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Abstract—Technical Debt (TD) introduces a quality problem
and increases maintenance cost since it may require improve-
ments in the future. Several studies show that it is possible
to automatically detect TD from source code comments that
developers intentionally created, so-called self-admitted technical
debt (SATD). Those studies proposed to use binary classification
technique to predict whether a comment shows SATD. However,
SATD has different types (e.g. design SATD and requirement
SATD). In this paper, we therefore propose an approach using
N-gram Inverse Document Frequency (IDF) and employ a multi-
class classification technique to build a model that can identify
different types of SATD. From the empirical evaluation on
10 open-source projects, our approach outperforms alternative
methods (e.g. using BOW and TF-IDF). Our approach also im-
proves the prediction performance over the baseline benchmark
by 33%.

Keywords— Self-Admitted Technical Debt, N-Gram IDF, Multi-
class Classification

I. INTRODUCTION

Technical Debt (TD) is a situation that software practitioners
(e.g. developers) decide to achieve short-term goals (e.g. bug fixing)
without an awareness of negative consequences that may take place in
the future [1]. TD can highly impact software development cost and
software quality (e.g. bug reopening) [2]. Specifically, Self-Admitted
Technical Debt (SATD) refers to TD that intentionally stated in source
code comments by a developer [3]. A number of studies focuses on
supporting software practitioners by developing an approach to detect
SATD (e.g. [4], [5]). Maldonado and Shihab [6] have categorized
SATD into five different types: design, defect, test, requirement, and
documentation. Each type has unique characteristics and impacts on
a software project. Thus, it is crucial to identify a type of SATD,
rather than whether it is SATD.

There are several studies that proposed models to classify whether
comments in source code are SATD. For example, Maldonado et al.
[7] proposed an approach using Natural Language Processing (NLP)
and Stanford NLP classifier to identify SATD. Besides, Supatsara
et al. [8] leverage source code comments using N-gram Inverse
Document Frequency (IDF) to improve the performance of SATD
prediction model. However, those existing approaches employ binary
classification techniques (i.e. one model per one SATD type) which
can cause many issues in order to maintain a number of models (e.g.
tuning). A recent study [6] also shows that design and requirement
are the most common types of SATD. Hence, in this paper, we focus
on developing prediction models to determine whether a source code
comment is design SATD, requirement SATD, or non-SATD (i.e.
multi-class classification).

The approach in this paper enhances our previous work to develop
a multi-class classification model based on textual feature extraction

using n-gram IDF. We also employ instance hardness under-sampling
to tackle the class imbalance and random forest as a classifier to
classity design and requirement SATD. To the best of our knowledge,
this is the first approach for SATD classification (especially for the
most common types of SATD, design and requirement SATD). We
conduct the empirical evaluation of our approach with baselines
on publicly available data. The experimental results show that our
approach consistently outperforms two traditional techniques in tex-
tual feature extraction: bag-of-words (BOW) and term frequency and
inverse document frequency (TF-IDF) and one alternative (i.e., using
Support Vector Machine). We then use the model proposed in [7] as
a baseline benchmark. Our approach can improve the performance
over the baseline in most cases. By analyzing the confusion metrics,
our approach improves the prediction of requirement SATD over the
baseline method by 33%.

The remainder of this paper is organized as follows. Section 2
presents related work. Section 3 describes our approach. We discuss
our experimental setting and present our results in Section 4. In
Section 5, we present threats to validity and discuss the implications
of our work. Section 6 presents our conclusions and future work.

II. RELATED WORK
A. Self-Admitted Technical Debt Detection (SATD)

A number of studies have focused on the detection of SATD.
For example, Potdar and Shihab [4] pioneered the concept of self-
admitted technical debt as a debt intentionally documented in source
code comments by developers. They manually analyzed 100K source
code comments to develop 62 patterns that indicate the presence of
self-admitted technical debt. Maldonado and Shihab [6] leveraged
these patterns to categorize self-admitted technical debt into 5 types:
design, requirement, defect, test, and documentation debt. Farias et
al. [9] utilized code tags and word classes to construct a contextual-
ized vocabulary model for detecting technical debt via source code
comments. Huang et al. [10] presented a text mining-based model to
automatically identifying SATD comments. To determine SATD at
the change-level, Yan et al. [11] made use of source code analysis
and change history statistic. Flisar and Podgorelec [12] applied a
word embedding technique to the feature selection method in order
to increase the correct predictions of SATD. Most recently, Ren et al.
[13] proposed a Convolutional Neural Network-based approach for
SATD prediction.

