# 修士論文

# 遺伝子配列の相同性に基づく ドメイン探索アルゴリズムの開発

新井 美紗子

2007年2月1日

奈良先端科学技術大学院大学 情報科学研究科 情報生命科学専攻

本論文は奈良先端科学技術大学院大学情報科学研究科に修士(理学) 授与の要件として提出した修士論文である。

### 新井 美紗子

#### 審査委員:

金谷 重彦 教授 (主指導教員)

植村 俊亮 教授 (副指導教員)

黒川 顕 助教授 (副指導教員)

# 遺伝子配列の相同性に基づく ドメイン探索アルゴリズムの開発\*

#### 新井 美紗子

#### 内容梗概

遺伝子には、他の遺伝子と相同性を示す1つまたは複数の高く保存されている配列領域であるドメインが存在する。個々のドメインは機能をもっており、遺伝子がタンパク質として働く際に深く関係している。そのため、ドメインは遺伝子アノテーションや遺伝子の進化、タンパク質立体構造の予測など多様な解析で役立つ。本研究では、遺伝子の配列相同性からドメインの探索を行うアルゴリズムの開発を行った。本研究で開発したドメイン探索のアルゴリズムは、始めに、遺伝子について異・同生物間で比較解析を行い相同な遺伝子であるオーソログ遺伝子・パラログ遺伝子の検出を行なった。次に、オーソログ遺伝子・パラログ遺伝子の相同配列データを基に、ドメインを探索した。また、ドメインの探索と探索結果の可視化を行うソフトウェアの開発も行った。開発したソフトウェアを使い、333種の生物における全遺伝子について、ドメインの探索を行った。植物(シロイヌナズナ)と微生物(真菌、古細菌、細菌:332種)間のオーソログ遺伝子、植物と植物間のパラログ遺伝子からそれぞれドメインの探索を行い、さらに、主要な機能をもつ遺伝子についてドメインの解析を行った。解析結果から、微生物から植物への進化の過程で受け継がれたドメインを明らかにすることができた。

#### キーワード

ドメイン、オーソログ遺伝子、パラログ遺伝子、シロイヌナズナ、微生物

<sup>\*</sup> 奈良先端科学技術大学院大学 情報科学研究科 情報生命科学専攻 修士論文, NAIST-IS-MT0551004, 2007年2月1日.

# Detection of common domains in homologous gene sequences\*

#### Misako Arai

#### Abstract

Genes are composed of domains. Domains are homologous regions in different genes and are conserved evolutionary units that often also correspond to functional units. Domains represent one of the most useful levels at which to understand protein function, and gene evolution. In this study, we developed an algorithm for detecting common domains among homologous gene sequences. First, homologous gene sequences are detected by comparing the genomes of two species. If two species are different, homologous genes are orthologous genes. If two species are the same, homologous genes are paralogous genes. Second, domains are detected among orthologous or paralogous gene sequences. In this work, we developed software for detecting and visualizing domains. We detected the domains of all genes in 333 species by this software. We analyzed these domains by comparing plant (Arabidopsis thaliana) and microorganism genomes, and by classifying plant domains on the basis of gene functions. These results report the identification of domains which derived from microorganism in genes of plant.

#### **Keywords:**

Domain, Orthologous gene, Paralogous gene, Arabidopsis thaliana, Microorganism

<sup>\*</sup> Master's Thesis, Department of Bioinformatics and Genomics, Graduate School of Information Science, Nara Institute of Science and Technology, NAIST-IS-MT0551004, February 1, 2007.

# 目 次

| 1. | 序論  | İ                                                        | 1  |
|----|-----|----------------------------------------------------------|----|
| 2. | 材料  | ·<br>·及び方法                                               | 4  |
|    | 2.1 | ゲノムデータ                                                   | 4  |
|    | 2.2 | オーソログ遺伝子とパラログ遺伝子・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・     | 5  |
|    |     | 2.2.1 BLAST による配列類似性の評価                                  | 7  |
|    |     | 2.2.2 遺伝子相同性の評価                                          | 8  |
|    | 2.3 | ドメイン                                                     | 9  |
|    |     | 2.3.1 ドメインと非ドメイン領域の境界                                    | 11 |
|    |     | 2.3.2 問い合せ遺伝子における相同遺伝子の類似配列保存性の評価                        | 13 |
|    |     | 2.3.3 ドメイン領域の決定                                          | 14 |
|    | 2.4 | ドメイン探索結果の可視化ソフトウェア                                       | 17 |
| 3. | 結果  | ・<br>・<br>・及び考察                                          | 19 |
|    | 3.1 | 全生物種の遺伝子におけるドメインの統計                                      | 20 |
|    | 3.2 | 植物 (シロイヌナズナ) と微生物 (シアノバクテリア) のドメインの                      |    |
|    |     | 統計                                                       | 21 |
|    | 3.3 | シロイヌナズナのオーソログ遺伝子とパラログ遺伝子                                 | 23 |
|    | 3.4 | シロイヌナズナのドメイン解析                                           | 25 |
|    |     | 3.4.1 シロイヌナズナの遺伝子機能ごとのドメイン解析                             | 25 |
|    | 3.5 | 微生物由来のドメインと植物固有のドメイン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 57 |
| 4. | 結論  | i<br>I                                                   | 58 |
| 謝  | 锌   |                                                          | 61 |
| 参  | 考文南 | <b>♯</b>                                                 | 62 |
| 付訊 | 録   |                                                          | 66 |

# 図目次

| 1  | オーソログ遺伝子・パラログ遺伝子の検出方法........                      | 6  |
|----|----------------------------------------------------|----|
| 2  | オーソログ遺伝子の配列集合からのドメイン探索                             | 10 |
| 3  | 遺伝子の長さのヒストグラム (Length of Gene $\leq 1000$ )        | 15 |
| 4  | ドメイン数の割合 (保存度 $0$ ) $\dots$                        | 16 |
| 5  | ドメイン探索ソフトウェア                                       | 18 |
| 6  | 生物種ごとのドメイン探索結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 19 |
| 7  | 全遺伝子におけるドメイン数の割合                                   | 20 |
| 8  | シロイヌナズナとシアノバクテリアにおけるマルチドメインとシ                      |    |
|    | ングルドメインの割合                                         | 22 |
| 9  | シロイヌナズナの遺伝子の分類                                     | 24 |
| 10 | シロイヌナズナの遺伝子機能における遺伝子とドメインの分類                       | 27 |
| 11 | METABOLISM: AT1G31230                              | 30 |
| 12 | METABOLISM: AT4G19710                              | 31 |
| 13 | METABOLISM: AT1G31860                              | 32 |
| 14 | METABOLISM: AT4G26900                              | 33 |
| 15 | METABOLISM: AT2G16370                              | 34 |
| 16 | METABOLISM: AT3G06860                              | 35 |
| 17 | METABOLISM: AT3G18000                              | 36 |
| 18 | METABOLISM: AT4G21470                              | 37 |
| 19 | シロイヌナズナの転写因子ファミリーごとの遺伝子とドメインの                      |    |
|    | 割合                                                 | 39 |
| 20 | TRANSCRIPTION: AT2G24650 におけるパラログ遺伝子               | 40 |
| 21 | TRANSCRIPTION: AT2G24650                           | 41 |
| 22 | シロイヌナズナの STY キナーゼファミリーの遺伝子における系統樹                  | 43 |
| 23 | シロイヌナズナの $\operatorname{STY}$ キナーゼのファミリーごとのドメインタイプ | 44 |
| 24 | CELL COM: Family1.1                                | 45 |
| 25 | CELL COM: Family1.2                                | 46 |
| 26 | CELL COM: Family1.3                                | 47 |

| 27           | CELL COM: Family1.4                                     | 48       |
|--------------|---------------------------------------------------------|----------|
| 28           | CELL COM: Family2.1                                     | 49       |
| 29           | CELL COM: Family2.2                                     | 50       |
| 30           | CELL COM: Family2.3                                     | 51       |
| 31           | CELL COM: GroupIII                                      | 52       |
| 32           | CELL COM: GroupIV                                       | 53       |
| 33           | シロイヌナズナの ABC 輸送体遺伝子におけるサブファミリーごと                        |          |
|              | のドメイン                                                   | 55       |
| 34           | シロイヌナズナの ABC 輸送体遺伝子における系統樹とドメイン探                        |          |
|              | 索結果                                                     | 56       |
| 35           | 微生物由来・植物固有の遺伝子とドメイン                                     | 57       |
| 90           | 版主初田木・恒初回刊の虚仏」と「グイク・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 97       |
| 90           | 版主物田木・植物回角の遺伝」と「グイン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 37       |
|              |                                                         | 31       |
| 表目           |                                                         | 97       |
|              |                                                         | 26       |
| 表目           | 次                                                       |          |
| 表目           | 次<br>シロイヌナズナの遺伝子機能における遺伝子とドメイン数                         | 26       |
| 表目<br>1<br>2 | 次<br>シロイヌナズナの遺伝子機能における遺伝子とドメイン数<br>代謝機能:解析対象遺伝子の詳細機能    | 26<br>28 |

### 1. 序論

現在,多様な生物種のゲノム配列が決定している.ゲノムの決定により,その生物に存在する全てのタンパク質,遺伝子,ドメインなどの解析が可能となった.そのため,多様な生物種間で,遺伝子配列を比較解析することにより,異生物種間の遺伝子において相同性をもつオーソログ遺伝子や同生物種間の遺伝子において相同性をもつパラログ遺伝子を検出することが可能となっている.また,局所的に他の遺伝子と相同性を示す領域であるドメインをもつ遺伝子が存在することが知られている[1].

ドメインは生物が進化をしていく過程で、生命活動に必要な機能を保持し、より 複雑な機能を得るために変化しながら、異・同生物種間で伝播していったと考え られる. ドメインは大きく分け、1 つの遺伝子において、ドメインが1 つのみ存在 するシングルドメインと2つ以上存在するマルチドメインがある. 遺伝子がマル チドメインを形成していることは、1つの遺伝子において複数の機能が存在してい る可能性が考えられる. 実際に、遺伝子は、bi-function や multi-function といわれ るもののように、1 つの遺伝子において複数の機能が存在しているものがあること が報告されている [2]-[5]. 進化の過程においても, ある生物種のゲノムでは2つの 異なる遺伝子にコードされているタンパク質(ドメイン)が、別の生物種のゲノム では、融合した1つの遺伝子としてみいだされることがある。このようなタンパク 質はロゼッタストーンタンパク質 [6], [7] といわれ, その 2 つの遺伝子産物は機能 的に関連していることが多い、そのため、ドメインは遺伝子のアノテーションやタ ンパク質間相互作用の解析などに用いられている。また、ドメインはタンパク質 の立体構造にも重要な役割を果たしている. AFU(Autonomously Folding Units) といわれるタンパク質の立体構造の情報を保存しているドメインが遺伝子配列に あるといわれている. AFU を探索する方法として, PASS [8] や DOMAINATION [9] などがある.

このように、ドメインは、生命活動の解明に必要とされている遺伝子やタンパク質関連の研究と大変深い関係がある。ドメインを異・同生物種のゲノム間で比較解析することは、生物種間において高く保存されているドメインを同定することができ、機能が既存のものと比較することで遺伝子の機能予測や、比較した生

物種における保存度の違いからドメインがどの生物に由来するのかを予測できると考えられる。また、遺伝子におけるドメインのコードの違いから、ドメインの融合・解離の様子をみることができると考えられる。そのため、ドメインについてみていくことは、今後のバイオインフォマティクス研究のためにも大変有用であると考えられる。

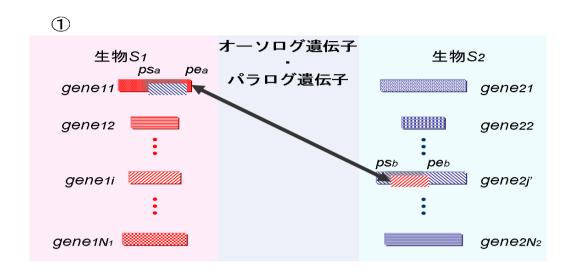
これまで、ドメインの研究については、Pfam [10] や SCOP [11] などドメインのデータベースの構築や InterPRO [12] や SMART [13] など既存のドメインのデータベースから、配列パターンを照合し、ドメインを探索することが行われてきた。しかし、InterPRO や SMART では、異・同生物間でどのようにドメインが保存されているのか、また未知な配列パターンのドメインについては検出することができない。そのため本研究では、遺伝子配列の相同性に基づくドメイン探索のアルゴリズムの開発を試みた。ドメインは、遺伝子配列において、他の遺伝子と相同性がある領域である。そのため、ある遺伝子について、ある生物種のゲノムからオーソログ遺伝子またはパラログ遺伝子を検出し、ドメインを探索する。オーソログ遺伝子からドメインを探索した場合、解析対象とした生物種間で保存されているドメインが検出できる。また、パラログ遺伝子からドメインを探索した場合、その生物種固有のドメインが検出できる。特に、対象生物種を微生物と植物のように進化のレベルが異なるものにすることで、進化の過程において保存されているドメインを検出できる。また、既存のドメインの配列パターンとの照合からでは検出できなかった未知のドメインについても検出できると考えられる。

本研究で開発したアルゴリズムによりドメインの探索を行い、その探索結果及び、探索の過程を可視化するソフトウェアの開発も行った。本ソフトウェアはある遺伝子において、どの遺伝子が相同であるか、ドメインがどのように保存されているかなど、遺伝子とドメインの情報を統合的に解析できるように開発を試みた。本研究では、植物に注目したドメイン解析を行った。高等植物であるシロイヌナズナ (Arabidopsis thaliana) は、微生物に比べ多様で複雑な機能をもっている。そのため、遺伝子も微生物より複雑な構造をとる。本ソフトウェアを用い、植物 (シロイヌナズナ) と微生物 (真菌、古細菌、細菌) 間、植物と植物間でドメインの探索を行うことで、ドメインを保存している生物種の違いから、探索されたドメインが

微生物由来か植物固有かを明らかにするため、植物の遺伝子に注目し解析を行った. また、植物の遺伝子機能ごとに、遺伝子におけるドメインの構造を解析することで、遺伝子機能の違いにおけるドメインの解析・検討を行った.

## 2. 材料及び方法

#### 2.1 ゲノムデータ


本研究では、植物 1 種 (Arabidopsis thaliana)、真菌 2 種 (Saccharomyces cerevisiae, Schizosaccharomyces pombe)、古細菌 27 種 (ナノ古細菌門 1 種, クレン古細菌門 5 種, ユーリ古細菌門 21 種)、細菌 303 種 (フソバクテリウム門 1 種, プラクトミセス門 1 種, アクイフェックス門 1 種, テルモトガ門 1 種, 緑色非硫黄細菌門 2 種, 緑色硫黄細菌門 3 種, デイノコックス・テルムス門 3 種, バクテロイデス門 5 種, スピロヘータ門 6 種, クラミディア門 11 種, シアノバクテリア門 17 種, 放線菌門 21 種, 発酵菌門 75 種, プロテオバクテリア門 156 種) の計 333 種の生物のゲノムデータを用いた。これら 333 種の生物の内訳とゲノムの遺伝子数, accession number を付録 A に表で示す。ゲノム配列データは全て NCBI の RefSeq(http://www.ncbi.nlm.nih.gov/) から入手した。

#### 2.2 オーソログ遺伝子とパラログ遺伝子

異なる生物の遺伝子間で、相同である 2 つの遺伝子をオーソログ遺伝子と定義する. 一方、同じ生物の遺伝子間で相同である 2 つの遺伝子をパラログ遺伝子と定義する. オーソログ遺伝子、パラログ遺伝子は、通常、遺伝子のアミノ酸配列の類似性に基づいて対応づけられる. 本研究では、この配列類似性の評価をBLAST(Altschul et al., 1990, 1997 [14], [15]) により行った. BLAST プログラムの BLASTP 解析によりオーソログ遺伝子の検出には E-value は E-value は E-value は E-value は E-value とした.

一般的には、オーソログ遺伝子・パラログ遺伝子は、BLAST による配列類似性の評価が双方向に最も高い1組の遺伝子のことをいう。しかし、本研究では、BLAST で配列類似性の評価を行った2つの遺伝子について、どちらの遺伝子からも BLAST の結果で得た類似配列領域が等しく、かつ十分な類似度を示す遺伝子対は相同であると考え、この2つの遺伝子を異生物間においてはオーソログ遺伝子、同生物間においてはパラログ遺伝子として検出した。これにより、2つの遺伝子間での正確な類似配列領域を検出でき、2つの生物間での配列パターンによる保存性の違いを調べることができる。

オーソログ遺伝子・パラログ遺伝子の検出方法の例を、生物  $S_1$  の遺伝子  $gene_{1i}$   $(i=1,\ldots,N_1,\ N_1$ : 生物  $S_1$  に存在する全遺伝子数) のうち、 $gene_{11}$  を問い合せ遺伝子 (query gene)、生物  $S_2$  における全遺伝子  $gene_{2j}$   $(j=1,\ldots,N_2,\ N_2$ : 生物  $S_2$  に存在する全遺伝子数) を対象 (subject gene) として以下に述べる (図 1 参照).



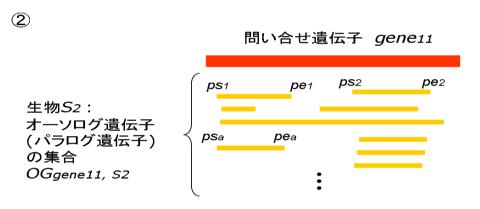



図 1 オーソログ遺伝子・パラログ遺伝子の検出方法

異生物間  $S_1 \neq S_2$  の場合: オーソログ遺伝子 ; 同生物間  $S_1 = S_2$  の場合: パラログ遺伝子 1: bi-directional BLAST の結果から HSP を求め, さらに類似領域も双方に等しいものをオーソログ遺伝子・パラログ 遺伝子とする

#### 2.2.1 BLAST による配列類似性の評価

1. 生物  $S_1$  のある遺伝子  $gene_{11}$  を問い合せ遺伝子とする.  $gene_{11}$  と生物  $S_2$  に おける全ての遺伝子の中から閾値以上の類似度がある配列対 (High Scoring Pair) の集合 (式(1)) を探索する.

$$HSP_{gene_{11},gene_{2j'}} = \{(gene_{11}(ps_a, pe_a), gene_{2j'}(ps_b, pe_b))\}$$
 (1)

 $HSP_{querygene,subjectgene}$ 

 $gene_{2j'}$ : 生物  $S_2$ の全遺伝子  $gene_{2j}$ のうち  $gene_{11}$ と HSP となる遺伝子  $gene_{11}(ps_a,pe_a)$ :  $gene_{11}$ における開始残基  $ps_a$ から終了残基  $pe_a$ までの配列領域  $a=0,\ldots,NR_{11}$ 

 $NR_{11}$ :式(1)によりみつかった $gene_{11}$ での類似配列領域の数 $gene_{2j'}(ps_b,pe_b)$ : $gene_{2j'}$ における開始残基 $ps_b$ から終了残基 $pe_b$ までの配列領域 $b=0,\ldots,NR_{2j'}$ 

 $NR_{2j'}$ :式(1)によりみつかった $gene_{2j'}$ での類似配列領域の数

2. 1. で  $gene_{11}$  と HSP となった生物  $S_2$  における遺伝子  $gene_{2j'}$  を問い合せ遺伝子とする.  $gene_{2j'}$  と生物  $S_1$  の遺伝子  $gene_{11}$  から閾値以上の類似度がある配列対の集合 (式(2)) を探索する.

$$HSP_{gene_{2j'},gene_{11}} = \{ (gene_{2j'}(ps_{b'},pe_{b'}), gene_{11}(ps_{a'},pe_{a'})) \}$$
(2)

 $HSP_{querygene,subjectgene}$ 

 $gene_{2j'}(ps_{b'},pe_{b'}): gene_{2j'}$ における開始残基  $ps_{b'}$ から終了残基  $pe_{b'}$ までの配列領域  $b'=0,\ldots,NR_{2j'}$ 

 $NR_{2j'}$ :式(2)によりみつかった $gene_{2j}$ での類似配列領域の数 $gene_{11}(ps_{a'},pe_{a'})$ : $gene_{11}$ における開始残基 $ps_{a'}$ から終了残基 $pe_{a'}$ までの配列領域 $a'=0,\ldots,NR_{11}$ 

 $NR_{11}$ :式(2)によりみつかった $gene_{11}$ での類似配列領域の数

#### 2.2.2 遺伝子相同性の評価

2.2.1 項で求めた  $HSP_{gene_{1j}}$  と  $HSP_{gene_{2j'}}$  ,  $gene_{2j'}$ : 生物  $S_2$  の全遺伝子  $gene_{2j}$  のうち  $gene_{11}$  と HSP となる遺伝子) について、それぞれの集合に存在する配列を比較する. 双方向の BLAST 探索において、互いに十分な配列類似性を示し、かつ式 (3) のように類似領域の範囲が双方向に等しい配列を 1 つ以上もつ場合、2 つの遺伝子は相同である.

$$gene_{11}(ps_a, pe_a) = gene_{11}(ps_{a'}, pe_{a'})$$

$$かつ$$

$$gene_{2j'}(ps_b, pe_b) = gene_{2j'}(ps_{b'}, pe_{b'})$$
(3)

このような遺伝子をオーソログ遺伝子  $(S_1 \neq S_2)$ , またはパラログ遺伝子  $(S_1 = S_2)$  と定義する.

