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Reconfigurable 1-bit processor array with

reduced wiring area∗

Nobuo Nakai

Abstract

Semiconductor makers have a problem of how to reduce the production cost.

The production cost is increasing because the increasing logic gates to implement

and shortening production cycle. One of the way to solve this problem is to use

of reconfigurable hardwares. Although reconfigurable hardwares seemed to be

useful, they have some disadvantages. As as result, a system using software or

ASIC costs lower than reconfigurable hardware in many cases. In this paper,

we propose the new reconfigurable hardware architecture with low cost. The

proposed architecture has the following features; It has high routability but wiring

area is reduced, and the number of processor elements can be increase easily. We

mapped DCT circuit to the proposed architecture for evaluating the performance

and chip area. The proposed architecture can be mapped DCT circuit with

lowest area in comparison objects and achieved sufficient performance for real

time processing of the MPEG2 encoding.

Keywords:

reconfigurable computing, coarse-grained architecture, bit-serial data path, wiring

resource
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配線リソースを考慮した

再構成可能1bitプロセッサアレイ∗

中井 伸郎

内容梗概

半導体メーカは，製品製造にかかるコストの増加を如何にして抑えるかに悩
まされている．コストの増加はユーザニーズの多様化や実装する論理回路規模の
増大が原因で起こっている．その問題を解決する一手法として再構成可能ハード
ウェアの利用が挙げられる．しかし再構成可能ハードウェアは様々な問題を抱え
ているため，ASICやソフトウェアを用いたシステムの方が結果として低コスト
である場合が多い．本稿では低コストでシステムに組み込む事が可能な再構成可
能ハードウェアのアーキテクチャを提案する．提案するアーキテクチャは，省配
線領域であるが柔軟な配線構造，プロセッサエレメント数の拡張が容易であると
いう特徴を持っている．そして提案するアーキテクチャを評価するためにDCT

演算器をマッピングした．その結果，他の比較対象の中で最も低い面積でDCT

演算器をマッピングでき，MPEG2のリアルタイムエンコーディングを十分行え
る性能を達成した．

キーワード

リコンフィギャラブル コンピューティング, 粗粒度アーキテクチャ, ビットシリ
アルデータパス, 配線リソース
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1. Introduction

Semiconductor makers are always struggling to reduce the production cost that

increases every year. One of the reasons of the cost growth is that the number

of implementation gates on chip is increasing. Another reason is that production

cycle becomes shorter and shorter since many new formats and protocols are

being proposed, and consumers’ tastes are changeable.

One of the way to solve the problem is to use reconfigurable hardware. Re-

configurable hardware brings the following advantages [1].

1. It is not necessary to make the chip for trial purposes. Therefore, the

development period will be reduced.

2. Even though a part of a chip has failure, it is possible to use the chip by

reconfigure the chip so that a failure part is not used. Therefore, the yield

ratio of a chip can be increased.

3. Reconfigurable hardware can be used for many applications. Thus we need

to produce only one hardware for many applications. Then production cost

will be reduced.

Currently Field Programmable Gate Array (FPGA) are the most commer-

cially successful reconfigurable hardware [2] [3]. They are called fine-grained

architecture [4] since the function of a logic element is relatively small. Although

FPGAs are used widely in industry, this type of architecture essentially suffers

from the wiring resource problems, i.e., they need a lot of wiring resources that

may degrade the performance, i.e., speed and chip area [5].

Recently coarse-grained reconfigurable architectures have been studied[6] [7].

This type of architectures generally need less wire resources than fine-grained

type. However, if the width of data in an application does not match with the

width of the logic elements, some logic parts of an element are not used.

Thus, both types of reconfigurable hardwares have a problem that the per-

formance per chip area is not good enough to be replaced with ASIC implemen-

tation or software implementation in most cased. However, it is needless to say

that reconfigurable hardwares have potential, and indeed they are already used
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for a practical usage in some cases.[8] [9] Thus, if the performance of reconfig-

urable hardwares is improved more, they would be more valuable hardwares. To

improve the performance of reconfigurable hardwares, we should consider the

”wiring resource” problem the most.

To reduce the necessary wiring resources, bit-serial architectures have been

proposed [10] [11]. In bit-serial architecture, each element processes only one bit

at a time and outputs a one bit of the result to adjacent elements. Therefore,

they do not suffer from the problem that some part of an element are not used.

Also they do not need complex wiring resources. However, some computations,

such as multiplications, are difficult to be mapped on a bit-serial architecture,

and some applications with complex data flow may be difficult to be mapped on

the bit-serial architecture proposed in [11] because each element can communicate

with only adjacent neighbors in their architecture.

In this paper, we propose a bit-serial architecture with the following new

features:

1. In our architecture, there is a global bus, and a designer can determine the

length of the bus, and the number of buses freely. With global bus and a

local communication with adjacent elements, we can map many applications

very easily.

2. Each element have some designated data registers and some logics so that

multiplications can be done efficiently in a bit-serial architecture.

3. We make the overall architecture simple and scalable, and so it is easy to

increase the number of elements in our architecture.

Indeed the comparisons with other methods indicate that our architecture is

promising in the sense that it can provide a good performance per chip area.