B. N-gram IDF

N-gram represents a continuous sequence of n words from a given
source text. The advantage of n-grams over isolated words is that an
n-gram has more informative and practical. However, using all n-
gram phrases will incur massive data and numerous useless features
[14]. In order to figure out this problem, we utilize n-gram IDF, a



theoretical extension of inverse document frequency (IDF) proposed
by Shirakawa et al. [15]. IDF assesses how important a word is, but
cannot handle multi-word terms. N-gram IDF is capable of measure
the significance of multiple words to extract useful n-gram phrases.
A number of studies leveraged n-gram IDF in the field of text
classification. For example, Terdchanakul et al. [16] proposed an n-
gram IDF-based approach to automatically identify bug reports. To
date, Maipradit et al. [17] presented a sentiment classification method
leveraging n-gram IDF and automated machine learning.

C. Under-sampling

In our approach, we cope with the imbalanced dataset by instance
hardness under-sampling, a technique to resample data by leveraging
a threshold value to eliminate non-useful samples that are frequently
misclassified. A previous study [18] demonstrated that instance
hardness under-sampling is capable to reduce noisy data in order
to improve the quality the of dataset. Recently, Verdikha et al.
[19] presented a hate speech classification model based on TF-IDF
weighting method and they also utilized instance hardness under-
sampling to tackle the class imbalanced problem. Their experiment
results showed that the under-sampling method can improve the
performance of classifiers.

D. Random Forest

Breiman [20] pioneered random forest (RF), an ensemble machine
learning algorithm composes of many decision trees. In random for-
est, each decision tree works independently with its own results and
the final outcome of random forest is the decision with major voting
of all decision trees. RF have become a popular technique in various
activities such as speech recognition [21], image classification [22],
and text categorization [23]. Klema et al. [23] presented an automated
approach to classify and analyze fanaticism via emails using the
combination of bag-of-words and random forest. Aphinyanaphongs
et al. [24] trained a random forest classifier to automatically identify
alcohol-related tweets. Liparas et al. [25] combined textual features
with visual features to train random forest classifier for news articles
categorization.

Post-processed

N-gram IDF
Feature
Vectors

Source Code
Comments

Under-sampling

Resampled
N-gram IDF

Feature

Extraction Feature

Vectors

y

N-gram

Dictionary Classification

Applying N-gram IDF

Fig. 1. Overview of our SATD classification approach.

III. METHODOLOGY

A. Overview

Figure 1 shows the overall structure of our classification model.
To construct the model, we first pre-process source code comments.
We then employ an n-gram IDF extraction tool to build our n-
gram dictionary. After that, we filter ineffective features out of the
dictionary by weight one score. In the next step, we count the raw
frequency of each n-gram phase for each source code comment and
then represent the frequency values as a series of member vectors.

Instance hardness under-sampling is applied to a set of training
vectors and the output of this process is resampled training vectors.
Finally, we utilize the resampled one to train random forest classifier.
We explain more details in the next sections.

B. Applying N-gram IDF

The previous study [8] shows that non-alphanumeric characters
(e.g. ?) yield a benefit to a classifier. We thus encode those with
terms (e.g. questionmark) that applicable to employ the existing
n-gram IDF extraction tool.

We use an n-gram weighting scheme tool namely Ngweight'.
Note that our dictionary is only produced from a training set. The
output after applying n-gram IDF tool is an n-gram dictionary, which
contains all valid n-gram phrases and other information (e.g., n-gram
id, length of n-gram, global term frequency, document frequency, and
document frequency of a set of words composing n-gram). We use
this information to find important features in the next step.