生物  $S_1$  の遺伝子  $gene_{1i}$   $(i=1,\ldots,N_1,N_1$ : 生物  $S_1$  に存在する全遺伝子数) を問い合せ遺伝子 (query gene), 生物  $S_2$  の全遺伝子を対象 (subject gene) とし、みつかったオーソログ遺伝子またはパラログ遺伝子の配列の集合を $OG_{gene_{1i},S_2}$   $(OG_{querygene,subjectspecies})$  とする.

同様に、生物  $S_2$  の遺伝子  $gene_{2j}$   $(j=1,\ldots,N_2,N_2)$ : 生物  $S_2$  に存在する全遺伝子数) を問い合せ遺伝子、生物  $S_1$  の全遺伝子を対象とし、みつかったオーソログ遺伝子またはパラログ遺伝子の配列の集合を  $OG_{gene_{2j},S_1}$  とする.

#### 2.3 ドメイン

ある遺伝子において、他の遺伝子と相同性が保存されている領域部分をドメインと定義する。ドメインは、ある遺伝子において1 つ以上存在する場合がある。ドメインが1 つだけ存在する場合をシングルドメインと呼び、2 つ以上存在する場合をマルチドメインと呼ぶ。本研究では、このドメインに注目した解析を行うために、2.2 節で求めたオーソログ遺伝子・パラログ遺伝子の配列の集合を用いてドメインの探索を行った。本研究のドメインの探索方法は、オーソログ遺伝子とパラログ遺伝子とも同じである。そのため、生物  $S_1$  の遺伝子  $gene_{11}$  を問い合せ遺伝子として、生物  $S_2$  の全遺伝子を対象として得たオーソログ遺伝子の配列の集合  $OG_{gene_{11},S_2}$  を用いて、ドメインを探索する例を以下に述べる。




図 2 オーソログ遺伝子の配列集合からのドメイン探索

- (a): 問い合せ遺伝子 (query gene) の各残基におけるオーソログ遺伝子の集合の全配列の保存度とドメインの開始・終了 残基位置の候補
- (b): オーソログ遺伝子の全配列の開始・終了残基位置の出現回数
- (c): ドメイン領域

#### 2.3.1 ドメインと非ドメイン領域の境界

ドメインと非ドメイン領域の境界を定めるため、始めにドメインの開始残基位置と終了残基位置の候補をオーソログ遺伝子の配列の集合  $OG_{gene_{11},S_2}$  における各配列の開始・終了残基位置によって決める (図 2(a), (b) 参照).

- 1.  $OG_{gene_{11},S_2}$  に存在する全ての配列領域  $gene_{11}(ps_a,pe_a)$  (式 (1) に同じ) の開始残基位置  $ps_a$  の出現回数  $Cps(ps_a)$  を求める.
- 2. 開始残基位置の出現回数  $Cps(ps_a)$  が、式 (4) 以上のものをドメインの開始 残基位置の候補  $dps_{k_s}$   $(k_s=1,\ldots,dns,dns:$  ドメインの開始残基位置の 候補数) とする.  $dps_{k_s}$  は、問い合せ遺伝子  $gene_{11}$  の N-末端に近いものから  $dps_1,dps_2,\ldots,dps_{dns}$  と残基順に並べる.
- 3. 1. から 2. の手順と同様に終了残基位置  $pe_a$  の出現回数  $Cpe(pe_a)$  を求め、式 (4) 以上のものをドメインの終了残基位置の候補  $dpe_{k_e}$   $(k_e=1,\ldots,dne,dne)$  がった。ドメインの終了残基位置の候補数)とする.  $dpe_{k_e}$  は、問い合せ遺伝子  $gene_{11}$  の N-末端に近いものから  $dpe_{1}$ ,  $dpe_{2}$ , ...,  $dpe_{dne}$  と残基順に並べる.

$$AvgC = \frac{\sum_{l=1}^{q} C(l)}{ON} \tag{4}$$

C(l) :  $Cps(ps_a)$  または  $Cpe(pe_a)$ 

q: 問い合せ遺伝子  $gene_{11}$ の長さ

ON : オーソログ遺伝子の配列の集合  $OG_{qene_{11},S_2}$ の全配列数

次に、ドメインの開始・終了残基位置の候補から、ドメインごとの開始・終了残基位置を求める.

1. ドメインの開始残基位置の候補  $dps_{k_s}$  が存在する範囲 DS とドメインの終了 残基位置の候補  $dpe_{k_e}$  が存在する範囲 DE が一部でも重複する場合,問い合せ遺伝子  $gene_{11}$  は,

 $ND|DS_1|DS_x\&DE_u|DE_{dn}|ND$ 

(dn: 最終的に探索されたドメインの数) と領域が分割される.  $DS_1$  には、開始残基位置の候補のみが存在し、 $DE_{dn}$  には、終了残基位置の候補のみが存在する.

DS と DE が重複しない場合は、問い合せ遺伝子  $gene_{11}$  は、 $ND|DS_1|DE_1|ND$  と領域が分割され、7. と 8. が行われ、ドメインの探索が終了する.

2. 前のステップで得られた  $gene_{11}$  の領域  $DS_x\&DE_y$  において、ドメインの終了残基位置の候補  $dpe_{ke}$  が存在する範囲  $DE_y$  を求める。領域  $DS_x\&DE_y$  から  $DE_y$  を除いた領域  $DS_{dn}$  には、開始残基位置の候補のみが存在する。よって、問い合せ遺伝子  $gene_{11}$  は、

 $ND|DS_1|DS_x\&DE_y|DS_{dn}|DE_{dn}|ND$ と領域が分割される.

3. 前のステップで得られた  $gene_{11}$  の領域  $DS_x\&DE_y$  において、ドメインの開始残基位置の候補  $dps_{ks}$  が存在する範囲  $DS_x$  を求める。領域  $DS_x\&DE_y$  から  $DS_x$  を除いた領域  $DE_1$  と  $DE_{dn-1}$  には、終了残基位置の候補のみが存在する。よって、問い合せ遺伝子  $gene_{1i}$  は、

 $ND|DS_1|DE_1|DS_x\&DE_y|DE_{dn-1}|DS_{dn}|DE_{dn}|ND$ と領域が分割される.

4. 前のステップで得られた  $gene_{11}$  の領域  $DS_x\&DE_y$  において、ドメインの終了残基位置の候補  $dpe_{k_e}$  が存在する範囲  $DE_y$  を求める。領域  $DS_x\&DE_y$  から  $DE_y$  を除いた領域  $DS_2$  と  $DS_{dn-1}$  には、開始残基位置の候補のみが存在する。よって、問い合せ遺伝子  $gene_{11}$  は、

 $ND|DS_1|DE_1|DS_2|DS_x&DE_y|DS_{dn-1}|DE_{dn-1}|DS_{dn}|DE_{dn}|ND$ と領域が分割される.

- 5.3.4.を問い合せ遺伝子の領域が分割されなくなるまで行う.
- 6. 最終的に、問い合せ遺伝子  $gene_{11}$  は、 $ND|DS_1|DE_1|\dots|DS_{dn}|DE_{dn}|ND$

と分割される.

- 7. それぞれのドメインの開始残基位置の候補範囲  $DS_{id}$  において、残基位置の出現回数  $Cps(dps_{k_s})$  が最大なものをドメイン  $domain_{id}$  の開始残基位置  $dstart_{id}$  とする.
- 8. それぞれのドメインの終了残基位置の候補範囲  $DE_{id}$  において、残基位置の出現回数  $Cpe(dpe_{k_e})$  が最大なものをドメイン  $domain_{id}$  の終了残基位置  $dend_{id}$  とする.

#### 2.3.2 問い合せ遺伝子における相同遺伝子の類似配列保存性の評価

ドメイン領域は、他の遺伝子領域よりもオーソログ遺伝子と相同性が高く保存されている。そのため、ドメインと非ドメイン領域を分けるために、保存性の評価を行う。

本研究では、始めに問い合せ遺伝子の各残基ごとに保存度を求める (図 2(a) 参照).

オーソログ遺伝子の配列の集合  $OG_{gene_{11},S_2}$  に存在する全ての要素における、各残基位置の出現回数 Cp(m)  $(m=ps_a,\ldots,pe_a)$  を求め、式 (5) から、問い合せ遺伝子  $gene_{11}$  の各残基の保存度 Cons(n)  $(n=1,\ldots,q,q)$  問い合せ遺伝子  $gene_{11}$  の長さ) を求める.

$$Cons(n) = 100 \times \frac{Cp(n)}{ON} \%$$
 (5)

Cp(n) : 残基位置 n の出現回数  $(n=1,\ldots,q)$ 

ON : オーソログ遺伝子の配列の集合  $OG_{qene_{11},S_2}$ の全配列数

#### 2.3.3 ドメイン領域の決定

2.3.1 項で求めたドメイン  $domain_{id}$  の開始残基位置  $dstart_{id}$  と終了残基位置  $dend_{id}$  間の長さ  $dlength_{id} = |dend_{id} - dstart_{id}| + 1$  が、30 残基以上でかつ 2.3.2 項で求めた保存度から、ドメインとされる領域の残基位置ごとの保存度の平均 AvgCons(id) (式 (6) 参照) が 25%以上のものをドメインと決定した (図 2(c)).

$$AvgCons(id) = \frac{\sum_{m=dstart_{id}}^{dend_{id}} Cons(m)}{dlength_{id}}$$
 % (6)
$$Cons(m) : 残基位置 m の保存度 (%)$$

$$dlength_{id} = |dend_{id} - dstart_{id}| + 1$$

ドメインは、30 残基以下の長さのものはほとんど存在しないことが報告されている (Jones S et al., 1998 [16]). また、本研究で使用した全ゲノムデータにおいて遺伝子の長さを図3にヒストグラムで表す. 遺伝子数が30 残基付近で急激に増加しており、比較的短い長さのプラスミドなどの染色体外遺伝子を除去する意味でも、ドメインの長さを30 残基以上とした.

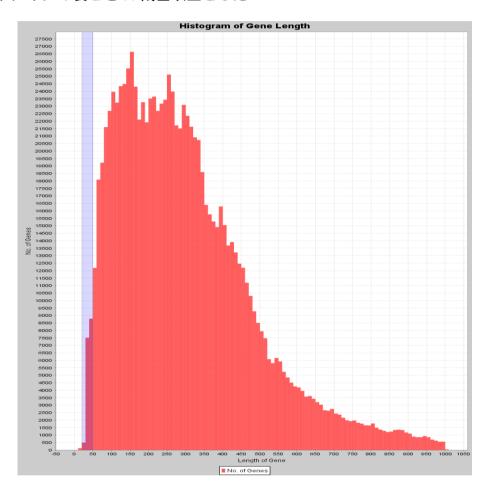



図 3 遺伝子の長さのヒストグラム (Length of Gene  $\leq 1000$ )

遺伝子の長さが 1,000 残基以下のものをヒストグラムで表す.

横軸: 遺伝子の長さ (10 残基間隔で尺度をとる) ; 縦軸: 遺伝子の累積数

また、配列保存性を考慮せずドメイン探索すると図 4 のように、ドメインの数が 5 個以上の遺伝子は極めて少ない。1 つの遺伝子にドメインが 4 つ存在する場合、1 つのドメインは最低オーソログ遺伝子の配列と  $\frac{1}{4}$  の保存性を示す。そのため、25%以上の保存度があるものをドメインとした。

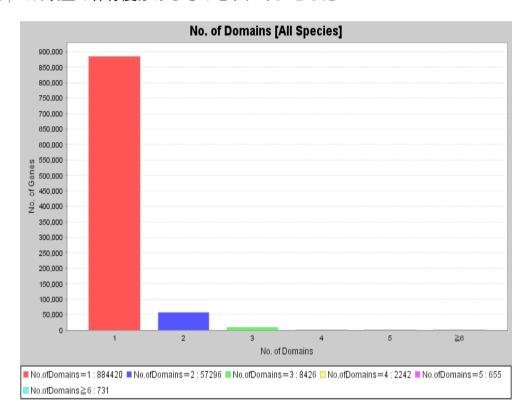



図 4 ドメイン数の割合(保存度0)

式  $(5) \ge 0\%$  においてのドメイン探索結果

横軸:遺伝子におけるドメインの数(6個以上のドメインが存在する遺伝子については、カテゴリーをまとめた);

縦軸: 各ドメイン数における遺伝子累積数

#### 2.4 ドメイン探索結果の可視化ソフトウェア

2.3 節の本研究で開発したアルゴリズムにより、ドメインの探索を行い、探索の 過程及び結果を可視化することで視覚的に遺伝子とドメインを統合的に理解する ためのソフトウェア (図 5 参照) の開発を行った.

本ソフトウェアは、ある遺伝子におけるオーソログ遺伝子またはパラログ遺伝子の類似配列領域のデータを入力することで、ドメインの探索から可視化までを行う。入力データのソフトウェアへのロードについては、ファイルかデータベースかを使用者が選択できる。ファイルの場合は使用者が独自に検出したオーソログ遺伝子・パラログ遺伝子のデータを規定の形式にそってファイルを作成し、ファイルを選ぶことでデータがロードされる。また、2.2節の手法により、333種全ての生物の遺伝子について、333種を対象生物として検出されたオーソログ遺伝子・パラログ遺伝子のデータを保管するデータベースを構築した。データベースの場合は、このデータベースから解析したい問い合せ遺伝子(query gene)と対象生物(subject speceis)を GUI の選択画面から選ぶことで必要なデータがロードされる。データが入力されると、ソフトウェアでドメインが探索され、問い合せ遺伝子におけるオーソログ遺伝子・パラログ遺伝子の類似配列領域とドメインの探索結果が可視化される。また、問い合せ遺伝子、オーソログ遺伝子・パラログ遺伝子の機能情報やアミノ酸配列によるゲノム情報も得られる。

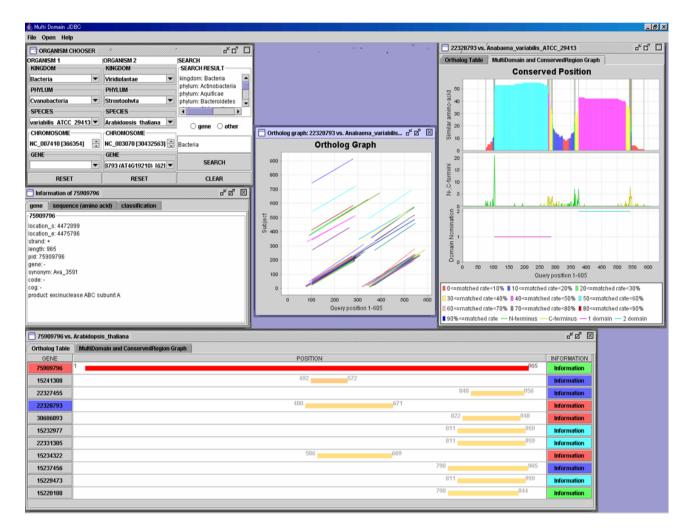



図 5 ドメイン探索ソフトウェア

## 3. 結果及び考察

本研究で使用した 333 種の生物における全ての遺伝子 (1,034,233 個) について、ドメインの探索を行った。ある遺伝子  $gene_{xx}$  におけるドメインは、生物種ごとにドメインを探索したのち (図 6 参照)、それらのドメインを 2.3 節でのオーソログ遺伝子の配列の集合と同様に考え、ドメインの集合を  $OG_{gene_{xx}},S_{all}$  とし、333 種全での生物とのオーソログ遺伝子・パラログ遺伝子からのドメインとした。各生物種ごとに求めたドメインは十分な保存性があると考え, $OG_{gene_{xx}},S_{all}$  からドメインを探索する際は、保存度は 0%以上とした。

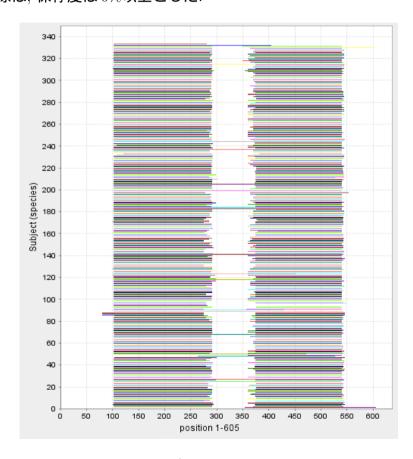



図 6 生物種ごとのドメイン探索結果

横軸: 問い合せ遺伝子の長さ;縦軸: ドメインが探索された生物

#### 3.1 全生物種の遺伝子におけるドメインの統計

図7は、それぞれの遺伝子から探索されたドメインの数について遺伝子を分類した結果である。全遺伝子の92%において1つ以上のドメインが存在している。このことからもドメインは、異・同生物種間において高く保存されていることがわかる。特に、シロイヌナズナ (Arabidopsis thaliana) の遺伝子(26,536個)と他の332種の生物におけるオーソログ遺伝子とのドメインに注目し解析することで、単細胞生物から多細胞生物への進化の過程をドメインによりみることができると考える。3.3 節以降では、シロイヌナズナに注目した解析結果を述べる。

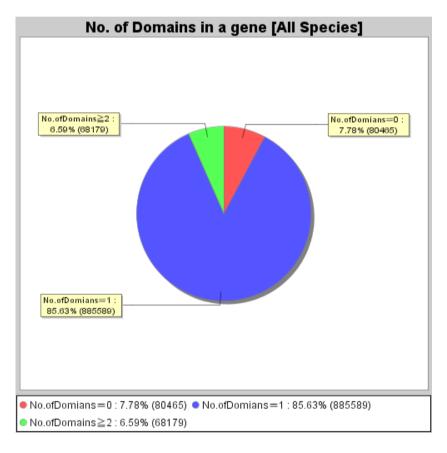



図 7 全遺伝子におけるドメイン数の割合

red: ドメイン数=0 ; blue: ドメイン数=1 ; green: ドメイン数  $\geq 2$ 

# 3.2 植物 (シロイヌナズナ) と微生物 (シアノバクテリア) のドメインの統計

シアノバクテリアは、植物と同じ酵素発生型の光合成を行う細菌である.シアノバクテリアの祖先は進化上はじめて酵素発生型光合成の能力を獲得した生物であり、その能力は細胞内共生によって藻類や植物へと受け継がれたと考えられている.したがって、シアノバクテリアと植物は、光化学系や CO<sub>2</sub> 代謝、エネルギー伝達系、シグナル伝達系などで多くの類似点や共通点をもっている.そのため、植物のモデル生物であるシロイヌナズナとシアノバクテリアにおけるドメインを比較することは微生物から植物への進化の過程をみる糸口となると考えられる.

