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Abstract

Visual information in the early primate visual system is known to be repre-

sented in a retinotopic fashion, so that adjoining points in the visual field are rep-

resented by neural activities at adjoining points on the cortical sheet. Although

a rough form of retinotopy persists into higher visual cortex, the way in which

spatial information is encoded in higher areas has not been thoroughly explored.

In particular, the way in which the degree of retinotopy and the sizes of receptive

fields in higher visual cortex constrain the accuracy of spatial encoding is not

well understood. In the current study we aimed to investigate these questions by

decoding the spatial position of 3-dimensional moving objects from fMRI activity

recorded during observation of the objects by human subjects. This was achieved

by training sparse linear regression models using neural activity from different

areas of visual cortex and observing the accuracy of predicted object trajectories

for a test set of fMRI data. Notably, accurate predictions were obtained even

from higher level visual cortex. These accuracies are then viewed in terms of the

sizes of receptive fields known to exist in each area, and a computational model

is used to demonstrate how wide receptive fields are compatible with accurate

spatial encoding.
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1. Introduction

1.1 Overview

When humans observe a visual scene, it is quickly apparent to us the loca-

tions of the objects and other visual features that we are seeing. However, the

process by which the visual information is transformed into spatial coordinates

is complicated and the question of how the human visual cortex processes and

represents this position information is a broad topic of study in neuroscience. It

is known that human visual cortex consists of multiple areas, each of which con-

tains a ”map” of the same visual space [1]. However, differences in the scale of the

visual information being represented in each map can have implications for the

accuracy with which position information is represented. Assessing the accuracy

with which each map encodes the positions of its respective visual features in the

face of increasing complexity and changes in scale is the main topic of this thesis.

1.2 Human Visual System

1.2.1 Visual Processing Hierarchy

The visual world that we perceive seems naturally to us to be composed of

many separate objects together forming a coherent scene. The partitioning of

the array of light impinging on the retina into discrete objects and groups of

objects is however a complicated process and is separated into several stages of

successive processing (see Fig. 1). At each stage of the hierarchy, the activity of

neurons represents different types of information about the same visual scene at

different scales. For example, the level of activity of photoreceptors in the retina

corresponds directly to the luminance of light (of specific wavelengths) at each

point across the eye, while activity in the next visual area, LGN, is generated

from incorporating several outputs of the retina and represents local light contrast

(small dots) [2].

Likewise, neurons located further along the hierarchy accept input from several

neurons at the previous (and same) stage, and can represent more complex fea-

tures, such as oriented edges in area V1[3], specific shapes in area V4, or even

particular categories of objects in ventral temporal cortex (VTC). For example,
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Figure 1. Visual Processing Hierarchy.

Adapted from [22]. As one progresses through successive visual areas in the human brain, the

information represented becomes more complex and receptive fields become larger.The diagram

shows sample receptive fields of neurons from the labeled visual areas on the left, and the type

of visual feature encoded by the neurons in the center. The corresponding region of the brain

is highlighted on the far right.
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there are neurons in an advanced stage of the hierarchy whose activity is chiefly

modulated by visual stimuli that resemble a face (Fusiform Face Area (FFA),

[4]), house (Parahippocampal Place Area (PPA) [5], or other specific category of

object (LOC,[6]). The region of space that a visual feature must be present in so

that the neuron will react is called the neuron’s ”receptive field” (RF). Both the

complexity of the visual features and the sizes of the RFs increase as one moves

further up the hierarchy.

1.2.2 Position Encoding and Retinotopy

Since the time of the lesion studies of Holmes [7, 20], it has been known that

damage to particular areas of the brain results in loss of vision in specific parts

of the visual field. This occurs because there is a topological mapping from the

input at the retina to the position of RFs of neurons in many areas of visual

cortex. This organization in which adjacent neurons possess RFs that are placed

in adjacent points of the visual field is known as a ”retinotopic” organization, or

sometimes ”visual field map” [1]. The activity of neurons in specific locations of

each of the visual areas explained above represents the presence of some visual

feature in the corresponding region of space. However, the type of feature encoded

in each map is different, and the spatial scale of the feature is also different.