This paper is organized as follows. Section II explains the features of bit-serial

data path since they are important for understanding our architecture. Then we

show the overview of the proposed architecture and wiring resource in Section

III. The proposed architecture has three types of element. The concept of each

element is described in Section IV. We also show how efficient multiplication is

done in our architecture. Section V shows the implementation report, and the

2



performance evaluation is described in Section VI. Finally, we conclude the paper

in Section VII.
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2. bit-serial data path

In this section, we describe the feature of the bit-serial data path. The bit-serial

data path is a base of the proposed architecture. First, the difference between

the bit-serial data path and the bit-parallel data path is explained. Next, how to

construct the bit-serial data path is shown. Then feature of the bit-serial pipeline

is described.

2.1 bit-serial vs. bit-parallel

Consider about n-bit arithmetic addition. Using a n-bit synchronous full adder,

we can get a result in one clock (see Figure 1 (a)). Like this n-bit full adder, an

com
putation
unit

a0
a1

an-1

r0
r1

rn-1

n-bit input

n-bit output

(a) bit-parallel

com
putation
unita0a1an-1

n-bit input

r0r1rn-1

n-bit output

(b) bit-serial

Figure 1. bit-parallel and bit-serial data path

operation that processes each data bit in parallel is called ”bit-parallel operation.”

A data path for a bit-parallel operation is called ”bit-parallel data path.” On the

other hand, an operation that processes each data bit per clock is called ”bit-

serial operation.” Bit order of processed data is start from LSB to MSB, or from

MSB to LSB. In a bit-serial operation, it takes n clocks to compute n-bit data

operation (see Figure 1 (b)). A data path for a bit-serial operation is called

”bit-serial data path.”

Compared with a bit-serial data path, a bit-parallel data path has following

advantages.

1. We can obtain relatively higher throughput.

2. We need only small controller.
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The first point is due to the fact that we need to process only one bit in a bit-

serial data path in one clock while a bit-parallel data path needs to process n

bits. A bit-serial data path has to recognize the end of data bits and do a special

operation (e.g. reset the carry when addition). Thus a bit-serial data path needs

a control unit. However in many cases, a bit-parallel data path does not need

such a controller.

On the other hand, compared with a bit-parallel data path, a bit-serial data

path has the following advantages.

1. The number of the logic gates to be implemented is reduced.

2. It is easy to raise the frequency.

3. It is not need much wiring resource.

In a bit-serial data path, the width of processed data in one clock cycle is only one

bit. This is the reason why the first advantage is obtained. A computation with

carry propagation does not become a factor of critical path and logic depth is

kept low, thus the second advantage is obtained. The third advantage is obtained

by the same reason as the first one, and we consider this is the key point that we

adopt a bit-serial data path.

In general, many reconfigurable hardware architecture consist of many ele-

ments which processes data and programmable wiring resources. It would be

desired for an element to having a simple structure and small area. It would be

desired for wiring resources to having high routability and reduced area. We con-

sider that a bit-serial data path is suitable for a reconfigurable hardware because

it satisfies these two desired features.

2.2 construction of the bit-serial data path

One way to construct a data path is mapping a control/data flow graph (CDFG)

to reconfigurable resources. A bit serial data path can be constructed by the

same way. A CDFG is a graph in which an operation is corresponding to a node

and a data flow is corresponding to a directed edge. Additionally, a CDFG is

able to show control flow. Figure 2 is an example of a CDFG. In the example,

if variable a’s value is greater than variable b’s value, then the value that a − b
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a > b

�

a b

�

a b

end

true false
if( a > b ){

result=a-b;
} else{

result=a+b;
}

(a) algorithm (b) CDFG

Figure 2. control/data flow graph

becomes a result. Otherwise the value a+ b becomes a result. The objective data

path is constructed by transforming a CDFG into logic gates.

To construct a bit-serial data path, an additional process is needed; we need

to insert proper delays to synchronize data inputs. In a bit-serial operation, some

operations generate delay. Therefore we need to synchronize data inputs. The

delay occurs because we cannot compute until all data bits arrive, e.g. compar-

ison, right shift, division is such operation. Especially it is necessary to decide

the division operation whether to subtract the dividend from the divisor in every

stage. Therefore it is relatively difficult to implement a division operation by a

bit-serial data path.

We describe how to synchronize the data inputs. Consider about the opera-

tion with two inputs and one output as shown in Figure 3. Node A outputs a

calculation result with no delay to node C. Node B outputs a calculation result

with some delay to node C. Thus, there is a gap between the arrival time of data

from node A and node B. Then, node C outputs wrong result. To solve this

problem, we insert new node for delay between the source node without delay

and the destination node. Figure 4 is the CDFG that new node was inserted

between node A and node C of Figure 3.
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A

outA
outB

B

C

inA inB

outC

inA

inB
outA
outB

iA0 iA1 iA2 iA3

iB0 iB1 iB2 iB3

oA0 oA1 oA2 oA3

oB0 oB1

gap

delay

Figure 3. Normal CDFG and its timing chart. The first letter of each waveform

means input or output. The second letter means node. Then subscript of the

second letter shows bit order of the input/output data.