図8で、シロイヌナズナとシアノバクテリア門に属する17種の生物のマルチドメインとシングルドメインの割合を比較した。シロイヌナズナは、シアノバクテリアに比べ、マルチドメインとなる遺伝子数が増加している。また、ドメインを有する遺伝子全てのうちマルチドメインを形成する遺伝子の割合もシロイヌナズナの方がシアノバクテリアよりも高い。このことから微生物から植物への進化の過程で、植物は1つの遺伝子に複数のドメインが入り込み、bi-functionやmulti-functionのように複雑な機能を獲得したと考えられる。

そのため、本研究では植物が保持している微生物由来のドメインを明らかにし、 微生物から植物への遺伝子の進化の過程や bi-function や multi-function の遺伝子 構造の解明の新たな知見を得るため解析を行う.

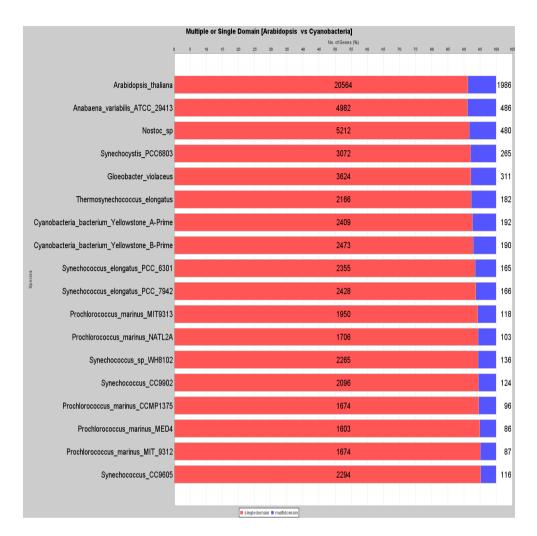
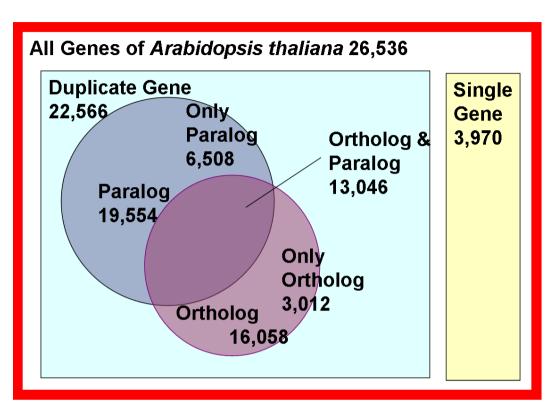



図 8 シロイヌナズナとシアノバクテリアにおけるマルチドメインとシングルド メインの割合


横軸: 生物種における全遺伝子を 100%とした各ドメインについての遺伝子数の割合 ; 縦軸: 生物種名 red: singledomain ; blue: multidomain

#### 3.3 シロイヌナズナのオーソログ遺伝子とパラログ遺伝子

シロイヌナズナの全遺伝子について、333 種全ての生物とのオーソログ遺伝子とパラログ遺伝子の探索結果を図 9 に示す。シロイヌナズナの遺伝子のうち重複遺伝子 (Duplicate Gene) を用いて、ドメインが探索される。シロイヌナズナの全遺伝子 (26,536 個) において、重複遺伝子は 22,566 個 (85%) みつかった。そのうち、他の生物種と相同性があるオーソログ遺伝子は 16,058 個 (71%) であった。

ここでの解析におけるオーソログ遺伝子は、微生物 (真菌、古細菌、細菌) の遺伝子との相同性から求めたものである。そのため、シロイヌナズナは、進化の過程で微生物からドメインを 71%受け継いでいる。また、パラログ遺伝子のみをもつ遺伝子に着目することで、植物 (シロイヌナズナ) 固有のドメインを予測できる。

3.4 節以降では、シロイヌナズナの遺伝子について、本手法により検出したオーソログ遺伝子・パラログ遺伝子から、機能ごとにドメインの探索と解析をすることで、その遺伝子機能に特徴的な微生物から植物へ受け継がれたドメインの検出を行った。



#### 図 9 シロイヌナズナの遺伝子の分類

Duplicate Gene: オーソログ遺伝子またはパラログ遺伝子が少なくとも 1 つ以上存在する遺伝子

Single Genne: Duplicate Gene 以外の遺伝子

Ortholog: オーソログ遺伝子が 1 つ以上存在する遺伝子 Paralog: パラログ遺伝子が 1 つ以上存在する遺伝子

Only Ortholog: オーソログ遺伝子が 1 つ以上存在 U, かつパラログ遺伝子が存在しない遺伝子 Only Paralog: パラログ遺伝子が 1 つ以上存在 U, かつオーソログ遺伝子が存在しない遺伝子

Ortholog&Paralog: オーソログ遺伝子が1つ以上存在し、かつパラログ遺伝子も1つ以上存在する遺伝子

### 3.4 シロイヌナズナのドメイン解析

#### 3.4.1 シロイヌナズナの遺伝子機能ごとのドメイン解析

シロイヌナズナの遺伝子機能は、TAIR (The Arabidopsis Information Resource) (http://www.arabidopsis.org/) データベースの 20 種類の機能分類にしたがう. 各機能に分類される遺伝子とドメインの数について、表 1 と図 10 に示す. 表 1 と図 10 から、微生物由来の遺伝子にマルチドメインが多く検出された. このことからも微生物から植物への遺伝子の進化の過程をドメインにより解析することは、有用である. 表 1 と図 10 の遺伝子機能のうち、遺伝子数が多くマルチドメインの割合が多い以下の 4 つの機能に分類される遺伝子について詳しくみていく.

- METABOLISM (代謝機能)
- TRANSCRIPTION (転写機能)
- CELLULAR COMMUNICATION/ SIGNAL TRANSDUCTION MECHANISM (細胞内情報伝達機能/シグナル伝達機構)
- TRANSPORT FACILITATION (膜輸送機能)

## 表 1 シロイヌナズナの遺伝子機能における遺伝子とドメイン数

| gene function                         |       | uniq arabidopsis |        |        | derived microbial |        |  |
|---------------------------------------|-------|------------------|--------|--------|-------------------|--------|--|
|                                       |       | domair           | 1      | gene   | domair            | 1      |  |
|                                       |       | multi            | single |        | multi             | single |  |
| METABOLISM                            | 199   | 2                | 197    | 2,117  | 200               | 1,917  |  |
| TRANSCRIPTION                         | 439   | 5                | 434    | 705    | 88                | 617    |  |
| CELLULAR COMMUNICATION/               |       |                  |        |        |                   |        |  |
| SIGNAL TRANSDUCTION MECHANISM         | 80    | 0                | 80     | 920    | 173               | 747    |  |
| CELL RESCUE, DEFENSE AND VIRULENCE    | 183   | 12               | 171    | 401    | 98                | 303    |  |
| TRANSPORT FACILITATION                | 40    | 0                | 40     | 438    | 89                | 349    |  |
| PROTEIN FATE                          | 31    | 0                | 31     | 362    | 86                | 276    |  |
| ENERGY                                | 35    | 0                | 35     | 237    | 17                | 220    |  |
| PROTEIN SYNTHESIS                     | 1     | 0                | 1      | 229    | 38                | 191    |  |
| CELL CYCLE AND DNA PROCESSING         | 13    | 0                | 13     | 160    | 26                | 134    |  |
| CONTROL OF CELLULAR ORGANIZATION      | 33    | 0                | 33     | 109    | 10                | 99     |  |
| SUBCELLULAR LOCALISATION              | 12    | 0                | 12     | 111    | 19                | 92     |  |
| CELLULAR TRANSPORT                    |       |                  |        |        |                   |        |  |
| AND TRANSPORT MECHANISMS              | 7     | 0                | 7      | 113    | 12                | 101    |  |
| CELL FATE                             | 24    | 0                | 24     | 41     | 5                 | 36     |  |
| DEVELOPMENT                           | 30    | 0                | 30     | 29     | 4                 | 25     |  |
| TRANSPOSABLE ELEMENTS,                |       |                  |        |        |                   |        |  |
| VIRAL AND PLASMID PROTEINS            | 31    | 2                | 29     | 5      | 1                 | 4      |  |
| SYSTEMIC REGULATION OF /              |       |                  |        |        |                   |        |  |
| INTERACTION WITH ENVIRONMENT          | 15    | 0                | 15     | 23     | 6                 | 17     |  |
| STORAGE PROTEIN                       | 8     | 0                | 8      | 18     | 0                 | 18     |  |
| REGULATION OF /                       |       |                  |        |        |                   |        |  |
| INTERACTION WITH CELLULAR ENVIRONMENT | 18    | 0                | 18     | 10     | 1                 | 9      |  |
| PROTEIN ACTIVITY REGULATION           | 0     | 0                | 0      | 6      | 1                 | 5      |  |
| PROTEIN WITH BINDING FUNCTION         |       |                  |        |        |                   |        |  |
| OR COFACTOR REQUIREMENT               | 2     | 0                | 2      | 3      | 0                 | 3      |  |
| UNCLASSIFIED PROTEINS                 | 5,307 | 80               | 5,223  | 10,021 | 1,061             | 8,949  |  |

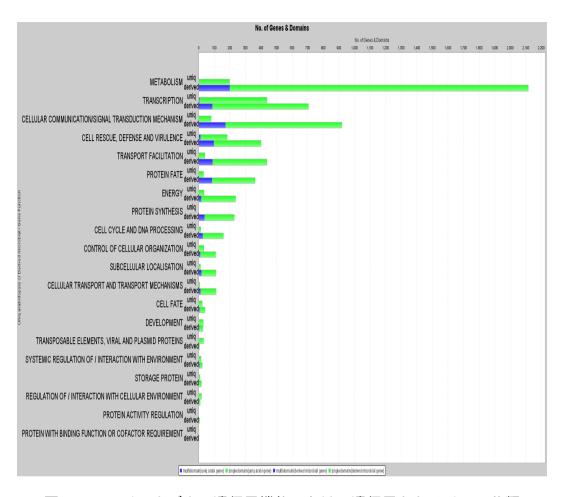



図 10 シロイヌナズナの遺伝子機能における遺伝子とドメインの分類

横軸: 遺伝子数 ; 縦軸: メインカテゴリー: 20 種の遺伝子機能, サブカテゴリー: uniq: シロイヌナズナ固有遺伝子と

derived: 微生物由来の遺伝子

bule: multidomain ; green: singledomain

ドメインを有する遺伝子におけるマルチドメインとシングルドメインの割合

#### METABOLISM (代謝機能)

代謝機能に分類される遺伝子は、表1と図10から微生物由来の遺伝子が植物固有の遺伝子に比べ圧倒的に多い。そのため、微生物由来の遺伝子に注目する。微生物から植物への進化の過程で、bi-functional 遺伝子となったと報告されているシロイヌナズナの8個の遺伝子についてのドメインの探索結果をみていく。AT1G31230とAT4G19710の遺伝子については、2005年に出されたCurien G. らの論文[17]を参照した。AT1G31860とAT4G26900の遺伝子については、1998年に出されたFujimori K. らの論文[18]、[19]をした。AT2G16370の遺伝子については、1993年に出されたLazar G. らの論文[20]を参照した。AT3G06860の遺伝子については、1999年に出されたRichmond TA. らの論文[21]を参照した。AT3G18000の遺伝子については、2000年に出されたBolognese CP. らの論文[22]を参照した。AT4G21470の遺伝子については、2005年に出されたSandoval FJ. らの論文[23]を参照した。これら8個の各遺伝子の機能については、表2に示す。

表 2 代謝機能:解析対象遺伝子の詳細機能

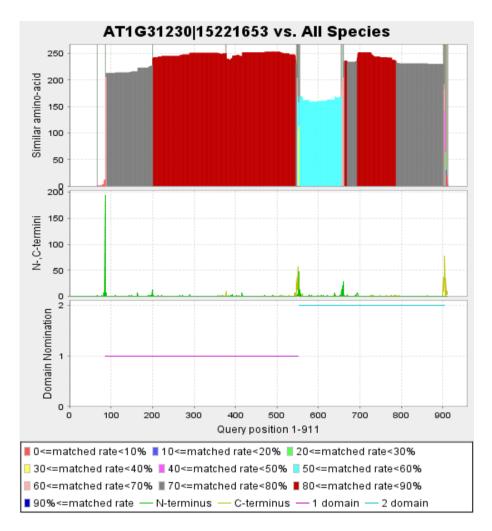
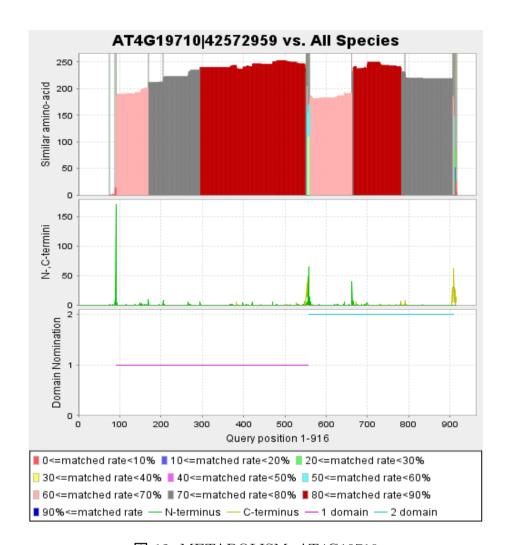
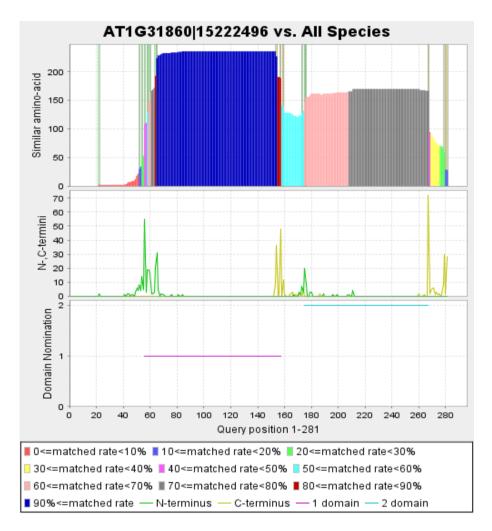

| atg code  | gene name | gene function                                          |
|-----------|-----------|--------------------------------------------------------|
| AT1G31230 | AK-HSDHI  | aspartate kinase-homoserine dehydrogenase              |
| AT4G19710 | AK-HSDHII | aspartate kinase-homoserine dehydrogenase              |
| AT1G31860 | At-IE     | Phosphoribosyl-AMP cyclohydrolase(PRA-CH)(hsiI)/       |
|           |           | Phosphoribosyl-ATP pyrophosphohydrolase(PRA-PH)(hisE)  |
| AT4G26900 | HisH/HisF | glutamine amido-transferase/cyclase                    |
| AT2G16370 | DHFR-TS   | dihtdrofolate reductase and thymidylate synthase       |
| AT3G06860 | AIM1      | Abnormal Inflorescence Meristem1                       |
| AT3G18000 | AtNMT1    | S-adenosyl-Met:phospho-base N-methyltransferase assays |
| AT4G21470 | AtFMN/FHy | riboflavin kinase/FAD synthetase                       |

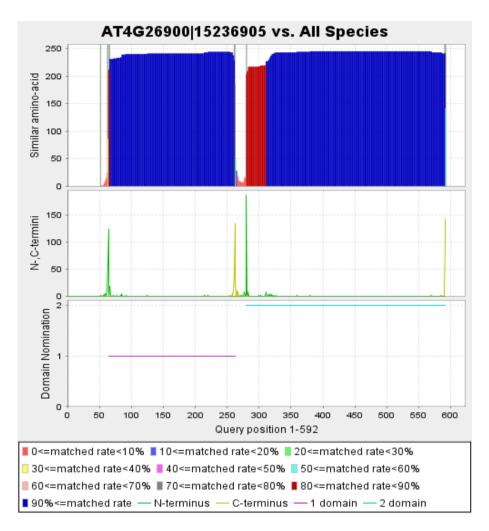
表 3 には、8 個の遺伝子についての本手法によるドメインの探索結果を示す。また、それぞれの遺伝子についてのドメイングラフを図 11-図 18 に示す。


表 3 代謝機能遺伝子におけるドメイン

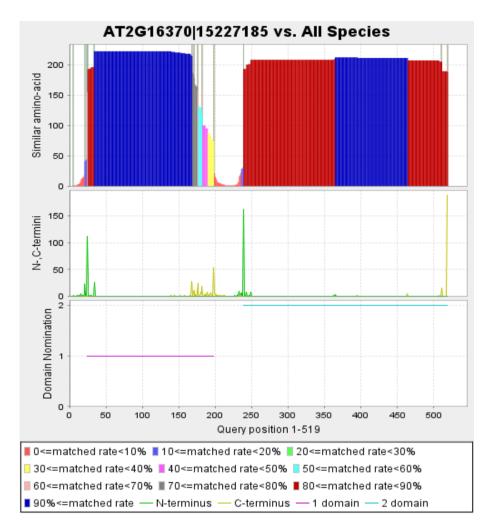
| atg       | gene   | no. of    | no. of       | no. of | domain1 |     | domain2 |       |     |        |
|-----------|--------|-----------|--------------|--------|---------|-----|---------|-------|-----|--------|
| code      | length | homo seq. | homo species | domain | start   | end | length  | start | end | length |
| AT1G31230 | 911    | 711       | 295          | 2      | 86      | 550 | 465     | 553   | 904 | 352    |
| AT4G19710 | 916    | 707       | 296          | 2      | 91      | 555 | 465     | 558   | 909 | 352    |
| AT1G31860 | 281    | 301       | 236          | 2      | 56      | 157 | 102     | 175   | 267 | 93     |
| AT4G26900 | 592    | 549       | 245          | 2      | 64      | 262 | 199     | 280   | 592 | 313    |
| AT2G16370 | 519    | 447       | 234          | 2      | 24      | 198 | 175     | 239   | 519 | 281    |
| AT3G06860 | 725    | 1,975     | 246          | 2      | 16      | 205 | 190     | 312   | 711 | 400    |
| AT3G18000 | 491    | 895       | 258          | 2      | 44      | 134 | 91      | 275   | 392 | 118    |
| AT4G21470 | 379    | 838       | 274          | 2      | 14      | 193 | 180     | 238   | 363 | 126    |