C. Feature Extraction

In our experiment, a training set includes approximately 60,000
comments. After applying an n-gram IDF tool to the training data,
our n-gram dictionary consists of 60,000 to 70,000 n-gram phrases.
On the ground of the large volume of data, we remove ineffective
features from the dictionary. We first eliminate n-grams that appear
only once in the whole document (global term frequency value equals
to one). For each n-gram phrase, we calculate weight one score, a
measure of how significant an n-gram phrase is. Noted that the higher
weight one score, the more important n-gram is. Weight one score is
defined as:

e
Weightl = lo‘q(sdf) * gtf

Where |D| is the number of total documents (in training set), sdf is
document frequency of a set of words composing n-gram, and gtf is
global term frequency of the term. We use top ten percents of n-gram
phrases which have the highest score to build a new dictionary. The
remaining n-grams in the new dictionary are 6,000 to 7,000 terms.
We then leverage the filtered n-gram dictionary and pre-processed
source code comments to create feature vectors. For each document,
we count the raw frequency of each n-gram term exists in the source
code comment and we then create a vector element based on the raw
frequency values.

D. Under-sampling

Instance hardness under-sampling focuses on the usability of
samples for the classification task. (i.e., excluding non-useful samples
from the corpus). The under-sampling is available in imbalanced-
learn® package. To calculate the instance hardness value of each
sample, we utilize the same classifier and hyperparameters with the
learning process, since both factors directly impact on the calculation
of instance hardness [18].

E. Classification

We utilize the implementation of random forest machine learning
as provided by scikit-learn®, and train the classifier by the resampled
training data in order to classify target source code comments into
design, requirement, non-SATD. To optimize our classification model,
we tuned a major hyperparameter of random forest, the number of
trees (i.e., n-estimators), by conducting experiments with different
values, while we used the default values for other hyperparameters.
This will be explained in more details in the evaluation section.

Thttps://github.com/iwnsew/ngweight
Zhttps://imbalanced-learn.readthedocs.io/en/stable/index.html
3https://scikit-learn.org/stable/index.html



IV. EVALUATION

We conduct an empirical evaluation in order to answer the follow-
ing experiment questions.

« EQ1: How well n-gram IDF deals with the multi-class SATD

classification problem?
To substantiate that n-gram IDF can work well with the multi-class
SATD classification, we performed a comparison between n-gram
IDF and popular traditional methods to engineer features represent-
ing textual data, TF-IDF and BOW [26]. TF-IDF is a technique
to calculate the weight of words in a textual document derived
from the product of term frequency (TF) and inverse document
frequency (IDF). On the other hand, bag-of-words represents a
textual document as a sparse vector of word counts. [27]. For a
fair comparison, we applied instance hardness under-sampling and
random forest classifier (with its hyperparameters) to all settings.

« EQ2: Is random forest more suitable for SATD categorization

compared with support vector machine?
To answer this question, we compared random forest-based model
with support vector machine-based model. Support vector machine
(SVM) is the most successful linear classifier in the task of text
categorization [28] [29] [30] [31]. To build the SVM-based model,
we used the features derived from n-gram IDF, but did not apply
the under-sampling method for the reason that SVM with instance
threshold achieved down-and-out performance. In addition, SVM
can handle only a binary decision. We therefore leveraged One vs.
One strategy [32] in order to support SVM to address the multi-
class classification problem.

« EQ3: Can our approach outperform the baseline for self-

admitted technical debt?
Besides our previous work, Maldonado et al. [7] also proposed a
SATD classification model based on NLP and maximum entropy
classifier. It is the most recent acceptable approach for identifying
the most two common types of SATD in source code comments.
By contrast, our proposed approach leverages a text mining
algorithm, n-gram IDF, under-sampling, and ensemble machine
learning algorithm to automatically classify design and requirement
SATD. Unfortunately, we cannot directly compare our results with
the baseline, for the reason that our approach is a multi-class
classification and our dataset contains different SATD classes (i.e.,
design, requirement, and non-SATD). In order to compare the
performance of our approach with them, we first constructed a
new dataset containing design and requirement SATD comments
labeled as a positive class and non-SATD comments labeled as a
negative class. We also prepared sets to validate their approach
using leave-one-out cross-project validation method, and we re-
implemented their approach following their work to predict SATD
comments.

« EQ4: Can our approach classify design and requirement self-
admitted technical debt more accurately than the baseline?
Our approach and Maldonado et al.’s work are different problem
space (i.e., multi-class and binary classification). Previous work
reported that there is a variance between the performance measures
for binary classification and multi-class classification [33]. On
the account of this problem, we compared the confusion metrics
provided by our classification model against the confusion metrics
produced by the baseline approach for design and requirement
SATD classification. The confusion matrix is simple to understand
and we also could know the raw information about predicted and
actual classes done by a classification model. For this research
question, we generated two new datasets. The first one contains
design and without SATD comments. Another one consists of re-
quirement and without SATD comments. Afterwards, we followed
their methodology to construct two binary SATD classification
models and then collected the confusion metrics of these.

