Backoff 76.4 40.6 / 83.0 65.6 573 61.1
ASR | ASR | Disfl + ErrorAct + WCN + Backoff || 76.2 41.1 / 82.7 67.9 579 625

Table 5.2: Parsing result on different train-test settings. Each Trans and ASR refers to
the gold transcription texts of the Switchboard corpus and the ASR output version.
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Chapter 6

Conclusion

In this work, we have proposed a novel joint transition-based dependency parsing
method with disfluency detection. This method is capable of robustly parsing ASR out-
put texts. With the introduction of new actions, backoff action features, and WCN fea-
tures, the parser shows reasonably good results and outperforms conventional parsers
for ASR output texts. We also introduce an alignment-based data construction method
and propose evaluation of both of parsing and disfluency detection performance for
real speech data. As the experimental performance for ASR texts is significantly lower
than the performance achieved for the gold transcription texts, we have clarified the
need to develop a method of disfluency detection that is robust to recognition errors in
the ASR system. In future work, we will further improve the parsing performance, and
develop a method to correct erroneous parts of sentences.
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