1.2.3 Ventral and Dorsal Streams

When the visual feature being encoded is relatively simple (such as an ori-

ented line segment), the above-mentioned retinotopic encoding scheme is a very

straightforward way to simultaneously encode the position and identity of the

visual stimulus. However, when the visual feature is more complicated, such as

an entire object, the number of neurons required at each position of the visual

field would multiply to a prohibitively high number (one for every object you

could imagine!). One way in which the brain solves this problem is by separat-

ing the encoding of identity and position of objects into two different processing

”streams” [8, 9]. A ”ventral” or ”what” stream is composed of a series of areas

associated with creating an invariant representation of the identity of a given vi-

sual feature, so that neurons in those areas will respond selectively to particular

categories of objects regardless of their position in the visual field, closeness or
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Figure 2. Receptive field sizes by visual area.

Adapted from [11]. population receptive field (pRF) modeling was conducted to estimate the

pRF size for different visual areas. The sizes of estimated pRFs by eccentricity is shown on the

left, and the equivalent estimate based on single or multi-unit and LFP recordings is shown on

the right. The markers and lines are labeled with the corresponding visual areas.

farness from the observer, or angle of presentation. An important caveat however

is that even though most neurons have receptive fields large enough to be make

them partially invariant to the position of the stimulus, a complete invariance is

not achieved [10]. A second ”dorsal” or ”where” stream has been strongly impli-

cated in the processing of object position, specifically for processing the targets

of human interaction.

1.3 Problem Statement

It is known that the average receptive field sizes of neurons increase as one as-

cends the visual processing hierarchy either along the ventral stream or the dorsal

stream ([11], also see Fig. 2). It is also often assumed that with the increase in

RF size, the amount of spatial information decreases because large RFs are the

hallmark of neuronal position invariance to stimuli (same neural response regard-

less of position of stimulus). While previous studies have quantified the level of

invariance of individual neurons to stimulus position [1] , there has not been an

exploration of the level of spatial or position information in an area as a whole.
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Recently the advent of machine-learning based neural decoding has allowed for

the readout of observed stimulus characteristics directly from multivoxel brain

patterns, making it possible for the first time to explore the question experimen-

tally in humans. The goal of the current study is to expand our knowledge of how

accurately visual stimulus position is encoded in different areas of visual cortex

by decoding visual position information directly from human brain activity.

This was accomplished by first collecting brain activity data using fMRI for

two human subjects as they observed a moving sphere object traverse a screen.

Then using a statistical method (see section 2.6 for details), a relationship be-

tween the brain activity pattern in different visual areas at a particular time and

the x and y coordinates of the ball at that same time was learned. A separate

set of test data was used to evaluate the performance of the model trained using

data from each visual area. In this way, a measure of the spatial information by

area was obtained, and allowed for comparison by the sizes of receptive fields of

neurons in each area. We observed a high accuracy of decoding even for areas in

which receptive field sizes are known to be quite large (such as the lateral occiptal

complex LOC, and intraparietal sulcus IPS) , although the highest accuracy was

seen in early visual areas V1 to V3.

To further interpret the high accuracy of position decoding for areas with large

receptive fields, a computational model of voxel responses to stimulus position

was constructed (section 2.7). We assumed that each voxel could be modeled as

having a receptive field with a center on the x-y plane and an activity which de-

creases exponentially from a peak level (identical for each voxel) as the stimulus

moves away from the center of the voxel RF, plus a normally distributed noise

term. Uniformly distributed RF centers and randomly placed targets were used,

and the simulated voxel responses used to predict the stimulus position with one

of two methods (regression or maximum likelihood). The effect of increasing re-

ceptive field sizes on the accuracy of the x-y position prediction was examined.

The results of the simulation study showed that in fact there is no depen-

dency of encoding accuracy on the size of the receptive field when the maximum

likelihood solution is used (see section 3.2). However we did observe a trend of

increasing accuracy with RF size when implementing a linear readout mechanism

(linear regression), which agrees with our experimental results within lower visual
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cortex. These results are theoretically justified by previous research such as the

work of Zhang and Sejnowski [12], who showed that for 2-dimensional variables,

the amount of information contained in a set of firing neurons does not depend

on the width of the tuning curves of the neuorns.

2. Materials and Methods

The general experimental overview is presented in Fig. 3. Two human subjects

were shown a display with a moving sphere stimulus while brain activity was

recorded with fMRI. At each timepoint, the percent signal change (see section

2.5) of a selection of fMRI voxels was used as input, and the x and y values of

the position of the center of the sphere used as target labels, for training a sparse

linear regression model.

