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Abstract—Bug fixing accounts for a large amount of the
software maintenance resources. Generally, bugs are reported,
fixed, verified and closed. However, in some cases bugs have to be
re-opened. Re-opened bugs increase maintenance costs, degrade
the overall user-perceived quality of the software and lead to
unnecessary rework by busy practitioners.

In this paper, we study and predict re-opened bugs through a
case study on the Eclipse project. We structure our study along
4 dimensions: 1) the work habits dimension (e.g., the weekday
on which the bug was initially closed on), 2) the bug report
dimension (e.g., the component in which the bug was found) 3)
the bug fix dimension (e.g., the amount of time it took to perform
the initial fix) and 4) the team dimension (e.g., the experience
of the bug fixer). Our case study on the Eclipse Platform 3.0
project shows that the comment and description text, the time it
took to fix the bug, and the component the bug was found in are
the most important factors in determining whether a bug will be
re-opened. Based on these dimensions we create decision trees
that predict whether a bug will be re-opened after its closure.
Using a combination of our dimensions, we can build explainable
prediction models that can achieve 62.9% precision and 84.5%
recall when predicting whether a bug will be re-opened.

I. INTRODUCTION

Large software systems are becoming increasingly impor-
tant in the daily lives of many people. A large portion
of the cost of these software systems is attributed to their
maintenance. In fact, previous studies show that more than
90% of the software development cost is spent on maintenance
and evolution activities [1].

A plethora of previous research was dedicated to addressing
issues related to software bugs. For example, software defect
prediction work used various code, process, social structure,
geographic distribution and organizational structure metrics to
predict buggy software locations (e.g., files or directories) [2]–
[8]. Other work focused on predicting the time it takes to fix
a bug [9]–[11].

Previous work treated all bugs equally, meaning, they did
not differentiate between re-opened and new bugs. Re-opened
bugs are bugs that were closed by developers, but re-opened
at a later time. Bugs can be re-opened for a variety of reasons.
For example, a previous fix may not have been able to fully
fix the reported bug. Or the developer responsible for fixing

the bug was not able to reproduce the bug and might close the
bug, which is later re-opened after further clarification.

Re-opened bugs take considerably longer time to resolve. In
the Eclipse Platform 3.0 project, the average time it takes to
resolve (i.e., from the time the bug is initially opened till it is
fully closed) a re-opened bug is more than twice as much as
a non-reopened bug (371.4 days for re-opened bugs vs. 149.3
days for non-reopened bugs). An increased bug resolution time
consumes valuable time from the already-busy developers. In
addition, such re-opened bugs may lead end users to lose
trust in the quality of the software product, which negatively
impacts the overall end user’s experience. To the best of our
knowledge, this is the first work to study re-opened bugs.
We perform a case study on the Eclipse Platform 3.0 project
to determine factors that indicate whether a bug will be re-
opened. Knowing which factors are attributed to re-opened
bugs prepares practitioners think twice before closing a bug.
For example, if it is determined that bugs logged with high
severity are often re-opened, then practitioners can pay special
attention (in terms of fixing and testing) to such bugs and their
fixes.

We combine data extracted from the bug and source control
repositories to extract 22 factors that are grouped into four
different dimensions: 1) work habits dimension, 2) bug report
dimension 3) bug fix dimension and 4) team dimension. We
build decision trees and perform a Top Node analysis [12],
[13] to identify the most important factors in building these
decision trees. Furthermore, we use the extracted factors to
predict whether or not a closed bug will be re-opened in the
future. In particular, we aim to answer the following research
questions:

Q1 Which factors indicate, with high probability,
that a bug will be re-opened? The bug description
and comment text, the number of days it took to
make the initial bug fix and the component the bug
was found in are the best indicators of whether or
not a bug will be re-opened.



Q2 Can we accurately predict, using the four di-
mensions, if a bug will be re-opened using the
extracted factors? We use 22 different factors to
build highly accurate prediction models that predict
whether or not a bug will be re-opened. Our model
can correctly predict whether a bug will be re-opened
with 62.9% precision and 84.5% recall.

The rest of the paper is organized as follows. Section II
describes the life cycle of a bug. Section III presents the
methodology of our study. We detail our data processing
steps in Section IV. The case study results are presented in
Section V. We compare the prediction results using different
algorithms in Section VI. The threats to validity and related
work are presented in Sections VII and VIII, respectively.
Section IX concludes the paper.

II. THE BUG LIFE CYCLE

Bug tracking systems, such as Bugzilla [14], are commonly
used to manage and facilitate the bug resolution process.
These bug tracking systems record various characteristics
about reported bugs, such as the time the bug was reported and
the component the bug was found in. The information stored
in bug tracking systems is leveraged by many researchers to
investigate different phenomena.

The life cycle of a bug can be extracted from the information
stored in the bug tracking systems. We can track the different
states that bugs have gone through and reconstruct their life
cycles based on these states. For example, when bugs are
initially logged, they are confirmed and labeled as new bugs.
Then, they are triaged and assigned to developers to be fixed.
After a developer fixes the bug, the fix is verified and closed.