A B

D

C

inA inB

outA

outB
outD

outC

inA

inB
outA

outB

iA0 iA1 iA2 iA3

iB0 iB1 iB2 iB3

oA0 oA1 oA2 oA3

outD oD0 oD1 oD2 oD3

oB0 oB1 oB2 oB3

outC oC0 oC1 oC3

delay

Figure 4. CDFG with insertion delay
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2.3 bit-serial pipeline

In the previous subsection, we discussed a case where we perform one calcula-

tion. As usual, we can implement an efficient pipeline when we perform multi

computational tasks sequentially. A bit-serial data path needs n times clock cy-

cles as a bit-parallel data path, when one element processes n-bit data. However,

a bit-serial data path does not need n×m times clock cycles, when we perform

m sequential computations of n-bit data.

Figure 5 is a CDFG which consists of three stage of full adder node, and

computes ((a + b) + c) + d. Xnm(1 ≤ n ≤ 3, 0 ≤ m ≤ 3) in the Figure shows

the m-th output bit of node n. At the time t = 1, the first node processes LSB

+node 1

+node 2

a b

x1

+node 3

x2

c d

x3

a0 a1 a2 a3

b0 b1 b2 b3

x10 x11 x12 x13

c0 c1 c2 c3

x20 x21 x22 x23

d0 d1 d2 d3

x30 x31 x32 x33

a
b

c

d

x1

x2

x3

t=0 t=1 t=2 t=3 t=4 t=5 t=6

Figure 5. bit-serial pipeline consist of 3 stages

of input a and b, then output result X10. At the time t = 2, the first node

processes the second bit of inputs. Concurrently, the second node processes X10

and LSB of input c. At the time t = 3, the all nodes processes input bits for

each node concurrently. Then the third node outputs X30 as a final result. Each

node of the CDFG works as a pipeline stage by inputting data continuously.

Accordingly, we can obtain the 4 bit result every 4 clock cycles if input data

come continuously. We utilize this pipeline technique in our bit-serial data path

to increase the throughput.
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3. Overview of the architecture and its wiring

resources

3.1 Overview of the architecture

Figure 6 shows overview of the proposed architecture. The proposed architecture

Processor
Element 

Array

Controller

Controller

C
ontroller

C
ontroller

E
xternal Interface

I/O Elements

data

H
ost

Processor

Figure 6. Overview of the architecture

is designed as a peripheral device of a host processor. The external interface

mediates the communication between the host processor and the proposed ar-

chitecture in appropriate way. The host processor is a independently running

system which has CPU and memory. The proposed architecture consists of the

controllers, the processor elements (PE), and the I/O elements (IOE). The con-

trollers are used to communicate with the host processor. Controlling the PEs

and the IOEs is another function of the controller. The PEs process input data

and outputs a result. The operation of a PE depends on the configuration data.

Giving a appropriate operation to each PE in the PE array, the PE array forms

an application specific circuit. The IOEs works as I/O ports which mediates data

transfer between the controllers and the PEs.

The PEs and the IOEs are placed two dimensionally. The PE array is sur-
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rounded by the IOEs as the Figure 6 shows. Some coarse-grained architectures are

not scaled up the number of elements easily because of their ways of I/O interface.

For example, we cannot scale up such architectures that all PEs are connected to

the controller, and/or global busses exist. This is because the amount of wiring

resource is increased, and the wiring delay becomes longer. In our architecture,

data transfer between the controllers and the PEs are limited to be performed via

the IOEs. Also, as we will mention, there is no global bus. Thus, our architec-

ture can be scaled up easily, and the number of elements is not fixed unlike many

other reconfigurable architectures [14] [15]. Therefore, a designer can choose an

appropriate number of elements for his/her usage when the chip is implemented.

After the reset process, the proposed architecture processes the following

steps.

1. All PEs, IOEs, and controllers accept the configuration data from the host

processor via controllers.

2. All PEs, IOEs, and the controllers wait for data from the host processor.

3. The controllers transfer data to the PEs via the IOEs.

4. A PE processes input data and output a result. This result becomes a input

of the next PE.

5. The last PE transfer the result to a controller via the IOE.

6. Finally, the controller transfer the result data to the host processor.

3.2 The definition of the data signal

The proposed architecture employs serial method in data transfer between el-

ements. Here, we explain how the data transfer is done. A physical bus that

connects elements consists of two lines. One of two lines is called the master bus,

the other line is called the inverse bus. The signal value is defined by combination

of the signal level of the master and the inverse bus. Figure 7 shows a definition

of the data signal. If the signal level of the master bus and the inverse bus is

the same, the data bus is high-impedance. If the signal level of the master bus

and the inverse bus is different, the master bus’s signal level is considered to be

10



0 z z1

master bus

inverse bus

clock

Figure 7. Definition of the data signal

the logical value for the signal. Immediately after reset, all PEs and all IOEs

outputs the high-impedance for prevent the PEs and the IOEs from processing

data incorrectly.

