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Abstract—Automatic Static Analysis Tools (ASATSs)
detect coding rule violations, including mistakes and
bad practices that frequently occur during program-
ming. While ASATs are widely used in both OSS and
industry, the developers do not resolve more than 80%
of the detected violations. As one of the reasons, most
ASATs users do not customize their ASATs to their
projects after installation; the ASATs with the default
configuration report many rule violations that confuse
developers. To reduce the ratio of such uninteresting
warning messages, we propose a method to customize
ASATs according to the product source code auto-
matically. Our fundamental hypothesis is: A software
project has interesting ASAT rules that are consistent
over time. Our method takes source code as input
and generates an ASAT configuration. In particular,
the method enables optional (i.e., disabled by default)
rules that detected no violations on the version be-
cause developers are likely to follow the rules in future
development. Our method also disables violated rules
because developers were unlikely to follow them. To
evaluate the method, we applied our method to 643
versions of four JavaScript projects. The generated
configurations for all four projects increased the ASAT
precision. They also increased recall for two projects.
The result shows that our method helps developers
to focus on their attractive rule violations. Our im-
plementation of the proposed method is available at
https://github.com/devreplay/linter-maintainer

Indexr Terms—Static Analysis Tools, Coding Rule,
Coding Convention, Empirical Study

I. INTRODUCTION

Improving the source code readability is critical work
in detecting and preventing software defects. Also, main-
taining code readability is one of the most costly work.
Software projects use the Automatic Static Analysis Tools
(ASATs) that reveal coding rule violations to reduce
maintenance effort automatically [1]. ASATs are used for
both open source and industrial projects [2].

Although ASATs are widely used, users ignore more
than 80% of violations reported by the tools [3], [4].
UAV visualizes the output of three Java ASATs to help
users to understand violation warnings and resolve them
more effectively [5]. Additionally, C-3PR automatically fix
violations on GitHub [6].

Different from the existing research tools, this study
focuses on improving the accuracy of ASAT output. ASAT
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users ignore violations partly because the detected vio-
lations are not attractive to their projects [7]. Although
ASATSs allow users to customize rules, i.e., they can disable
uninteresting rules, most ASAT users use the default
rules without customizing them. Improving existing rule
selection would help developers to accept ASATs [8].

This paper proposes a method to automatically cus-
tomize ASAT rules to a software project using its source
code. In short, our method takes as input a release version
of source code and automatically enables rules that are
followed in the current version and disables unfollowed
rules. Our method has the following hypotheses.

o If developers are interested in a coding rule, they

follow a rule in all of the project source files.

o Developers continue to follow the same set of rules in

the software evolution.
The automatically selected rules help developers to keep
the same code writing style as the current version.

In this paper, we apply our method to an ASAT named
ESLint [9] that detects violations of the ECMAScript
coding rules [10]. The contributions of this paper are three-
fold.

1) We present a technical description of our method to
improve ASATS precision using the ASAT violation
results (Section III).

2) We investigate the operational status of ASAT usage
in four JavaScript projects (Section IV-A).

3) We evaluate our method effectiveness in the four
projects (Sections IV-B and IV-C).

II. MOTIVATING EXAMPLES

ASATs verify source code according to coding rules
for each programming language. The rules are defined
to detect well-known, frequent potential bugs and bad
practices. As some rules are not always applicable to
projects, most ASATs use only widely accepted rules as the
default rules. In the case of ESLint [9], the tool checks 56
default rules out of 241 rules. The default rules are selected
based on the JavaScript specification ECMAScript 5 [11],
which is the standard JavaScript grammar from Ecma
International in 2009. As ECMAScript 5 has been sup-
ported by legacy browsers such as Internet Explorer, the
default configuration helps validate source code that may
work on the legacy browsers. Instead, the default rules



Listing 1: An example violation of the JavaScript no-proto
rule that is not included in the default rules of ESLint
// An ezample of violated code

var a = obj.__proto__;
obj.__proto_ = b;

// An ezample of resolved code
var a = Object. getPrototypeOf(obj);
Object.setPrototypeOf(obj, b);

do not include coding rules for ECMAScript 6 and later
supported by recent browsers.