TABLE I
DETAILS OF THE STUDIED DATASET.

Project Design SATD | Requirement SATD | Non-STAD
Ant 2.30% 0.30% 97.30%
JMeter 3.90% 0.30% 95.80%
ArgoUML 8.70% 4.40% 86.90%
Columba 2.00% 0.70% 97.30%
EMF 1.80% 0.40% 97.80%
Hibernate 12.20% 2.20% 85.60%
JEdit 1.90% 0.10% 98.00%
JFreeChart 4.20% 0.30% 95.50%
JRuby 7.30% 2.30% 90.40%
SQuirrel 2.90% 0.70% 96.40%

A. Dataset

We derived a publicly available data published in Maldonado et al.
[7] which consists of 62K Java source code comments (i.e., design,
requirement, defect, test, and documentation SATD) from ten open-
source projects: Ant, ArgoUML, Columbia, EMF, Hibernate, JEdit,
JFreeChart, JMeter, JRuby, and Squirrel SQL. We made use of the
dataset from the prior study to generate a new dataset composes
of three types of SATD: design, requirement, non-SATD comments
(approximately 60K) for the empirical evaluation. Table I shows the
ratio of SATD comments in the new dataset. Our dataset is evidently
imbalanced in which the majority class is non-SATD comments and
the minority classes are design and requirement SATD comments.

B. Evaluation Setting

To evaluate the performance of our classification model, we sep-
arated the dataset into three sets, training set (8 projects), validation
set (1 project), and testing set (1 project). The training set was
employed to train the classifier, the validation set was used to tune
hyperparameters of a classifier, and the testing set was applied to
evaluate the model performance. The evaluation process was then
iterated 10 times in which all projects served as the testing set once
and one project acted as the validation set — see Section D.

C. Performance Measures

Most of the studies on SATD [7] [10] [12] utilized Precision,
Recall, and Fl1-score in evaluating the accuracy of a SATD classi-
fication model. Intuitively, Precision, Recall, and F1-score measure
how well a classification model detects SATD comments. Noted that
these performance measures do not focus on certain types of SATD
in this work. To compute Precision, Recall, and F1-score, we first
coped with the confusion matrix. Since the confusion matrix does not
take into account a multi-class probabilistic classification, we reduced
classified source code comments into two binary classes: SATD and
non-SATD using the following formula:

(€]

| SATD, if P(i, Des) 4+ P(i, Req) > P(i, Non)
" 7 ] non-SATD, otherwise

Where C; is the binary classification of source code comment #, and
P(i,Des), P(i,Req), an P(i,Non) are the probabilities of source code
comment i predicted as design, requirement, and non-SATD class
respectively. If the sum probability of it being predicted as design
and requirement SATD is greater than non-SATD, the source code
comment will be classified into SATD; otherwise, it will be classified
into non-SATD. Then, the values collected in the confusion matrix
(i.e., true positive, true negative, false positive, and false negative) are
used to calculate Precision, Recall, and F1-score for SATD comments.

Since the confusion matrix does not consider the multi-class
probabilistic classification and cost of each SATD class, we utilize
a performance measure namely Macro-Averaged Mean Cost-Error



or MMCE proposed in [34]. MMCE assesses how close predicted
class probabilities are to the actual classes or MMCE measures how
effectively a classification model classify types of SATD. The smaller
value is better since it indicates that the distance between them is
small. The macro-averaged mean cost-error is defined as:

k n
11 &,
MMCE = 23— " |i — vl (@)
i i

j=1

Where J; is the probability of class k; of sample i, y; is the true
class of class ky of sample i, k is the number of classes where
k = [1,2,3]. There are 3 classes in our classification: non-SATD,
design SATD, and requirement SATD respectively. n is the number
of samples, and n; is the number of samples of class k.

We evaluate the outcomes achieved by classification models using
Precision, Recall, F1-score, and MMCE. To compare the performance
of two classification models, we test the statistical significance of cost
error achieved with them by utilizing a non-parametric statistical test
namely Wilcoxon Signed Rank Test [35]. The Wilcoxon test is a safe
test that does not assume the underlying data distribution. We set a
null hypothesis as “the cost errors presented by a classification model
are not significantly different compared to the cost errors provided
by another classification model” and set the confidence limit at 0.05
for rejecting the null hypothesis.