3.3 The wire networks

The proposed architecture has two types of wires for data transfer. One of them

is called the ”short wires.” The other is called the ”long wires.” The two types of

wires are used for different objects. Figure 8 illustrates how PEs are connected

by the short wires and the long wires.

a) short wire b) long wire, distance=3, step=2

PE PE PE

PE PE PE

PE PE PE

PE PE PE PE PE PE

PE PE PE PE PE PE

Figure 8. Wire networks

The short wire is a unidirectional bus and used for data transfer between

11



adjacent elements. Each PE has eight short wires. The half of the eight short

wires is directed from a PE to the four adjacent PEs or IOEs. Another half is

directed from the four adjacent PEs or IOEs to the PE . There is no short wires

between adjacent IOEs since it is not need to transfer data between the IOEs.

therefore each IOE only has short wires to/from an adjacent PE. Exceptionally,

the IOE placed at a corner of the array does not have short wires and only has

long wires.

The long wire is a bidirectional and shared bus. The long wire is used for data

transfer between elements that are far apart. The long wire is lined out between

rows/columns of the element array. From the viewpoint of the long wire, the PEs

which is placed both side of long wires share the long wire. If an element outputs

a data to a long wire, the data is broadcasted to the elements that shares the

same long wire. Which element outputs data to the long wire, and which element

accepts the data from the long wire is decided when the elements are configured.

Once the element that outputs data to the long wire is decided, other elements

that share the same long wire can not output data to the same long wire.

Unlike the short wire, the long wire’s network is not fixed. When the proposed

architecture is implemented on a chip, the long wire’s network is determined by

the two parameters; the distance and the step. The distance means how far

elements of a row/column of the array shares the long wire. As the value of the

distance becomes larger, elements can communicate with father elements. The

step means interval of the elements a long wire is lined. As the value of the step

becomes smaller, but not zero, lager number of the routing channel is obtained.

Of course, there is a trade-off; if we set the values of the distance and the step

be larger and smaller, respectively, we need more wire resources. A designer can

decide these values as considering this trade-off.

3.4 The advantages of the wire networks

As in Figure 9, the maximum number of long wires that exist between rows/columns

is to the value of the distance. Moreover a short and a long wire’s bus width is

two. Thus, if we chose an appropriate value for the distance and the step, the

proposed architecture has relatively smaller wiring area than other reconfigurable

architectures. Also we can reduce wiring delays since there is no switch blocks

12



PE PE PE PE PE PE PE

PE PE PE PE PE PE PE

distance=4, step=1

PE PE

PE PE

Figure 9. long wires exist between rows

unlike conventional FPGA [16] [17]. An appropriate choice of the value of pa-

rameters makes the long wires shorter and makes the wiring delay smaller than

architecture with global buses. Of coerce, it becomes difficult to map applications

without global buses. However, as we explain the following, our architecture can

provides flexible wiring resources. Indeed, we can easily map a DCT circuit with-

out global buses. Consider the case that the start point of the long wire is the

same. It needs long wire of distance=8 for the colored PE in Figure 9 to com-

municate with all the other PEs in the figure. On the other hand, the proposed

wiring resource architecture needs only long wires of distance=4. Moreover, the

different start point allow the proposed architecture to increase the number of

the elements easily.

Because there are long wires between rows/columns of elements, each element

can transfer data to the elements in neighbor rows/columns. The base PE can

communicate with the dark colored boxes in Figure 10. This property makes the

mapper map an application easily. An element can communicate with another

elements that does not share the same long wire by using an intermediate element

as routing resource. The base PE can communicate with the light colored boxes

in Figure 10 by one intermediate element. However mapper should notice that

one clock cycle delay is occurred when using an intermediate element.

13



base PE
connected

distance=5, step=1

connected via 1 PE

Figure 10. Communicable elements

3.5 Relation between the parameters and the wiring re-

sources

As the value of the distance becomes larger, elements can communicate with

father elements by a long wire. However the larger value of the distance yields

the following disadvantages.

1. Wiring delay becomes larger. It prevent the proposed architecture from

working at higher frequency clock cycle.

2. The number of the logic gates for the selector grows larger. Each element

has four selectors. So small selector is desired.

The physical length of the long wire becomes longer when the distance is large.

Furthermore, the large number of the elements that are connected to a long

wire needs the high drive strength wire. These are the reasons why the first

disadvantage is caused. As the value of the distance become larger, the number

of the long wires connected to a PE increases. Thus, selectors in a PE become

larger.

14



As the value of the step becomes smaller, the number of the routing channels

that an element has become larger. Figure 11 shows the changes of the the number

of the routing channels when the distance=5. All elements have symmetric wiring

step=1

step=2

step=3

step=4

step=5

step=6

Figure 11. The change of long wire’s channels (distance=5)

The box shows element and colored box is start point of long wire.

resources if the remainder when (distance+1) is divided by (step) becomes zero.

As the case of step=1, 2, 3, and 6 in Figure 11. When the remainder is not

zero, wiring resources that each element has are asymmetric. It is obvious that

asymmetric wiring resources make the mapping difficult, and thus we consider

only the case of symmetric wiring resources.

We now focus on the maximum number of the long wires between rows/columns.

The maximum number Lmax is expressed by the following equation.

Lmax =

⌈
distance + 1

step

⌉

Although Lmax of step=3 and Lmax of step=4 in Figure 11 is the same, routability

is different. A designer should take care of this fact when choosing the these
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parameters.