2.1 Subjects

Two healthy male subjects (right-handed, ages 23 and 24) with normal or

corrected-to-normal vision participated in the experiments. Signed, written con-

sent was obtained from each subject and approval obtained from the ATR ethics

committee.

2.2 Stimulus and Experimental Protocol

All stimuli were created with Psychtoolbox v.3 for Matlab and the associated

openGL for psychtoolbox extension. Stimuli were backprojected onto a display in

the fMRI scanner and viewed through a mirror attached to the scannerfs headcoil

with a field of view equal to 12.5 × 12.5 degrees. For each subject, four scan-

ning sessions (runs) were conducted. In each run, an initial rest period of 32 s

was followed by four blocks of stimulus presentation, each lasting for 240 s and

interleaved with 12-s rest periods. During pre-rest and rest periods, a circular

fixation point (0.25◦ diameter) was displayed on the center of the display and

subjects were instructed to attend to this point. During stimulus presentation,

in addition to the fixation point, a white-and-black checkered sphere of diameter

1.6◦ was displayed at a flickering rate of 6 Hz (Fig. 3).
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Figure 3. Experimental Overview

The screen shown on the left was viewed by subjects within an fMRI scanner. The notations

show the size of the sphere, the size of the maximal radius of movement of the ball and the

x and y position of the center of the sphere at a timepoint t (notations not displayed during

experiment). The right side of the figure illustrates the decoding procedure, in which a sparse

linear regression model is trained to take as input a set of voxels, and output either the x or

the y position of the sphere.
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Table 1. Stimulus Parameters

parameter speed(deg/s) diameter(deg) radius from center(deg)

min 0.13 0.00 1.31

max 2.20 4.01 2.15

mean 1.00 2.37 1.70

The sphere was programmed to move in a pseudo-random orbit about the

central fixation point, by modulating its translation and rotation directions inde-

pendently using sin and cosine functions: In each frame, first the rate variable t

was incremented by π/16, then the ball was rotated t degrees around the currently

facing axis, translated by R sin(ω1t) on the x-axis (where R is the maximum ra-

dius, 4.5◦ and ω1 a scaling factor equal to 0.01) and by R sin(ω2t)on the z-axis

(relative to the facing direction, ω2 equal to .005), and finally rotated again by t

degrees on the y-z axis relative to facing direction. The result is a smooth but

complex and unique trajectory that remains within the bounds of the visual field.

The speed and size of the sphere were modulated throughout the course of the

3D orbit (see table 1), which helped keep the subjectfs attention and improved

accuracy compared to a 2D, fixed speed orbit (results not shown). During pre-

sentation, subjects were instructed to maintain fixation on the central fixation

point, but to continue to covertly attend to the position of the sphere.

2.3 Retinotopy and Functional Localizer

Five separate visual areas were identified for use in the decoding analysis.

Three lower visual areas (V1, V2, V3) were identified for each hemisphere using a

conventional retinotopic mapping experiment[14] and analysis with BrainVoyager

QX v.3 [?]. In addition, two higher visual areas, Lateral Occipital Complex LOC)

and Intraparietal Sulcus (IPS) were defined on the basis of functional localizer

experiments previously presented in the literature [4, 15]. For area LOC, a com-

parison of brain activation in response to scrambled objects vs. intact objects was

used to identify voxels (p < 0.01; see [4] for more details on experimental proce-

dure) For area IPS, a comparison between brain activity during passive viewing
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and attentive tracking of objects in a multiple object tracking task was used to

define voxels belonging to IPS (p < 0.01) [15]. These five areas were selected as

”representative” visual areas. Areas V1, V2, and V3 cover early visual cortex,

and we assumed the accuracy of LOC would be representative of accuracies from

ventral cortex and accuracy of IPS to be representative of accuracies from dorsal

cortex.

2.4 fMRI Data Acquisition

fMRI data was recorded on a Siemens Trio 3T scanner using the following scan

parameters: TR = 2000 ms, TE = 35 ms, voxel size=3 × 3 × 3mm, number of

slices = 31, slice gap 0 mm.

2.5 fMRI Data Preprocessing

Each volume of functional MRI data was time-slice adjusted, corrected for head

movement, and co-registered to the subject’s structural MRI image using SPM5.