Listing 1 shows an example violation of the no-proto rule
that cannot be detected by the ESLint default rules be-
cause the code had been valid until 2008. The “__proto__"
property has been deprecated as of ECMAScript 3.1,
and most browsers have stopped the support to the fea-
ture [12]. Developers need to use “getPrototype0f” and
“setPrototype0f” methods instead of “__proto__". On
the other hand, legacy browsers still require “__proto__"
and do not support the new methods.

Another example to indicate the default rules’ deficiency
is the no-emply rule that disallows empty block state-
ments. Empty block statements may indicate a program-
ming error but may be intentionally used in source code.
In case of an intentional empty block, the rule requires to
insert the contents such as code comment in the block.
However, such a rule violation has no impact on software
behavior. As a result, the rule is included in the default
rules but often violated by projects.

IT1I. APPROACH

Our main goal is to improve ASATSs’ accuracy by re-
ducing false positives and false negatives reported by the
ASATs. We decrease false positives by disabling unneces-
sary rules for a project and decrease false negatives by
enabling useful non-default rules.

To achieve the goal, we propose a method to automat-
ically select a set of coding rules followed in a software
product’s source code. Our method takes as input product
source files S and a set of available rules R 4;; implemented
in an ASAT. The output is a subset of rules Config(S)
that the target project follows. More formally, we consider
each coding rule r € R4y as a function r(S) that extracts
source code lines violating the rule from source files S. We
define the output of our method Config(S) as follows.

Config(S) = {r; € Ray: |ri(S)| =0}

The condition |r;(S)] = 0 means that no violations are
reported by the rule r;. For simplicity, we use a single
version of the source code for S, while it can be generalized
to select rules using multiple versions of source code.

We implemented our method as a tool named Linter-
Maintainer in a straightforward manner. The tool exe-
cutes an ASAT of interest to check all rules and then
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selects non-violated rules. The selected rules are converted
into an ASAT configuration file that enables only the
non-violated rules. The project can keep its coding style
by using the configuration file, specifying necessary and
sufficient rules. While we focus on ESLint in this paper, the
method applies to various ASATs accepting configuration
files to select rules.

Our method has a risk of disabling interesting rules that
were accidentally violated in the source code’s analyzed
version. However, the developers can reduce the risk by
manually comparing with generated rules and original
rules. Developers also can update rules with every software
release using our method. Our tool extracts the current
ASAT configuration (i.e., a set of enabled rules) P(S)
from a configuration file used in the project to help such
a review step. In the case of ESLint, a configuration file
can be a JSON, YAML, or JavaScript file whose name
starts from .eslintrc. If the project does not have a
configuration file, P(S) will be the default rule-set. The
rules included in both P(S) and Config(S) are true
positive rules that are continually followed and enabled
rules. The rules included in P(S) but excluded from
generated Con fig(S) are disabled by our method because
the violations are not fixed in source code; in other words,
the rules report false positives for developers. On the
contrary, the rules included in Config(S) but excluded
from P(S) are enabled by our method because the rules
are followed in source code; violations of the rules in the
future versions could be false negatives if the rules are
interesting for developers.

IV. EVALUATION

To evaluate the effectiveness of our method, we investi-
gate the following research questions:

¢ RQ;: What kinds of default rules do projects
follow? As a preliminary analysis, we investigate the
number of followed rules and unfollowed rules.

RQ:: Are the rules followed by the project
consistent over time? To evaluate our generated
rules’ consistency, we execute the tool for each re-
lease version of the target projects and measure the
accuracy of rule selection.

RQj3: Do the generated rules improve accuracy
of ASAT? To evaluate future violation detection
effectiveness, we measure the accuracy of coding rule
violations detected by the tool configured with our
method.