The Wilcoxon test indicates whether two classification models are
significantly different. On the other hand, to assess the magnitude
of the difference that does not demonstrate in the Wilcoxon test, we
utilize a non-parametric effect size measure namely the Correlated
Samples Case of the Vargha and Delaneys Axy Statistic [36]. Also,
AA,(V measure does not concern with the underlying data distribution
of our dataset. We utilize the cost error provided by two models
to calculate the effect size. With the given performance measure, the
Axy measure assesses the superiority of the classification performance
between the two approaches using the following formula:

[#(X <Y)+(05x# (X =Y))]

3

AXY =

Where #X <Y) is the number of source code comments that the
cost error achieved by X less than Y, #X = Y) is the number of
source code comments that the cost error achieved by X equal to Y,
and n is the number of source code comments. If the A,, measure
is more than 0.5, the classification performance of the model X is
significantly outperform the model Y.

D. Hyperparameter Setting

We focused on tuning a major hyperparameter: the number of
trees (i.e., n-estimators) of random forest classifier to mitigate the
risk of overfitting and improve the performance of our approach, since
increasing the number of trees does not increase the probability to en-
counter the overfitting problem [20]. Oshiro et. al. [37] suggested that
the best number of trees is between 64 to 128, and also Khoshgoftaar
et. al. [38] recommended to use 100 trees as a default value when the
dataset is imbalanced. However, their studies are different from our
work (e.g., medical, image processing and transaction). Therefore,
we minimized the risk by setting the number of trees in the range
of suggestions. To do so, we increased the number of trees from
50 to 350 in which added by 50, while other hyperparameters are
fixed. We then observed the F1-score measure to determine the best
hyperparameter of the classifier. Noted that the tuning process was
done using the validation set.

To select the validation set, we settled projects which have the
highest ratio of the positive classes (i.e., the sum of design and
requirement SATD comments). As demonstrated in figure 2, the gap
between negative and positive classes in the Hibernate project is the
smallest, followed by the ArgoUML project. We therefore set the
Hibernate project as the validation set, but when the Hibernate project

65 376
o]
s
= Design SATD{ 931 548 1224
>
=

Req. SATD{ 101 85 571

Non-S’geDs\gn SATReq. SATD
Predicted label

Fig. 2. Confusion matrix of our approach for requirement and design SATD
classification.

Non-SATD 247 Non-SATD 554

True label
True label

Req. SATD| 439 318 Design SATD{ 951 1752

Non-SEERign SATP
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No\’\‘SATDP\eq- SATD
Predicted label

Fig. 3. Confusion metrics of Maldonado et al. for requirement and design
SATD classification.

was utilized to evaluate our approach, the ArgoUML project took over
the role instead.

E. Results

In this sub-section, We provide results for answering the experi-
ment questions EQ 1-4.

EQ1: How well n-gram IDF deals with the multi-class SATD
classification problem?

Table II shows the comparison of Precision, Recall, F1-score, and
MMCE for n-gram IDF, BOW and TF-IDF-based models. We find
that for 7 projects, the F1-score values achieved by n-gram IDF-based
model are higher than BOW-based model, and for 8 projects, the
MMCE values achieved by n-gram IDF-based model are higher than
BOW-based model. Moreover, n-gram IDF-based model surpasses
TF-IDF-based model in many cases (i.e., 6 projects in F1-score values
and 9 projects in MMCE values). Table III presents the results of
Wilcoxon test together with corresponding A,, measure to assess the
statistical significance and effect size of the improved performance
brought by n-gram IDF-based model over traditional technique-based
models. As shown, n-gram IDF significantly performs better than
BOW and TF-IDF in 9 projects (except the JRuby project) with the
effect sizes greater than 0.5. Especially, the large effect size (AAX(V
>0.7) of the improvement of n-gram IDF over TF-IDF is obtained
in the ArgoUML, Hibernate, and SQuirrel projects.

EQ2: Is random forest classifier more suitable for SATD
categorization compared with support vector machine?