これら 8 個の遺伝子は表 2 の遺伝子機能 (gene function) からもわかるように、1 つの遺伝子において、2 つの機能をもつ bi-functional 遺伝子である。このことを踏まえ表 3 のドメイン数 (no. of domain) に注目すると、8 個全ての遺伝子がマルチドメインを形成していることがわかる。これは、遺伝子において bi-function であることとマルチドメインとなることは、深く関わっているといえる。また、オーソログ遺伝子の配列がみつかった生物種の数が本研究に用いた全体の約 70% でどの遺伝子においても保存されている。よって、本手法の探索から得られたドメインは微生物に広域に存在し、かつよく保存されたドメインである。そのため、8 個の遺伝子がそれぞれもつ 2 つのドメインは、微生物由来であり、各遺伝子においてbi-function 遺伝子を形成していることが明らかである。




☑ 11 METABOLISM: AT1G31230




☑ 12 METABOLISM: AT4G19710



☑ 13 METABOLISM: AT1G31860



☑ 14 METABOLISM: AT4G26900



☑ 15 METABOLISM: AT2G16370

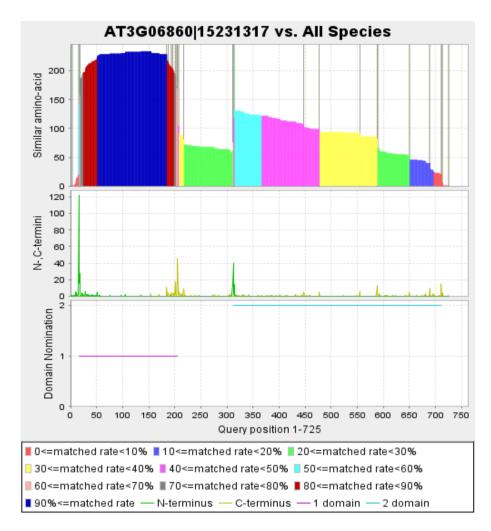
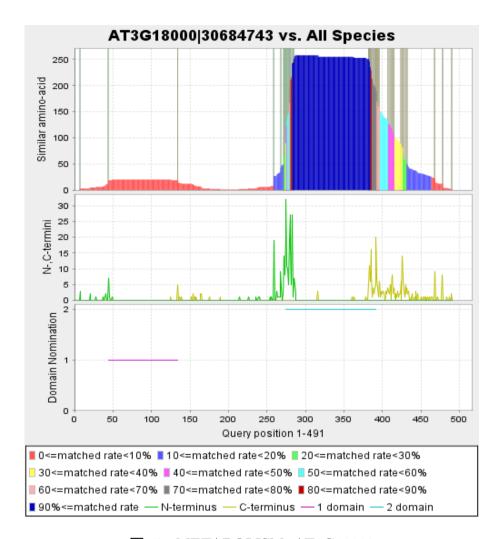




図 16 METABOLISM: AT3G06860



☑ 17 METABOLISM: AT3G18000

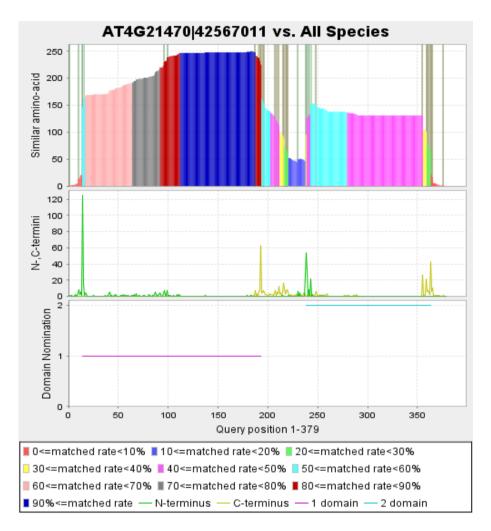



図 18 METABOLISM: AT4G21470

#### TRANSCRIPTION (転写機能)

表 1 と図 10 から転写機能に分類される遺伝子は、他の機能に比べ植物 (シロイヌナズナ) 固有の遺伝子が多いことがわかる。そのため、転写機能の遺伝子については、植物固有のドメインに注目する。

転写因子 (transcription factor) 遺伝子は、シロイヌナズナゲノムの 5%以上を占めている。Riechmann JL. らは、2000 年に植物、動物、真菌の 3 つの界に存在すると予想される各転写因子遺伝子の構成について比較解析を行った [24]。Riechmann JL. らは、植物のゲノムデータには、シロイヌナズナを使用しており、解析結果からシロイヌナズナには、植物特異的な転写因子ファミリーが存在していることがわかった。本研究では、この植物特異的な転写因子ファミリーの中で遺伝子数が多く報告されている、5 個に注目し、シロイヌナズナの転写因子遺伝子におけるドメインの探索を行った。5 個の転写因子ファミリー名、遺伝子数については、表 4 に示す。また、データはシロイヌナズナの転写因子ファミリーのデータベース RARTF (RIKEN Arabidopsis Transcription Factor database) (http://rarge.gsc.riken.jp/rartf/)[25]から最新 (2007 年 1 月) のものを入手した。

表 4 シロイヌナズナ における転写因子ファミリーと遺伝子数

| superfamily |     | subfamily                     |     |  |
|-------------|-----|-------------------------------|-----|--|
| no. of gene |     | no. of gene                   |     |  |
| AP2/EREBP   | 145 | ABSCISIC ACID-INSENSITIVE4 14 |     |  |
|             |     | AINTEGUMENTA                  |     |  |
|             |     | APETALA2                      | 144 |  |
|             |     | CBF1                          | 145 |  |
|             |     | DREB2A                        | 137 |  |
| ARF         | 119 | MONOPTEROS/ARF5               | 74  |  |
|             |     | NPH4/ARF7                     | 119 |  |
|             |     | ETTIN/ARF3                    | 45  |  |
| NAC         | 106 | CUP-SHAPED COTYLEDON2         | 106 |  |
| WRKY(Zn)    | 72  |                               |     |  |
| Aux/IAA     | 49  |                               |     |  |

各転写因子ファミリーに分類される遺伝子について、本手法によるドメインの 探索結果を表 5 と図 19 に示す.

表 5 シロイヌナズナの転写因子ファミリーごとの遺伝子とドメイン数

| superfamily | uniq a | arabidop | osis   | derived microbial |        |        |  |
|-------------|--------|----------|--------|-------------------|--------|--------|--|
|             | gene   | domain   |        | gene              | domain |        |  |
|             |        | multi    | single |                   | multi  | single |  |
| AP2/EREBP   | 111    | 0        | 111    | 14                | 2      | 12     |  |
| ARF         | 89     | 1        | 88     | 9                 | 2      | 7      |  |
| NAC         | 94     | 0        | 94     | 5                 | 3      | 2      |  |
| WRKY(Zn)    | 48     | 0        | 48     | 16                | 1      | 15     |  |
| Aux/IAA     | 40     | 0        | 40     | 5                 | 2      | 3      |  |

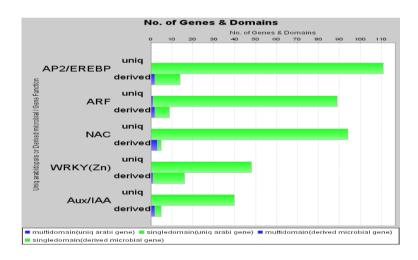



図 19 シロイヌナズナの転写因子ファミリーごとの遺伝子とドメインの割合

bule: multidomain ; green: singledomain

ドメインを有する遺伝子におけるマルチドメインとシングルドメインの割合

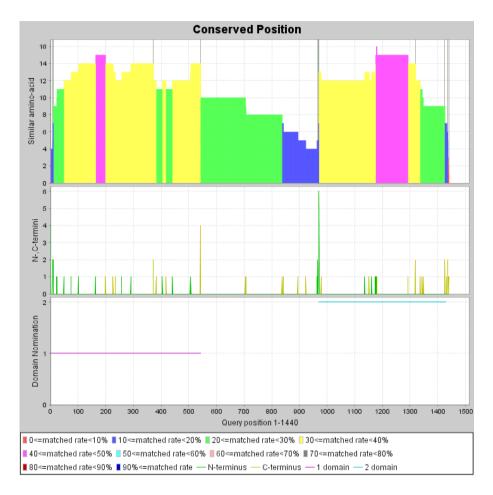

表 5 と図 19 から、明らかに 5 個の転写因子ファミリー (AP2/EREBP, NAC, WRKY(Zn), ARF, Aux/IAA) は、シロイヌナズナのみと相同性を示すものが圧倒的に多い。これら 5 個の転写因子ファミリーは、Riechmann JL. らによって植物特異的なファミリーと位置づけられている。したがって、これらのファミリーに属している遺伝子とドメインは植物固有であることがいえる。

表5から,植物固有で,かつマルチドメインとなる遺伝子が転写因子ファミリー ARF に1つのみ検出されたことがわかる.マルチドメインは,進化の過程で異なる遺伝子に存在していた複数のドメインが1つの遺伝子に入り込むことが原因で形成されることがよく知られている.しかし,同生物種内のみだけでのマルチドメイン化をみていくことは,その生物種特異的な何らかの構造をみることが可能になると考えられる.そのため,ARFでみつかった植物に固有の遺伝子で,かつマルチドメインを形成している遺伝子 AT2G24650 についてみていく. AT2G24650 についてシロイヌナズナの全遺伝子からみつかったパラログ遺伝子の配列を図20に示す.また,図20のパラログ遺伝子から探索したドメインの結果を図21に示す.



図 20 TRANSCRIPTION: AT2G24650 におけるパラログ遺伝子

red line: 問い合せ遺伝子 AT2G24650; orange lines: パラログ遺伝子の問い合せ遺伝子における類似配列領域



☑ 21 TRANSCRIPTION: AT2G24650

図 20 でみつかったパラログ遺伝子がそれぞれどの転写因子ファミリーに分類されているかを調べた。その結果、AT4G31620 以外は全て AT2G24650 と同じ転写因子ファミリー ARF に分類された。また、AT4G31620 は RARTF には登録されていなかったが、NCBI の RefSeq から、転写因子の機能をもつことがわかった。このことから、AT4G31620 は転写因子ファミリー ARF に分類されると予測される。

転写因子ファミリー ARF は、Riechmann JL. らの研究によるとシロイヌナズナの他の転写因子ファミリーとドメインシャッフリングを起こすことがわかっている。 そのため、AT2G24650 はドメインシャッフリングが原因でマルチドメインとなったと考えられる.

# CELLULAR COMMUNICATION/ SIGNAL TRANSDUCTION MECHANISM

(細胞内情報伝達機能/シグナル伝達機構)

細胞内情報伝達機能において、代表的な遺伝子機能であるキナーゼ (kinase) についてみていく [26]-[28]。キナーゼは、ATP の  $\gamma$ -リン酸基を糖、アミノ酸、タンパク質、リン脂質などに転移する反応を触媒する酵素の総称である。特にタンパク質を基質にするものはプロテインキナーゼと呼ぶ。逆にリン酸化タンパク質から脱リン酸化を行う酵素はホスファターゼと呼ばれる。プロテインキナーゼには、細胞内情報伝達を担うセカンドメッセンジャーにより活性化されるものや、受容体キナーゼ群のようにキナーゼ自身が細胞外から情報を受け取り自分自身をリン酸化(自己リン酸化)することで活性を調節するものが含まれる。細胞内にはホスファターゼが存在し、多くのキナーゼ類は迅速で可逆的な活性調節が行われ、細胞の形態変化、増殖、物質の膜透過など基本的な生体機能に重要な役割を果たすと考えられる。ある種のタンパク質はリン酸化によってコンホメーション変化や、複合体の形成などが引き起こされ、活性が調製される。

図 22 と図 23 は、シロイヌナズナの STY(Serine/Threonine/Tyrosine) タンパク質キナーゼの系統樹とファミリーごとのドメインのタイプを表したものである. これらは、2006年に Rudrabhatla P. らによって発表された論文 [28] から引用した. 図 22 に記載されているシロイヌナズナの遺伝子それぞれについて、本手法によるドメインの探索をおこなった。ドメインの探索結果については、ファミリーごとに1つの遺伝子を代表として図 24-図 32 に示す.探索されたドメインと図 23 のドメインを対応させると、図 23 で図示されている全ての遺伝子に表れているチロシンキナーゼ (tyrosine kinase) ドメインは、本手法からも検出された.また、Family 2.2 のほとんどの遺伝子に存在する PAS ドメイン、Group III のほとんどの遺伝子に存在するアンキリン (ankyrin) ドメインも検出された.このことから、チロシンキナーゼ、PAS、アンキリンのドメインは、微生物由来であることがわかる.次に、Family 2.1 に注目する.Rudrabhatla P. らの解析結果によると Family 2.1 のほとんどの遺伝子には PB1 ドメインが存在する.本手法の結果 (図 28) では、PB1 のドメインは探索されなかった.このことは、本研究においてシロイヌナズナのド

メインを決めるのは、微生物との相同配列から得るオーソログ遺伝子と、シロイヌナズナとの相同配列から得られるパラログ遺伝子である。そのため、PB1ドメインは、本研究に用いた333種の生物以外に由来するドメインと予測できる。

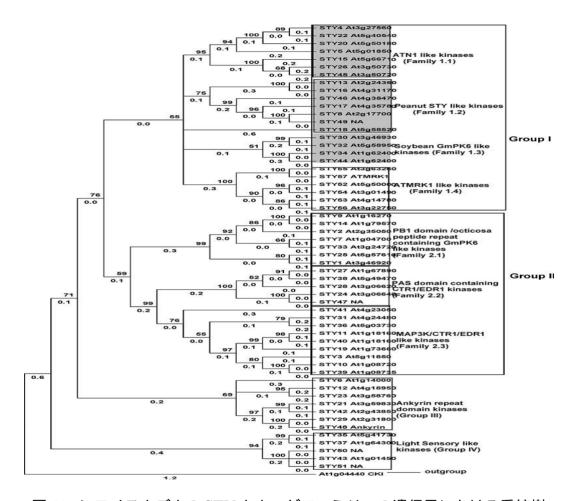



図 22 シロイヌナズナの STY キナーゼファミリーの遺伝子における系統樹

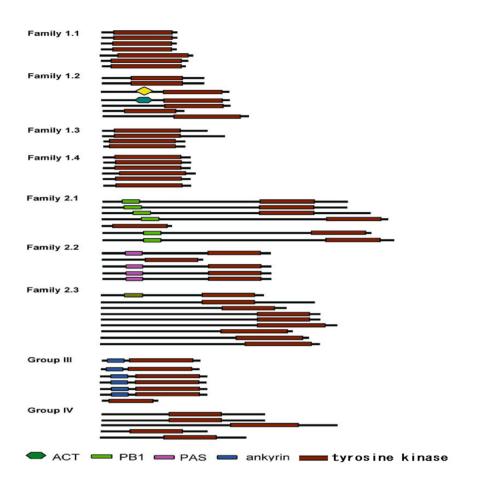
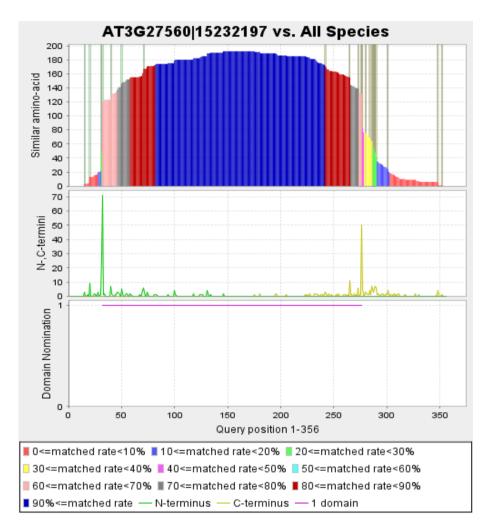




図 23 シロイヌナズナの STY キナーゼのファミリーごとのドメインタイプ

red: tyrosine kinase catalytic domain ; green: ACT domain ; light green: PB1 domain ; pink: PAS domain ; blue: ankyrin



☑ 24 CELL COM: Family1.1

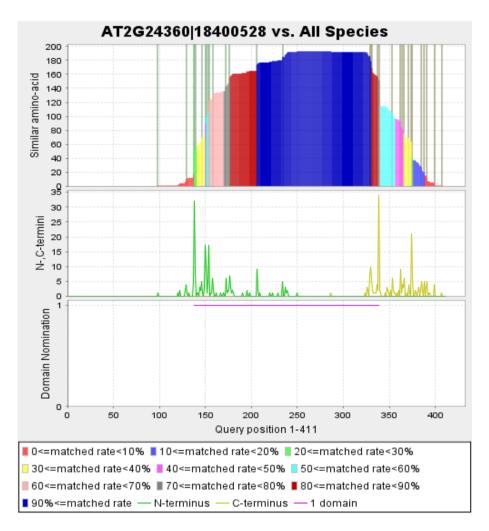



図 25 CELL COM: Family1.2

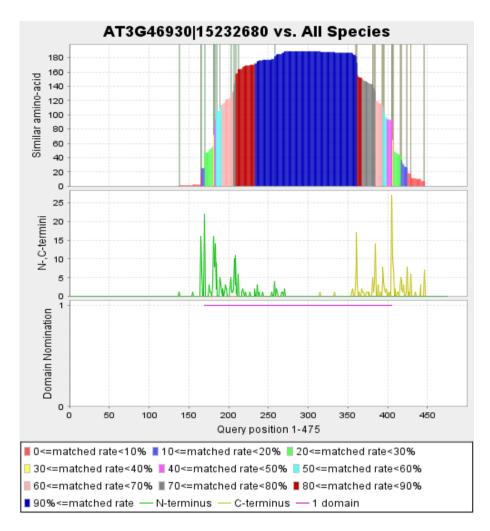
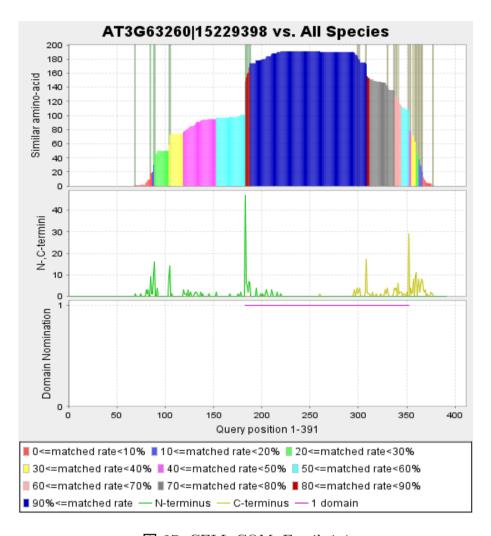