In this study, we focus on JavaScript that is one of the
most popular languages. As the ASAT, we use ESLint that
is widely used in JavaScript projects [13]. To use consistent
rules across the projects and their source code history, we
use ESLint version 7.4.0, although the projects could not
use the version before its release.

We investigate four JavaScript projects that explicitly
configure ESLint. The projects are included in BugsJS [14]
that selected ten server-side application projects using the



TABLE I: The number of release versions for each project

Project Major Minor Maintenance  All
bower 1 19 89 96
eslint 7 119 165 223
hexo 4 30 120 126
karma 5 29 187 198
Total 17 197 561 643

TABLE II: RQ;: Followed rules distribution

Category # of rules  # of default rules
Followed 64 38
Unfollowed 95 4
Specific 82 15
Total 241 57

GitHub stargazers count. From those projects, we select
projects, including ESLint configuration files.

The four projects have 643 package versions. We se-
lected 561 versions whose version numbers follow the
“x.y.z” format so that we can classify them into major,
minor, and maintenance releases. We excluded 82 extra
versions such as "x.y.z-b” and “test-version” because the
release granularity is unclear. Table I shows the number
of release versions for each project. The major releases are
recognized by their version numbers “x.0.0”. The minor
releases are recognized by “x.y.0” including major release
versions. The maintenance releases include all the versions.

A. RQy (preliminary study): What kinds of default rules
do projects follow?

To answer the question, we extracted Config(S) from
the latest release for each project and compare the rules
with the default rule-set of the ESLint. We classified all of
the rules into three categories.

o Followed: The rules are followed by all of the
four projects. In other words, they are included in
Config(S) of four projects.

e Unfollowed: The rules are violated in all the
projects. They are never included in Con fig(S5).

o Specific: The rules are followed in some projects but
unfollowed in some projects.

Table II shows the number of rules in each category. It
shows that the default rule-set is not always followed in
the projects. We analyzed the details for each category.

Followed rules: All the projects follow the coding rules
detecting potential errors. Only 38 out of 64 followed
rules (59.4%) are included in the default rule-set. The
projects also follow additional rules including no-proto,
prefer-const, and dot-notation. We explained the no-proto
rule in Section II. All of the developers follow those
rules probably because the rule violations will change the
program behavior.

Unfollowed rules: All the target projects do not follow
95 rules. We found that 4 out of the 95 rules are included
in the default rules. The four rules are no-empty, no-undef,
no-unused-vars, and no-extra-semi. We explained the no-
empty rule in Section II. Unlike other default rules, these
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Listing 2: Examples of JavaScript no-unreachable and no-
constant-condition rule violations

// Ezample of no—unreachable violation
function foo ()
if (Math.random () < 0.5) {
return True;
} else {
throw new Error();
}
// Following line is un—reachable
return False;

}

// Ezample of mo—constant—conditon wviolation
if (false) {
// Following line can not be ezecuted
doSomethingUnfinished () ;

four rule violations may reduce code readability but they
do not affect the program behavior.

Specific rules: We found that 82 rules are not consis-
tent across the projects, and 15 of the 57 default rules are
here. For example, no-unreachable, no-constant-condition,
and no-cond-assign rules are included. Listing 2 shows
examples of no-unreachable and no-constant-condition vio-
lations. The no-unreachable rule disallows source code that
cannot be executed due to the return, throw, break, and
continue statements. Also, the no-constant-condition rule
disallows a constant expression in a conditional expression.
Unlike rule violations causing a runtime error such as no-
proto, that source code is unexecuted. If developers are
intentionally writing such source code, the rules report
false positives for the developers.

B. RQy: Are the rules followed by the project consistent
over time?

We evaluate the accuracy of rule selection for each of re-
lease versions. A software project has a sequence of release
versions Sy, Sa, -+ ,S,. We regard a rule r € Config(S;)
for an intermediate version S; (1 < ¢ < n) as correct
if r € Config(Sy), i.e. the rule is followed in the latest
release. A rule r € Config(S;) is regarded as false positive
if r ¢ Config(Sy). A rule r € (Ray \ Config(S;)) is false
negative if r € Con fig(Sy).