Table IV shows the comparison of the performance between our
approach using random forest (n-gram IDF + RF) against using
Support Machine Vector (n-gram IDF + SVM). Using RF consistently
outperforms SVM with respect to the F1-score and MMCE measures
across all 10 projects. Moreover, Table V shows the results for the
Wilcoxon test and Axy measure of comparing RF against SVM. The
improvement of our approach using RF over SVM is significant with
the effect sizes greater than 0.5 in all projects and also the Axy measure
being greater than 0.7 in 7 projects.



TABLE II
EVALUATION RESULTS OF N-GRAM IDF, BOW, AND TF-IDF-BASED APPROACHES.

COMPARISON BETWEEN N-GRAM IDF AGAINST BOW AND TF-IDF
USING WILCOXON TEST AND A,y EFFECT SIZE.

Project N-gram IDF VS.
Bag-of-Words TF-IDF
Ant <0.001 [0.67] | <0.001 [0.68]

JMeter <0.001 [0.59] | <0.001 [0.60]

ArgoUML | <0.001 [0.53] 0.0 [0.73]

Columba <0.001 [0.53] | <0.001 [0.66]

EMF <0.001 [0.65] | <0.001 [0.62]
Hibernate <0.001 [0.67] | <0.001 [0.75]
JEdit <0.001 [0.55] 0.0 [0.68]
JFreeChart | <0.001 [0.56] | <0.001 [0.58]
JRuby 0.17 [0.48] <0.001 [0.50]

SQuirrel <0.001 [0.60] 0.0 [0.73]

Project N-gram IDF Bag-of-Words TF-IDF
Precision | Recall F1 MMCE | Precision | Recall F1 MMCE | Precision | Recall F1 MMCE
Ant 0.710 0.204 0.317 0.518 0.472 0.231 0.311 0.506 0.456 0.287 0.352 0.531
JMeter 0.817 0.730 | 0.771 0.434 0.751 0.662 0.703 0.463 0.773 0.736 0.754 0.461
ArgoUML 0.831 0.922 0.874 0.348 0.834 0.919 0.874 0.387 0.807 0.925 0.862 0.400
Columba 0.851 0.846 0.849 0.347 0.838 0.793 0.815 0.371 0.768 0.864 0.813 0.373
EMF 0.829 0.309 0.450 0.493 0.392 0.213 0.276 0.557 0.594 0.404 0.481 0.519
Hibernate 0.950 0.723 0.821 0.332 0.919 0.735 0.817 0.408 0.876 0.773 0.821 0.404
JEdit 0.737 0.200 | 0.315 0.535 0.581 0.257 0.356 0.506 0.724 0.300 0.424 0.495
JFreeChart 0.672 0.462 0.548 0414 0.677 0.452 0.542 0.432 0.708 0.427 0.533 0.461
JRuby 0.853 0.810 | 0.831 0.388 0.852 0.815 0.833 0.417 0.867 0.795 0.829 0.437
SQuirrel 0.714 0.683 0.698 0.359 0.481 0.676 0.562 0.410 0.637 0.691 0.663 0.428
TABLE VI
TABLE III

COMPARISON OF OUR APPROACH AND BASELINE FOR SATD USING
WILCOXON TEST AND Axy EFFECT SIZE.

Project Our Approach VS. Maldonado et al.
Ant <0.001 [0.75]
JMeter <0.001 [0.82]
ArgoUML <0.001 [0.64]
Columba <0.001 [0.75]
EMF <0.001 [0.71]
Hibernate <0.001 [0.71]
JEdit <0.001 [0.88]
JFreeChart <0.001 [0.72]
JRuby <0.001 [0.57]
SQuirrel 0.0 [0.43]
TABLE VII

COMPARISON OF F1-SCORE BETWEEN OUR APPROACH AND BASELINE
FOR SELF-ADMITTED TECHNICAL DEBT.