A diagram representing the majority of the states bugs
go through is shown in Figure 1. When developers, testers
or user’s experience a bug, they log/submit a bug report in
the bug tracking system. The bug is then set to the Opened
state. Next, the bug is triaged to determine whether it is
a real bug and whether it is worth fixing. After the triage
process, the bug is accepted and its state is updated to New.
It then gets assigned to a developer who will be responsible
to fix it (i.e., its state is Assigned). If a bug is known to a
developer beforehand1, it is assigned to that developer who
implements the fix and the bug goes directly from the New
state to the Resolved FIXED state. More typically, bugs are
assigned to a developer (i.e., go to the Assigned state), who
implements a fix for the bug and its state is transitioned
into Resolved FIXED. In certain cases, a bug is not fixed
by the developers because it is identified as being invalid
(i.e., state Resolved INVALID), a decision was made to not
fix the bug (i.e., state Resolved WONTFIX), it is identified as
a duplicate of another bug (i.e., state Resolved DUPLICATE)
or the bug is not reproducible by the developer (i.e., state
Resolved WORKSFORME). Once the bug is resolved, it is

1For example, in some cases developers discover a bug and know how
to fix it, however they create a bug report and assign it to themselves for
book-keeping purposes.
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Fig. 1. Bug resolution process [15]

verified by another developer or tester (state Verified FIXED)
and finally closed (state Closed).

In certain cases, bugs are re-opened after their closure. This
can be due to many reasons. For example, a bug might have
been incorrectly fixed and resurfaces. Another reason might
be that the bug was closed as being a duplicate and later re-
opened because it was not actually a duplicate.

In general, re-opened bugs are not desired by software
practitioners because they degrade the overall user-perceived
quality of the software and often lead to additional and
unnecessary rework by the already-busy practitioners.

III. APPROACH

In this section, we describe the factors used to predict
whether or not a bug will be re-opened. Then, we present
decision trees and motivate their use in our study. Finally, we
present the metrics we employ to evaluate the performance of
the prediction models.

A. Dimensions Used to Predict if a Bug will be Re-opened

We use information stored in the bug tracking system,
in combination with information from the source control
repository of a project to derive various factors that we use to
predict whether a bug will be re-opened.

The factors we extracted cover four different dimensions.
We describe each dimension and its factors in more detail.

Work habits dimension. Software developers are often over-
loaded with work. This increased workload affects the way
these developers perform. For example, Sliwerski et al. [16]
showed that code changes are more likely to introduce bugs
if they were done on Fridays. Anbalagan et al. [17] showed
that the time it takes to fix a bug is related to the day of
the week when the bug was reported. Hassan and Zhang [12]
used various work habit factors to predict the likelihood of a
software build failure.

These prior findings motivate us to include the work habit
dimension in our study on re-opened bugs. For example,
developers might be inclined to close bugs quickly on a
specific day of the week to reduce their work queue and focus
on other tasks. These quick decisions may cause the bugs to
be re-opened at a later date.

The work habit dimension consists of four different factors.
The factors of the work habit dimension are listed in Table I.
The table explains the rationale behind choosing each attribute.
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TABLE I
FACTORS CONSIDERED IN OUR STUDY

Dimension Factor Type Data Source Explanation Rationale

Work habits

Time Numeric Bug
database

Time in hours (0-23) when the bug was closed.
For re-opened bugs, we used the time of the first
bug closure.

Bugs closed at certain times in the day (e.g., late
afternoons) are more/less likely to be re-opened

Weekday Nominal Bug
database

Day of the week (e.g., Mon, Tue, etc.) when the
bug was closed. For re-opened bugs, we used the
time of the first bug closure.

Bugs closed on specific days of the week (e.g., Fridays)
are more/less likely to be re-opened

Month
day

Numeric Bug
database

Calendar day of the month (0-30) when the bug
was closed. For re-opened bugs, we used the time
of the first bug closure.

Bugs closed at specific periods (i.e., beginning, mid or
end of the month) in the month are more/less likely to
be re-opened

Month Numeric Bug
database

Month of the year (0-11) when the bug was
closed. For re-opened bugs, we used the time of
the first bug closure.

Bugs closed in specific months (e.g., during holiday
months like December) are more/less likely to be re-
opened

Bug report

Component Nominal Bug
database

Component the bug was found in (e.g., UI, De-
bug, Search)

Certain components might be harder to fix; bugs found
in these components are more/less likely to be re-opened

Platform Nominal Bug
database

Platform (e.g., Windows, MAC, UNIX) the bug
was found in

Certain platforms are harder to fix bugs for, and there-
fore, their bugs are more likely to be re-opened

Severity Numeric Bug
database

Severity of the reported bug. A high severity (i.e.,
7) indicates a blocker bug and a low severity (i.e.,
1) indicates an enhancement. For re-opened bugs
we use the severity before the first re-open

Bugs with high severity values are harder to fix and are
more likely to be re-opened

Priority Numeric Bug
database

Priority of the reported bug. A low priority value
(i.e., 1) indicates an important bug and a high pri-
ority (i.e., 5) indicates a bug of low importance.
For re-opened bugs we use the priority before the
first re-open