The distance and the step have a great influence on the properties of a de-

signed architecture (e.g., chip area, clock frequency, what kinds of application

can be mapped, etc.). Therefore, to decide the these parameters is important

for implementing the proposed architecture. A large distance and a small step is

appropriate for mapping the applications which needs complex wire networks like

the FFT computation. Contrary to this, a chip having a small distance and large

step can accommodate only applications that have simple wire networks. How-

ever, this chip needs only small selectors, and thus the chip area is reduced. A

large distance and a large step is appropriate for mapping the applications which

sometimes needs the communication with father element like the FIR filter.
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4. The Processor element and the I/O element

In this section, the architecture of each component is described. Firstly, the

architecture of the PE is described. A PE is a basic element which takes inputs

then outputs a result. Overview of a PE, format of the configuration data for a

PE, how to control a PE is explained. Subsequently the architecture of an IOE is

described. An IOE is a special element and used as an external port of the PEs.

4.1 The processor element

A PE has three input ports and one output port. It processes input data bit-

serially. A bit-serial processor has to recognize where is the end of data, so the

proposed PE has a counter and it can process up to 32 bit data. Inside a PE, there

is a bit-serial multiplier that can compute up to 16 bit by 16 bit multiplication.

4.1.1 Overview of the processor element

Figure 12 shows an overview of the processor element. According to the config-

M
U

X
M

U
X

M
U

X

from 
short wires
from
long wires

ALU

counter state

data
registers

output
register to short wires

to long wires

Figure 12. overview of the processor element

uration data, each MUX in Figure 12 selects inputs from the short and the long
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wires. Then a MUX outputs the selected data to the ALU as in Figure 12. The

ALU processes the three inputs from MUXs. Then outputs a result to the output

register. The configuration data specifies the operation that the ALU performs.

The output register outputs its data to the short and long wires. Each PE has

dedicated short wires to the four adjacent PEs and IOEs. Therefor the data that

the output registers keep is transfered to the short wires with no reservation. On

the other hand, the data of output register is propagated to one of the long wires

through a tristate buffer (triangular shapes in Figure 12). According to the con-

figuration data, the assignment of each tristate buffer is determined. There are

three entries of 16 bit data registers. The first data register stores constant value.

The second data register is used for shift operations. When the multiplication

operation, all data registers are used to store intermediate result and two inputs.

4.1.2 Configuration data format

Figure 13 shows the format of the configuration data for the PE. The configuration

operation input 1 input 2 input 3 output data length wait length

8 n n n n 5 5

constant value

16

Figure 13. configure data format

data consists of eight fields: the operation field, three input fields, the output field,

the data length field, the wait length field, and the constant value field. The

operation field contains 8 bit length data. The operation of the ALU is specified

by the value of the operation field. The three input fields are assigned to the three

MUXs. The output field is decoded to a set of control signals, each of which is

assigned to control port of a tristate buffer. Data length of the three input fields

and output field depend on the distance and the step of the implemented chip.

The data length field is 5 bit data that shows how many bits the PE processes.
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The wait length field is 5 bit data and represents the number of clock cycles of

interval between operations. A PE suspends the computation to synchronize the

data flow by using above value. The constant value field is a 16 bit constant value

data that is stored in a data register.

4.1.3 The state machine and the counter

A PE has the state that indicates what the PE does. Roughly classifying the

states, the PE has the ”running” and the ”stop” states. When a PE is in a

running state, the PE processes inputs and then outputs a result. When a PE is

in a stop sate, the PE outputs high impedance signal defined in 3.2.

The detailed state is shown in Figure 14. Each state is classified more in

Run Sp

Stop-Special

Stop-Normal

Run-Special

Run-Normal

(a)state register description (b)state transition graph desctiption

0:stop / 1:run
0:normal / 1:special

Figure 14. definition of the state. (b) is a example.

detail: normal and special states. Therefor a PE has 2 bit register to show the

state; one is ”run” bit and another is ”special” bit. When the run bit is 1, the PE

is in a running state. The PE is in a stop state when the run bit is 0. The stop-

special state is the state immediately after reset. The PE keeps the stop-special

state until input data from other PEs or/and IOEs arrive. The stop-normal state

is the state a PE is in a stop state between operations. Note that as mentioned

in Section 2.2, some PEs need to wait to synchronize with other PEs. Like

multiplication and shift operations, there are operations in which the method of

processing is changed in the first half and the latter half. The run-normal state

indicates the first half of processing and the run-special indicates the latter half.

Therefor the state transition of the PE depends on the operation field.
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The counter is used to detect the end of the data or wait. The state machine

changes its own state depending on the current state, the value in the operation

field, and the counter’s value. The counter begins count up from 0. When

counter’s value reaches the value in the data length field or the value in the wait

length field, the counter resets the own value. Concurrently the state transition

occurs.

4.1.4 Bit-serial Multiplier

A PE has the dedicated bit-serial multiplier. Then each PE can compute mul-

tiplication up to 16 bit by 16 bit data. Ienne et al. [12] proposed a bit-serial

multiplier. The Ienne’s multiplier has the following features.

• use n modules to compute n bit by n bit multiplication

• latency of the multiplier is only one clock cycle

Although Ienne’s multiplier is useful, we did not employ it. The reasons are as

follows.