TABLE IV
EVALUATION RESULTS OF RANDOM FOREST AND SUPPORT VECTOR Pl‘oject Our Approach Maldonado et al.
MACHINE-BASED APPROACHES. Ani 0317 0513
Project Ranltiom F(i:‘:st - %upportRVectorF 11\/lachirﬁz Aigfﬁifm 8;;; 8;}3
Ant <071 [ 020 | 032 | 052 | 050 [ 0.13 | 020 | 0.59 Columba 0.849 0.750
TMoter | <082 | 0.73 | 0.77 | 043 | 0.87 | 051 | 0.65 | 0.50 EMF 0.450 0.462
ArgoUML | <0.83 | 092 | 0.87 | 035 | 0.83 | 0.87 | 0.85 | 038 Hibernate 0.821 0.763
Columba | <0.85 | 0.85 | 0.85 | 0.35 | 091 | 0.66 | 0.76 | 0.47 JEdit 0.315 0.461
EMF <083 | 031 | 045 | 049 | 0.87 | 021 | 034 | 0.6 JFreeChart 0.548 0.513
Hibernate | <090 | 0.72 | 0.82 | 033 | 093 | 0.71 | 0.80 | 0.44 JRuby 0.831 0.773
TRt 2074 [ 020 | 032 | 054 | 091 | 0.05 | 0.09 | 0.63 SQuirrel 0.698 0.593
TFreeChart | <0.67 | 046 | 0.55 | 041 | 0.98 | 0.26 | 041 | 0.54
JRuby | <0.85 | 0.81 | 0.83 | 0.39 | 0.89 | 044 | 0.59 | 0.51
SQuirrel | <071 | 0.68 | 0.70 | 0.36 | 0.94 | 050 | 0.66 | 046 | EQ3: Can our approach outperform the baseline for self-

TABLE V

COMPARISON OF RANDOM FOREST AND SUPPORT VECTOR MACHINE
USING WILCOXON TEST AND Axy EFFECT SIZE.

Project Random Forest VS. Support Vector Machine
Ant <0.001 [0.80]
JMeter <0.001 [0.84]
ArgoUML <0.001 [0.73]
Columba <0.001 [0.86]
EMF <0.001 [0.77]
Hibernate <0.001 [0.69]
JEdit <0.001 [0.92]
JFreeChart <0.001 [0.79]
JRuby <0.001 [0.69]
SQuirrel <0.001 [0.51]

admitted technical debt?

Table VII demonstrates the Fl-score values provided by our
approach and the baseline. We find that our approach outperforms
Maldonado et al. in most cases (7 projects) when detecting self-
admitted technical debt. The ArgoUML project achieves the highest
F1-score value of 0.874. Besides, we compare the outcomes provided
by our approach and the baseline utilizing the Wilcoxon test and A,,
measure. Table VI shows the results of the Wilcoxon test with the
corresponding A,, effect size of our approach against the baseline.
The differences are statistically significant (p-value <0.05) in all
cases. Indeed, the improvement of our approach over the baseline
is significant with the effect sizes greater than 0.5 in 9 projects. The
effect sizes of 7 out of 10 projects are considered as large (A,, >0.7
). The largest effect size is 0.88 accomplishing in the JEdit project.

EQ4: Can our approach classify design and requirement self-
admitted technical debt more accurately than the baseline?

As demonstrated in the figures 3 and 2, our multi-class classifi-



TABLE VIII
EVALUATION RESULTS OF OUR APPROACH USING UNDER-SAMPLING AND
WITHOUT UNDER-SAMPLING.

Project Our Approach Our Approach
with Under-sampling without Under-sampling

P R F1 M P R F1 M
Ant 0.71 | 0.20 | 032 | 0.52 | 0.74 | 0.19 | 0.30 | 0.55
JMeter 082 | 0.73 | 0.77 | 043 | 0.78 | 0.66 | 0.72 | 0.49
ArgoUML | 0.83 | 0.92 | 0.87 | 0.35 | 0.85 | 0.92 | 0.88 | 0.36
Columba 085 | 0.85 | 0.85 | 0.35 | 0.78 | 0.68 | 0.73 | 0.42
EMF 0.83 | 031 | 045 | 049 | 0.84 | 029 | 043 | 0.55
Hibernate | 0.95 | 0.72 | 0.82 | 0.33 | 095 | 0.73 | 0.83 | 0.41
JEdit 0.74 |1 020 | 032 | 0.54 | 096 | 0.21 | 0.34 | 0.56
JFreeChart | 0.67 | 0.46 | 0.55 | 0.41 | 0.68 | 0.44 | 0.54 | 048
JRuby 085 | 0.81 | 0.83 | 0.39 | 092 | 0.63 | 0.74 | 047
SQuirrel 0.71 | 0.68 | 0.70 | 0.36 | 0.89 | 0.54 | 0.67 | 0.45

cation model improves the baseline model by 33% when classifying
requirement SATD with the true positive value of requirement SATD
class exceeds Maldonado’s work by 253. Nevertheless, for design
SATD classification, our model achieves the true positive value of
design SATD of 548. We assume that the multi-class classification
is more challenging than the binary classification; therefore, we
need to apply advanced techniques to enhance the performance
of our approach in the future. Moreover, a prior study manifests
that the detection of design SATD requires many training data as
design SATD comments are less similar to each other compared to
requirement SATD comments [7]. Under these circumstances, our
multi-class classification model finds more difficult to classify design
SATD comments.