Bugs with low priority value (i.e., high importance) are
likely to get careful attention and have a smaller chance
of being re-opened

Number
in CC list

Numeric Bug
database

Number of persons in the cc list of the logged
bugs. For re-opened bugs, we only count the
number of persons in the cc list before the first
re-open

Bugs that have persons in the cc list are followed more
closely, and hence, are more/less likely to be re-opened

Description
size

Numeric Bug
database

The number of words in the description of the
bug

Bugs that are not described well (i.e., have a short
description) are more likely to be re-opened

Description
text

Bayesian
score

Bug
database

The text content of the bug description Words included in the bug description can indicate
whether the bug is more likely to be re-opened

Number
of com-
ments

Numeric Bug
database

The number of comments attached to a bug
report. For re-opened bugs, we only include the
number of comments before the first re-open

The higher the number of comments, the more likely
the bug is controversial. This might lead to a higher
chance of it being re-opened

Comment
size

Numeric Bug
database

The number of words in all the comments at-
tached to the bug report. For re-opened bugs, we
only include the comments before the first re-
open

The longer the comments are, the more the discussion
about the bug and the more/less likely it will be re-
opened

Comment
text

Bayesian
score

Bug
database

The text content of all the comments attached
to the bug report. For re-opened bugs, we only
include the comments before the first re-open

The comment text attached to a bug report may indicate
whether a bug will be re-opened

Priority
changed

Boolean Bug
database

States whether the priority of the bug was
changed after the initial report. For re-opened
bugs, we only consider the priority change if it
occurred before the first re-open

Bugs that have their priorities increased are generally
followed more closely and are less likely to be re-
opened

Bug fix
Time
days

Numeric Bug
database

The time it took to resolve a bug, measured in
days. For re-opened bugs, we measure the time
to perform the initial fix

The time it takes to fix a bug is indicative of its
complexity. Hence the time it takes to fix a bug is a
good indicator if it will be re-opened.

Last sta-
tus

Nominal Bug
database

The last status of the bug when it is closed. For
re-opened bugs, we record the status of the first
closure

When bugs are closed using certain statuses (e.g.,
Worksforme or duplicate), they are more/less likely to
be re-opened

No. of
files in
fix

Numeric Bug and
source code
databases

The number of files edited to fix the bug. For
re-opened bugs, we only consider the initial fix

Bugs that require larger fixes, indicated by an increase
in the number of files that need to be edited, are more
likely to be re-opened.

People

Reporter
Name

String Bug
database

Name of the bug reporter Bugs reported by specific individuals are more/less
likely to be re-opened

Fixer
Name

String Bug and
source code
databases

Name of the bug fixer. For re-opened bugs, we
use the name of the person who performed the
initial fix

Bugs fixed by specific individuals are more/less likely
to be re-opened

Reporter
Experi-
ence

Numeric Bug
database

The number of bugs reported by the bug reporter
before reporting this bug

More experienced reporters are less likely to have their
bugs re-opened

Fixer Ex-
perience

Numeric Bug and
source code
databases

The number of bug fixes the fixer performed
before fixing this bug

Bugs fixed by experienced fixers are less likely to be
re-opened
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Bug report dimension. When a bug is reported, the reporter
of the bug is required to include information that describes
the bug. This information is then used by the developers
to understand and locate the bug. Several studies use that
information to study the amount of time required to fix a
bug [18]. For example, Panjar [9] showed that the severity
of a bug has an effect on its lifetime. In addition, a study
by Hooimeijer and Weimer [19] showed that the number of
comments attached to a bug report affects the time it takes to
fix it.

We believe that attributes included in a bug report can be
leveraged to determine the likelihood of a bug being re-opened.
For example, bugs with short or brief descriptions may need
to be re-opened later because a developer may not be able to
understand or reproduce them the first time around.

A total of 11 different factors make up the bug report
dimension. They are listed in Table I.

Bug fix dimension. Some bugs are harder to fix than others. In
some cases, the initial fix to the bug may be insufficient (i.e., it
did not fully fix the bug) and, therefore, the bug needs to be re-
opened. We conjecture that more complicated bugs are more
likely to be re-opened. There are several ways to measure the
complexity of a bug fix. For example, if the bug fix requires
many files to be changed, this might be an indicator of a rather
complex bug [20].

The bug fix dimension uses factors to capture the
complexity of the initial fix of a bug. Table I lists the three
factors that measure the time it took to fix the bug, the
status before the bug was re-opened and the number of files
changed to fix the bug. In some cases, multiple changes are
grouped into one and committed as one big change. Analysis
of our data showed no evidence of this issue. The majority
of the changes used in our study are 1 or 2 files in size and
the largest change had 92 files.

People dimension. In many cases, the people involved with
the bug report or the bug fix are the reason that it is re-opened.
Reporters may not include important information when report-
ing a bug, or they lack the experience (i.e., they have never
reported a bug before). On the other hand, developers (or
fixers) may lack the experience and/or technical expertise to
fix or verify a bug, leading to the re-opening of the bug.

The people dimension, listed in Table I, is made up of
four factors that cover bug reporters, bug fixers and their
experience.