• Each module outputs intermediate result, carry, and so on. However, our

PE has only one output, and thus their multiplier is not suitable for our

architecture.

• Since their multiplier needs n elements to implement, mapping process

sometimes becomes complex.

Therefor, we designed a bit-serial multiplier dedicated for our architecture; it can

perform multiplication by one element with one clock latency.

A 4 bit by 4 bit multiplication is shown in Figure 15. ai and bj means multi-

plicand and multiplier respectively. pij is a partial product of (ai & bj). cij is a

carry that is propagated from the (i− 1)-th stage; c0j is 0. Then ri is the i-th bit

of the result. ri is obtained by computing exclusive-OR of all partial products of

the i-th column and all carry propagations of the i-th column. The next cij are

obtained by counting carry when adding all partial products and carry propaga-

tions of i-th column. Therefor the 4-bit-serial multiplier is realized by Figure 16.

pij and cij of i-th column are input to ports pi and ci in the figure respectively.
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partial product
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result

input
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Figure 15. 4 bit multiplication
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Figure 16. 4-bit-serial multiplier
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The 4-bit-serial multiplier outputs ri from port r and c(i+1)j from ports ci+.

When a PE is in multiplication, the behavior of a PE is as follows. A PE

stores two inputs to two data registers respectively. A PE reads all bit of two

data registers that store input, then computes partial products of i-th column.

The partial products are transfered to the multiplier. Concurrently, a PE reads

all bits of another data register as carry propagations, then transfer them to the

multiplier. Finally, a PE transfer the multiplier’s output as a result to other

elements. When the multiplication is finished, a PE resets all data registers.

Indeed, a PE has a 16-bit-serial multiplier, thus it can compute up to 16 bit

by 16 bit multiplication. It cannot treat over 16 bit length data, but the multi-

plication method of Divide-and-Conquer [13] is available to solve this problem.

4.2 The I/O element

4.2.1 The features of the I/O element

The IOEs are the special element that mediate data transfer between the PEs

and the controllers. The elements on the edge of the PE array is the IOEs and

each IOE is connected to one of the controllers with the 16 bit shared bus. Figure

17 shows an overview of the IOE. The composition of the IOE is almost the same

as the PE. The difference between the PEs and the IOEs is as follows.

• The IOE has 16 bit bus that is connected to the controller.

• The number of MUX is only one.

• The ALU has only two operations. One of them is input from the controller

and output to the PEs. The other is input from the PEs and output to the

controller.

• There are eight entries in 16 bit data registers.

PEs/controllers cannot transfer data to controllers/PEs without using an

IOEs. As mentioned earlier, to make our architecture scalable, data transfer

between the PEs and the controllers are restricted to be performed only through

the IOEs. Without this restriction, the two problems occurs since all PEs and

all controllers are connected. One of them is that wiring area would occupy most
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Figure 17. overview of the IOE

area of a chip. Therefor it becomes difficult to increase the number of elements.

The other problem is that wiring delay becomes larger. This problem prevent the

proposed architecture from working at high clock frequency.

4.2.2 Communication with the PEs and the controllers

Now we explain how to transfer the data to the PEs or to the controllers. Data

transfer between the IOE and the PE is done by serial communication. So the

protocol of data transfer between the IOE and the PE is the same as the protocol

of data transfer between PEs.

On the other hand, the width of data transfered between an IOE and an

controller is 16 bit. This data communication is realized by using 16 bit shared

buses that connect the controllers and the IOEs. When the strobe port of an IOE

is asserted and the RW port of the IOE is high level, the IOE stores the data

from the controller. When the strobe port of an IOE is asserted and the RW port

of the IOE is low level, the controller stores the data from the IOE.

The controllers convert the data length because host processor treats multiple

of 8 bit data but the PEs and the IOEs always do not. When the width of data
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from the IOEs is less than 16 bit, the controllers expand the data to 16 bit.

The controllers expand the data to 8 bit when the IOE transfer the data whose

width is less than 8 bit. Then the controller sends the expanded data to the host

processor.

To support serial and parallel data transfer in one IOE, an IOE has eight

entries of 16 bit data registers and two pointer registers. An IOE uses data

registers as a FIFO buffer. Two pointer registers are 3 bit width registers and

used to indicate the head and the tail position of the data.

When an IOE loads the data from the controller, a data register addressed by

the head pointer is overwritten by the data from the controller. Then the head

pointer is incremented (see Figure 18 (a)). When an IOE stores the data to the

controller, the IOE outputs value of a data register addressed by the tail pointer

to the controller. Then the tail pointer is incremented (see Figure 18 (b)).