We used three release sequences: major releases, minor
releases, and maintenance releases. For each version S; in
a sequence, we extracted Config(S;) and calculated its
precision, recall, and F-value. The baseline is the accuracy
of P(S,), that is a set of project-specific rules defined in
the configuration file in the latest release.

Table IIT shows the mean and median precision, recall,
and F-value of the rules selected by our method for each
intermediate version. The result shows that our method
can accurately select coding rules. In the target projects,
rules selected by the maintenance releases are the most
accurate. On the other hand, the rules selected by the



TABLE III: Accuracy of rule selection in RQq

Project Precision Recall F-value
mean med mean med mean med
bower (n=96)
Major 0.93 0.94 0.95 0.95 0.94 0.95
Minor 0.99 0.99 0.98 0.99 0.98 0.99
Maintenance 0.99 1.00 0.99 1.00 0.99 1.00
Project 0.90 0.89 0.34 0.34 0.50 0.50
eslint (n=223)
Major 0.98 0.99 0.90 0.99 0.93 0.98
Minor 0.99 1.00 0.98 1.00 0.98 1.00
Maintenance 0.99 1.00 0.99 1.00 0.99 1.00
Project 0.29  0.00 0.16 0.00 0.21  0.00
hexo (n=126)
Major 0.92 0.92 0.92 0.93 0.92 0.93
Minor 0.98 0.99 0.98 1.00 0.98 1.00
Maintenance 0.99 1.00 0.99 1.00 0.99 1.00
Project 0.71  0.89 0.27 0.33 0.39 048
karma (n=198)
Major 0.77 0.70 0.90 0.88 0.82 0.78
Minor 0.97 0.99 0.96 1.00 0.96 0.99
Maintenance 0.99 1.00 0.99 1.00 099 1.00
Project 0.83 0.81 0.39 0.39 0.53 0.53

major versions are slightly inaccurate. In other words, the
coding rules of the projects slightly changed over time.
Developers should update the ASAT configuration file
periodically.

The project configuration recall is the worst, and the
precision is also lower than our method. It means that
developers did not recognize the rules that they follow.
Our method lets developers know such potential rules.

C. RQ3: Do the generated rules improve accuracy of

ASAT?

We compare the accuracy of violations detected by
configuration files generated by our method and manually
defined by the project. To approximate the number of
violations resolved by developers in the evolution process,
we classify rule violations to Resolved and Unresolved.
We regard violations of a rule r in a file version f; as
Resolved if there exists a clean version fj, (i < k) such that
|r(fx)| = 0. For each clean file version, only the maximum
number of violations detected between the previous clean
version and the current version is counted as Resolved.
Figure 1 shows an example history of the numbers of
violations of a rule r in a file f. The versions n — 5
through n — 3 violated the rule, but the version n — 2 did
not violate the rule. In this case, we count the maximum
number of violations in the span, i.e. 10 as Resolved
violations. Although developers might have resolved some
other violations between the version n — 5 and n — 4,
we do not count them because some violations such as
mazx-params may reappear in the successive versions. We
conservatively assume that the clean version n — 2 is the
time of resolution. If our method enabled the rule r in the
span, we count them as true positives because they are
detected. If our method disabled the rule r in the span, we
count them as false negatives. In Figure 1, five violations in
the version n—1 are counted as Unresolved because some
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Fig. 1: Example of counting rule violations for RQs

of them still exist in the latest version n. If our method
enabled the rule r in the span, we count them as false
positives. Otherwise, they are true negatives because they
are undetected and unresolved.

To simulate the effect of our method, we suppose three
use case scenarios: Developers update the configuration
Config(S;) in every major/minor/maintenance version.
We apply the generated configurations to detect violations
in every maintenance release. We classify Resolved and
Unresolved violatoins to true positives, false positives,
false negatives, and true negatives as described above
using Con fig(S;) and the history of detected violations.