The four dimensions and their factors listed in Table I are a
sample of the factors that can be used to study why bugs are
reopened. We plan (and encourage other researchers) to build
on this set of dimensions to gain more insights into why bugs
are re-opened.

B. Building Decision Tree Based Predictive Models

To determine if a bug will be re-opened, we use the
factors from the four aforementioned dimensions as input to

TABLE II
CONFUSION MATRIX

True class
Classified as Re-open Not Re-open

Re-open TP FP
Not Re-open FN TN

a decision tree classifier. Then, the decision tree classifier
predicts whether or not the bug will be re-opened.

We chose to use a decision tree classifier for this study
since it offers an explainable model. This is very advantageous
because we can use these models to understand what attributes
affect whether a bug will be re-opened. In contrast, most other
classifiers produce “black box” models that do not explain
which attributes affect the predicted outcome.

To perform our analysis, we divide our data set into two
sets: a training set and a test set. The training set is used to
train the decision tree classifier. Then, we test the accuracy of
the decision tree classifier using our test set.

The C4.5 algorithm [21] was used to build the decision
tree. Using the training data, the algorithm starts with an
empty tree and adds decision nodes or leafs at each level.
The information gain using a particular attribute is calculated
and the attribute with the highest information gain is chosen.
Further analysis is done to determine the cut-off value at which
to split the attribute. This process is repeated at each level until
the number of instances classified at the lowest level reaches
a specified minimum. Similar to previous studies [22], in our
case study, we set this minimum node size to be 10 to mitigate
noise in our predictions.

To illustrate, we provide an example tree produced by the
fix dimension, shown in Figure 2. The decision tree indicates
that when the time days variable (i.e., the number of days to
fix the bug) is greater than 13.9 and the last status is Resolved
Fixed, then the bug will be re-opened. On the other hand, if the
time days variable is less than or equal to 13.9 and the number
of files in the fix is less than or equal to 4 but greater than 2,
then the bug will not be re-opened. Such explainable models
can be leveraged by practitioners to direct their attention to
bugs that require closer review before they are closed.

C. Evaluating the Accuracy of Our Models

To evaluate the predictive power of the derived models,
we use the classification results stored in a confusion matrix.
Table II shows an example of a confusion matrix.

We follow the same approach used by Kim et. al [23],
using the four possible outcomes for each bug. A bug can be
classified as re-opened when it truly is re-opened (true positive,
TP); it can be classified as re-opened when actually it is not
re-opened (false positive, FP); it can be classified as not re-
opened when it is actually re-opened (false negative, FN); or it
can be classified as not re-opened and it truly is not re-opened
(true negative, TN). Using the values stored in the confusion
matrix, we calculate the widely used Accuracy, Precision,
Recall and F-measure for each class (i.e., re-opened and not re-
opened) to evaluate the performance of the predictive models.
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Fig. 2. Sample decision tree

The accuracy measures the number of correctly classified
bugs (both the re-opened and the not re-opened) over the total
number of bugs. It is defined as:

Accuracy =
TP + TN

TP + FP + TN + FN
. (1)

Since there are generally less re-opened bugs than not re-
opened bugs, the accuracy measure may be misleading if a
classifier performs well at predicting the majority class (i.e.,
not re-opened bugs). Therefore, to provide more insight, we
measure the precision and recall for each class separately.

1) Re-opened precision: Measures the percentage of cor-
rectly classified re-opened bugs over all of the bugs clas-
sified as re-opened. It is calculated as P(re) = TP

TP+FP .
2) Re-opened recall: Measures the percentage of correctly

classified re-opened bugs over all of the actually re-
opened bugs. It is calculated as R(re) = TP

TP+FN .
3) Not re-opened precision: Measures the percentage of

correctly classified, not re-opened bugs over all of the
bugs classified as not re-opened. It is calculated as P(nre)
= TN

TN+FN .
4) Not re-opened recall: Measures the percentage of

correctly classified not re-opened bugs over all of the
actually not re-opened bugs. It is calculated as R(nre)
= TN

TN+FP .
5) F-measure: Is a composite measure that measures the

weighted harmonic mean of precision and recall. For
re-opened bugs it is measured as F-measure(re) =
2∗P (re)∗R(re)
P (re)+R(re) and as F-measure(nre) = 2∗P (nre)∗R(nre)

P (nre)+R(nre)
for bugs that are not re-opened.

A precision value of 100% would indicate that every bug
we classified as (not) re-opened was actually (not) re-opened.
A recall value of 100% would indicate that every actual (not)
re-opened bug was classified as (not) re-opened.

To estimate the accuracy of the model, we employ 10-fold
cross validation [24]. In 10-fold cross validation, the data set
is divided into two parts: testing data that contains one-tenth
of the original data set and training data that contains the rest
of the data set. The model is trained using the training data
and its accuracy is tested using the testing data. We repeat the
10-fold cross validation 10 times and report the average of the
10 runs.

IV. DATA PROCESSING

The Eclipse Platform 3.0 project was used as a case study
since it is a large and mature Open Source Software (OSS)
project with a large user base and a rich development history.
We leveraged two data sources from the Eclipse Platform 3.0
project, the bug database and the source code control (CVS)
logs.