図 26 CELL COM: Family1.3



☑ 27 CELL COM: Family1.4

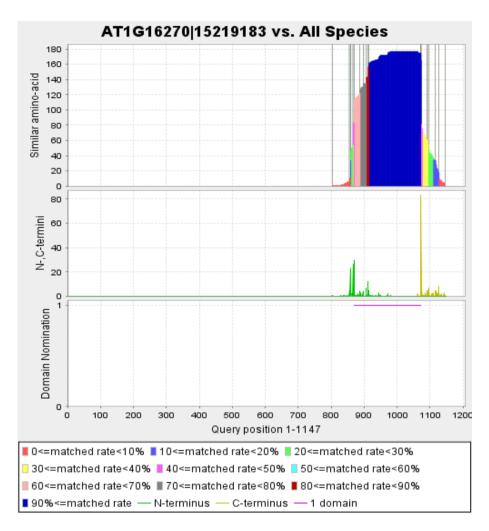
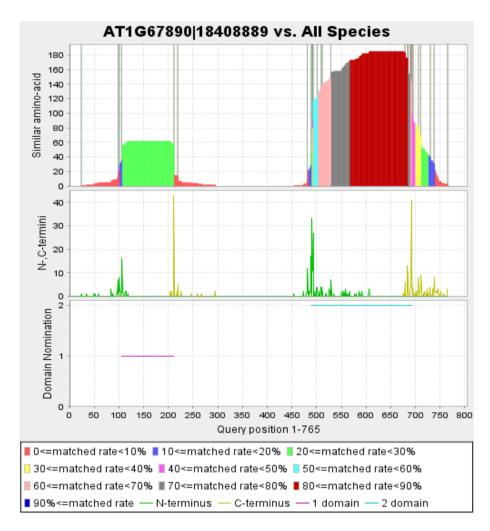




図 28 CELL COM: Family2.1



☑ 29 CELL COM: Family2.2

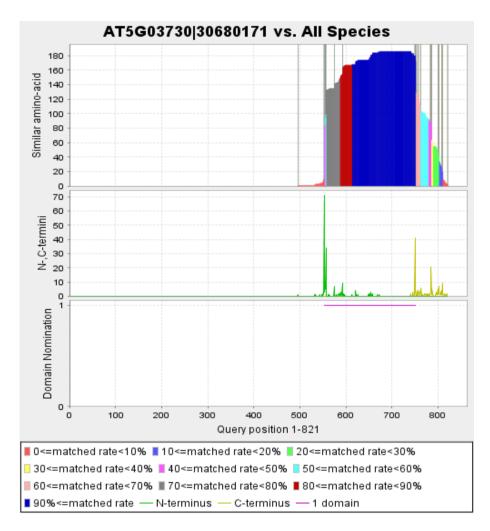



図 30 CELL COM: Family2.3

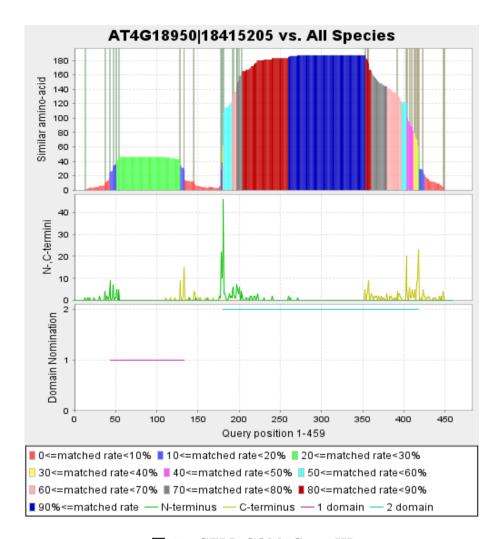
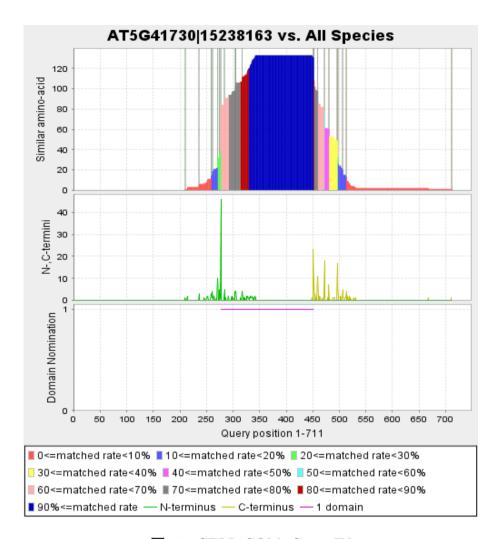
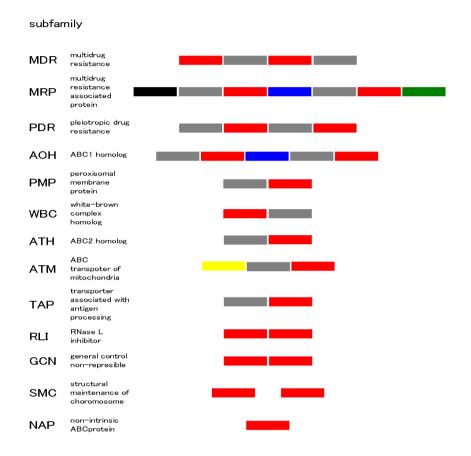



図 31 CELL COM: GroupIII

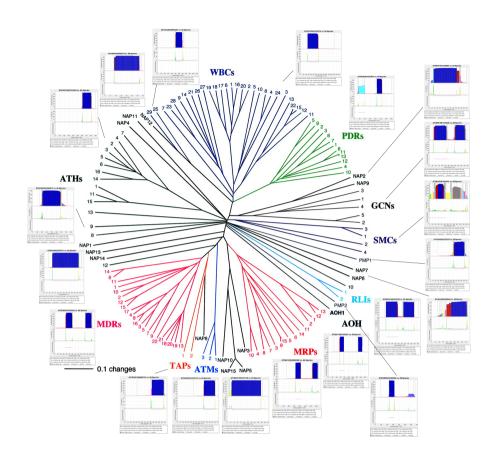




図 32 CELL COM: GroupIV

#### TRANSPORT FACILITATION (膜輸送機能)

シロイヌナズナゲノムの約 5%の遺伝子が膜輸送機能を有している [29], [30]. また、膜輸送タンパク質は、46 個のファミリーに分けることができる.このファミリーのうち、ABC 輸送体 (ABC transporter) のサブファミリーについての解析を 2001 年に Sanchez-Fernandez R. ら [29] が行った.ABC 輸送体は、2 個の ATP 結合部位を有し、ATP-結合カセット輸送タンパクと総称される.生体に侵入した毒物や薬物の排出 (肝臓、腎臓、大腸)、塩素イオンの輸送などの機能がある.

図 33 は、ABC 輸送体のサブファミリー 13 個 (MDR, MRP, PDR, AOH, PMP, WBC, ATH, ATM, TAP, RLI, GCN, SMC, NAP) それぞれについて、Sanchez-Fernandez R. らが研究で明らかにしたドメインである。また、Sanchez-Fernandez R. らは、ABC 輸送体のファミリーに属す遺伝子配列を用いて、系統解析を行っている(図 34 参照)。図 34 の系統樹からわかるように、それぞれの遺伝子は、ABC 輸送体のサブファミリーごとに系統的に分類される。Sanchez-Fernandez R. らのABC 輸送体遺伝子の系統樹と、本手法でのドメイン探索の結果を照らし合せたものもまた、図 34 に示す。本手法でのドメイン探索においても、ABC 輸送体のサブファミリーごとに遺伝子におけるドメインの構造がよく似ていた。図 33 と図34 を本手法で得たドメイン構造と比較すると、全てのサブファミリーで、NBFs (nucleotide-binding folds) がよく保存されていた。このことから、NBFs は ABC 輸送体において重要なドメインと考えられる。また、NBFs はシロイヌナズナ以外の生物種の遺伝子とも相同であり、配列が高く保存されていることが、本手法によるドメインの探索結果から得られた。そのため、NBFs は、微生物から植物への進化の過程で、微生物から受け継がれたドメインであるとわかる。


次に、図34からABC輸送体の配列を用いた系統関係と遺伝子におけるドメインの形状についての関連性をみていく、図34のマルチドメインとなっている遺伝子をもつファミリーに注目すると、これらマルチドメインを形成しているファミリー同士は、ある程度まとまって存在している。そのため、遺伝子におけるドメイン構造は、進化や機能などの系統分類において重要な役割があると考えられる。



# 図 33 シロイヌナズナの ABC 輸送体遺伝子におけるサブファミリーごとのドメ イン

red: NBFs 1 and 2 ; black: TMD0 ; gray: TMDs 1 and 2 ;

blue: linker domain; green: C-terminal extension; yellow: amphipathic signal peptide



## 図 34 シロイヌナズナの ABC 輸送体遺伝子における系統樹とドメイン探索結果

Protein sequences were aligned using ClustalX and subjected to phylogenetic analysis by the distance with neighbor-joining method using PAUP4.04a. The reliabilities of each branch point, as assessed by the analysis of 1000 computer-generated trees (bootstrap replicates), were in excess of 90% except for those discussed in the text.

#### 3.5 微生物由来のドメインと植物固有のドメイン

3.3 節と3.4 節から,本手法により探索されたドメインは,オーソログ遺伝子・パラログ遺伝子を検出する際の生物種によって,どの生物種由来のドメインかを確認できることが明らかである。図35 にシロイヌナズナの遺伝子及びドメインが微生物由来か植物固有かを分類した統計結果を示す。本研究で植物(シロイヌナズナ)と微生物(真菌,古細菌,細菌)のゲノムを用い,植物の遺伝子上のドメインの探索をおこなったことで,微生物から植物の進化の過程において,受け継がれたドメインを明らかにすることができた。微生物から植物の遺伝子の進化では、ドメインや遺伝子の融合・解離などが起こりながら,遺伝子が複雑化,多様化している。そのため,植物は微生物から受け継いだドメインと独自に生成したドメインが存在している。本手法では、植物固有のドメインの予測も行うことができた。

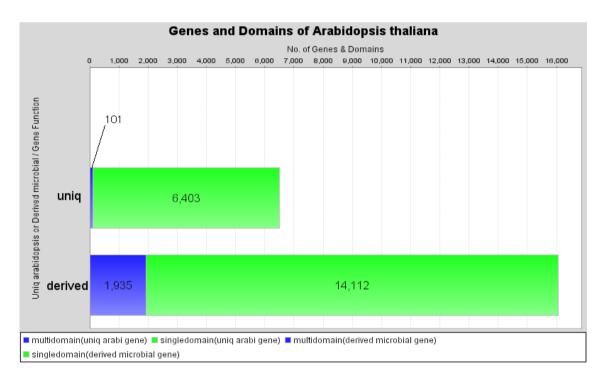



図 35 微生物由来・植物固有の遺伝子とドメイン

横軸: 遺伝子数 ; 縦軸: uniq: シロイヌナズナ固有遺伝子と derived: 微生物由来の遺伝子

bule: multidomain; green: singledomain

## 4. 結論

本研究では、オーソログ遺伝子・パラログ遺伝子の配列からドメインを探索するアルゴリズムの開発を行った。始めに、オーソログ遺伝子・パラログ遺伝子の検出をBLASTと本研究独自のオーソログ遺伝子・パラログ遺伝子の定義に基づいて行った。本研究では、どちらの遺伝子側からもBLASTの結果で得た類似配列領域が等しく、互いに十分な類似度を示す遺伝子対は相同であるとし、この2つの遺伝子を異生物間においてはオーソログ遺伝子、同生物間においてはパラログ遺伝子と定義した。次に、ある遺伝子について検出されたオーソログ遺伝子・パラログ遺伝子の類似配列領域から、遺伝子におけるオーソログ遺伝子・パラログ遺伝子の類似配列領域を求める。また、各類似配列領域における開始残基位置と終了残基位置の保存を選択した。開始残基位置の候補と終了残基位置の候補から、ドメインが重複しないように、各ドメインの開始残基位置と終了残基位置を決める、この開始残基位置と終了残基位置で挟まれた領域が高保存配列領域で、かつ十分な長さがある場合、その配列領域をドメインとし、ドメインの探索を行った。

遺伝子配列の相同性に基づく本アルゴリズムにより、ドメインを探索することで、解析対象とした生物種間で保存されているドメインの検出や配列パターンが未知なドメインについても検出可能である。また、探索されたドメインだけでなく、探索の過程にも重要な生物情報があるため、ドメインの探索過程で出るデータ及び遺伝子におけるドメインを可視化するソフトウェアの開発も行った。

本研究で開発したソフトウェアは、ある遺伝子におけるオーソログ遺伝子またはパラログ遺伝子の類似配列領域のデータを入力することで、ドメインの探索から可視化までを行う。入力データのソフトウェアへのロードについては、ファイルかデータベースかを使用者が選択できる。ファイルの場合は使用者が独自に検出したオーソログ遺伝子・パラログ遺伝子のデータを規定の形式にそってファイルを作成し、ファイルを選ぶことでデータがロードされる。データベースの場合は、本手法で検出したオーソログ遺伝子・パラログ遺伝子のデータから、解析したい問い合せ遺伝子(query gene)と対象生物(subject speceis)を GUI の選択画面から選ぶことで必要なデータがロードされる。可視化を行わず、ドメインの探索結

果をテキストファイル、画像ファイルのみで出力することも可能である.

本研究では、開発したソフトウェアを使い、ドメインの解析を行った。始めに、333種全ての生物における全遺伝子についてドメインの探索を行い、全遺伝子におけるマルチドメインとシングルドメインの比率を求めた。全体の結果とシロイヌナズナの遺伝子におけるドメインの探索結果を比較することで、高等植物であるシロイヌナズナでは、微生物に比べ、マルチドメインとなる遺伝子が増えていることが確認できた。それゆえ、微生物から植物への進化の過程で、ドメインが重要な役割を担っていると考え、植物(シロイヌナズナ)の遺伝子について、微生物由来のドメインと植物固有のドメインの検出行った。

シロイヌナズナの全遺伝子について、332種の微生物とのオーソログ遺伝子とパラログ遺伝子を検出し、オーソログ遺伝子をもつシロイヌナズナの遺伝子から探索されたドメインは微生物由来のドメイン、パラログ遺伝子のみから探索されたドメインは植物固有のドメインとした。また、シロイヌナズナの遺伝子機能ごとに、本手法で探索されたドメインを解析することで、微生物由来のドメインを明らかにすることができた。

代謝機能の遺伝子からは、微生物由来の異なるドメインが、植物の遺伝子で bifunctional 遺伝子を形成していることが確認できた。細胞内情報伝達機能/シグナル伝達機構の遺伝子からは、キナーゼのファミリーに注目することで、キナーゼの遺伝子で高く保存されているチロシンキナーゼドメイン、PAS ドメイン、アンキリンドメインが微生物由来であることがわかった。膜輸送機能の遺伝子からは、ABC 輸送体のファミリーに注目することで、ABC 輸送体の遺伝子で高く保存されている NBFs ドメインが、微生物由来であることがわかった。逆に、植物特異的であるといわれている機能に注目することで、転写機能から、異なる転写因子ファミリーの遺伝子間で、ドメインシャッフリングが起こり、同生物内で、遺伝子がマルチドメインを形成することがわかった。また、遺伝子配列の系統分類の結果とドメイン構造を照らし合わせることで、遺伝子は機能と構造に深い関係性があることがわかった。

これらのことは、遺伝子について微生物から植物への進化の過程を解明する新たな知見を与えると考える. 今回の研究では、シロイヌナズナの遺伝子における

ドメインのみの解析を行ったが、他の生物種の遺伝子に注目したドメイン解析をすることで、さらに生物種特異的なドメインやドメイン単位での遺伝子の進化についての理解に役立つと期待できる.

# 謝辞

本研究の遂行ならびに論文の作成に当たって、情報科学研究科 金谷 重彦 教授、 黒川 顕 助教授、並びに MD. Altaf-Ul-Amin 助手には常に親身になって多大な御 指導、御助言を請け賜りました. 心より感謝いたしております.

情報科学研究科 植村 俊亮 教授には、総合的にご指導していただき深く感謝いたします。

そして、本研究室の皆様方には研究生活そのものをあらゆる面で協力していただきました。 心よりお礼を申し上げます.

## 参考文献

- [1] Wetlaufer DB. (1973) Nucleation, rapid folding, and globular intrachain regions in proteins. Proc Natl Acad Sci U S A. 70, 697-701.
- [2] Efimov I, Kuusk V, Zhang X, McIntire WS. (1998) Proposed steady-state kinetic mechanism for Corynebacterium ammoniagenes FAD synthetase produced by Escherichia coli. Biochemistry. 37, 9716-9723.
- [3] Mack M, van Loon AP, Hohmann HP. (1998) Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the flavokinase/flavin adenine dinucleotide synthesis encoded by ribC. J Bacteriol. 180, 950-955.
- [4] Manstein DJ, Pai EF. (1986) Purification and characterization of FAD synthetase from Brevibacterium ammoniagenes. J Biol Chem. 261, 16169-16173.
- [5] Mayhew SG, Wassink JH. (1980) Continuous fluorescence assay, partial purification and properties of flavokinase from Megasphaera elsdenii. Methods Enzymol. 66, 323-327.
- [6] Enright AJ, Iliopoulos I, Kyrpides NC, Ouzounis CA. (1999) Protein interaction maps for complete genomes based on gene fusion events. Nature. 402, 86-90.
- [7] Marcotte EM, Pellegrini M, Ng HL, Rice DW, Yeates TO, Eisenberg D. (1999) Detecting protein function and protein-protein interactions from genome sequences. Science. 285, 751-753.
- [8] Kuroda Y, Tani K, Matsuo Y, Yokoyama S. (2000) Automated search of natively folded protein fragments for high-throughput structure determination in structural genomics. Protein Sci. 9, 2313-2321.
- [9] George RA, Heringa J. (2002) Protein domain identification and improved sequence similarity searching using PSI-BLAST. Proteins. 48, 672-681.