Table IV shows the resultant precision, recall, and F-
value of five settings. The Major, Minor, and Maintenance
rows show the results of configuration files generated by
our method. The Project row shows the result of config-
uration files P(S;) included in the projects. The Default
row shows the result of the ESLint default configuration.

The best result of our method is the case that config-
uration files are updated every major release. Frequent
updates might accidentally disable some interesting rules
due to temporary violations. In all the projects, the gen-
erated rule configurations have higher precision than the
manually selected project configurations. This is because
our method disabled uninteresting rules for developers.
Our method also increased recall in two projects, eslint,
and karma. This might be because developers in the
projects resolved many violations without the support of
the ASAT. Our method could enable the rules to detect
future violations.

V. THREATH TO VALIDITY

A. Internal validity

Our hypotheses compromise two cases. First, our
method enables the rules that have no impact on project
code even if the rules are enabled or disabled. For example,
no-proto rule will get enabled even though “  proto 7
is not used in the code.

To minimize false positives, our method disables a rule
if one file does not comply with the rule, even if the other
files in the project adhere to the rule. Although we could
use a relaxed condition, e.g., |r;(S)| < k to select rules,
we avoid introducing such a parameter because giving an
appropriate parameter is difficult for developers.



TABLE 1V: Accuracy of detected violations in RQz (n=405,094,892)

Category bower (n=4,174,637) eslint (n=363,074,539) hexo (n=14,416,765) karma (n=23,428,951)
Precision Recall F-val Precision Recall F-val Precision Recall F-val Precision Recall F-val
Major 0.95 0.02 0.05 0.27 0.03 0.06 0.56 0.03 0.06 0.87 0.19 0.31
Minor 0.97 0.01 0.01 0.37 0.02 0.04 0.46 0.02 0.03 0.84 0.05 0.10
Maintenance 0.95 0.01 0.01 0.44 0.02 0.04 0.46 0.02 0.03 0.83 0.05 0.09
Project 0.80 0.04 0.07 0.16 0.00 0.00 0.51 0.04 0.07 0.55 0.01 0.02
Default 0.80 0.04 0.07 0.34 0.01 0.02 0.51 0.04 0.07 0.55 0.01 0.02
To keep rule consistency, we execute the ASATs using [2] C. Sadowski, E. Aftandilian, A. Eagle, L. Miller-Cushon, and

ESLint as of October 2020 through all versions. We eval-
uated the rule-set’s accuracy by counting the number of
lines where the rule violation occurred and was resolved.

Even if the file is renamed and deleted, we counted them
as resolved violations. This may overestimate the number
of resolved violations and underestimate the number of
false positives. However, the analysis does not affect the
total number of rule violations in the projects.

B. Ezternal validity

ESLint supports third-party plug-ins introducing addi-
tional rules. We did not evaluate such rules to equalize
the number of rules through the projects. Additionally,
our evaluation only included JavaScript projects using
ESLint. The result may be dependent on the programming
language characteristics.

VI. SUMMARY AND FUTURE WORKS

This paper proposed a method to automatically cus-
tomize the ASAT coding rules to software projects’ source
code. Our method enables rules followed in the source
code and disabled rules violated in the source code. We
implemented our method to generate an ESLint con-
figuration file and applied it to 643 versions of four
JavaScript projects. The result shows that our method
selected necessary and sufficient rules for the projects.
Our method increased precision for all the projects and
increased recall for two projects. Our method is promising
to help developers automatically configure their ASATs.

In future work, we have three research extensions. First,
we will extend the evaluation to other ASATs for different
programming languages, such as PMD for Java and Pylint
for Python. Secondly, we would like to improve the recall
of ASATs by combining our method with violation priori-
tization approaches [15], [16]. Finally, to evaluate the real
development usefulness, we plan to the field survey for the
developers.
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