To extract data from the Eclipse bug database, we wrote
a script that crawls and extracts bug report information from
Eclipse’s online Bugzilla database. The reports are then parsed
and different factors are extracted and used in our study.

Most of the factors can be directly extracted from the bug
report, however, in some cases we needed to combine the data
in the bug report with data from the CVS logs. For example,
one of our factors is the number of files that are changed
to implement the bug fix. In most cases, we can use the files
included in the submitted patch. However, sometimes the patch
is not attached to the bug report. In this case, we search the
CVS logs to determine the change that fixed the bug. We used
the J-REX [25] tool, an evolutionary code extractor for Java-
based software systems, to perform the extraction of the CVS
logs. The J-REX tool obtains a snapshot of the Eclipse CVS
repository and groups changes into transactions using a sliding
window approach [16]. The extracted logs contain the date on
which the change was made, the author of the change, the
comments by the author to describe the change and files that
were part of the change. To map the bugs to the changes that
fixed them, we used the approach used by Zimmermann et
al. [2], which searches in the CVS commit comments for the
bug IDs. To validate that the change is actually related to the
bug, we make sure that the date of the change is on or prior
to the close date of the bug.

To use the bug reports in our study, we require that they be
resolved and contain all of the factors we consider in our study.
We extracted a total of 18,312 bug reports. Of these 18,312
reports, only 3,903 bug reports were resolved (i.e., they were
closed at least once). Of the resolved bug reports, 1,530 could
be linked to source code changes and/or submitted patches.
We use those 1,530 bug reports in our study. Of the 1,530
bugs reports studied, 246 were re-opened and 1,284 were not.

For each bug report, we extract 22 different factors that
cover four different dimensions, described in Table I. Most
of the factors were directly derived from the bug or code
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databases. However, two factors in the bug report dimension
are text based and required special processing. We apply a
Naive Bayesian classifier [26] on the description text and com-
ment text factors to determine keywords that are associated
with re-opened and non-reopened bugs. For this, we use a
training set that is made up of 2/3 randomly selected bug
reports. The Bayesian classifier is trained using two corpora
that are derived from the training set. One corpus contains
the description and comment text of the re-opened bugs2

and the other corpus contains the description and comment
text of the bugs that were not re-opened. The content of
the description and comments are divided into tokens, where
each token represents a single word. The occurrence of each
token is calculated and each token is assigned a probability
of being attributed to a re-opened or non re-opened bug.
The probabilities of the highest 15 tokens are combined into
one [27], which we use as a score value that indicates whether
a bug will be re-opened or not. A score value close to 1
indicates that the bug is likely not to be re-opened and vice-
versa. The score values are then used in the decision tree
instead of the raw description and comment text.

Dealing with imbalance in data: One issue that many real-
world applications (e.g., in vision recognition [28], bioinfor-
matics [29], credit card fraud detection [30] and bug predic-
tion [31]) suffer from is data imbalance. What this means is
that one class (i.e., majority) usually appears a lot more than
another class (i.e., minority). This causes the decision tree to
learn factors that affect the majority class without trying to
learn about factors that affect the minority class. For example,
in our case the majority class is non-reopened bugs which has
1,284 bugs and the minority class is re-opened bugs, which
contains 246 bugs. If the decision tree simply predicts that all
bugs will not be re-opened, then it will be correct 83.9% of
the time (i.e., 1284

1530 ).
To deal with this issue of data imbalance, we must increase

the weight of the minority class. A few different approaches
have been proposed in the literature:

1) Re-weighting the minority class: Assigns a higher
weight to each bug report of the minority class. For
example, in our data, we would give a weight of 5.2
(i.e., 1284

246 ) to each re-opened instance.
2) Re-sampling the data: Over- and under- sampling can

be performed to alleviate the imbalance issue. Over-
sampling increases the minority class instances to be-
come at the same level as the majority class. Under-
sampling decreases the majority class instances to be-
come at the same level as the minority class. Estabrooks
and Japkowicz [32] recommend performing both under-
and over-sampling, since under-sampling may lead to
useful data being discarded and over-sampling may lead
to over-fitted models.

We built models using both re-weighting and re-sampling
using the AdaBoost algorithm [33] available in the WEKA ma-

2For re-opened bugs, we used all the comments posted before the bugs
were re-opened.

chine learning framework [34]. We performed both over- and
under-sampling on the training data and predicted using a non-
balanced test data set. We did the same using the re-weighting
approach. Using re-sampling achieves better prediction results,
therefore we decided to only use this in all our experiments.
A similar finding was made in previous work [22].

It is important to note here that we re-sampled the training
data set only. The test data set was not re-sampled or re-
weighted in any way and maintained the same ratio of re-
opened to non-re-opened bugs as in the original data set.

V. CASE STUDY RESULTS

In this section, we present the results of our case study on
the Eclipse Platform 3.0 project. We aim to answer the two
research questions posed earlier. To answer the first question
we perform a Top Node analysis [12], [13] using each of the
dimensions in isolation (to determine the best factors within
each dimension) and using all of the dimensions combined (to
determine the best factors across all dimensions). Then, we
use these dimensions to build decision trees that accurately
predict whether or not a bug will be re-opened.