0

7

head
5

controller

D
M

X

1234h
1234h

0

7

controller

tail
5

M
U

X 1234h1234h

(a) data read from the controller (b) data write to the controller

data registers data registers

Figure 18. data transfer with the controller

When an IOE loads the data from the PE, a particular bit of a data register

selected by the head pointer is overwritten as follows: First, the ALU reads a

16 bit value of a data register selected by the head pointer (the data flow (I) in

Figure19 (a)). Next, the ALU modifies the bit, specified by the counter, of read

data into the data bit from the PE (the data flow (II) in Figure19 (a)). Then the

ALU stores overwritten data to a data register selected by the head pointer (the

data flow (III) in Figure19 (a)). Finally, the head pointer is incremented. When

an IOE stores the data to the PE, a data register selected by the tail pointer is

loaded, and output a data bit specified by the counter to the PE. The tail pointer
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is incremented finally (see Figure 19 (b)).
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5. Chip implementation

We implemented the proposed architecture on a chip to evaluate the chip area

and clock frequency. The developing environment is shown in Table 1. We

Table 1. developing environment

Tool type Tool name (vendor) version

HDL Verilog-HDL —

simulator Verilog-XL (Cadence) 2.13

synthesis Design Compiler (Synopsys) 2000.11-sp4

layout ApolloII (Avant!) 2000.2.3.4.0.2

process ROHM 0.35µmEXD 3metal layer

implemented the PE and the IOE but did not implement the controller. This is

because the design of the controller depends on the external interface and we did

not specify the external interface.

The parameters of the PE is described in Table 2. The parameters of the

IOE is the same as the PE’s one. The maximum number of the long wires in a

Table 2. parameters for the PE

distance 6

step 1

selector length 5bit

decoder length 5bit

counter register length 5bit

delay register length 5bit

row/column (Lmax) becomes 7 because the distance is 6 and the step is 1. Each

direction (north, south, east, west) of each PE has Lmax long wires and a short

wire for input and a short wire for output. Therefor a PE needs a 32-1 selectors

for input selection. For the output, a 28 bit decoder is needed since a PE outputs

a result to the adjacent elements with no reservation. To represent the decimal
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value 32 requires 5 binary digits. So a selector needs a 5 bit registers. Like a

selector, the decoder needs a 5 bit registers. We configured the counter register

for 5 bit so that a PE can process an up to 32 bit data. We configured the delay

register for 5 bit so that a PE can wait up to 31 clock cycles.

The clock frequency of the PE and the IOE is 133MHz. The area of the

PE was 0.1681mm2 and the area of the IOE is 0.1444mm2. Then we could

successfully implement a 7× 7 element array on a 3mm× 3mm chip.
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6. Application mapping

In this section, the result of the application mapping to the proposed architecture

is described. The DCT circuit is employed as a target application. First we

mention the performance of the implementations by other methods, i.e., FPGA,

MorphoSys, and software. We compare them with our architecture. Then, we

explain our target application, DCT. We, then, show how we can map the DCT on

to our architecture. Finally, we provide comparison results and some evaluation.

6.1 Targets to be compared with our architecture

We employ the FPGA, MorphoSys, and software implementation to compare the

performance and the chip area with the proposed architecture. We implemented

the proposed architecture on a chip by 0.35µm process technology. Since we would

like to compare the potential of our architecture with other methods, we evaluated

the performance of the comparison target with 0.35µm process technology as will

be mentioned.

MorphoSys [14] is a coarse-grained reconfigurable hardware that is proposed

by the University of California, Irvine. MorphoSys consists of 16bit PEs, context

memory, frame buffer, and the tiny RISC processor (controller). The number of

the PEs is 64 and mapping applications by using context switch. MorphoSys is

fabricated by various process technologies. Among them, we chose one fabricated

by 0.35µm process technology since we implemented the proposed architecture

on a chip by 0.35µm.

An FPGA is a fine-grained reconfigurable hardware. We estimated the perfor-

mance and the number of elements for mapping application by referring commer-

cial library for Altera’s FPGA which is called MegaFunction [18]. Since Altera

does not release the data about chip area of FPGA, we estimated the area of an

element that will be shown in Table 3 by referring the FPGA that is fabricated

by the same process technology we used [19].

For the software implementation, we could not prepare the CPU with 0.35µm.

Therefore, we used the CPU (Pentium II) with 0.25µm process technology. The

environment for the software implementation is as follows: CPU is Pentium II

350MHz, Memory type is PC100 and it’s capacity is 128MB, software is running
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over Windows2000, and we used Borland C++ 5.5.1 to Compile the software.

6.2 Mapping DCT circuit to the proposed architecture

The discrete cosine transform (DCT) is a technique for converting a signal into

elementary frequency components. It is widely used in image compression. Es-

pecially the 2D-DCT is used in JPEG, MPEG, and other image compression. In

JPEG and MPEG, an image is divided into the set of the macro blocks that is

8 × 8 pixel array. Then 2D-DCT computation is done to the all macro blocks.

Therefore the 2D-DCT is one of the highest cost processes.

The 2D-DCT circuit consists of first 1D-DCT, matrix transform, and second

1D-DCT circuit. They are connected serially. The data flow of the 2D-DCT

circuit is as follows.

1. Each row/column of the macro block is input to the first 1D-DCT circuit.

2. The 1D-DCT circuit outputs a result of each row/column to the matrix

transform circuit.

3. The matrix transform circuit sorts the row/column data to the column/row

data.

4. The matrix transform circuit outputs each row/column of the transposed

macro block to the second 1D-DCT circuit.