V. DISCUSSION

A. Threats to Validity

1) Internal threat: We applied Maldonado et al. [7] as a baseline
in our experiment. However, they did not explicitly provide the
implementation of their model. We therefore needed to re-implement
their classification model by strictly following their methodology
and we concede that our implementation may not be identical
to all implementations in their work. We minimize this threat by
constructing their approach using the dataset published in their work
and then comparing the results achieved by our own version of their
classification model with the results provided in their work. We found
that our results are almost consistent with their results.

We utilized an n-gram extraction tool namely Ngweight to con-
struct our n-gram dictionary without modifying any parameters in this
work. If the n-gram IDF tool receives a different parameter, it will
create a different dictionary from ours. Also, constructing an n-gram
dictionary by other algorithms could produce a different one.

Besides, we applied an instance hardness under-sampling library,
which automatically computes the threshold value for each learning
algorithm, to deal with the imbalanced dataset. Thus, changing the
algorithm or adjusting the threshold value could provide distinct
outcomes.

2) External threat: The dataset was leveraged from Maldonado
et al. [7] consists of JAVA source code comments of 10 open
source projects from different domains. However, our work may
not generalize to other open-source projects, commercial projects,
projects from different areas, projects are written in other languages
(e.g., Python), and projects are not written in the English language.
Also, projects contain low source code comments, or no source code
comments are not suitable for our work since this study mainly
focuses on classifying SATD through source code comments.

B. Is under-sampling a good decision for dealing with the
imbalanced dataset?

To investigate the effectiveness of instance hardness under-
sampling for imbalanced data problem, we conducted the comparison
between our approach applying under-sampling and without under-
sampling in which derived features from n-gram IDF and trained
random forest to classify design and requirement SATD. We set the
evaluation by splitting the dataset into a training set (8 projects),
testing set (1 project), and validation set (1 project). After 10
rounds of the evaluation, the performance measures achieved by two
approaches were reported.

Table VIII compares the classification performance of our ap-
proach using under-sampling against without under-sampling. Our
approach (using under-sampling) performs better than the comparing
approach (without under-sampling) with respect to Fl-score and
MMCE measures in most cases. Based on the experiment results,
we assume that the under-sampling technique supports our approach
to tackle the imbalanced data problem for improving the performance
of our classification model.

VI. CONCLUSION

Our work focuses on design and requirement SATD classification
through the use of n-gram IDF, instance hardness under-sampling,
and random forest classifier. The proposed approach aims to address
the limitations of binary models (i.e., misclassification) in order to
support development teams to develop a payback plan for design
and requirement SATD management, the most frequent types of
SATD. In our experiment, we use source code comments of 10 open-
source software projects to build the multi-class classification model
to automatically predict design and requirement SATD in a new target
project.

The proposed approach consistently outperforms traditional tech-
niques (i.e. BOW and TF-IDF) and one alternative (i.e., using SVM)
according to the experiment results. We also outperform Maldonado
et al. for SATD identification with the highest F1-score values of
0.874. Especially, when classifying requirement SATD, our approach
has exceeded the baseline by 33%. Resembling our previous study,
the use of n-gram IDF (with under-sampling, and ensemble classi-
fier) has improved our predictive performance over the traditional
techniques since n-gram IDF is capable of capture useful phrases
or words indicates the presence of design and requirement SATD in
source code comments.

For future work, we plan to improve the performance of our
approach, especially classifying design SATD by using advanced
algorithms (i.e. word embedding and deep learning methods). Be-
sides open-source software projects, We plan to run our multi-class
classification model on commercial software projects. Moreover, we
plan to extend our work to classify all types of SATD including the
types which are not common in software projects (e.g., defect, test,
and documentation debt). We also plan to develop our approach to
detect SATD comments in other programming languages.
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