The first four volumes of every run were discarded due to transient magnetic

start-up effects. Each voxelfs time course was shifted by 2 samples (4s) to account

for the hemodynamic delay, and converted to percent signal change by using the

initial 32-s rest period from each fMRI run. Outlier removal and linear detrending

was also performed.

2.6 Decoding Analysis

The x and y position of the center of the sphere (measured in visual degrees

from the central fixation point) at the middle of every 2-s interval (every vol-

ume of brain data) was used to label the fMRI data recorded during that time

interval. Decoders for the x and y values were built separately by using the la-

beled fMRI data from three of the four runs as input to a sparse linear regression

algorithm [16] with testing conducted on the fourth run in a leave-one-run-out

cross-validation procedure. Because fMRI data is highly multidimensional, a

sparse algorithm was required for selecting a subset of relevant features to enable

good generalization across data sets. The selected algorithm has already proven
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to be effective for this purpose and has been tested in the context of extracting

voxels for decoding of visual cortical activity. [13]. The method works by applying

Baye’s rule on equation 1 and maximizing the posterior probability of the weights

w given the data V. An automatic relevance determination (ARD) prior (equa-

tion 4) over the weights allows voxels that are unimportant to be automatically

removed (weights driven to 0).

tn =
M∑

m=1

wmϕm(V) + ε (1)

p(ε|σ2) = N(0, σ2) (2)

p(t|v, w, σ2) =
N∏

m=1

p(tn|vn,w, σ2) (3)

p(w|α) =
M∏

m=1

(
α

2π

)1/2

exp
(
−α

2
w2

m

)
, (4)

where V = (v1, . . . ,vN) is a data set of N observations of M voxels, t =

(t1, . . . , tN) is a vector of target values, ϕm is a fixed basis function, w is a set of

weights, ε is a Gaussian noise term, and α is a (Gaussian) prior distribution over

the values of the weights. Voxels from lower (V1, V2, and V3) and higher visual

areas (LOC, IPS) were used to build decoders for each visual area independently,

which enabled comparison of results across visual areas. The goodness-of-fit be-

tween the predicted coordinates and the true coordinates of the sphere throughout

the time course were evaluated using the correlation coefficient r between the two

trajectories:

r =

∑N
i=1(x

s
i − x̄s)(xP

i − x̄P
i )√∑N

i (x
s
i − x̄s)2

√∑N
i (x

P
i − x̄P

i )
2

(5)

where xS = (xs) is the true stimulus position and xP = (xP ) is the predicted

position.

2.7 Simulation Study

To investigate how the sizes of receptive fields in the target regions of interest

affected the decoding accuracy of x-y position, we conducted a simulation study

10



using a voxel receptive field model. In the model, each voxel of brain activity

is parameterized as having a receptive field center xi = (xi, yi) at a ”preferred

stimulus position” and receptive field width (σ) indicating the voxel’s tolerance

to stimuli different from the preferred stimulus. Voxel responses decrease in a

gaussian-like fashion as a function of the stimulus xs = (xs, ys) distance from the

RF center:

ri = exp

(
|xi − xS|2

2σ2
i

)
+ ε (6)

p(ε|σN) = N(0, σN) (7)

where ri is the ith voxel’s response, xi is the position of the voxel’s receptive field

center, xS is the position of the stimulus, σi is the receptive field width, and ε is

a gaussian noise term, independent and identically distributed for each voxel.

This model is a direct extension of similar models for neurons with the ex-

ception that instead of assuming a poisson process for the output, gaussian noise

is used, which may be more appropriate for fMRI activities, where the sum of a

large number of random noise variables (scanner noise, variation in subject cogni-

tion, and physiological changes, among others) will converge towards a Gaussian

distribution by the central limit theorem. The assumptions that voxels, which

are thought to reflect activity from a population of many neurons on a mm-scale,

can be modeled similarly to neurons, has been supported by several recent works

[17, 18]. To implement the model, a series of randomly placed targets were gener-

ated at positions (xT , yT ) and the responses calculated for 25 × 25 = 625 voxels

with uniformly distributed RF centers within a space of 10 × 10 spatial units.