Q1. Which factors indicate, with high probability, that a
bug will be re-opened?

We perform Top Node analysis to identify factors that are
good indicators of whether a bug will be re-opened or not. In
Top Node analysis, we examine the top factors in the decision
trees created during our 10-fold cross validation. The most
important factor is always the root node of the decision tree. As
we move down the decision tree, the factors become less and
less important. For example, in Figure 2, the most important
factor in the tree is time days. As we move down to level 1 of
the decision tree, we can see that last state and num fix files
are the next important factors and so on.

The Top Node analysis for the team dimension is shown
in Table III. The Fixer name and Reporter name are the
most important factors in the Team dimension. Out of the
10 decision trees created, Fixer name was the most important
factor in 5 of them and Reporter name in the other 5. It
is important to note that in level 1 of the tree presented in
Table III, the frequencies of the attributes sum up to more
than 20 (which would be the case when the attributes used
were binary). This is because the Fixer name and Reporter
name variables are of type string and are converted to multiple
nominal variables. Therefore, the frequencies of the attributes
at level 1 of the tree sum up to more than 20.

As for the work habit dimension, the Month and Time
(i.e., 0-23 hr) of the day the bug was closed on were the most
important factors, as depicted in Table IV. In the 10 decision
trees created, the month was the most important factor 9 times
and the time factor was the most important factor once.

Table V presents the Top Node analysis results for the bug
fix dimension. The time days factor, which counts the number
of days it took from the time the bug was opened until its initial
closure (i.e., the time it took to initially resolve the bug), is
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the most important factor in the fix dimension. In all of the
10 decision trees we built, the Time days factor was the most
important in 7 of them and the Last status the bug held before
it was reopened was the most important factor in the remaining
3 trees.

The Top Node analysis results of the bug report dimension
are shown in Table VI. The comment text content included in
the bug report factor is the most important in this dimension.
Out of the 10 decision trees we built, the comment text content
was the most important in all of them.

We examine the words that appear the most in the de-
scription and comments of the bugs. These are the words
the Naive Bayesian classifier associates with re-opened and
not re-opened bugs. Words such as “control”, “background”,
“debugging”, “breakpoint”, “blocked” and “platforms” are
associated with re-opened bugs. Words such as “verified”, “du-
plicate”, “screenshot”, “important”, “testing” and “warning”
are associated with bugs that are not re-opened.

We manually examined some of the re-opened bugs. We
found that many of the re-opened bugs involved threading
issues. The discussions of these re-opened bugs talked about
running processes in the “background” and having “blocked”
threads. In addition, we found that bugs that involve the
debug component were frequently re-opened, because they
are difficult to fix. For example, we found comments such
as “Verified except for one part that seems to be missing: I
think you forgot to add the...” and “This seems more difficult
that[than] is[it] should be. I wonder if we can add...”.

Thus far, we looked at the dimensions in isolation and
used Top Node analysis to determine the most important
factors in each dimension. Now, we combine all of the
dimensions together and perform the Top Node analysis
using all of the factors. The Top Node analysis of all
dimensions is shown in Table VII. The comment text is
determined to be the most important factor amongst all of the
factors considered in this study. In addition, the description
text content, the time to perform the fix in days and
the component the bug is logged against are also important
factors in determining whether a bug will be re-opened or not.�




�

	
The comment text, description text, time it took

to fix the bug and the component the bug was
logged against are the most important factors in
determining whether or not a bug will be re-opened.

Q2. Can we accurately predict, using the four dimensions,
if a bug will be re-opened using the extracted factors?

Following our study on which factors are good indicators of
re-opened bugs, we use these factors to predict whether a bug
will be re-opened. First, we build models that use only one
dimension to predict whether or not a bug will be re-opened.
Then, all of the dimensions are combined and used to predict
whether or not a bug will be re-opened.

Table VIII shows the prediction results produced using

TABLE III
TOP NODE ANALYSIS OF THE TEAM DIMENSION

Level Frequency Attribute
0 5 Fixer name

5 Reporter name
1 35 Fixer experience

28 Reporter name
24 Reporter experience
19 Fixer name

2 50 Fixer experience
40 Reporter experience
1 Fixer name

TABLE IV
TOP NODE ANALYSIS OF THE WORK HABIT DIMENSION

Level Frequency Attribute
0 9 Month

1 Time
1 7 Week day

6 Time
4 Month
2 Month day

2 13 Week day
11 Month day
8 Month
2 Time

decision trees. The results are the averages of 10 runs. Ideally,
we would like to obtain high precision, recall and F-measure
values, especially for the re-opened bugs. Out of the four
dimensions considered, the bug report dimension was the best
performing. It achieves a re-opened precision of 62.9%, a
re-opened recall of 82.5% and 71.2% re-opened F-measure.
The bug report dimension was also the best performer for
not-reopened bugs; achieving a not re-opened precision of
96.5%, not re-opened recall of 90.7% and 93.5% not re-
opened F-measure. The overall accuracy achieved by the bug
report dimension is 89.3%. The rest of the dimensions did not
perform nearly as well as the bug report dimension.