- [10] Bateman A, Birney E, Durbin R, Eddy SR, Howe KL, Sonnhammer EL. (2000) The Pfam protein families database. Nucleic Acids Res. 28, 263-266.
- [11] Andreeva A, Howorth D, Brenner SE, Hubbard TJ, Chothia C, Murzin AG. (2004) SCOP database in 2004: refinements integrate structure and sequence family data. Nucleic Acids Res. 32, D226-D229.
- [12] Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bradley P, Bork P, Bucher P, Cerutti L, Copley R, Courcelle E, Das U, Durbin R, Fleischmann W, Gough J, Haft D, Harte N, Hulo N, Kahn D, Kanapin A, Krestyaninova M, Lonsdale D, Lopez R, Letunic I, Madera M, Maslen J, McDowall J, Mitchell A, Nikolskaya AN, Orchard S, Pagni M, Ponting CP, Quevillon E, Selengut J, Sigrist CJ, Silventoinen V, Studholme DJ, Vaughan R, Wu CH. (2005) InterPro, progress and status in 2005. Nucleic Acids Res. 33, D201-D205.
- [13] Letunic I, Copley RR, Pils B, Pinkert S, Schultz J, Bork P. (2006) SMART5: domains in the context of genomes and networks. Nucleic Acids Res. 34, D257-D260.
- [14] Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. (1990) Basic local alignment serch tool. J Mol Biol 215, 403-410.
- [15] Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389-3402.
- [16] Jones S, Stewart M, Michie A, Swindells MB, Orengo C, Thornton JM. (1998) Domain assignment for protein structures using a consensus approach: characterization and analysis. Protein Sci. 7, 233-242.
- [17] Curien G, Ravanel S, Robert M, Dumas R. (2005) Identification of six novel allosteric effectors of Arabidopsis thaliana aspartate kinase-homoserine de-

- hydrogenase isoforms. Physiological context sets the specificity. J Biol Chem. 280, 41178-41183.
- [18] Fujimori K, Ohta D. (1998) Isolation and characterization of a histidine biosynthetic gene in Arabidopsis encoding a polypeptide with two separate domains for phosphoribosyl-ATP pyrophosphohydrolase and phosphoribosyl-AMP cyclohydrolase. Plant Physiol. 118, 275-283.
- [19] Fujimori K, Ohta D. (1998) An Arabidopsis cDNA encoding a bifunctional glutamine amidotransferase/cyclase suppresses the histidine auxotrophy of a Saccharomyces cerevisiae his7 mutant. FEBS Lett. 428, 229-234.
- [20] Lazar G, Zhang H, Goodman HM. (1993) The origin of the bifunctional dihydrofolate reductase-thymidylate synthase isogenes of Arabidopsis thaliana. Plant J. 3, 657-668.
- [21] Richmond TA, Bleecker AB. (1999) A defect in beta-oxidation causes abnormal inflorescence development in Arabidopsis. Plant Cell. 11, 1911-1923.
- [22] Bolognese CP, McGraw P. (2000) The isolation and characterization in yeast of a gene for Arabidopsis S-adenosylmethionine:phospho-ethanolamine Nmethyltransferase. Plant Physiol. 124, 1800-1813.
- [23] Sandoval FJ, Roje S. (2005) An FMN hydrolase is fused to a riboflavin kinase homolog in plants. J Biol Chem. 280, 38337-38345.
- [24] Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G. (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science. 290, 2015-2110.
- [25] Iida K, Seki M, Sakurai T, Satou M, Akiyama K, Toyoda T, Konagaya A, Shinozaki K. (2005) RARTF: Database and Tools for Complete Sets of

- Arabidopsis Transcription Factors. DNA Res. 12, 247-256.
- [26] Hwang I, Chen HC, Sheen J. (2002) Two-component signal transduction pathways in Arabidopsis. Plant Physiol. 129, 500-515.
- [27] Bogre L, Okresz L, Henriques R, Anthony RG. (2003) Growth signalling pathways in Arabidopsis and the AGC protein kinases. Trends Plant Sci. 8, 424-431.
- [28] Rudrabhatla P, Reddy MM, Rajasekharan R. (2006) Genome-wide analysis and experimentation of plant serine/threonine/tyrosine-specific protein kinases. Plant Mol Biol. 60, 293-319.
- [29] Sanchez-Fernandez R, Davies TG, Coleman JO, Rea PA. (2001)The Arabidopsis thaliana ABC protein superfamily, a complete inventory. J Biol Chem. 276, 30231-30244.
- [30] Maser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML. (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol. 126, 1646-1667.

## 付録

## A. 解析に用いた生物の遺伝子数とaccession number

| kingdom       | phylum       | species              | accession number | no. of gene |
|---------------|--------------|----------------------|------------------|-------------|
| Viridiplantae | Streptophyta | Arabidopsis thaliana | NC_003070        | 6,836       |
|               |              |                      | NC_003071        | 4,164       |
|               |              |                      | NC-003074        | 5,286       |
|               |              |                      | NC_003075        | 4,057       |
|               |              |                      | NC_003076        | 6,193       |

| kingdom | phylum     | species                   | accession number | no. of gene |
|---------|------------|---------------------------|------------------|-------------|
| Fungi   | Ascomycota | Saccharomyces cerevisiae  | NC_001133        | 94          |
|         |            |                           | NC_001134        | 406         |
|         |            |                           | NC_001135        | 160         |
|         |            |                           | NC_001136        | 755         |
|         |            |                           | NC_001137        | 273         |
|         |            |                           | NC_001138        | 126         |
|         |            |                           | NC_001139        | 526         |
|         |            |                           | NC_001140        | 281         |
|         |            |                           | NC_001141        | 207         |
|         |            |                           | NC_001142        | 356         |
|         |            |                           | NC_001143        | 312         |
|         |            |                           | NC_001144        | 508         |
|         |            |                           | NC_001145        | 460         |
|         |            |                           | NC_001146        | 393         |
|         |            |                           | NC_001147        | 536         |
|         |            |                           | NC_001148        | 461         |
|         |            |                           | NC_001224        | 19          |
|         |            | Schizosaccharomyces pombe | NC_003421        | 887         |
|         |            |                           | NC_003423        | 1,796       |
|         |            |                           | NC_003424        | 2,235       |

| kingdom | phylum        | species                              | accession number | no. of gene |
|---------|---------------|--------------------------------------|------------------|-------------|
| Archaea | Nanoarchaeota | Nanoarchaeum equitans                | NC_005213        | 536         |
|         | Crenarchaeota | Pyrobaculum aerophilum               | NC_003364        | 2,605       |
|         |               | Sulfolobus acidocaldarius DSM 639    | NC_007181        | 2,223       |
|         |               | Sulfolobus solfataricus              | NC_002754        | 2,977       |
|         |               | Sulfolobus tokodaii                  | NC_003106        | 2,825       |
|         |               | Aeropyrum pernix                     | NC_000854        | 1,841       |
|         | Euryarchaeota | Archaeoglobus fulgidus               | NC_000917        | 2,420       |
|         |               | Halobacterium sp                     | NC_001869        | 176         |
|         |               |                                      | NC_002607        | 2,075       |
|         |               |                                      | NC_002608        | 371         |
|         |               | Natronomonas pharaonis               | NC_007426        | 2,661       |
|         |               |                                      | NC_007427        | 125         |
|         |               |                                      | NC_007428        | 36          |
|         |               | Haloarcula marismortui ATCC 43049    | NC_006389        | 36          |
|         |               |                                      | NC_006390        | 42          |
|         |               |                                      | NC_006391        | 40          |
|         |               |                                      | NC_006392        | 51          |
|         |               |                                      | NC-006393        | 131         |
|         |               |                                      | NC_006394        | 166         |
|         |               |                                      | NC_006395        | 362         |
|         |               |                                      | NC_006396        | 3,131       |
|         |               |                                      | NC_006397        | 281         |
|         |               | Thermoplasma acidophilum             | NC_002578        | 1,482       |
|         |               | Thermoplasma volcanium               | NC_002689        | 1,499       |
|         |               | Picrophilus torridus DSM 9790        | NC_005877        | 1,535       |
|         |               | Pyrococcus abyssi                    | NC_000868        | 1,896       |
|         |               |                                      | NC_001773        | 2           |
|         |               | Pyrococcus furiosus                  | NC_003413        | 2,125       |
|         |               | Pyrococcus horikoshii                | NC_000961        | 1,955       |
|         |               | Thermococcus kodakaraensis KOD1      | NC_006624        | 2,306       |
|         |               | Methanopyrus kandleri                | NC_003551        | 1,687       |
|         |               | Methanospirillum hungatei JF-1       | NC_007796        | 3,139       |
|         |               | Methanosarcina acetivorans           | NC_003552        | 4,540       |
|         |               | Methanosarcina barkeri fusaro        | NC_007349        | 18          |
|         |               |                                      | NC_007355        | 3,606       |
|         |               | Methanosarcina mazei                 | NC_003901        | 3,370       |
|         |               | Methanococcoides burtonii DSM 6242   | NC_007955        | 2,273       |
|         |               | Methanosphaera stadtmanae            | NC_007681        | 1,534       |
|         |               | Methanobacterium thermoautotrophicum | NC_000916        | 1,873       |
|         |               | Methanococcus maripaludis S2         | NC_005791        | 1,722       |
|         |               | Methanococcus jannaschii             | NC_000909        | 1,729       |
|         |               |                                      | NC_001732        | 45          |
|         |               |                                      | NC-001733        | 12          |

| kingdom  | phylum              | species                               | accession number | no. of gene |
|----------|---------------------|---------------------------------------|------------------|-------------|
| Bacteria | Fusobacteria        | Fusobacterium nucleatum               | NC_003454        | 2,067       |
|          | Planctomycetes      | Pirellula sp                          | NC_005027        | 7,325       |
|          | Aquificae           | Aquifex aeolicus                      | NC_000918        | 1,529       |
|          |                     |                                       | NC_001880        | 31          |
|          | Thermotogae         | Thermotoga maritima                   | NC_000853        | 1,858       |
|          | Chloroflexi         | Dehalococcoides ethenogenes 195       | NC_002936        | 1,580       |
|          |                     | Dehalococcoides CBDB1                 | NC_007356        | 1,458       |
|          | Chlorobi            | Chlorobium tepidum TLS                | NC_002932        | 2,252       |
|          |                     | Chlorobium chlorochromatii CaD3       | NC_007514        | 2,002       |
|          |                     | Pelodictyon luteolum DSM 273          | NC_007512        | 2,083       |
|          | Deinococcus-Thermus | Thermus thermophilus HB27             | NC_005835        | 1,982       |
|          |                     |                                       | NC_005838        | 228         |
|          |                     | Thermus thermophilus HB8              | NC_006461        | 1,973       |
|          |                     |                                       | NC_006462        | 251         |
|          |                     |                                       | NC_006463        | 14          |
|          |                     | Deinococcus radiodurans               | NC_000958        | 146         |
|          |                     |                                       | NC_000959        | 39          |
|          |                     |                                       | NC_001263        | 2,629       |
|          |                     |                                       | NC_001264        | 368         |
|          | Bacteroidetes       | Salinibacter ruber DSM 13855          | NC_007677        | 2,801       |
|          |                     |                                       | NC_007678        | 32          |
|          |                     | Porphyromonas gingivalis W83          | NC_002950        | 1,909       |
|          |                     | Bacteroides fragilis YCH46            | NC_006297        | 47          |
|          |                     |                                       | NC_006347        | 4,578       |
|          |                     | Bacteroides fragilis NCTC 9434        | NC_003228        | 4,184       |
|          |                     |                                       | NC_006873        | 47          |
|          |                     | Bacteroides thetaiotaomicron VPI-5482 | NC_004663        | 4,778       |
|          |                     |                                       | NC_004703        | 38          |

| kingdom  | phylum       | species                                    | accession number | no. of gene |
|----------|--------------|--------------------------------------------|------------------|-------------|
| Bacteria | Spirochaetes | Leptospira interrogans serovar Copenhageni | NC_005823        | 3,394       |
|          |              |                                            | NC_005824        | 264         |
|          |              | Leptospira interrogans serovar Lai         | NC_004342        | 4,360       |
|          |              |                                            | NC_004343        | 367         |
|          |              | Treponema pallidum                         | NC_000919        | 1,036       |
|          |              | Borrelia garinii PBi                       | NC_006128        | 26          |
|          |              |                                            | NC_006129        | 74          |
|          |              |                                            | NC_006156        | 832         |
|          |              | Borrelia burgdorferi                       | NC_000948        | 42          |
|          |              |                                            | NC_000949        | 45          |
|          |              |                                            | NC_000950        | 44          |
|          |              |                                            | NC_000951        | 42          |
|          |              |                                            | NC_000952        | 44          |
|          |              |                                            | NC_000953        | 43          |
|          |              |                                            | NC_000954        | 35          |
|          |              |                                            | NC_000955        | 11          |
|          |              |                                            | NC_000956        | 72          |
|          |              |                                            | NC_000957        | 6           |
|          |              |                                            | NC_001318        | 851         |
|          |              |                                            | NC_001849        | 23          |
|          |              |                                            | NC_001850        | 29          |
|          |              |                                            | NC_001851        | 26          |
|          |              |                                            | NC_001852        | 32          |
|          |              |                                            | NC_001853        | 37          |
|          |              |                                            | NC_001854        | 43          |
|          |              |                                            | NC_001855        | 51          |
|          |              |                                            | NC_001856        | 48          |
|          |              |                                            | NC_001857        | 76          |
|          |              |                                            | NC_001903        | 29          |
|          |              |                                            | NC_001904        | 11          |
|          |              | Treponema denticola ATCC 35405             | NC_002967        | 2,767       |

| kingdom  | phylum        | species                                     | accession number | no. of gene |
|----------|---------------|---------------------------------------------|------------------|-------------|
| Bacteria | Chlamydiae    | Parachlamydia sp UWE25                      | NC-005861        | 2,031       |
|          |               | Chlamydia muridarum                         | NC_002182        | 7           |
|          |               |                                             | NC_002620        | 904         |
|          |               | Chlamydia trachomatis                       | NC_000117        | 895         |
|          |               | Chlamydia trachomatis A HAR-13              | NC_007429        | 911         |
|          |               |                                             | NC_007430        | 8           |
|          |               | Chlamydophila abortus S26 3                 | NC_004552        | 932         |
|          |               | Chlamydophila caviae                        | NC_003361        | 998         |
|          |               |                                             | NC_004720        | 7           |
|          |               | Chlamydophila felis Fe C-56                 | NC_007899        | 1,005       |
|          |               |                                             | NC_007900        | 8           |
|          |               | Chlamydophila pneumoniae AR39               | NC_002179        | 1,112       |
|          |               | Chlamydophila pneumoniae CWL029             | NC_000922        | 1,052       |
|          |               | Chlamydophila pneumoniae J138               | NC_002491        | 1,069       |
|          |               | Chlamydophila pneumoniae TW 183             | NC_005043        | 1,113       |
|          | Cyanobacteria | Anabaena variabilis ATCC 29413              | NC_007410        | 344         |
|          |               |                                             | NC_007411        | 31          |
|          |               |                                             | NC_007412        | 243         |
|          |               |                                             | NC_007413        | 5,039       |
|          |               | Nostoc sp                                   | NC_003240        | 186         |
|          |               |                                             | NC_003241        | 5           |
|          |               |                                             | NC_003267        | 90          |
|          |               |                                             | NC_003270        | 31          |
|          |               |                                             | NC_003272        | 5,366       |
|          |               |                                             | NC_003273        | 66          |
|          |               |                                             | NC_003276        | 386         |
|          |               | Cyanobacteria bacterium Yellowstone A-Prime | NC_007775        | 2,760       |
|          |               | Cyanobacteria bacterium Yellowstone B-Prime | NC_007776        | 2,862       |
|          |               | Synechococcus CC9605                        | NC_007516        | 2,638       |
|          |               | Synechococcus CC9902                        | NC_007513        | 2,304       |
|          |               | Synechococcus elongatus PCC 6301            | NC_006576        | 2,525       |
|          |               | Synechococcus elongatus PCC 7942            | NC_007595        | 50          |
|          |               |                                             | NC_007604        | 2,611       |
|          |               | Synechococcus sp WH8102                     | NC_005070        | 2,517       |
|          |               | Synechocystis PCC6803                       | NC_000911        | 3,167       |
|          |               |                                             | NC-005229        | 132         |
|          |               |                                             | NC_005230        | 106         |
|          |               |                                             | NC_005231        | 49          |
|          |               |                                             | NC_005232        | 110         |
|          |               | Thermosynechococcus elongatus               | NC_004113        | 2,475       |
|          |               | Prochlorococcus marinus MED4                | NC_005072        | 1,712       |
|          |               | Prochlorococcus marinus MIT9313             | NC_005071        | 2,265       |
|          |               | Prochlorococcus marinus MIT 9312            | NC_007577        | 1,809       |
|          |               | Prochlorococcus marinus NATL2A              | NC_007335        | 1,890       |
|          |               | Prochlorococcus marinus CCMP1375            | NC_005042        | 1,882       |
|          |               | Gloeobacter violaceus                       | NC-005125        | 4,430       |

| kingdom  | phylum         | species                                         | accession number | no. of gene |
|----------|----------------|-------------------------------------------------|------------------|-------------|
| Bacteria | Actinobacteria | Symbiobacterium thermophilum IAM14863           | NC_006177        | 3,337       |
|          |                | Corynebacterium diphtheriae                     | NC_002935        | 2,272       |
|          |                | Corynebacterium efficiens YS-314                | NC_004369        | 2,950       |
|          |                | Corynebacterium glutamicum ATCC 13032 Bielefeld | NC_006958        | 3,057       |
|          |                | Corynebacterium glutamicum ATCC 13032 Kitasato  | NC_003450        | 2,993       |
|          |                | Corynebacterium jeikeium K411                   | NC_003080        | 16          |
|          |                |                                                 | NC_007164        | 2,104       |
|          |                | Nocardia farcinica IFM10152                     | NC_006361        | 5,683       |
|          |                |                                                 | NC_006362        | 160         |
|          |                |                                                 | NC_006363        | 93          |
|          |                | Tropheryma whipplei Twist                       | NC_004572        | 808         |
|          |                | Tropheryma whipplei TW08 27                     | NC_004551        | 783         |
|          |                | Leifsonia xyli xyli CTCB0                       | NC_006087        | 2,030       |
|          |                | Streptomyces coelicolor                         | NC_003888        | 7,769       |
|          |                |                                                 | NC_003903        | 351         |
|          |                |                                                 | NC_003904        | 34          |
|          |                | Streptomyces avermitilis                        | NC_003155        | 7,577       |
|          |                |                                                 | NC_004719        | 96          |
|          |                | Thermobifida fusca YX                           | NC_007333        | 3,110       |
|          |                | Mycobacterium avium paratuberculosis            | NC_002944        | 4,350       |
|          |                | Mycobacterium bovis                             | NC_002945        | 3,920       |
|          |                | Mycobacterium leprae                            | NC_002677        | 1,605       |
|          |                | Mycobacterium tuberculosis CDC1551              | NC_002755        | 4,189       |
|          |                | Mycobacterium tuberculosis H37Rv                | NC_000962        | 3,989       |
|          |                | Propionibacterium acnes KPA171202               | NC_006085        | 2,297       |
|          |                | Frankia CcI3                                    | NC_007777        | 4,499       |
|          |                | Bifidobacterium longum                          | NC_004307        | 1,727       |
|          |                |                                                 | NC_004943        | 2           |

| kingdom  | phylum     | species                                      | accession number | no. of gene |
|----------|------------|----------------------------------------------|------------------|-------------|
| Bacteria | Firmicutes | Aster yellows witches-broom phytoplasma AYWB | NC_007716        | 671         |
|          |            |                                              | NC_007717        | 5           |
|          |            |                                              | NC_007718        | 4           |
|          |            |                                              | NC_007719        | 7           |
|          |            |                                              | NC_007720        | 6           |
|          |            | Onion yellows phytoplasma                    | NC_005303        | 754         |
|          |            | Mycoplasma capricolum ATCC 27343             | NC_007633        | 812         |
|          |            | Mycoplasma gallisepticum                     | NC_004829        | 726         |
|          |            | Mycoplasma genitalium                        | NC_000908        | 484         |
|          |            | Mycoplasma hyopneumoniae 232                 | NC_006360        | 691         |
|          |            | Mycoplasma hyopneumoniae 7448                | NC_007332        | 663         |
|          |            | Mycoplasma hyopneumoniae J                   | NC_007295        | 665         |
|          |            | Mycoplasma mobile 163K                       | NC_006908        | 633         |
|          |            | Mycoplasma mycoides                          | NC_005364        | 1,016       |
|          |            | Mycoplasma penetrans                         | NC_004432        | 1,037       |
|          |            | Mycoplasma pneumoniae                        | NC_000912        | 689         |
|          |            | Mycoplasma pulmonis                          | NC_002771        | 782         |
|          |            | Mycoplasma synoviae 53                       | NC_007294        | 672         |
|          |            | Ureaplasma urealyticum                       | NC_002162        | 614         |
|          |            | Mesoplasma florum L1                         | NC_006055        | 682         |
|          |            | Thermoanaerobacter tengcongensis             | NC_003869        | 2,588       |
|          |            | Moorella thermoacetica ATCC 39073            | NC_007644        | 2,465       |
|          |            | Carboxydothermus hydrogenoformans Z-2901     | NC_007503        | 2,620       |
|          |            | Desulfitobacterium hafniense Y51             | NC_007907        | 5,060       |
|          |            | Clostridium perfringens                      | NC_003042        | 63          |
|          |            |                                              | NC_003366        | 2,660       |
|          |            | Clostridium tetani E88                       | NC_004557        | 2,373       |
|          |            |                                              | NC_004565        | 59          |
|          |            | Clostridium acetobutylicum                   | NC_001988        | 176         |
|          |            |                                              | NC_003030        | 3,672       |