While changing the value of σ from 1 to 10 in 0.2 unit steps, the amount of

position information in the model was quantified in two ways. First, the vector

of responses from all voxels was used as input to train a sprase linear regression

model with target vectors given by the true target positions. A 10-fold cross-

validation procedure was used and the error evaluated using the normalized error

given in equation 5. Second, a maximum likelihood solution for the position of

the stimulus given the response vector and model parameters was calculated by

maximizing the log-likelihood of the response according to equation 9:
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Figure 4. Voxel Receptive Field Model

A 2-dimensional area of visual space is represented by the bounds of the black box. Each small

yellow circle represents the center of a voxel receptive field, and the surrounding purple circle

illustrates the partial extent of the field. The red circle represents a target stimulus, to which

the surrounding voxels will respond according to equation 6.
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Figure 5. Sample predicted time course for x-position decoding

True x-trajectory shown in blue, predicted trajectory shown in green. A timecourse for 150

samples is plotted on the x-axis, and the position of the sphere as distance in degrees from the

center of the screen is shown on the y-axis.

p(r|xs) =
N∏
i=1

p(ri|xs) =
N∏
i=1

exp

(
−(ri − fi(xs)

2

2σN

)
(8)

log p(r|xs) =
N∑
i=1

(
−(ri − fi(xs)

2

2σN

)
(9)

where fi(x) represents each voxel’s tuning curve as given in equation 6.

3. Results

3.1 Results of Decoding Analysis

The results of the 4-fold cross-validation decoding analysis for two subjects are

presented in Fig. 6. The correlation coefficient (equation 5) between true and

predicted trajectories for x and y models are averaged together, and organized

by visual area used (V1, V2, V3, IPS, and LOC). In addition, the results for
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a ”dummy decoder” trained using fMRI samples whose labels were randomly

shuffled is included for comparison (shown as ”con” in Figure 6). The results show

that within early visual cortex (V1 to V3), increasing stage in the visual hierarchy

is associated with increased performance, with the average correlation coefficient

r over both dimensions values increasing from 0.80 to 0.88 across the three areas

(average of two subjects). A sample predicted time course in one dimension (x

position) is shown to illustrate how the prediction results are correctly capturing

the trend of the object movement. (Fig. 5). Reasonably high performance was

also observed in higher visual areas (both LOC & IPS), with the average r values

equaling 0.72 for LOC and 0.68 for IPS. In comparison, the control condition

yielded an average r of 0.08.

3.2 Results of Simulation Study

A voxel receptive field model was constructed in order to theoretically assess the

effect of receptive field size on the accuracy of spatial information encoding. A 10

× 10 space was uniformly covered with voxel receptive fields with gaussian tuning

(see see section 2.7) and additive gaussian noise, and the responses to randomly

placed stimuli used to estimate the true position of the stimulus. The accuracy of

the model was evaluated in two ways. For comparison with experimental results,

a sparse linear regression model was trained using the model voxel’s responses

to 100 randomly generated target stimuli (see section 2.7) and evaluated on a

separate set of 10 samples. Secondly, the maximum likelihood estimation of

the stimulus position from the model response was calculated in order to obtain

an estimate of total information encoded that was independent of the choice of

decoder used. Fig. 7 shows a graph of the correlation coefficient between the true

and predicted values of the stimulus as a function of the receptive field widths

used for each voxel. It can be seen that in agreement with the our experimental

results, for the linear regression case higher accuracy was obtained as the size of

the receptive field increased. However, the maximum likelihood method yielded

results that were entirely independent of the receptive field width σ, implying

that the actual amount of spatial information encoded in each visual area should

not change, under the assumption that receptive field distributions are the same.

The reason and implications behind this result are discussed in section 4.1.
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Figure 6. Error between true and predicted trajectories by visual area.

The correlation coefficient (r) between true and predicted x and y trajectories is averaged

and shown on the y axis. The visual areas whose voxels were used as input for the models

are arranged on the x-axis. con: control condition in which sample labels for training were

randomly shuffled. S1: subject 1, S2: subject 2.
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Figure 7. estimation accuracy as a function of RF width.

The correlation coefficient between true and predicted stimulus locations for the simulation

study is shown on the y-axis. The value of sigma is plotted on the x-axis. Left: simulation using

a sparse linear regression model. Right: simulation using a maximum likelihood estimation

method (see main text for more details).