To provide a full context of the results, we provide the con-
fusion matrix values (average of 10 runs) when all dimensions
are used in combination. The TP= 21, the FN= 4, the FP= 13
and the TN= 115.

Using all of the dimensions in combination slightly reduced
the overall accuracy, but it improved the re-opened recall.
Overall, we do not see a significant improvement using all
of the dimensions compared to using the bug report dimen-
sion alone. This finding shows that fairly accurate prediction
models can be created from the bug report information that
is readily available in most bug tracking systems. Having a
predictor that can perform well without the need to collect
and calculate many complex factors makes it more attractive
for practitioners to adopt such methods in practice.
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TABLE V
TOP NODE ANALYSIS OF THE FIX DIMENSION

Level Frequency Attribute
0 7 Time days

3 Last status
1 8 No. fix files

6 Last status
6 Time days

2 12 No. fix files
12 Time days

TABLE VI
TOP NODE ANALYSIS OF THE BUG DIMENSION

Level Frequency Attribute
0 10 Comment text
1 19 Description text

1 Component
2 9 Comment text

4 Description size
3 No. of comments
3 No. in CC List
2 Comments size
2 Description text
2 Priority changed
1 Platform

�

�

�



We can build explainable prediction models that
can achieve 62.9% precision and 84.5% recall when
predicting whether a bug will be re-opened and
96.8% precision and 89.6% recall when predicting
if a bug will not be re-opened.

VI. COMPARISON WITH OTHER PREDICTION
ALGORITHMS

In this paper, we used decision trees to predict whether a
bug will be re-opened. However, decision trees are not the only
algorithm that can be used. Naive Bayes classifier and Logistic
regression are two very popular algorithms that have been
used in many prediction studies (e.g., [9]). In this section, we
compare the prediction results of various prediction algorithms
that can be used to predict whether or not a bug will be re-
opened. In addition, we used the prediction from the Zero-R
algorithm as a baseline for the prediction accuracy. The Zero-
R algorithm simply predicts the majority class, which is not
re-opened in our case.

The prediction results using the different algorithms are
shown in Table IX. As expected, the Zero-R algorithm
achieves the worst performance, since it does not detect any
of the re-opened bugs. The naive Bayes algorithm performs
better, achieving a re-opened F-measure of 59.9% (precision:
50.5%, recall: 74.4%) and not re-opened F-measure of 89.9%
(precision: 94.5%, recall: 85.6%). The logistic regression
model performs slightly better achieving re-opened F-measure
of 64.4% (precision: 55.1%, recall: 78.5%) and not re-opened
F-measure of 91.3% (precision: 95.5%, recall: 87.5%). Deci-
sion trees outperformed all of the other prediction methods,
shown in bold. More importantly however is that decision

TABLE VII
TOP NODE ANALYSIS ACROSS ALL DIMENSIONS

Level Frequency Attribute
0 10 Comment text
1 16 Description text

2 Component
1 Time days

2 8 Time days
5 No. of comments
3 Reporter name
2 Time
1 Description size
1 Description text
1 Fixer name
1 Month

trees provide explainable models. Practitioners often prefer
explainable models since it helps them understand why the
predictions are the way they are.

VII. THREATS TO VALIDITY

In this section, we discuss the possible threats to validity
of our study. In this study, we used a large, well established
Open Source project to conduct our case study. Although the
Eclipse Platform 3.0 project is a large open source project, our
results may not generalize to other open source or commercial
software projects.

We use decision trees to perform our prediction and com-
pared our results to 3 other popular prediction algorithms.
Decision trees performed well compared to the 3 algorithms
we compared with, however, using other prediction algorithms
may produce different results. One major advantage to using
decision trees is that they provide explainable models that
practitioners can use to understand the prediction results.

Some of the re-opened bugs considered in our study were
re-opened more than once. In such cases, we predict for the
first time the bug was re-opened. In future studies, we plan to
investigate bugs that are re-opened several times.

One of the attributes used in the People dimension is the
fixer name. We extracted the names of the fixers from the
committed CVS changes. In certain cases, the fixer and the
committer of the changes are two different people. In the
future, we plan to use heuristics that may improve the accuracy
of the fixer name factor.

We were able to extract a total of 18,312 bug reports, of
which 1,530 met the prerequisites to be included in our study.
At first glance, this seems to be a low bug reports used-to-
extracted bug reports ratio. However, such a relatively low ratio
is a common phenomenon in studies using bug reports [9],
[10]. In addition, we would like to note that the percentage
of open-to-reopened bugs in the data set used and the original
data set are quite close (16.1% in the data set used vs. 10.2%
in the original data set).