| kingdom  | phylum     | species                               | accession number | no. of gene |
|----------|------------|---------------------------------------|------------------|-------------|
| Bacteria | Firmicutes | Listeria innocua                      | NC_003212        | 2,968       |
|          |            |                                       | NC_003383        | 75          |
|          |            | Listeria monocytogenes                | NC_003210        | 2,846       |
|          |            | Listeria monocytogenes 4b F2365       | NC_002973        | 2,821       |
|          |            | Staphylococcus aureus COL             | NC_002951        | 2,615       |
|          |            |                                       | NC-006629        | 3           |
|          |            | Staphylococcus aureus MW2             | NC_003923        | 2,632       |
|          |            | Staphylococcus aureus Mu50            | NC_002758        | 2,697       |
|          |            |                                       | NC_002774        | 34          |
|          |            | Staphylococcus aureus N315            | NC_002745        | 2,588       |
|          |            |                                       | NC_003140        | 31          |
|          |            | Staphylococcus aureus NCTC 8325       | NC_007795        | 2,892       |
|          |            | Staphylococcus aureus RF122           | NC_007622        | 2,515       |
|          |            | Staphylococcus aureus USA300          | NC_007790        | 5           |
|          |            |                                       | NC_007791        | 3           |
|          |            |                                       | NC_007792        | 36          |
|          |            |                                       | NC_007793        | 2,560       |
|          |            | Staphylococcus aureus aureus MRSA252  | NC_002952        | 2,656       |
|          |            | Staphylococcus aureus aureus MSSA476  | NC_002953        | 2,579       |
|          |            |                                       | NC_005951        | 19          |
|          |            | Staphylococcus epidermidis ATCC 12228 | NC_004461        | 2,419       |
|          |            |                                       | NC_005003        | 11          |
|          |            |                                       | NC_005004        | 22          |
|          |            |                                       | NC_005005        | 16          |
|          |            |                                       | NC_005006        | 8           |
|          |            |                                       | NC_005007        | 6           |
|          |            |                                       | NC_005008        | 3           |
|          |            | Staphylococcus epidermidis RP62A      | NC_002976        | 2,494       |
|          |            |                                       | NC_006663        | 32          |
|          |            | Staphylococcus haemolyticus           | NC_007168        | 2,676       |
|          |            | Staphylococcus saprophyticus          | NC_007350        | 2,446       |
|          |            |                                       | NC_007351        | 45          |
|          |            |                                       | NC_007352        | 23          |

| kingdom  | phylum     | species                           | accession number | no. of gene |
|----------|------------|-----------------------------------|------------------|-------------|
| Bacteria | Firmicutes | Bacillus anthracis Ames           | NC_003997        | 5,311       |
|          |            | Bacillus anthracis Ames 0581      | NC_007322        | 204         |
|          |            |                                   | NC_007323        | 104         |
|          |            |                                   | NC_007530        | 5,309       |
|          |            | Bacillus anthracis str Sterne     | NC_005945        | 5,287       |
|          |            | Bacillus cereus ATCC14579         | NC_004721        | 21          |
|          |            |                                   | NC_004722        | 5,234       |
|          |            | Bacillus cereus ATCC 10987        | NC_003909        | 5,603       |
|          |            |                                   | NC_005707        | 241         |
|          |            | Bacillus cereus ZK                | NC_006274        | 5,134       |
|          |            |                                   | NC_007103        | 430         |
|          |            |                                   | NC_007104        | 5           |
|          |            |                                   | NC_007105        | 54          |
|          |            |                                   | NC_007106        | 8           |
|          |            |                                   | NC_007107        | 10          |
|          |            | Bacillus clausii KSM-K16          | NC_006582        | 4,096       |
|          |            | Bacillus halodurans               | NC_002570        | 4,066       |
|          |            | Bacillus licheniformis ATCC 14580 | NC_006270        | 4,152       |
|          |            | Bacillus licheniformis DSM 13     | NC_006322        | 4,196       |
|          |            | Bacillus thuringiensis konkukian  | NC_005957        | 5,117       |
|          |            |                                   | NC_006578        | 80          |
|          |            | Bacillus subtilis                 | NC_000964        | 4,105       |
|          |            | Oceanobacillus iheyensis          | NC_004193        | 3,500       |
|          |            | Geobacillus kaustophilus HTA426   | NC_006509        | 42          |
|          |            |                                   | NC_006510        | 3,498       |

| kingdom  | phylum     | species                              | accession number | no. of gene |
|----------|------------|--------------------------------------|------------------|-------------|
| Bacteria | Firmicutes | Lactobacillus acidophilus NCFM       | NC_006814        | 1,864       |
|          |            | Lactobacillus johnsonii NCC 533      | NC-005362        | 1,821       |
|          |            | Lactobacillus plantarum              | NC_004567        | 3,009       |
|          |            |                                      | NC_006375        | 3           |
|          |            |                                      | NC_006376        | 4           |
|          |            |                                      | NC_006377        | 43          |
|          |            | Lactobacillus sakei 23K              | NC_007576        | 1,879       |
|          |            | Lactobacillus salivarius UCC118      | NC_006529        | 27          |
|          |            |                                      | NC_006530        | 51          |
|          |            |                                      | NC_007929        | 1,717       |
|          |            |                                      | NC_007930        | 222         |
|          |            | Streptococcus agalactiae 2603        | NC_004116        | 2,124       |
|          |            | Streptococcus agalactiae A909        | NC_007432        | 1,996       |
|          |            | Streptococcus agalactiae NEM316      | NC_004368        | 2,094       |
|          |            | Streptococcus mutans                 | NC_004350        | 1,960       |
|          |            | Streptococcus pneumoniae R6          | NC_003098        | 2,043       |
|          |            | Streptococcus pneumoniae TIGR4       | NC_003028        | 2,094       |
|          |            | Streptococcus pyogenes M1 GAS        | NC_002737        | 1,697       |
|          |            | Streptococcus pyogenes MGAS10394     | NC-006086        | 1,886       |
|          |            | Streptococcus pyogenes MGAS315       | NC_004070        | 1,865       |
|          |            | Streptococcus pyogenes MGAS5005      | NC_007297        | 1,865       |
|          |            | Streptococcus pyogenes MGAS6180      | NC_007296        | 1,894       |
|          |            | Streptococcus pyogenes MGAS8232      | NC_003485        | 1,845       |
|          |            | Streptococcus pyogenes SSI-1         | NC_004606        | 1,861       |
|          |            | Streptococcus thermophilus CNRZ1066  | NC_006449        | 1,915       |
|          |            | Streptococcus thermophilus LMG 18311 | NC-006448        | 1,889       |
|          |            | Lactococcus lactis                   | NC_002662        | 2,321       |
|          |            | Enterococcus faecalis V583           | NC_004668        | 3,113       |
|          |            |                                      | NC_004669        | 72          |
|          |            |                                      | NC_004670        | 18          |
|          |            |                                      | NC_004671        | 62          |

| kingdom  | phylum         | species                                  | accession number | no. of gene |
|----------|----------------|------------------------------------------|------------------|-------------|
| Bacteria | Proteobacteria | Chromohalobacter salexigens DSM 3043     | NC_007963        | 3,298       |
|          |                | Hahella chejuensis KCTC 2396             | NC_007645        | 6,778       |
|          |                | Francisella tularensis tularensis        | NC_006570        | 1,603       |
|          |                | Francisella tularensis holarctica        | NC_007880        | 1,754       |
|          |                | Thiomicrospira crunogena XCL-2           | NC-007520        | 2,192       |
|          |                | Idiomarina loihiensis L2TR               | NC_006512        | 2,628       |
|          |                | Saccharophagus degradans 2-40            | NC_007912        | 4,008       |
|          |                | Pseudoalteromonas haloplanktis TAC125    | NC-007481        | 2,940       |
|          |                |                                          | NC_007482        | 546         |
|          |                | Shewanella denitrificans OS217           | NC_007954        | 3,754       |
|          |                | Shewanella oneidensis                    | NC_004347        | 4,324       |
|          |                |                                          | NC_004349        | 148         |
|          |                | Colwellia psychrerythraea 34H            | NC_003910        | 4,910       |
|          |                | Vibrio cholerae                          | NC_002505        | 2,742       |
|          |                |                                          | NC_002506        | 1,093       |
|          |                | Vibrio fischeri ES114                    | NC_006840        | 2,575       |
|          |                |                                          | NC_006841        | 1,172       |
|          |                |                                          | NC_006842        | 55          |
|          |                | Vibrio parahaemolyticus                  | NC_004603        | 3,080       |
|          |                | -                                        | NC_004605        | 1,752       |
|          |                | Vibrio vulnificus CMCP6                  | NC_004459        | 2,926       |
|          |                |                                          | NC_004460        | 1,562       |
|          |                | Vibrio vulnificus YJ016                  | NC_005128        | 69          |
|          |                |                                          | NC_005139        | 3,259       |
|          |                |                                          | NC_005140        | 1,696       |
|          |                | Photobacterium profundum SS9             | NC_005871        | 67          |
|          |                | •                                        | NC_006370        | 3,416       |
|          |                |                                          | NC_006371        | 2,008       |
|          |                | Xanthomonas campestris                   | NC_003902        | 4,181       |
|          |                | Xanthomonas campestris 8004              | NC_007086        | 4,273       |
|          |                | Xanthomonas campestris vesicatoria 85-10 | NC_007504        | 2           |
|          |                | -                                        | NC_007505        | 22          |
|          |                |                                          | NC-007506        | 43          |
|          |                |                                          | NC_007507        | 172         |
|          |                |                                          | NC_007508        | 4,487       |
|          |                | Xanthomonas citri                        | NC_003919        | 4,312       |
|          |                |                                          | NC_003921        | 42          |
|          |                |                                          | NC_003922        | 73          |
|          |                | Xanthomonas oryzae KACC10331             | NC_006834        | 4,080       |
|          |                | Xylella fastidiosa                       | NC_002488        | 2,766       |
|          |                |                                          | NC_002489        | 2,100       |
|          |                |                                          | NC_002490        | 64          |
|          |                | Xylella fastidiosa Temecula1             | NC-004554        | 2           |
|          |                |                                          |                  |             |
|          |                |                                          | NC_004556        | 2,034       |

| kingdom  | phylum         | species                                                       | accession number       | no. of gene |
|----------|----------------|---------------------------------------------------------------|------------------------|-------------|
| Bacteria | Proteobacteria | Nitrosococcus oceani ATCC 19707                               | NC_007483              | 43          |
|          |                |                                                               | NC_007484              | 2,974       |
|          |                | Methylococcus capsulatus Bath                                 | NC_002977              | 2,960       |
|          |                | Pseudomonas aeruginosa                                        | NC_002516              | 5,567       |
|          |                | Pseudomonas fluorescens Pf-5                                  | NC_004129              | 6,137       |
|          |                | Pseudomonas fluorescens PfO-1                                 | NC_007492              | 5,736       |
|          |                | Pseudomonas putida KT2440                                     | NC_002947              | 5,350       |
|          |                | Pseudomonas syringae                                          | NC_004578              | 5,470       |
|          |                |                                                               | NC_004632              | 70          |
|          |                |                                                               | NC_004633              | 67          |
|          |                | Pseudomonas syringae phaseolicola 1448A                       | NC_005773              | 4,983       |
|          |                |                                                               | NC_007274              | 127         |
|          |                |                                                               | NC_007275              | 60          |
|          |                | Pseudomonas syringae pv B728a                                 | NC_007005              | 5,089       |
|          |                | Psychrobacter arcticum 273-4                                  | NC_007204              | 2,120       |
|          |                | Acinetobacter sp ADP1                                         | NC_005966              | 3,325       |
|          |                | Mannheimia succiniciproducens MBEL55E                         | NC_006300              | 2,380       |
|          |                | Pasteurella multocida                                         | NC_002663              | 2,015       |
|          |                | Haemophilus influenzae                                        | NC_000907              | 1,657       |
|          |                | Haemophilus influenzae 86 028NP                               | NC_007146              | 1,791       |
|          |                | Haemophilus ducreyi 35000HP                                   | NC_002940              | 1,717       |
|          |                | Legionella pneumophila Lens                                   | NC_006366              | 56          |
|          |                | .0                                                            | NC_006369              | 2,878       |
|          |                | Legionella pneumophila Paris                                  | NC_006365              | 139         |
|          |                |                                                               | NC_006368              | 3,027       |
|          |                | Legionella pneumophila Philadelphia 1                         | NC_002942              | 2,942       |
|          |                | Coxiella burnetii                                             | NC_002971              | 2,016       |
|          |                |                                                               | NC_004704              | 36          |
|          |                | Buchnera aphidicola                                           | NC_004545              | 504         |
|          |                | Buchnera aphidicola Sg                                        | NC_004061              | 546         |
|          |                | Buchnera sp                                                   | NC_002252              | 3           |
|          |                | Buchhera sp                                                   | NC_002252              | 7           |
|          |                |                                                               | NC_002528              | 564         |
|          |                | Candidatus Blochmannia floridanus                             | NC_005061              | 583         |
|          |                | Candidatus Blochmannia pennsylvanicus BPEN                    | NC_007292              | 610         |
|          |                | Photorhabdus luminescens                                      |                        |             |
|          |                |                                                               | NC_005126              | 4,683       |
|          |                | Erwinia carotovora atroseptica SCRI1043 Shigella boydii Sb227 | NC_004547<br>NC_007608 | 4,472       |
|          |                | Snigena boydn Sb221                                           |                        | 148         |
|          |                | Chinalla ducantonia                                           | NC_007613              | 4136        |
|          |                | Shigella dysenteriae                                          | NC_007606              | 4,274       |
|          |                | Cl.; 11                                                       | NC_007607              | 223         |
|          |                | Shigella flexneri 2a                                          | NC_004337              | 4,182       |
|          |                |                                                               | NC_004851              | 261         |
|          |                | Shigella flexneri 2a 2457T                                    | NC_004741              | 4,068       |
|          |                | Shigella sonnei Ss046                                         | NC_007384              | 4,223       |
|          |                |                                                               | NC_007385              | 238         |

| Proteobacteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | kingdom  | phylum         | species                                | accession number | no. of gene                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|----------------------------------------|------------------|---------------------------------------|
| NC.006905   4,441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Bacteria | Proteobacteria | Salmonella enterica Choleraesuis       | NC_006855        | 51                                    |
| Salmonella enterica Paratypi ATCC 9150   NC.006511   4,093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                |                                        | NC-006856        | 170                                   |
| Salmonella typhi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                |                                        | NC_006905        | 4,441                                 |
| NC_003384   NC_003385   128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                | Salmonella enterica Paratypi ATCC 9150 | NC_006511        | 4,093                                 |
| Salmonella typhi Ty2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                | Salmonella typhi                       | NC_003198        | 4,395                                 |
| Salmonella typhi Ty2         NC.004631         4,318           Salmonella typhimurium LT2         NC.003197         4,425           NC.003277         102           Yersinia pestis CO92         NC.003131         72           NC.003132         9           NC.003143         3,885           Yersinia pestis KIM         NC.004838         116           Yersinia pestis biovar Mediaevails         NC.005810         3,895           NC.005813         85           NC.005814         30           NC.005815         122           NC.005816         10           Yersinia pseudotuberculosis IP32953         NC.006153         95           NC.006154         42           NC.006155         3,901           Sodalis glossinidius morsitans         NC.007712         2,432           NC.007713         54           NC.007714         23           NC.007715         7           Wigglesworthia brevipalpis         NC.003425         6           NC.007444         611           Escherichia coli CFT073         NC.004344         611           Escherichia coli O157H7         NC.002128         85           NC.002128         85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                |                                        | NC-003384        | 235                                   |
| Salmonella typhimurium LT2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                |                                        | NC_003385        | 128                                   |
| NC_003277   102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                | Salmonella typhi Ty2                   | NC_004631        | 4,318                                 |
| Yersinia pestis CO92   NC_003131   72   NC_003132   9   NC_003134   101   NC_003134   3,885   NC_004088   4,086   NC_004838   116   Yersinia pestis biovar Mediaevails   NC_005810   3,895   NC_005813   85   NC_005814   30   NC_005815   122   NC_005816   10   NC_005816   10   NC_006153   95   NC_006154   42   NC_006155   3,901   NC_006155   3,901   NC_006155   3,901   NC_007712   2,432   NC_007714   23   NC_007714   23   NC_007714   23   NC_007715   7   Wigglesworthia brevipalpis   NC_003425   6   NC_003425   85   NC_002655   5,253   Escherichia coli CFT073   NC_004431   5,379   Escherichia coli O157H7   NC_002127   3   NC_002128   85   NC_002695   5,253   Escherichia coli O157H7 EDL933   NC_002655   5,324   Escherichia coli UT189   NC_007941   145   NC_007946   5,066   Escherichia coli W3110   AC_000091   4,227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                | Salmonella typhimurium LT2             | NC-003197        | 4,425                                 |
| NC_003132   9   NC_003134   101   NC_003143   3,885   Yersinia pestis KIM   NC_004088   4,086   NC_004838   116   Yersinia pestis biovar Mediaevails   NC_005810   3,895   NC_005813   85   NC_005814   30   NC_005815   122   NC_005816   10   Yersinia pseudotuberculosis IP32953   NC_006153   95   NC_006154   42   NC_006155   3,901   Sodalis glossinidius morsitans   NC_007712   2,432   NC_007713   54   NC_007714   23   NC_007714   23   NC_007715   7   Wigglesworthia brevipalpis   NC_03425   6   NC_004344   611   Escherichia coli CFT073   NC_004341   5,379   Escherichia coli O157H7   NC_002127   3   NC_002128   85   NC_002695   5,253   Escherichia coli UT189   NC_007941   145   NC_007946   5,066   Escherichia coli W3110   AC_000091   4,227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                |                                        | NC_003277        | 102                                   |
| NC_003134   101     NC_003143   3,885     Yersinia pestis KIM   NC_004088   4,086     NC_004838   116     Yersinia pestis biovar Mediaevails   NC_005810   3,895     NC_005813   85     NC_005814   30     NC_005815   122     NC_005816   10     Yersinia pseudotuberculosis IP32953   NC_006153   95     NC_006154   42     NC_006155   3,901     Sodalis glossinidius morsitans   NC_007712   2,432     NC_007714   223     NC_007714   23     NC_007715   7     Wigglesworthia brevipalpis   NC_003425   6     NC_004344   611     Escherichia coli CFT073   NC_004431   5,379     Escherichia coli O157H7   NC_002127   3     NC_002695   5,253     Escherichia coli O157H7 EDL933   NC_007941   145     NC_007946   5,066     Escherichia coli W3110   AC_000091   4,227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                | Yersinia pestis CO92                   | NC_003131        | 72                                    |
| NC_003143   3,885                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                |                                        | NC_003132        | 9                                     |
| Yersinia pestis KIM         NC.004888<br>NC.004838         4,086<br>NC.005810         3,895<br>NC.005813         116           Yersinia pestis biovar Mediaevails         NC.005810<br>NC.005813         3,895<br>NC.005814         30<br>NC.005815         122<br>NC.005816         10           Yersinia pseudotuberculosis IP32953         NC.006153<br>NC.006153         95<br>NC.006155         3,901           Sodalis glossinidius morsitans         NC.007712<br>NC.007713         2,432<br>NC.007714         23<br>NC.007714         23<br>NC.007715         7           Wigglesworthia brevipalpis         NC.003425<br>NC.004341         611<br>Scherichia coli CFT073         NC.004431         5,379<br>NC.002127         3<br>NC.002128         85<br>NC.002128         85<br>NC.002695         5,253<br>Escherichia coli O157H7 EDL933         NC.002695         5,253<br>Escherichia coli UTI89         NC.007941<br>NC.007946         145<br>NC.007946         5,066<br>Escherichia coli W3110         AC.000091         4,227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                |                                        | NC-003134        | 101                                   |
| NC_004838   116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                |                                        | NC_003143        | 3,885                                 |
| Yersinia pestis biovar Mediaevails       NC_005810       3,895         NC_005813       85         NC_005814       30         NC_005815       122         NC_005816       10         Yersinia pseudotuberculosis IP32953       NC_006153       95         NC_006154       42         NC_006155       3,901         Sodalis glossinidius morsitans       NC_007712       2,432         NC_007713       54         NC_007714       23         NC_007715       7         Wigglesworthia brevipalpis       NC_003425       6         NC_004344       611         Escherichia coli CFT073       NC_000431       5,379         Escherichia coli O157H7       NC_002127       3         NC_002128       85         NC_002695       5,253         Escherichia coli UTI89       NC_007941       145         NC_007946       5,066         Escherichia coli W3110       AC_000091       4,227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                | Yersinia pestis KIM                    | NC_004088        | 4,086                                 |
| NC_005813   85     NC_005814   30     NC_005815   122     NC_005816   10     Yersinia pseudotuberculosis IP32953   NC_006153   95     NC_006154   42     NC_006155   3,901     Sodalis glossinidius morsitans   NC_007712   2,432     NC_007713   54     NC_007714   23     NC_007715   7     Wigglesworthia brevipalpis   NC_03425   6     NC_004344   611     Escherichia coli CFT073   NC_004431   5,379     Escherichia coli O157H7   NC_002127   3     NC_002128   85     NC_002695   5,253     Escherichia coli UTI89   NC_007941   145     NC_007946   5,066     Escherichia coli W3110   AC_000091   4,227     NC_00091   4,227     NC_000091   4,227     NC_0000091   4,227     NC_000091   1,227     NC_000091   1,227     NC_000091   1,227     NC_000091   1,227     NC_0000091   1,227     NC_0000091   1,227     NC_000000000000000000000000000000000000 |          |                |                                        | NC_004838        | 116                                   |
| NC_005814   30   NC_005815   122   NC_005816   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                | Yersinia pestis biovar Mediaevails     | NC_005810        | 3,895                                 |
| NC.005815   122   NC.005816   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                |                                        | NC_005813        | 85                                    |
| NC.005816   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                |                                        | NC_005814        | 30                                    |
| Yersinia pseudotuberculosis IP32953       NC_006153       95         NC_006154       42         NC_006155       3,901         Sodalis glossinidius morsitans       NC_007712       2,432         NC_007713       54         NC_007714       23         NC_007715       7         Wigglesworthia brevipalpis       NC_003425       6         NC_004344       611         Escherichia coli CFT073       NC_004431       5,379         Escherichia coli O157H7       NC_002127       3         NC_002128       85         NC_002695       5,253         Escherichia coli O157H7 EDL933       NC_002655       5,324         Escherichia coli UTI89       NC_007941       145         NC_007946       5,066         Escherichia coli W3110       AC_000091       4,227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                |                                        | NC_005815        | 122                                   |
| NC_006154   42   NC_006155   3,901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                |                                        | NC_005816        | 10                                    |
| NC_006155   3,901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                | Yersinia pseudotuberculosis IP32953    | NC_006153        | 95                                    |
| Sodalis glossinidius morsitans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                |                                        | NC_006154        | 42                                    |
| NC_007713   54     NC_007714   23     NC_007715   7     Wigglesworthia brevipalpis   NC_003425   6     NC_004344   611     Escherichia coli CFT073   NC_004431   5,379     Escherichia coli O157H7   NC_002127   3     NC_002128   85     NC_002695   5,253     Escherichia coli O157H7 EDL933   NC_002655   5,324     Escherichia coli UTI89   NC_007941   145     NC_007946   5,066     Escherichia coli W3110   AC_000091   4,227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                |                                        | NC_006155        | 3,901                                 |
| NC_007714   23   NC_007715   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                | Sodalis glossinidius morsitans         | NC_007712        | 2,432                                 |
| NC_007715   7   Wigglesworthia brevipalpis   NC_003425   6   NC_004344   611   Escherichia coli CFT073   NC_004431   5,379   Escherichia coli O157H7   NC_002127   3   NC_002128   85   NC_002695   5,253   Escherichia coli O157H7 EDL933   NC_002655   5,324   Escherichia coli UTI89   NC_007941   145   NC_007946   5,066   Escherichia coli W3110   AC_000091   4,227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                |                                        | NC_007713        | 54                                    |
| Wigglesworthia brevipalpis         NC_003425         6           NC_004344         611           Escherichia coli CFT073         NC_004431         5,379           Escherichia coli O157H7         NC_002127         3           NC_002128         85           NC_002695         5,253           Escherichia coli O157H7 EDL933         NC_002655         5,324           Escherichia coli UTI89         NC_007941         145           NC_007946         5,066           Escherichia coli W3110         AC_000091         4,227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                |                                        | NC_007714        | 23                                    |
| NC_004344   611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                |                                        | NC_007715        | 7                                     |
| Escherichia coli CFT073       NC_004431       5,379         Escherichia coli O157H7       NC_002127       3         NC_002128       85         NC_002695       5,253         Escherichia coli O157H7 EDL933       NC_002655       5,324         Escherichia coli UTI89       NC_007941       145         NC_007946       5,066         Escherichia coli W3110       AC_000091       4,227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                | Wigglesworthia brevipalpis             | NC_003425        | 6                                     |
| Escherichia coli O157H7 NC_002127 3 NC_002128 85 NC_002695 5,253 Escherichia coli O157H7 EDL933 NC_002655 5,324 Escherichia coli UTI89 NC_007941 145 NC_007946 5,066 Escherichia coli W3110 AC_00091 4,227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                |                                        | NC_004344        | 611                                   |
| Escherichia coli O157H7 NC_002127 3 NC_002128 85 NC_002695 5,253 Escherichia coli O157H7 EDL933 NC_002655 5,324 Escherichia coli UTI89 NC_007941 145 NC_007946 5,066 Escherichia coli W3110 AC_00091 4,227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                | Escherichia coli CFT073                | NC_004431        | 5,379                                 |
| NC_002695         5,253           Escherichia coli O157H7 EDL933         NC_002655         5,324           Escherichia coli UTI89         NC_007941         145           NC_007946         5,066           Escherichia coli W3110         AC_000091         4,227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                |                                        |                  |                                       |
| NC_002695         5,253           Escherichia coli O157H7 EDL933         NC_002655         5,324           Escherichia coli UTI89         NC_007941         145           NC_007946         5,066           Escherichia coli W3110         AC_000091         4,227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                |                                        | NC_002128        | 85                                    |
| Escherichia coli O157H7 EDL933         NC_002655         5,324           Escherichia coli UTI89         NC_007941         145           NC_007946         5,066           Escherichia coli W3110         AC_000091         4,227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                |                                        |                  | 5,253                                 |
| Escherichia coli UTI89         NC_007941         145           NC_007946         5,066           Escherichia coli W3110         AC_000091         4,227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                | Escherichia coli O157H7 EDL933         |                  |                                       |
| NC_007946         5,066           Escherichia coli W3110         AC_000091         4,227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                |                                        |                  |                                       |
| Escherichia coli W3110 AC_000091 4,227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                |                                        |                  | 5,066                                 |
| , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                | Escherichia coli W3110                 |                  |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                | Escherichia coli K12                   | NC_000913        | · · · · · · · · · · · · · · · · · · · |

| kingdom  | phylum         | species                                           | accession number | no. of gene |
|----------|----------------|---------------------------------------------------|------------------|-------------|
| Bacteria | Proteobacteria | Erythrobacter litoralis HTCC2594                  | NC_007722        | 3,011       |
|          |                | Zymomonas mobilis ZM4                             | NC_006526        | 1,998       |
|          |                | Novosphingobium aromaticivorans DSM 12444         | NC_007794        | 3,324       |
|          |                | Rhodobacter sphaeroides 2 4 1                     | NC_007488        | 100         |
|          |                |                                                   | NC_007489        | 82          |
|          |                |                                                   | NC_007490        | 87          |
|          |                |                                                   | NC_007493        | 3,022       |
|          |                |                                                   | NC_007494        | 835         |
|          |                | Silicibacter pomeroyi DSS-3                       | NC_003911        | 3,810       |
|          |                |                                                   | NC_006569        | 442         |
|          |                | Jannaschia CCS1                                   | NC_007801        | 71          |
|          |                |                                                   | NC_007802        | 4,212       |
|          |                | Magnetospirillum magneticum AMB-1                 | NC_007626        | 4,559       |
|          |                | Rhodospirillum rubrum ATCC 11170                  | NC_007641        | 50          |
|          |                |                                                   | NC_007643        | 3,791       |
|          |                | Gluconobacter oxydans 621H                        | NC_006672        | 163         |
|          |                |                                                   | NC_006673        | 29          |
|          |                |                                                   | NC_006674        | 18          |
|          |                |                                                   | NC_006675        | 18          |
|          |                |                                                   | NC_006676        | 4           |
|          |                |                                                   | NC_006677        | 2,432       |
|          |                | Caulobacter crescentus                            | NC_002696        | 3,737       |
|          |                | Ehrlichia canis Jake                              | NC_007354        | 925         |
|          |                | Ehrlichia ruminantium Gardel                      | NC_006831        | 950         |
|          |                | Ehrlichia ruminantium Welgevonden                 | NC_005295        | 888         |
|          |                | Ehrlichia ruminantium str. Welgevonden            | NC_006832        | 958         |
|          |                | Ehrlichia chaffeensis Arkansas                    | NC_007799        | 1,105       |
|          |                | Neorickettsia sennetsu Miyayama                   | NC_007798        | 932         |
|          |                | Candidatus Pelagibacter ubique HTCC1062           | NC_007205        | 1,354       |
|          |                | Wolbachia endosymbiont of Brugia malayi TRS       | NC_006833        | 805         |
|          |                | Wolbachia endosymbiont of Drosophila melanogaster | NC_002978        | 1,195       |
|          |                | Rickettsia bellii RML369-C                        | NC_007940        | 1,429       |
|          |                | Rickettsia conorii                                | NC_003103        | 1,374       |
|          |                | Rickettsia felis URRWXCal2                        | NC_007109        | 1,400       |
|          |                |                                                   | NC_007110        | 68          |
|          |                |                                                   | NC_007111        | 44          |
|          |                | Rickettsia prowazekii                             | NC_000963        | 835         |
|          |                | Rickettsia typhi wilmington                       | NC_006142        | 838         |

| kingdom  | phylum         | species                              | accession number | no. of gene |
|----------|----------------|--------------------------------------|------------------|-------------|
| Bacteria | Proteobacteria | Brucella abortus 9-941               | NC_006932        | 2,030       |
|          |                |                                      | NC_006933        | 1,055       |
|          |                | Brucella melitensis                  | NC_003317        | 2,059       |
|          |                |                                      | NC-003318        | 1,139       |
|          |                | Brucella melitensis biovar Abortus   | NC_007618        | 2,000       |
|          |                |                                      | NC_007624        | 1,034       |
|          |                | Brucella suis 1330                   | NC_004310        | 2,123       |
|          |                |                                      | NC_004311        | 1,148       |
|          |                | Mesorhizobium loti                   | NC_002678        | 6,743       |
|          |                |                                      | NC_002679        | 320         |
|          |                |                                      | NC_002682        | 209         |
|          |                | Nitrobacter hamburgensis X14         | NC_007959        | 239         |
|          |                |                                      | NC_007960        | 172         |
|          |                |                                      | NC_007961        | 111         |
|          |                |                                      | NC_007964        | 3,804       |
|          |                | Nitrobacter winogradskyi Nb-255      | NC_007406        | 3,122       |
|          |                | Rhodopseudomonas palustris BisB18    | NC_007925        | 4,886       |
|          |                | Rhodopseudomonas palustris BisB5     | NC_007958        | 4,397       |
|          |                | Rhodopseudomonas palustris CGA009    | NC_005296        | 4,813       |
|          |                |                                      | NC_005297        | 7           |
|          |                | Rhodopseudomonas palustris HaA2      | NC_007778        | 4,683       |
|          |                | Bradyrhizobium japonicum             | NC_004463        | 8,317       |
|          |                | Bartonella quintana Toulouse         | NC_005955        | 1,142       |
|          |                | Bartonella henselae Houston-1        | NC_005956        | 1,488       |
|          |                | Agrobacterium tumefaciens C58 Cereon | NC-003062        | 2,715       |
|          |                |                                      | NC-003063        | 1,833       |
|          |                |                                      | NC_003064        | 547         |
|          |                |                                      | NC_003065        | 193         |
|          |                | Agrobacterium tumefaciens C58 UWash  | NC_003304        | 2,785       |
|          |                |                                      | NC_003305        | 1,876       |
|          |                |                                      | NC_003306        | 543         |
|          |                |                                      | NC-003308        | 198         |
|          |                | Sinorhizobium meliloti               | NC_003037        | 1,294       |
|          |                |                                      | NC_003047        | 3,341       |
|          |                |                                      | NC_003078        | 1,570       |
|          |                | Rhizobium etli CFN 42                | NC_007761        | 4,035       |
|          |                |                                      | NC_007762        | 175         |
|          |                |                                      | NC_007763        | 163         |
|          |                |                                      | NC_007764        | 232         |
|          |                |                                      | NC_007765        | 455         |
|          |                |                                      | NC_007766        | 567         |
|          |                | Anaplasma marginale St Maries        | NC_004842        | 949         |
|          |                | Anaplasma phagocytophilum HZ         | NC_007797        | 1,264       |

| kingdom  | phylum         | species                               | accession number | no. of gene |
|----------|----------------|---------------------------------------|------------------|-------------|
| Bacteria | Proteobacteria | Ralstonia eutropha JMP134             | NC_007336        | 512         |
|          |                |                                       | NC_007337        | 88          |
|          |                |                                       | NC_007347        | 3,439       |
|          |                |                                       | NC_007348        | 2,407       |
|          |                | Ralstonia solanacearum                | NC_003295        | 3,440       |
|          |                |                                       | NC_003296        | 1,676       |
|          |                | Burkholderia 383                      | NC_007509        | 1,209       |
|          |                |                                       | NC_007510        | 3,334       |
|          |                |                                       | NC_007511        | 3,174       |
|          |                | Burkholderia mallei ATCC 23344        | NC_006348        | 2,996       |
|          |                |                                       | NC_006349        | 2,029       |
|          |                | Burkholderia pseudomallei 1710b       | NC_007434        | 3,736       |
|          |                | _                                     | NC_007435        | 2,611       |
|          |                | Burkholderia pseudomallei K96243      | NC_006350        | 3,399       |
|          |                | _                                     | NC_006351        | 2,329       |
|          |                | Burkholderia thailandensis E264       | NC_007650        | 2,358       |
|          |                |                                       | NC_007651        | 3,276       |
|          |                | Burkholderia xenovorans LB400         | NC_007951        | 4,430       |
|          |                |                                       | NC_007952        | 2,96        |
|          |                |                                       | NC_007953        | 1,315       |
|          |                | Rhodoferax ferrireducens DSM 15236    | NC_007901        | 248         |
|          |                |                                       | NC_007908        | 4,170       |
|          |                | Polaromonas JS666                     | NC_007948        | 4,81        |
|          |                |                                       | NC_007949        | 320         |
|          |                |                                       | NC-007950        | 310         |
|          |                | Bordetella bronchiseptica             | NC_002927        | 4.99        |
|          |                | Bordetella pertussis                  | NC_002929        | 3,430       |
|          |                | Bordetella parapertussis              | NC_002928        | 4,18        |
|          |                | Nitrosospira multiformis ATCC 25196   | NC_007614        | 2,75        |
|          |                | · · · · · · · ·                       | NC_007615        | 1           |
|          |                |                                       | NC_007616        | 10          |
|          |                |                                       | NC_007617        | 1.          |
|          |                | Nitrosomonas europaea                 | NC_004757        | 2,46        |
|          |                | Thiobacillus denitrificans ATCC 25259 | NC_007404        | 2,82        |
|          |                | Methylobacillus flagellatus KT        | NC_007947        | 2,75        |
|          |                | Neisseria gonorrhoeae FA 1090         | NC_002946        | 2,00        |
|          |                | Neisseria meningitidis MC58           | NC_003112        | 2,06        |
|          |                | Neisseria meningitidis Z2491          | NC_003116        | 2,06        |
|          |                | Chromobacterium violaceum             | NC_005085        | 4,40        |
|          |                | Dechloromonas aromatica RCB           | NC_007298        | 4,17        |
|          |                | Azoarcus sp EbN1                      | NC_006513        | 4,133       |
|          |                |                                       | NC_006823        | 275         |
|          |                |                                       | NC_006824        | 194         |

| kingdom  | phylum         | species                                 | accession number | no. of gene |
|----------|----------------|-----------------------------------------|------------------|-------------|
| Bacteria | Proteobacteria | Bdellovibrio bacteriovorus              | NC_005363        | 3,587       |
|          |                | Desulfovibrio vulgaris Hildenborough    | NC_002937        | 3,379       |
|          |                |                                         | NC-005863        | 152         |
|          |                | Desulfovibrio desulfuricans G20         | NC_007519        | 3,775       |
|          |                | Pelobacter carbinolicus                 | NC_007498        | 3,119       |
|          |                | Geobacter sulfurreducens                | NC_002939        | 3,446       |
|          |                | Geobacter metallireducens GS-15         | NC_007515        | 13          |
|          |                |                                         | NC_007517        | 3,519       |
|          |                | Desulfotalea psychrophila LSv54         | NC_006138        | 3,116       |
|          |                |                                         | NC_006139        | 101         |
|          |                |                                         | NC_006140        | 17          |
|          |                | Syntrophus aciditrophicus SB            | NC_007759        | 3,168       |
|          |                | Anaeromyxobacter dehalogenans 2CP-C     | NC_007760        | 4,346       |
|          |                | Thiomicrospira denitrificans ATCC 33889 | NC_007575        | 2,097       |
|          |                | Wolinella succinogenes                  | NC_005090        | 2,043       |
|          |                | Helicobacter hepaticus                  | NC_004917        | 1,875       |
|          |                | Helicobacter pylori 26695               | NC_000915        | 1,576       |
|          |                | Helicobacter pylori J99                 | NC_000921        | 1,491       |
|          |                | Campylobacter jejuni                    | NC_002163        | 1,629       |
|          |                | Campylobacter jejuni RM1221             | NC_003912        | 1,838       |