16



4. Discussion

The accuracy of the encoding of spatial position information in human visual

cortex was experimentally explored by decoding the position of an observed mov-

ing object from human fMRI data. By training decoders with brain activity from

different visual areas, we were able to compare the accuracy of spatial encoding

across the visual hierarchy, and can examine the relationship between accuracy

and known properties of the visual areas.

For example, it is well known that the responses of neurons in higher visual areas

are more complex than of those in lower visual areas, and likewise have larger

receptive fields to incorporate information from a wider range. In this discussion

we will consider our decoding results with respect to these aspects separately.

4.1 Size of Receptive Field by Visual Area

Previous studies have shown that the sizes of receptive fields tend to increase

with successive stages in the visual processing hierarchy[11]. Because intuitively

it may seem that using smaller receptive fields would allow for a more precise

encoding of spatial information, the result (6) that accurate position prediction

was possible from all areas was initially surprising. However, the results of the

simulation study (Fig. 7) and previous theoretical research [12] has shown that

the accuracy of encoding or decoding in 2 dimensions is not dependent on the size

of the receptive fields. In [12] it was shown theoretically that there is a universal

scaling rule for receptive field width, meaning that regardless of the probabilistic

model or exact form of tuning function assumed for neuronal receptive fields,

there is a specific way in which the change in size affects encoding accuracy. Im-

portantly, this rule depends on the dimensionality of the variables being encoded:

for 1-dimensional variables, increasing the RF size will always lower the encoding

accuracy, for 2-dimensional variables the size has no effect, and for 3-and greater

dimensional variables, larger RF sizes lead to better encoding accuracy (8).

Thus, despite the much larger receptive field sizes in areas such as LOC or IPS

[11], adequate accuracy was obtainable in this 2-dimensional encoding setting.

The pattern of increasing accuracy from V1 to V3 could be a result of the choice

of regression method, which was linear as opposed to the maximum likelihood
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Figure 8. Fisher information for neuronal populations as a function of tuning

curve width.

Adapted from [12]. Depending on the dimensionality D of the encoded variable, the Fisher

information for the neuronal population can decrease, increase, or be unaffected by an increase

in average tuning width.
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method used for the simulation study. A future task is to apply the maximum

likelihood framework to actual fMRI data and observe whether the results by

area truly do not differ.

4.2 Level of Retinotopy by Visual Area

Areas V1 through V3 have very well-defined retinotopies, meaning that every

point of visual space is adequately covered by neuronal receptive fields and that

adjacent RFs in the visual field belong to neurons adjacent in the cortical sheet.

However higher visual areas such as LOC, which is dedicated to creating invari-

ant representations of stimuli, do not have similarly ’clean’ retinotopies [21]. This

distinction is important when considering the theoretical implications of recep-

tive field size on encoding accuracy because typically the assumption of densely

packed, uniformly distributed receptive fields is necessary for deriving the inde-

pendence of RF size from encoding accuracy [12]. This could explain why areas

LOC and IPS showed a higher error for decoded trajectories despite the rationale

that their large receptive field sizes should not hinder spatial encoding.
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5. Conclusions and Future Work

The accuracy of the position encoding of objects across different visual corti-

cal areas was explored in this thesis. The increase in receptive field size across

areas was also related to the increase in accuracy for early visual cortical areas,

although the complexity of responses in higher visual cortex resulted in lower ac-

curacy compared to early visual cortex. The dorsal visual stream, which is posited

with representing object position for enabling human interaction is a complex vi-

sual area which may encode position in a manner fundamentally different from

the retinotopic way in which early visual cortex encodes this information. Thus,

a more complete survey of the representation of object position in dorsal visual

cortex is a problem left for future works. In addition, the results from the sim-

ulation study imply that the level of position information does not change with

receptive field size, but this trend was not confirmed when using a linear decoder

on the fMRI Data. An important point for consolidating this work is to estimate

the sizes and positions of the receptive fields manually (following [1]) and then

attempt a maximum likelihood estimation of the positions and observe whether

the theoretical results are supported.
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Figure 9. Definitions of visual areas.The retinotopic map for the right hemisphere of

subject 1 is displayed here. It was created using BrainVoyager QX and the retinotopic stimuli

described in [14]. The borders of visual areas were defined by the phase-reversal boundary for

areas V1, V2, and V3, and by functional localizer experiments ([15],[4]) for areas LOC and IPS.
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