5. The second 1D-DCT circuit outputs each row/column of the macro block.

We mapped the 2D-DCT circuit on our architecture manually as follows: The

mapped 2D-DCT circuit outputs a row/column result of the macro block every

30 clocks after the first result is output. This is because the mapped 2D-DCT

circuit works as pipeline, so only the first result takes additionally clock cycles

of circuit latency. The data length of each result is 15 bit. It takes 30 clocks to

output a row/column result since the 2D-DCT circuit outputs 30 bit precision

data as an intermediate result. Then the 2D-DCT circuit shrink the intermediate

result to 15 bit data and output as a final result.
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6.3 evaluation

We evaluated the chip area and the performance of each reconfigurable hardware

architecture and the software. We evaluate the total costs for processes the

194, 400 macro blocks by each method. This value is the same amount of the

MP@ML of MPEG2 (720 × 576pixel/frame, 30frame/sec). We estimated the

time to finish of the process.

The result is shown in Table 3. Clock frequency in the table is running speed of

Table 3. area, performance comparison

CPU FPGA MorphpSys Ours

clock frequency [MHz] 350 17.45 100 133

clocks/Macro Block 2,500,000 64 37 240

elements 1 4386 64 322

process time [msec] 2163 1069 107 525

chip area [mm2] 118 267 180 60

each method. Clocks/Macro Block is how many clock cycles each method spends

to process a macro block. Elements means the number of elements to map a

2D-DCT circuit. Process time is . process time is how many seconds Chip area is

computed by elements× elementarea. The terms that should be paid attention

in the table are the process time and the chip area.

6.3.1 comparison with the software and the FPGA

Below we provide our observation about the comparisons. Comparing with the

CPU (software) and an FPGA, the proposed architecture processes 2D-DCT

computation faster and the chip area is smaller. We focus on an FPGA. The

area of an element of an FPGA is one third of our architecture However it takes

13 times the number of elements. Thus, the necessary chip area of an FPGA

is larger than our architecture. Moreover, the large number of elements makes

mapping process more complex, while the proposed architecture only needs a

simple mapper.
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6.3.2 comparison with the MorphpSys

Our architecture processes the application slower than MorphpSys. However

our architecture finishes computation in about 0.5sec. This is sufficient to the

real-time processing for MPEG2 encoding. The chip area of our architecture is

smaller than MorphpSys. This is because the area of one element is smaller than

MorphpSys although the necessary number of elements becomes larger for our

architecture. As described above, the large number of elements make a mapper

more complex. Our architecture needs five times as many elements as MorphpSys.

The DCT, the IDCT, and the motion estimation occupy almost computation

time of MPEG encoder system. If user map a MPEG encoder system to the

MorphoSys, application mapping with context switch is needed. This is a very

complex problem. Furthermore, there is an overhead to switch process. On the

other hand, whole MPEG encoding system can be mapped to our architecture

when the implemented chip has the sufficient number of elements. Then the

mapping process becomes simpler and there is no overhead. This advantage is

obtained because our architecture can increase the number of the elements easily

unlike the case of MorphoSys.
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7. Conclusion

7.1 Features of the proposed architecture

In this paper, we present our new reconfigurable hardware architecture for pro-

cessing the bit-serial data paths. The features of the proposed architecture are

high clock frequency, low chip area, and scalability. The three ideas are employed

to obtain these features. First, we employed the coarse-grained architecture and

the precision of its processor element is one bit. Next, we proposed new wiring

architecture with two parameters (the distance and the step) to obtain flexible

and low area wiring resources. Finally, we limited the connection between the

elements and the controllers. Then the proposed architecture can increase the

number of the elements easily.

We implemented a proposed architecture on a chip to estimate the clock fre-

quency and the area per element. When the distance = 6 and the step = 1, each

element runs at 133MHz and its area is 0.1681mm2 using ROHM 0.35µm EXD

process technology.

We mapped the DCT circuit to the proposed architecture and compare the

performance and the area with other reconfigurable hardwares and software.

Then our architecture processed the DCT faster than the software and the FPGA,

and slower than the Morphosys. However our architecture has sufficient per-

formance to process real time MPEG2 MP@ML encoding. The chip area for

mapping application was the smallest in the four comparison objects.

7.2 Future works

We proposed, implemented, and evaluated the architecture. Then, we have some

future works as follows. The first issue is to map other applications. If the

proposed architecture shows advantages in other applications, it would become

more valuable reconfigurable architecture. The next issue is how to configure the

number of elements, the distance, and the step. Whereas a designer can freely

set these parameters, this issue might occur. One way to solve this issue is to

provide various type of evaluation functions for different objects. Then designers

use these functions appropriately. Another issue is developing the mapping tool

32



for the proposed architecture. The proposed architecture is the coarse-grained one

and has an affinity to the high level synthesis. Moreover the proposed architecture

does not have the context switch, so mapping process become simple. Thus, the

following mapping processes are sufficient for our purpose, and to develop such a

mapper is one of our future works.

1. Analyze source code which is written in C, Pascal, and so on. Then make

a CDFG.

2. Analyze the data flow timing of the CDFG. Then insert delays to synchro-

nize the data input to the nodes.

3. Assign each node of the CDFG to the each PE of the target chip.

4. Assign long wires. If the lack of the wiring resources is occurs, go back to

the previous processes.

Developing a simulator for the proposed architecture is also a future work.
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