VIII. RELATED WORK

We divide the related work into the four dimensions used in
our study: the work habit dimension, the bug report dimension,
the bug fix dimension and the people dimension.
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TABLE VIII
PREDICTION RESULTS

Dimension Re-opened
Precision

Re-opened
Recall

Re-opened
F-measure

Not Re-reopened
Precision

Not Re-opened
Recall

Not Re-opened
F-measure

Accuracy

Team 27.3 % 67.1 % 38.7 % 91.2 % 65.6 % 76.3 % 65.8 %
Work habit 33.0 % 74.0 % 45.5 % 93.4 % 70.5 % 80.2 % 71.0 %

Fix 20.9 % 82.8 % 33.2 % 92.8 % 39.2 % 54.1 % 46.3 %
Bug 62.9 % 82.5 % 71.2 % 96.5 % 90.7 % 93.5 % 89.3 %
All 62.9 % 84.5 % 71.4 % 96.8 % 89.6 % 93.0 % 88.8 %

TABLE IX
RESULTS USING DIFFERENT PREDICTION ALGORITHMS

Algorithm Re-opened
Precision

Re-opened
Recall

Re-opened
F-measure

Not Re-reopened
Precision

Not Re-opened
Recall

Not Re-opened
F-measure

Accuracy

Zero-R NA 0 % 0 % 83.9 % 100 % 91.3 % 83.9 %
Naive Bayes 50.5 % 74.4 % 59.9 % 94.5 % 85.6 % 89.9 % 83.6 %
Logistic Reg 55.1 % 78.5 % 64.4 % 95.5 % 87.5 % 91.3 % 86.0 %

C4.5 62.9 % 84.5 % 71.4 % 96.8 % 89.6 % 93.0 % 88.8 %

Work habit dimension: Anbalagan and Vouk [17] per-
formed a case study on the Ubuntu Linux distribution and
showed that the day of the week on which a bug was reported
impacts the amount of time it will take to fix the bug. Śliwerski
et al. [16] measured the frequency of bug introducing changes
on different days of the week. Through a case study on
the Eclipse and Mozilla projects, they showed that most bug
introducing changes occur on Fridays. Hassan and Zhang [12]
used the time of the day, the day of the week and the month
day to predict the certification results of a software build and
Ibrahim et al. [22] used the time of the day, the week day and
the month day that a message was posted to predict whether
a developer will contribute to that message.

The work habit dimension extracts similar information to
those used in the aforementioned related work. However, our
work is different in that we use the information to investigate
whether these work habit factors affect the chance of a bug
being re-opened.

Bug report dimension: Mockus et al. [18] and Herraiz et
al. [35] used information contained in bug reports to predict
the time it takes to resolve bugs. For example, in [18], the
authors showed that in the Apache and Mozilla projects, 50%
of bugs with priority P1 and P3 were resolved within 30 days
and half of the P2 bugs were resolved within 80 days. On the
other hand, 50% of bugs with priority P4 and P5 took much
longer to resolve (i.e., their resolution time was in excess of
100 days). They also showed that bugs logged against certain
components were resolved faster than others.

Similar to the previous work, we use the information in-
cluded in bug reports, however, we do not use this information
to study the resolution time of a bug. Rather, we use this
information to predict whether or not a bug will be re-opened.

Bug fix dimension: Hooimeijer et at. [19] built a model that
measures bug report quality and predicts whether a developer
would choose to fix the bug report. They used the total number
of attachments that are associated with bug reports as one of
the features in the model. Similarly, Bettenburg et al. [36]

used attachment information to build a tool that recommends
to reporters how to improve their bug report. Hewett and
Kijsanayothin [37] used the status of a bug (e.g., Worksforme)
as one of the features to model the bug resolution time.

Similar to the previous studies, we use information about the
initial bug fix as input into our model, which predicts whether
or not a bug will be re-opened.

People dimension: Schröter et al. [38] analyzed the rela-
tionship between human factors and software reliability. Using
the Eclipse bug dataset, they examined whether specific de-
velopers were more likely to introduce bugs than others. They
observed a substantial difference in bug densities in source
code developed by different developers. Anvik et al. [39]
and Jeong et al. [40] were interested in determining which
developers were most suitable to resolve a bug.

We use the names and the experience of the bug reporters
and fixers to predict whether or not a bug will be re-opened.
Although our paper is similar to other previous work in terms
of the factors used, to the best of our knowledge, this paper is
the first to empirically analyze whether or not a bug will be
re-opened.

IX. CONCLUSION

Re-opened bugs increase maintenance costs, degrade the
overall user-perceived quality of the software and lead to
unnecessary rework by busy practitioners. Therefore, prac-
titioners are interested in identifying factors that influence
the likelihood of a bug being re-opened to better deal with,
and minimize the occurrence of re-opened. In this paper, we
used information extracted from the bug and source code
repositories of a project to derive 22 different factors, which
make up four different dimensions, to predict whether or not
a bug will be re-opened. We performed Top Node analysis
to determine which factors are the best indicators of a bug
being re-opened. The Top Node analysis showed that the
comment text, description text, time to resolve the bug and
the component the bug was found in are the top factors.
Using the derived factors, we can build explainable prediction
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models that can achieve 62.9% precision and 84.5% recall
when predicting whether a bug will be re-opened. In the future,
we plan to extend this study to include more projects and
examine whether the factors that influence a bug being re-
opened in Eclipse, affect other projects in a similar way.
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